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1 Introduction

The history of the hyperbolic type geometries began with the attempts to

derive the Euclid's parallel postulate from other postulates of Euclid. These

attemps failed but they produced results that gave birth to the non-Euclidean

geometry. Some of the most signi�cant contributors were E. Beltrami, J.

Bolyai, C. F. Gauss and N. Lobat²evski. The term hyperbolic geometry was

�rst used by F. Klein in the year 1871. Klein's ideas became widely adopted

and, in particular, to the use of Möbius invariant metrics in the geometric

function theory (GFT). These ideas lead to the study of conformal invariants

by L. Ahlfors and others. More information about the history of the hyper-

bolic geometry and about the major research done on this �eld can be found

from [10], [11] and [16].

This thesis approaches the non-Euclidean geometry from the viewpoint of

GFT. In GFT there are many di�erent metrics which resemble the classical

hyperbolic metric; for example the quasihyperbolic metric and the j-metric.

These kinds of metrics have proven useful in GFT because many of them are

invariant under certain classes of mappings, like under similarity mappings,

Möbius mappings or conformal mappings. An overview of the recent research

in this �eld can be found from [20].

In the beginning of this thesis we go over the fundamental concepts and

results concerning hyperbolic type geometries. In the main part of the the-

sis we compare hyperbolic type distances in subdomains to hyperbolic type

distances in the original domains. Speci�cally we study in�nite strips, sec-

tors, cyclic polygons and supercircles. In the �nal part of the thesis we obtain

certain simple results concerning homeomorphisms and subdomain geometry.

1.1 The Metrics

First we introduce few important plane regions, notations and metrics.

De�nition 1.1. The upper half-plane H is de�ned as

H = {z ∈ C : Im (z) > 0}
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and the unit disk D is de�ned as

D = {z ∈ C : |z| < 1} .

De�nition 1.2. Let γ be a curve. Now the Euclidean length of γ is

l|| (γ) =

∫
γ

|dz|.

De�nition 1.3. Let (D, k) be a metric space. Now a circle with respect to

the metric k with center at c and radius r is de�ned as

Ck (c, r) = {z ∈ D : k (c, z) = r} .

De�nition 1.4. Let (D, k) be a metric space. Now a ball with respect to

the metric k with center at c and radius r is de�ned as

Bk (c, r) = {z ∈ D : k (c, z) < r} .

When dealing with a closed ball, we add an overline to B. If the metric

is not mentioned, then it is assumed that we are dealing with the Euclidean

metric.

De�nition 1.5. Let D ∈ {H,D} and let d (z, ∂D) be the Euclidean distance

between a point z ∈ D and the boundary ∂D. Now we can de�ne hyperbolic

weight (or density) function in the following way:

w : D → R, w (z) =
1

d (z, ∂D)
for D = H

and

w : D → R, w (z) =
2

1− |z|2
for D = D.

De�nition 1.6. If z1 and z2 are two points either in H or D, then the

hyperbolic distance between these two points is

ρD (z1, z2) = inf
γ∈Γ[z1,z2]

∫
γ

w(z)|dz|

where Γ [z1, z2] is the family of all recti�able curves connecting z1 and z2 in

the given region.
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We can also construct hyperbolic metric in any simply connected proper

subset of the complex plane C.

De�nition 1.7. LetD be holomorphically equivalent to H and ξ : D → H be

a conformal map. The hyperbolic distance between any two points z1, z2 ∈ D
is

ρD (z1, z2) = inf
γ∈Γ[z1,z2]

∫
ξ◦γ

|dz|
d (z, ∂D)

where Γ [z1, z2] is the family of all recti�able curves connecting z1 and z2 in

D. This distance is independent of the choice of the map ξ so the hyperbolic

distance in D is well-de�ned.

Theorem 1.8. Hyperbolic distance is a metric in the domain it is generated

in.

Proof. See [1] and [2].

There is also another way of generalizing the hyperbolic geometry �rst

de�ned by F. W. Gehring and B. P. Palka in [4].

De�nition 1.9. Let D ( Rn be a domain. The quasihyperbolic distance

between any two points z1, z2 ∈ D is

kD (z1, z2) = inf
γ∈Γ[z1,z2]

∫
γ

|dz|
d(z, ∂D)

where Γ [z1, z2] is the family of all recti�able curves connecting z1 and z2 in

D.

