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1 Introduction

The history of the hyperbolic type geometries began with the attempts to
derive the Euclid’s parallel postulate from other postulates of Euclid. These
attemps failed but they produced results that gave birth to the non-Euclidean
geometry. Some of the most significant contributors were E. Beltrami, J.
Bolyai, C. F. Gauss and N. LobatSevski. The term hyperbolic geometry was
first used by F. Klein in the year 1871. Klein’s ideas became widely adopted
and, in particular, to the use of Mdébius invariant metrics in the geometric
function theory (GFT). These ideas lead to the study of conformal invariants
by L. Ahlfors and others. More information about the history of the hyper-
bolic geometry and about the major research done on this field can be found
from [10], [11] and [16].

This thesis approaches the non-Euclidean geometry from the viewpoint of
GFT. In GFT there are many different metrics which resemble the classical
hyperbolic metric; for example the quasihyperbolic metric and the j-metric.
These kinds of metrics have proven useful in GF'T because many of them are
invariant under certain classes of mappings, like under similarity mappings,
Mé&bius mappings or conformal mappings. An overview of the recent research
in this field can be found from [20].

In the beginning of this thesis we go over the fundamental concepts and
results concerning hyperbolic type geometries. In the main part of the the-
sis we compare hyperbolic type distances in subdomains to hyperbolic type
distances in the original domains. Specifically we study infinite strips, sec-
tors, cyclic polygons and supercircles. In the final part of the thesis we obtain

certain simple results concerning homeomorphisms and subdomain geometry.

1.1 The Metrics

First we introduce few important plane regions, notations and metrics.
Definition 1.1. The upper half-plane H is defined as
H={zeC:Im(z) >0}

1



and the unit disk D is defined as
D={zeC:|z| <1}.

Definition 1.2. Let v be a curve. Now the Fuclidean length of ~ is

I () = / dz).

Definition 1.3. Let (D, k) be a metric space. Now a circle with respect to

the metric k with center at ¢ and radius r is defined as
Crle,ry={z€D:k(c,z)=r}.

Definition 1.4. Let (D, k) be a metric space. Now a ball with respect to

the metric k with center at ¢ and radius r is defined as
Bp(e,r)={z€D:k(c,z) <r}.

When dealing with a closed ball, we add an overline to B. If the metric
is not mentioned, then it is assumed that we are dealing with the Euclidean

metric.

Definition 1.5. Let D € {H, D} and let d (z,0D) be the Euclidean distance
between a point z € D and the boundary dD. Now we can define hyperbolic
weight (or density) function in the following way:

1
wD—)R,w(z):mforD:H

and
2

:1—‘|2fOYD:D
— |z

w:D — R w(z)

Definition 1.6. If z; and z, are two points either in H or I, then the

hyperbolic distance between these two points is

pp (z1,22) = inf }/w(z)|dz|
gl

~v€El 21,22

where T [z1, 5] is the family of all rectifiable curves connecting z; and 2z, in

the given region.



We can also construct hyperbolic metric in any simply connected proper

subset of the complex plane C.

Definition 1.7. Let D be holomorphically equivalent to H and £ : D — H be
a conformal map. The hyperbolic distance between any two points z1, 20 € D
is 2]
dz
z1,%29) = inf _—
D ( ! 2) ~v€el[21,22] /EO’Y d (Z, 8D)

where T'[z1, 23] is the family of all rectifiable curves connecting z; and z3 in
D. This distance is independent of the choice of the map £ so the hyperbolic

distance in D is well-defined.

Theorem 1.8. Hyperbolic distance is a metric in the domain it is generated

in.
Proof. See [1] and [2]. O

There is also another way of generalizing the hyperbolic geometry first
defined by F. W. Gehring and B. P. Palka in [4].

Definition 1.9. Let D C R" be a domain. The quasihyperbolic distance

between any two points 2, 2o € D is

‘ |dz|
K = et ) Az, 0D)
D (21, 22) 75%[%1,22] /y d(z,0D)

where T [z1, 23] is the family of all rectifiable curves connecting z; and zy in
D.

Theorem 1.10. Quasihyperbolic distance is a metric in D C R™.
Proof. See [4, Corollary 2.2.]. O

Next we will consider the j-metric which is also known as the distance
ratio metric. This metric was first introduced by F. W. Gehring and B.
G. Osgood in the article [3] and later in the following modified form by M.

Vuorinen in [19].



Definition 1.11. Let D C R". Now for points z; and 29 in D, we define

. |21 — 29|
=1 1 '
Jp (21, 22) 0g ( + min{d (z1,0D) ,d(z2,0D)}

Theorem 1.12. The j-metric is a metric in the domain it is defined in.
Proof. See [17, Lemma 2.2.]. O

The j-metric can be seen as a way to approximate the quasihyperbolic

metric as the following theorem shows.

Theorem 1.13. Let D C R" be a domain. Now kp (21, 22) > jp (21, 29) for

all points z1 and zo in D.
Proof. See |4, Lemma 2.1.]. ]

The geometries induced by the aforementioned metrics are often referred
in literature as hyperbolic type geometries as their behavior resembles that of
the hyperbolic geometry. This is especially apparent in the way the distance

between points in these geometries depends on the boundary of the domain.

1.2 Geodesics

Definition 1.14. Let D C R" be a domain and v a curve in D. If £ is a

metric in the domain D and
k(z1,20) + k (22, 23) = k (21, 23)

for all 2,23 € v and 2, € 7, where 4 is the subcurve of v joining z; and zs,

then ~ is a geodesic.