Theorem 1.10. Quasihyperbolic distance is a metric in D ( Rn.

Proof. See [4, Corollary 2.2.].

Next we will consider the j-metric which is also known as the distance

ratio metric. This metric was �rst introduced by F. W. Gehring and B.

G. Osgood in the article [3] and later in the following modi�ed form by M.

Vuorinen in [19].
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De�nition 1.11. Let D ( Rn. Now for points z1 and z2 in D, we de�ne

jD (z1, z2) = log

(
1 +

|z1 − z2|
min {d (z1, ∂D) , d (z2, ∂D)}

)
.

Theorem 1.12. The j-metric is a metric in the domain it is de�ned in.

Proof. See [17, Lemma 2.2.].

The j-metric can be seen as a way to approximate the quasihyperbolic

metric as the following theorem shows.

Theorem 1.13. Let D ( Rn be a domain. Now kD (z1, z2) ≥ jD (z1, z2) for

all points z1 and z2 in D.

Proof. See [4, Lemma 2.1.].

The geometries induced by the aforementioned metrics are often referred

in literature as hyperbolic type geometries as their behavior resembles that of

the hyperbolic geometry. This is especially apparent in the way the distance

between points in these geometries depends on the boundary of the domain.

1.2 Geodesics

De�nition 1.14. Let D ( Rn be a domain and γ a curve in D. If k is a

metric in the domain D and

k (z1, z2) + k (z2, z3) = k (z1, z3)

for all z1, z3 ∈ γ and z2 ∈ γ
′
, where γ

′
is the subcurve of γ joining z1 and z3,

then γ is a geodesic.

Geodesics are not always unique; for example quasihyperbolic geodesics

in a punctured plane are not unique in a special case [14, p. 38]. We shall

denote geodesic between points z1 and z2 in a metric k with Jk [z1, z2].

We shall consider several metrics and geodesics in the cases they exist. In

particular, we shall study the hyperbolic type metrics de�ned in the previous

section.
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Theorem 1.15. In H and D hyperbolic geodesics are arcs of generalized

circles which intersect the boundary of the region at a right angle.

Proof. See [18].

If one wants to �nd geodesics in a simply connected domain D ( C, one
has to map the geodesics of H to D with an appropriate conformal mapping.

This follows from the de�nition of the general hyperbolic distance.

Quasihyperbolic geodesics are not as simple to �nd as hyperbolic ones

but we do know some signi�cant results regarding them.

Theorem 1.16. a) If z1 and z2 are points in a domain D ( Rn, there exists

a quasihyperbolic geodesic that connects them.

b) Quasihyperbolic geodesics are smooth curves.

c) If D ( Rn is convex, quasihyperbolic geodesics on D are unique.

d) If z1 and z2 are points in B (c, r) and B (c, r) is included in D ( Rn,

then JkD [z1, z2] ⊂ B (c, r).

Proof. See [3, Lemma 1.], [13, Corollary 4.8.], [15, Theorem 2.11.] and [13,

Theorem 2.2.] respectively.

Quasihyperbolic distances or good approximations of them are known at

least in H, D, punctured plane [14], punctured disk, angular domains [12]

and in�nite strip [5], [6].

On the other hand the j-metric has geodesics only in few special cases as

the following theorem shows.

Theorem 1.17. Let z1 and z2 be points in a domain D ( Rn and Jj [z1, z2]

be a geodesic in j-metric. Now Jj [z1, z2] is equal to the line segment [z1, z2].

Also there exists such a point w ∈ ∂D that w is in the set of closest boundary

points for every point in Jj [z1, z2] and that w and Jj [z1, z2] are collinear.

Proof. See [7, Lemma 2.9.].
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2 Subdomain Geometry

In [8], R. Klén, Y. Li and M. Vuorinen introduced the following problem:

Problem 2.1. Let D1 and D2 be two proper subdomains of Rn such that

D1 ⊂ D2 and that ∂D1∩∂D2 is either empty or discrete set. Does there exist

a constant c > 1 such that

mD1 (z1, z2) ≥ cmD2 (z1, z2) ∀z1, z2 ∈ D1,

where mDn ∈ {jDn , kDn} for n ∈ {1, 2}?

R. Klén, Y. Li and M. Vuorinen gave answer to this problem in three

cases and stated a conjecture for a more general case. They are as follows:

Theorem 2.2. Let

D1 = {(x, y) ∈ C : |x|+ |y| < 1} and D2 =
{

(x, y) ∈ C : |x|2 + |y|2 < 1
}
.

Then kD1 (z1, z2) ≥
√

2kD2 (z1, z2) for all points in D1.

Regardless of this there is no appropriate constant c > 1 in these domains

for the j-metric.

Proof. See [8, Theorem 4.1.].

Theorem 2.3. For s ∈ (0, 1), let D1 = {(x, y) ∈ C : |x|s + |y|s < 1} and

D2 = {(x, y) ∈ C : |x|+ |y| < 1}. Then kD1 (z1, z2) ≥ 2
1
s
−1kD2 (z1, z2) for all

points in D1.

Proof. See [8, Theorem 4.3.].

Theorem 2.4. If D1 is a bounded proper subdomain of D2 ( Rn, then

mD1 (z1, z2) ≥
(

1 +
2d (D1, ∂D2)

diam (D1)

)
mD2 (z1, z2) ∀z1, z2 ∈ D1,

where mDn ∈ {jDn , kDn} for n ∈ {1, 2}.

Proof. See [8, Theorem 4.6.].

Conjecture 2.5. For 0 < s < t, let Ds = {(x, y) ∈ C : |x|s + |y|s < 1} and
Dt = {(x, y) ∈ C : |x|t + |y|t < 1}. Then kDs (z1, z2) ≥ 2

1
s
− 1
t kDt (z1, z2) for

all points in Ds.

Sometimes the domains of the previous conjecture are referred as super-

circles as they can be seen as generalizations of the unit circle.
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2.1 Subdomain Geometry in In�nite Strips and in Sec-

tors

Following theorems deal with the preceding subdomain Problem 2.1 in an

in�nite strip and in a sector. First we present a result concerning the quasi-

hyperbolic metric of some in�nite strips.

Proposition 2.6. For h > 0 and t ∈ (0, h), let Sh = {z ∈ C : |Im (z) | < h}
and St = {z ∈ C : |Im (z) | < t}. Now for all points in St:

h

t
kSh (z1, z2) ≤ kSt (z1, z2) .

Proof. Let us �rst prove that

d (z, ∂Sh) ≥
h

t
d (z, ∂St)

for each z ∈ St. Now
d (z, ∂Sh)

d (z, ∂St)
=
d (z, ∂St) + (h− t)

d (z, ∂St)
= 1 +

h− t
d (z, ∂St)

≥ 1 +
h− t
t

so

d (z, ∂Sh) ≥
h

t
d (z, ∂St) .

Let us next suppose that z1 and z2 are points in St and that γ is a quasihy-

perbolic geodesic connecting z1 and z2 in St. Now γ ⊂ Sh for γ ⊂ St ⊂ Sh,

and so we get

kSh (z1, z2) ≤
∫
γ

|dz|
d (z, ∂Sh)

≤
∫
γ

|dz|
h
t
d (z, ∂St)

=
t

h
kSt (z1, z2) .

This proves the inequality.

Next theorem will generalize the case of the in�nite strip to proper un-

bounded subdomains. But before the theorem, we must �rst introduce a new

important de�nition.

De�nition 2.7. Let D be a proper subdomain of Rn. Now medial axis of D

is the set of points in D that have two or more closest points on the boundary

of D.

If it is not stated otherwise, medial axis is de�ned in relation to the

Euclidean distance.
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Theorem 2.8. Let D1 and D2 be unbounded proper subdomains of Rn. If

D1 ( D2, R = d (D1, ∂D2) ∈ R+ and

r = sup {d (z, ∂D1) : z ∈ medial axis of D1} ∈ R+,

then for all points in D1(
1 +

R

r

)
kD2 (z1, z2) ≤ kD1 (z1, z2) .