Geodesics are not always unique; for example quasihyperbolic geodesics
in a punctured plane are not unique in a special case [14, p. 38]. We shall
denote geodesic between points z; and zo in a metric k with Jg 21, 2.

We shall consider several metrics and geodesics in the cases they exist. In
particular, we shall study the hyperbolic type metrics defined in the previous

section.



Theorem 1.15. In H and D hyperbolic geodesics are arcs of generalized

circles which intersect the boundary of the region at a right angle.
Proof. See [18]. O

If one wants to find geodesics in a simply connected domain D C C, one
has to map the geodesics of H to D with an appropriate conformal mapping.
This follows from the definition of the general hyperbolic distance.

Quasihyperbolic geodesics are not as simple to find as hyperbolic ones

but we do know some significant results regarding them.

Theorem 1.16. a) If z; and zy are points in a domain D C R™, there exists
a quasihyperbolic geodesic that connects them.

b) Quasihyperbolic geodesics are smooth curves.

¢) If D C R™ is convez, quasihyperbolic geodesics on D are unique.

d) If 21 and z are points in B (c,r) and B (c,r) is included in D C R”,
then Jy,, [21, 2] C B (c,r).

Proof. See |3, Lemma 1., [13, Corollary 4.8.], [15, Theorem 2.11.] and [13,
Theorem 2.2.| respectively. O

Quasihyperbolic distances or good approximations of them are known at
least in H, D, punctured plane [14], punctured disk, angular domains [12]
and infinite strip [5], [6].

On the other hand the j-metric has geodesics only in few special cases as

the following theorem shows.

Theorem 1.17. Let z; and zy be points in a domain D C R™ and J; [z, 22]
be a geodesic in j-metric. Now J;[z1, 20| is equal to the line segment |21, 2o).
Also there exists such a point w € D that w is in the set of closest boundary

points for every point in J; (21, 23] and that w and J; [z, z2] are collinear.

Proof. See [7, Lemma 2.9.]. O






2 Subdomain Geometry

In [8], R. Klén, Y. Li and M. Vuorinen introduced the following problem:

Problem 2.1. Let Dy and Dy be two proper subdomains of R™ such that
D1 C Dy and that 0D, N0Ds is either empty or discrete set. Does there exist

a constant ¢ > 1 such that
mp, (21, 22) > emp, (21, 22) Vz1,29 € Dy,
where mp, € {jp,,kp,} forn € {1,2}?

R. Klén, Y. Li and M. Vuorinen gave answer to this problem in three
cases and stated a conjecture for a more general case. They are as follows:
Theorem 2.2. Let

Dy ={(z,y) €C: |z|+|y| <1} and Dy = {(z,y) € C: |[z]* + [y|* < 1}.

Then kp, (21, 22) > V/2kp, (21, 22) for all points in D.
Regardless of this there is no appropriate constant ¢ > 1 in these domains

for the j-metric.
Proof. See [8, Theorem 4.1.]. O
Theorem 2.3. For s € (0,1), let D; = {(z,y) € C: |z|* +|y|* < 1} and
Dy ={(z,y) € C: |x| + |y| < 1}. Then kp, (21, 22) > 2%’11@2 (21, z2) for all
points in Dy.
Proof. See [8, Theorem 4.3.]. O
Theorem 2.4. If D, is a bounded proper subdomain of Dy C R", then
2d (D1, 0Ds)

diam (D)
where mp, € {jp,,kp,} for n € {1,2}.
Proof. See [8, Theorem 4.6.|. O
Conjecture 2.5. For 0 < s <t, let Dy = {(z,y) € C: |z]° + |y|* < 1} and
Dy = {(x,y) € C: |z|' + |y|* < 1}. Then kp, (21,22) > 2%_%1@1 (21, 22) for
all points in D,.

mp, (z1,22) > (1 + ) mp, (21, 22) V21,29 € Dy,

Sometimes the domains of the previous conjecture are referred as super-

circles as they can be seen as generalizations of the unit circle.
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2.1 Subdomain Geometry in Infinite Strips and in Sec-

tors

Following theorems deal with the preceding subdomain Problem 2.1 in an
infinite strip and in a sector. First we present a result concerning the quasi-

hyperbolic metric of some infinite strips.

Proposition 2.6. For h >0 and t € (0,h), let S, ={z € C:|Im(2)| < h}
and S; ={z € C: |Im(z)| < t}. Now for all points in S;:
h

?k‘sh (21, 22) < ks, (21, 22) .

Proof. Let us first prove that
h
d(z,08) > ?d(z,aSt)

for each z € S;. Now

d(z,0S,) d(z,08;) + (h—1) h—t h—t
_ S b S P Ll
1(z,09,) d(2,08,) taGasy Tt
SO h
d (Z, aSh) Z ?d (Z, (9St) .

Let us next suppose that z; and zy are points in S; and that ~ is a quasihy-
perbolic geodesic connecting z; and 25 in S;. Now v C Sj, for v C S; C Sy,

and so we get

|dz| / |dz| t
ks, (z1,22) < — < ———— = —kg, (21, 22) .
5w (21, 22) /Wd(z,ﬁSh) L Bd(z,08,)  h s (21, 22)

This proves the inequality. ]

Next theorem will generalize the case of the infinite strip to proper un-
bounded subdomains. But before the theorem, we must first introduce a new

important definition.

Definition 2.7. Let D be a proper subdomain of R". Now medial axis of D
is the set of points in D that have two or more closest points on the boundary
of D.

If it is not stated otherwise, medial axis is defined in relation to the

Euclidean distance.



Theorem 2.8. Let Dy and Dy be unbounded proper subdomains of R"™. If
Dl g DQ, R = d(Dl,aDQ) S R+ and

r =sup{d(z,0D) : z € medial axis of D1} € Ry,

then for all points in D

R
(1 + ?) kD, (217 ZZ) < kp, (21, 2’2) .

Proof. We shall proceed in the same fashion as in the proof of the preceding
proposition. Clearly d(z,0D3) > d(z,0D;) + R. Now by evaluating the

quotient of distance functions d (z,0D;), we get

d (Z, (9D2)
d (Z, 8D1)

d(z,8D1)+R_1+ R
d(z,0D,)  ~ d(z,0D)

>

Next r > d (z,0D;), so we have

d (z,0D,) R
— > 14 —.
d(z,0Dy) — + r

Now the theorem follows by a similar argument as in the proof of the pre-

ceding proposition. O

The case of a sector and the quasihyperbolic distance will be divided into

four lemmas.

Definition 2.9. If a € (0, 7], then the sector defined by « is
Sy,={2€C:larg(z)| <a}.!

Lemma 2.10. Let 3 € (0,5] and o € (0, 8). For all points in S, we have
1
sin (g +a— 5)

kSg (217 ZZ) < kSa (217 22) )

1
where —Sin(%a_ﬁ) > 1.

'An in-depth study of the quasihyperbolic distance and geodesics in sectors can be
found from [12].



Proof. Let us first prove that

1
sin(g—i—a—ﬁ)

d(z,085) > d(z,054)

for each z € S,.

Let us fix z and let A,, € 0S,, be such a point that |z — A,,| = d(z,0S5,,)
for m € {a, }. Also we define B = [Ag, 2] N 0S,. Now by the trigonometry
of right triangle, we get ZAgBO = 7 + o — 8 where O is the origin. Next

because they are vertical angles, ZA3BO = ZzBA,. Then once again by
d(z,05)

the trigonometry of right triangle, we get that |z — B| = o )|
sin 2 a—

. Finally
because d (z,053) > |z — B|, we have

d(z,053) > |z — B| =

d(z,08,)
sin (% + o — ﬁ) '
This concludes the first part of the proof.
Now using analogical method as in the preceding proofs, we get

1
sin(%%—a—ﬁ)

ksﬁ (21, ZQ) < ksa (2,'1, 22) .

Finally,
1

sin (% +a— ﬁ)
follows from the fact that o < 8 < 7. O]

> 1 Ya € (0,5)

Lemma 2.11. Let § € (3,7 and a € (0,8 — 3]\ {5}. For all points in S,

we have
1

sin o

ks, (21, 22) < ks, (21, 22) ,

1

sin «

> 1.

where

Proof. Once again we start by evaluating the quotient of the two distance
functions. Let z = 2 + iy = re?. Without loss of generality we can assume

y > 0. Now because the origin is the closest point on 953 for all points in S,
1

cos? a?

and because 1 + tan’a = it follows from the general equation of the

distance between line and a point that

d(z,085) Va2 +y?

d(z,08,) |rtana —y|/cosal’
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By reducing with x and using the facts that tana > tanf and that z is in
the first quarter, we get

d(z,055) V1 + tan®6

d(z,05,) (tana —tanf)cosa’
Finally, by finding a lower bound for the numerator and an upper bound for
the denominator, we have
d(z,053) S 1
d(z,0S5,) —

sina’
From this the lemma follows. O]

Lemma 2.12. Let 3 € (5,7} and o € (5 -3, %) For all points in S, we

have
1

sin «

ks, (21, 22) < ks, (21, 22) ,

1

sin

where > 1.

Proof. Let z; and zy be two points in S, and let v be the quasihyperbolic
geodesic connecting these points in S,. Now let us divide ~ into two parts
~v1 and s so that v, C Sg_g and that v, C (Sa \ Sg_g>. Now because in the
domain Sg_z the distance functions can be evaluated in the same way as in
Lemma 2.11 and because in the domain (S, \ Sg_g) the distance functions

can be evaluated in the same way as in Lemma 2.10, we get

ks, (= z)</ _ld=l +/ _ldzl
Sl = ) d(2,085) )., d(z,085)
, |dz| (T / |dz|
<sma/ ———— +sin({=+a-—7 _—.
v d(2,08,) <2 ) s d(2,05,)

and § < 8 < m, clearly sina > sin (% +a— ﬁ). So we can

s

2
further evaluate the preceding inequality:

) dz . dz )
ks, (21, 22) < 81na/ % + Slnoz/y2 % =sina kg, (21, 22) .

71

Because o <

This concludes the proof. O]

Lemma 2.13. Let 3 € (3,7 and a € |5, ). For the domains S, and Sg

the answer to Problem 2.1 is negative for the quasthyperbolic distance.
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Proof. Now for all points in the positive part of the real axis the closest point
of the boundary of either domain is the origin. This means that d (x,0S,) =
d(z,085) for all x € R;. Then by [12, Theorem 4.10.] the quasihyperbolic
geodesic between two points on the positive real axis is a line segment for
both domains so ks, (v1,72) = ks, (z1,72) for all points on the positive real
axis. So, in this case, there cannot be a constant ¢ > 1 satisfying the assertion
of Problem 2.1. ]

The next theorem combines the results of the preceding lemmas.

Theorem 2.14. o) If 3 € (0,5] and a € (0, ), then
1
sin (g +a— B)
b) If B € (3,7 and o € (0, %), then
1
sin o
c) If B € (5,7 and a € [5, ), then for the domains S, and Sg the
answer to Problem 2.1 is negative for the quasihyperbolic distance.

kgﬁ (Zl, 2,'2) < k?sa (21,22) v21722 S Sa.

k’gﬁ (Zl, 22) < kSa (Zl, 22) VZl, 29 € Sa.

Proof. Theorem follows from the four preceding lemmas. ]

Next we will prove that for the infinite strip and the sector the answer to

Problem 2.1 will be negative in the case of the j-metric.

Theorem 2.15. If the domains given in Problem 2.1 are two infinite strips

or two sectors, there does not exist a suitable constant ¢ > 1 for the j-metric.

Proof. Let us first prove this theorem in the case of infinite strips. For
h > 0 and t € (0,h), let S, = {z€C:|Im(2)| <h} and S; =
{z€ C:|Im(2)| <t}. We shall examine a limit of quotient of jg, and jg, .
Let x > 1. Now for fixed h and ¢

lim —‘jst (1,2) = lim log {1+ ) (1+ mT:l) =

z—o0 jg, (1,2)  @—=o0 log (1 + le)
which proves the theorem in the case of infinite strips.

The proof for two sectors is completely analogical; if we pick the same

points as before, the minimum distance once again stays constant and the

quotient approaches to 1. O]
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2.2 Subdomain Geometry and Cyclic Polygons

The next theorem generalizes Theorem 2.2 for a cyclic polygon and the cor-

responding circumcircle.

Theorem 2.16. If P is a cyclic polygon and C' is such that OC' is the cor-
responding circumcircle, the answer to Problem 2.1 is positive in the case of

the quasihyperbolic metric but negative in the case of the j-metric.

Proof. Let Ay, ..., Ay be the vertices of P and aq,...,a; be the edges of P.
We also define r to be the radius of C' and M to be the medial axis of P.
Because P is a cyclic polygon, it is also a convex polygon so M is composed
of line segments and OM NIP = {Ay, ..., Ax}. Because of this M divides P
into such subregions Vi, ...,V that each of them shares one edge with P; for

example P and Vj share a; as in Figure 1.

Figure 1: A cyclic polygon and the corresponding circumcircle with the used
notations. The medial axis is drawn with dashed line segments.

d(z,0C)
d(z,0P)

M. We do this by examining each of the subregions beginning with V;. For

reaches the minimum value in

First we prove that the quotient

this first part we assume that the circumcenter c is the origin. We also rotate
the complex plane so that a; acts as a basis for P and is collinear with the real

axis with imaginary coordinate y;. We may do this because rotations clearly

13



preserve P and C, and so they also preserve the quasihyperbolic geometry
of P and C. Next for z = te’? € V}, we get

d(z,00) r—t

d(z,0P) tsinf —y,

Let us denote the right side of the above identity by f; (¢). By differentiating
with respect to t, we get

Yy — rsind

fi(t) = m

Now f; (t) > 0 when the line segment [z,re] does not intersect the medial
axis, f; (t) = 0 when re? is a vertex shared by V; and P and f; (t) < 0 when
the line segment [z, rew] intersects the medial axis. By repeating this process

for all subregions V,,, we see that corresponding f,, (t) always decreases when
d(2,0C)
d(z,0P)
Next we shall consider what happens to the quotient on the medial axis.

reaches the minimum value in M.

it approaces M so the quotient

We start by considering the line segment (Ay, I1] C M where I is the closest
junction point to A; on M. Next with suitable rotation and translation we
map the vertex A; to the origin and side a; on the positive real axis so that

the shape of P and C' are preserved. Now for z = te? € (A, I] we have

d(z,0C) 1 —/r2+1>—2rtcosf

d(z,0P) tsind
where (3, is either ZcA; I or ZI; A;c depending on the position of ¢ ¢ (Ay, I1].

We make a note that in the case ¢ € (A, 1] the above equation becomes

d(z,00) _ 1 d(z,0C) _ 2r—t
d(2,0P) ~ sin6 d(z,0P) ~— tsinf > 1 when z € (C7 [1]
so in this case the quotient is either a constant or clearly decreasing. Then
if ¢ ¢ (Ay, 1], we mark the right hand side of the above equation with ¢, (¢)

and differentiate with respect to t. This way we get

r (r —tcos By — /12 + 12 — 2rtcosﬁl>
t23/12 + 12 — 2rt cos By sin 0 '

> 1 when z € (A4;,¢] and

g, (t) =

Whether this derivative is positive or not depends on the expression r —

tcos fp1 — \/T2 + t2 — 2rt cos 5. By simple calculations we see that this ex-

pression is strictly smaller than zero. This means that the quotient of the

14



distance functions decreases as the point z moves farther away from the ver-
tex A].

By repeating the above process for each line segment (A,,, I,,] we can
d(z,0C)
d(z,0P)
{I,:me{l,...k}} or on some line segment [I,,I,|] € M where u,v €

conclude that reaches its minimum either on some point in the set
{1,...,k}. Especially, this means that the minimum of the quotient is not
reached when the point z on the medial axis approaches a vertex of P. Now
there is clearly not a point in M where the quotient of the distance functions

ZEZ gg; >cforallz e P

is equal to 1 so there must be a constant ¢ such that

and especially

. [d(I,,00)
—_— > .
mm{d([m,ﬁp) m € {1, ,k}}_c>1

Finally, by the same process as in the proof of Proposition 2.6 we conclude
that
kp (z1,29) > ckc (z1,20) V21,290 € P

where c is as above.

To prove the case of the j-metric we translate the circumcenter ¢ back to
the origin and let I + r1e"* = A, and I, + rye’® = A, where I,,, and A,, are
constructed as above. Also let € € (0, min {ry,mo}). Ifwy = I + (r; —€) e
and wy = I + (ry — €) €2, then w; and w, are contained in the medial axis
and d (wy,0C) = € = d(wy,0C). We also may assume that d (wy,0P) <

d (wz,0P). Now € > d (wy,dP), so
, M |w1—wa|
jo (wi, ws) B log (1 + ) - log (1 + — )
Jp(wi,wa)  og <1 + ;(‘;1} g’;‘)) ~ log (1 + —c|w1€_“’2‘>

The right side of the above inequality approaches 1 when e approaches 0.

This means that %—132; must also approach 1 because it is always equal to
or greater than 1. In conclusion there cannot be a constant ¢ > 1 for the

j-metric. O

Corollary 2.17. If P is a regqular polygon or a triangle and C 1is such that
0C is the corresponding circumcircle, then
d(I,0C)

_d(I ap)kc(zl,ZQ) Vzl,zQEP

kp (21, 22)

15



where I s the intersection point of the bisectors of the internal angles of P.
There is no constant ¢ > 1 as required in Problem 2.1 in the case of the

j-metric.

Proof. This follows directly from the proof of the preceding theorem because
in a regular polygon and in a triangle the medial axis has only one junction
point: the unique intersection point of the angle bisectors. O
Corollary 2.18. If P is a cyclic polygon and C is such that OC is the

d(2,0C)
d(z,0P)

corresponding circumcircle, the point where the quotient reaches its

manimum s not generally unique.

Proof. We prove this corollary by giving an example. If P is a rectangle
that is not a square, the medial axis M has two junction points, I; and I,

and the circumcenter c is the midpoint of the line segment [I;, Is]. Now by

d(z,00)
d(z,0P)

junction point from vertex. On the other hand when z approaches c on [I1, I],

the proof of Theorem 2.16 the quotient decreases as z approaches a

distance d (z, OP) stays constant but d (z, dC) increases so the quotient of the
distance functions increases. In conclusion the quotient reaches its minimum
in both I; and I5. O

In the case of an incircle and the corresponding polygon the answer to

Problem 2.1 is negative.

Proposition 2.19. There is no constant ¢ > 1 when the regions in Problem

2.1 are a polygon P and C' is such that OC is the corresponding incircle.

Proof. Let O be the center of C and A € 9P N JC. Now clearly d (z,0P) =
d (z,0C) for all points on the line segment [A, O]. Then for points z; and 2z
on the line segment [A, O], Ji, [21,22] = [#1, 22]. Also by [12, Lemma 3.7,

Jie [71, 22) = |71, 22]. From these facts it follows that
kp (21, 22) = ke (21, 22) Vz1,22 € [A, O]
so there cannot be a constant ¢ > 1. O

Next we will present a lemma concerning cases when the quotient of
the distance functions approaches 1 and then consider Problem 2.1 in the

intersection of two disks.
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Lemma 2.20. Let Dy and Dy be as in Problem 2.1. If the function Zgz:ggfg

equals to 1 for all z € Dy or approaches 1 when z € Dy, then there is no

constant ¢ > 1 as required in Problem 2.1.

Proof. 1f ggz 222) =1 for all z € Dy, then D; = Dy, and the result is trivial.

Let us then assume that for some z € D; the quotient 7 ZaDQ) # 1. This

d(z,0D2)
d(z,0D1)

curve 7. Now for every € > 0 we can pick a suitable part N of the curve v
such that

means that there is a curve v C D; such that approaches 1 on the

d(z,@DQ)
d (Z, aD1>

We shall now finish the proof by contradiction. Let us assume that there

—1<e Vze N.

exists ¢ > 1 so that kp, (21,22) > ckp, (21, 22) for all points in D;. Now
we pick such € > 0 that 5 > 1. Next by similar process as in the

proof of Proposition 2.6 we get that kp, (21,22) > —=kp, (21, 22) for some

E-‘rl
points on the curve 7. By combining the two previous inequalities we have

kp, (21,22) > Z5kp, (21, 22) but this is impossible for & > 1. O

Theorem 2.21. Let 0C, and 0Cy be such circles that 0C, N 0Cy = {A, B}.
Now for domains D1 = C1yNCy and Dy = C1UC, there is no constants ¢ > 1

satisfying the assertion of Problem 2.1 for either of the two metrics.

Proof. Let us first define few notations. Let 7,, be the radius of the circle
0C,,. Without loss of generality we may assume that the center of C, ¢y, is
the origin, that the center of the other circle, cs, is on the positive real axis and
that Im(B) > 0. We shall begin by proving the case of the quasihyperbolic
metric.

First we let z = te? € D; and solve what is the equation for ¢t when z
is on the medial axis of Dy, M. Now d(z,0C)) = r; —t and d(z,0C,) =
To—|ca— 2| = 1y — /3 + t2 — 2cat cos 0. Clearly z is on M when d (z,0C)) =

(catri—ra)(ca—r14712)
2(—r1+ra+ca cosb)

Second let z = te? be on the medial axis. Because of symmetry and

d(z,0C5). By solving this equation for ¢ we get t =

because we are only interested what happens close to a border point, we

may assume Im(z) > 0. We shall prove that the quotient of the distance
d(z,0D2)
d(z,0D1)

functions approaches 1 when 6 approaches arg (B) > 0. Clearly

17



|z — B| = d(z,0D5). Now by the law of cosines we have

d(z,0D5) /13412 — 2try cos (arg (B) — 0)
d(z,E)Dl) N (&1 —1 )

(c24r1—r2)(c2a—r14r2)

2(—r14ro+ca cosb) we reach

By making the substitution ¢ =

d(z,0D3)  2(ry —ro—cocost)/f(0)

d(z,0Dn) c2+r? —r3 — 2cory cost

where

(co+1m —T2)2(02—7"1+7"2)2

4 (=11 + 79 + ¢5 cos0)

r1(c2 + 11 —12) (c2 — 11 + 12) cos (arg (B) — 0)
B —r1 + 1y + cycosf ’

f(O)=ri+

Next by straightforward calculation

d (’27 aD?)

et At VA |
o-sare(B) d (2, 0D, )

so the claim for quasihyperbolic metric follows from Lemma 2.20.
The case of the j-metric is proved fundamentally in the same way as in
the proof of Theorem 2.16. O]

2.3 Subdomain Geometry and Supercircles

In this section we shall answer to Conjecture 2.5 in certain cases. First we
must prove few preliminary results concerning subdomain geometry.
The following problem was presented by M. Vuorinen in an informal con-

versation at the University of Turku sometime during the summer of 2013.

Problem 2.22. Let G C R" and w € G. Point b € 0G is such that
d(w,0G) = |w — bl|. Does there exist a domain D C G that fills conditions

1. [w,b) C D

and
2. de>1 : kp(z1,2) > ckg(z1,22) Vz1,20 € D 7

18



The following theorem shows that the answer to this problem is positive

in the case of the complex plane.

Theorem 2.23. Let G C C. Then there exists a domain D C G as required
for Problem 2.22.

Proof. First let

Sa:{zeH:g—a<arg(z)<g+a}

for a fixed a € (0, arcsin ( )) Now by Theorem 2.14

L
16
1

sin «

ku (21, 22) < ks, (21,22) V21,22 € Sq

where Siia > 16.

Second let G C C, w € G and b € 0G be as in Problem 2.22. Now
we define G C G to be a simply connected domain that includes the line
segment [w, b). This kind of domain must exist, because d (w, 0G) = |w — b
implies that B (w, |w — b|]) C G. By Riemann mapping theorem there exists
a biholomorphic and conformal map f,.,,; from G’ onto D. Then Mé&bius
transformation

my (2) = ewLL(w)
1 — frme (w)z
with suitable 6 is an automorphism of the unit disk that maps f... (w) to
the origin and f,.,,; (b) to —1. Another Mobius transformation
12 +1
—z+1

me (z) =

maps the unit disk D onto the upper half-plane H so that ms (—1) = 0
and msy (0) = i. Now, the composite function f; = mg omy o fry maps G’
bijectively and conformally onto H and especially b to the origin and w to ¢ so
that curve fi ([w,b)) meets the real axis at right angle. Finally, if we choose
appropriate coefficient 0 < @ <1 and define f = afi, then f ([w,b)) C S,.
Third let us define D = f~1(S,). Now, by [9, Proposition 1.6.], we get

lekD (Zl, 22) S l{isa (f (Zl) s f (ZQ)) S 4k’D (21,22) VZl, 2o € D
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and

1 .
Z_lkG/ (Zl, ZQ) S kH (f (21) s f (ZQ)) S 4kg/ (21, 22) Vzl, 29 € G .

By combining these two two-sided inequalities and the one from the first part

of the proof, we have

ko (1, 2) 2 s, (f (1) f (=)
e (f (1), ()

1
>
~ 16sina

k?Gv (Zh ZQ)

for all z1,2; in D. Also G’ C G, so kg (21,22) > kg (21, 22) which finally

gives us
1

16 sin o

kp (21,22) > ka (Zl,Zg) Vzl,zz eD.

Clearly, wsﬁ > 1. This means that D is as required in the theorem, and

the proof is complete. O

We can also give a positive answer to Problem 2.22 in the general case of
R™ as the following proof, suggested by T. Sugawa during an informal con-
versation at the Second Chinese-Finnish Seminar and Workshop on Modern

Trends in Classical Analysis and Applications in August 2013, shows.

Theorem 2.24. Let G C R™. Then there exists a domain D C G as required
for Problem 2.22.

Proof. Let G C R™", w € G and b € OG be as in Problem 2.22. Also let
B be such an Euclidean ball that b € 0B N 0G and that it includes the
line segment |w,b). Next we define C's to be such a right circular cone that
Cs C G, [w,b) C Cz and 0C3NIG = b, and C, to be an other right circular
cone such that C, C Cs, [w,b) C C, and 0C, N OCsz = b.

Now by a similar argument as in the proof of Lemma 2.10 we get

1
sin(g+a—5)

kcﬁ (21,22) < ke, (21, 22) V21,20 € Cy
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and because Cz C B C G, we finally get

1
sin(%—i—a—ﬂ)

kG (21,22) < kca (21,22) v21722 € Ca

so O, is suitable for the region D in Problem 2.22. ]

Based upon the proof of Theorem 2.23 M. Vuorinen presented the follow-
ing problem in an informal discussion at the University of Turku sometime

during the summer of 2013.

Problem 2.25. Does there exist such a domain D C H that 0D 1is differen-
tiable at the origin O, that 0D NOH = {O} and that the answer to Problem
2.1 is positive for the domains D and H?

We shall show that answer to this problem is negative.

Theorem 2.26. There does not exist any such domain D as described in
Problem 2.25.

Proof. We shall prove this claim by considering the quotient of the distance
d(z,0H)
d(z,0D)

D it follows that the derivative of 0D at the origin O is 0 for otherwise 9D
would continue below the real axis which is impossible. From this it follows
that there exist b > 0 such that the line segment (O, ib] C D for otherwise

functions

when 2z is on the imaginary axis. First from the definition of

the derivative would not be 0 at the origin.

d(z,0H)
If d(2,0D)

follows from Lemma 2.20. Otherwise let 0D, = {z € 9D : Re(z) > 0} and
OD_ = {z€ 0D :Re(z) <0}. We may assume without losing generality

that d (z,0D4) < d(z,0D_) when z € (O, ic] where ¢ <b.
d(z,0H)
d(z,0D4)

proaches the origin on the line segment (O, ic]. Let P = (x,if (z)) be such a

= 1 for some points on the line segment (O, ib], then the claim

Next we shall prove that the quotient approaches 1 as z ap-

part of the curve 0D, that f is strictly increasing. P must exist for otherwise
D would not be as defined. Let K € P be such a point that |z— K| = d (z, P)
for z € (O, ic|. Let z =iy and let us solve y for K = (z, f (z)). By making
use of the fact that the line segment [z, K| is normal to the point K we get
1
Yy — f Tr)=—7
e

21
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so we get
x

y:f/—(x)+f(m)'

Then by using the definition of the Euclidean distance we get

|z — K| = \/x2+ <fi($))2

d(z,0H)
d(z,8D+)

(O,ic]. Tt is clear that the origin O is the closest point to z on JH, so now

Finally, we are ready to evaluate the quotient

on the line segment

d(z,0H) 7@ T 1@

TP fas (f’gfx)>2

e (1) (e
1+ (f (z)) L+ (f ()

Now z approaches the origin on (O, ic| as = approaches 0. We make use of the
algebraic limit theorem and the fact that f (0) = 0 together with f(0) = 0

implies lim,_, @ = 0 and calculate
. d(z, OH)
lim ———~=1+0-0=1.
S FTErT N R
The claim follows from this and by Lemma 2.20. ]

Corollary 2.27. If D1 and Dy are as in Problem 2.25 and Dy C D», then

there is no constant ¢ > 1 as required in Problem 2.1.

Proof. Now for all z € D; we have
d(z,0D;) d(z,0Ds) d(z,OH)

d(z,0Dy)  d(z,0H) d(z,0D;)
Both the quotients on the right hand side of the above relation approach 1

when z approaches the origin on the imaginary axis, so the claim follows by
Lemma 2.20. [

With the help of Theorem 2.26 and Corollary 2.27, we may now go over
some cases of Conjecture 2.5. We shall begin with a general lemma and then

proceed to results concerning the conjecture itself.
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Lemma 2.28. Let Dy and Dy be two domains as in Problem 2.1 and let

¢ = inf {ﬁzggjg 1z € Dl} > 1. Af Jyp, [wi, we] = Jiy, [w1,ws] for points in

a nonempty W C Dy and if the infimum c is reached in the closure of W,

then c is the best possible constant that fills the requirements of Problem 2.1.

Proof. We shall prove by contradiction. Let us suppose h > ¢ and that
kp, (z1,22) > hkp, (21, 22) for all points in the domain D;. Especially for
points in W we get

/ cldz| - / hldz| < / |dz|
J d(Z,&DQ) J d(Z,&DQ) B J d(z,@Dl)

where J is a geodesic joining the points z; and z,. Because the path is the

same in each integral and because the integrand is now always positive, we

get
c h 1
< <
d(z,E)Dg) d(z,@Dg) - d(z,E)Dl)
and d( 0Dy
< 2
c<h< (z 2Dy Vze W.
) .

This implies that h = mf{ Zggf)

so the claim follows. O

1z € Dl} which is a contradiction, and

Proposition 2.29. If s =1 andt > 2, then Conjecture 2.5 is false but there
15 a constant ¢ > 1 as required in Problem 2.1.

Proof. For all z € D, we have

d(2,0D;)  d(2,0D;)d(z,dDy)
d(z,0Dy)  d(z,0D,)d(z,0Dy)

We know by the proof of Theorem 2.16 and by Corollary 2.27 that each of
the quotients on the right hand side of the above relation reaches its infimum
on the medial axis M, of D;. Next by the proof of Theorem 2.16 we also
know that Zég:ggf; = /2 for all points on M. Then the quotient g((zﬁ:ggg =1
on M ast > 2. In conclusion we have
d (Z, (9Dt)
d (Z, 8D1)

2\/§\V/ZED1
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From this it follows that kp, (21, 22) > v/2kp, (21, 22) for all points in D;.
Finally we prove that the conjecture is false in this case. First 21-3 >

21=% if and only if ¢ < 2. Then by [12, Lemma 3.7.] Ji, (21, 22] = Jip, [21, 22]

for all points on the line segment (i, —i). Now by Lemma 2.28 the constant

V/2 is the best possible and so the conjecture is false. O

Proposition 2.30. If 1 < s <t for the domains in Conjecture 2.5, there is

no constant ¢ > 1 as required in Problem 2.1.

Proof. If we make a translation ¢ (z) = z + ¢, the situation becomes as in
Corollary 2.27 and the claim follows. ]

Proposition 2.31. If0 < s <1 and t = 2, then Conjecture 2.5 is true.

Proof. Let D; be a domain such that Dy C Dy C D,. Then for all points

z € D, we have
d(2,0D;)  d(z,0D;)d(z,0D,)

d(z,0D,)  d(z,0Dy)d(z,0D,)

First by the proof of Theorem 2.16 the quotient g((jggi))

on the medial axis M, of Dy, where it is the constant v/2. Then by the proof
d(2,0D1)
d(z,0D)

the minimum is 251, Because O € M, we get

reaches its infimum

of Theorem 2.3 the quotient reaches its infimum at the origin, O and

d(z,0D;) 1 11

_— > 225 = 25 v Ds-

d(z,(‘)DS)_\/_ T vEe
Now the claim follows by a similar argument as in the proof of Proposition
2.6. [

Proposition 2.32. If0 < s <1 and t > 2, then Conjecture 2.5 is false but

there is a constant ¢ > 1 as required in Problem 2.1.

Proof. Let Dy be a domain such that Dy C Dy C D;. Then for all points

z € D, we have
d(2,0D;)  d(z,0Dy)d(z,0D,)

d(z,0D;) d(z,0D3) d(z,0D,)
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d(2,0D .
(2:0D4) yeaches its infimum

First as in the proof of Lemma 2.29 the quotient

d(z,0D2)
on the medial axis M, of D,, where it is the constant 1. Second, by Propo-
sition 2.31, the quotient flgjggjg reaches its infimum value 252 at the origin
O € M. From these facts we conclude that
d (Z 8Dt) 1_1 1_1
T > 1.92573 =952 Y e D,.
d(z,0Ds) — N

From this it follows that kp, (21, 29) > 2%_519[% (21, 29) for all points in Dj.
Finally 2572 < 257 and 2572 is the best possible coefficient in this case

by a similar argument as in the proof of Lemma 2.29 so Conjecture 2.5 is

false. O

2.4 Subdomain Geometry and Homeomorphisms

We can also ask whether homeomorphisms preserve the condition of Problem

2.1. To deal with this question we first introduce a new definition.

Definition 2.33. If f : D — D’ and ¢ : [0,00) — [0,00) are homeomor-

phisms and if

o ' (kp (21, 22)) < kp (f (21), f (22)) < @ (kp (21, 22))

for all points in D, then f is p-solid. If above condition is true for all subsets
of D then f is fully y-solid.
If the above inequality is missing the left hand side, f is ¢-semisolid.

Proposition 2.34. Let D, and Dy be such subdomains of R™ that they fulfill
the conditions of Problem 2.1 for the quasihyperbolic metric with a constant
c> 1. If f: Dy — D is fully @-solid, D} is the image of Dy under f

and ¢ (t) <t for all t, then kp: (f(z1), f(22)) > ckpy (f (z1), f (22)) for all
points in D1.

Proof. First because ¢ is a homeomorphism from [0, 00) to [0,00), ¢ and
its inverse are strictly increasing. From this and the fact that ¢ (t) < ¢, it
follows that o' (¢) >t for all t.

Now because f is fully @-solid, k:D/1 (f(z1),f(22) > ¢ (kp, (21, 22))-
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Then because the domains D, and D, fill the criteria of Problem 2.1 and

because of the inequalities mentioned in the previous paragraph, we get

kpy (f (1) f (22)) = 7" (ckp, (21, 22))
> Csz (217 ZQ) > cp (kD2 (217 22)) :

Finally we again use the fact that f is fully ¢-solid and get that

ko (f (1) f (22)) > chpy (f (1) f (22))

for all points in D/1 which proves the claim. O

Proposition 2.35. Let Dy and D5 be such subdomains of R™ that they fulfill
the conditions of Problem 2.1 for the quasihyperbolic metric with a constant
c> 1. If f: Dy — Dy is fully p-solid, D} is the image of Dy under f and
@ (t) = MtP with M > 1 and p > 1, then

4

C % P2
iy (F (), £ (2)) = (373) " (g (F (1) f ()
for all points wn D;.
Proof. Let z; and z be points in D;. First because f is fully ¢-solid, we get

1
P

by (F (20) £ (22)) = 7 iy (21, 22)) = (%z@ <zhz2>)

Then because ¢ is stricly increasing, ¢! is also stricly increasing, and so we

get

3=
hSA

kg (F (22), £ 22)) 2 (ks (21.20)) = (55 )” (Moo, (21, 22)

w"“

But M7 > M# and (kp, (21722))% = ((kp, (21, 22))")?*, so we have

'cm‘ —

1

by (f (21) £ () = (375) " (M (koy (21,22))")
Finally M (kp, (21,22))" = ¢ (kp, (21,22)) and f is p-solid, so

.
2

kg (F(22) £ (2) 2 (557)” (kg (F (). £ )™ s

1
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3 Concluding Remarks

The most important results of this thesis deal with Problem 2.1 that con-
cerns comparing hyperbolic type distances in subdomains to hyperbolic type
distances in the original domains. This problem was first introduced and an-
swered to in certain cases in the article [8] by R. Klén, Y. Li and M. Vuorinen.
In this thesis the previous research was expanded which is most apparent in
Theorem 2.16 that generalizes an erstwhile theorem concerning a square and
the corresponding circumcircle to all cyclic polygons. For future research,
this problem could be studied in the case of other metrics discussed in [20]
that were not mentioned in this thesis.

Also noteworthy is the advancement in the study of Conjecture 2.5 that
deals with Problem 2.1 in the case of supercircles. Propositions 2.29, 2.30,
2.31 and 2.32 cover some cases of this conjecture and hopefully they will in

the future help turning the conjecture into proven theorems.
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