Proof. We shall proceed in the same fashion as in the proof of the preceding

proposition. Clearly d (z, ∂D2) ≥ d (z, ∂D1) + R. Now by evaluating the

quotient of distance functions d (z, ∂Di), we get

d (z, ∂D2)

d (z, ∂D1)
≥ d (z, ∂D1) +R

d (z, ∂D1)
= 1 +

R

d (z, ∂D1)
.

Next r ≥ d (z, ∂D1), so we have

d (z, ∂D2)

d (z, ∂D1)
≥ 1 +

R

r
.

Now the theorem follows by a similar argument as in the proof of the pre-

ceding proposition.

The case of a sector and the quasihyperbolic distance will be divided into

four lemmas.

De�nition 2.9. If α ∈ (0, π], then the sector de�ned by α is

Sα = {z ∈ C : |arg (z) | < α} .1

Lemma 2.10. Let β ∈ (0, π
2
] and α ∈ (0, β). For all points in Sα we have

1

sin
(
π
2

+ α− β
)kSβ (z1, z2) < kSα (z1, z2) ,

where 1

sin(π2 +α−β)
> 1.

1An in-depth study of the quasihyperbolic distance and geodesics in sectors can be

found from [12].
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Proof. Let us �rst prove that

d (z, ∂Sβ) >
1

sin
(
π
2

+ α− β
)d (z, ∂Sα)

for each z ∈ Sα.
Let us �x z and let Am ∈ ∂Sm be such a point that |z−Am| = d (z, ∂Sm)

for m ∈ {α, β}. Also we de�ne B = [Aβ, z] ∩ ∂Sα. Now by the trigonometry

of right triangle, we get ∠AβBO = π
2

+ α − β where O is the origin. Next

because they are vertical angles, ∠AβBO = ∠zBAα. Then once again by

the trigonometry of right triangle, we get that |z −B| = d(z,∂Sα)

sin(π2 +α−β)
. Finally

because d (z, ∂Sβ) > |z −B|, we have

d (z, ∂Sβ) > |z −B| = d (z, ∂Sα)

sin
(
π
2

+ α− β
) .

This concludes the �rst part of the proof.

Now using analogical method as in the preceding proofs, we get

1

sin
(
π
2

+ α− β
)kSβ (z1, z2) < kSα (z1, z2) .

Finally,
1

sin
(
π
2

+ α− β
) > 1 ∀α ∈ (0, β)

follows from the fact that α < β ≤ π
2
.

Lemma 2.11. Let β ∈ (π
2
, π] and α ∈ (0, β − π

2
] \
{
π
2

}
. For all points in Sα

we have
1

sinα
kSβ (z1, z2) ≤ kSα (z1, z2) ,

where 1
sinα

> 1.

Proof. Once again we start by evaluating the quotient of the two distance

functions. Let z = x + iy = reiθ. Without loss of generality we can assume

y ≥ 0. Now because the origin is the closest point on ∂Sβ for all points in Sα

and because 1 + tan2 α = 1
cos2 α

, it follows from the general equation of the

distance between line and a point that

d (z, ∂Sβ)

d (z, ∂Sα)
=

√
x2 + y2

|x tanα− y|| cosα|
.
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By reducing with x and using the facts that tanα > tan θ and that z is in

the �rst quarter, we get

d (z, ∂Sβ)

d (z, ∂Sα)
=

√
1 + tan2 θ

(tanα− tan θ) cosα
.

Finally, by �nding a lower bound for the numerator and an upper bound for

the denominator, we have

d (z, ∂Sβ)

d (z, ∂Sα)
≥ 1

sinα
.

From this the lemma follows.

Lemma 2.12. Let β ∈ (π
2
, π] and α ∈

(
β − π

2
, π

2

)
. For all points in Sα we

have
1

sinα
kSβ (z1, z2) < kSα (z1, z2) ,

where 1
sinα

> 1.

Proof. Let z1 and z2 be two points in Sα and let γ be the quasihyperbolic

geodesic connecting these points in Sα. Now let us divide γ into two parts

γ1 and γ2 so that γ1 ⊂ Sβ−π
2
and that γ2 ⊂

(
Sα \ Sβ−π

2

)
. Now because in the

domain Sβ−π
2
the distance functions can be evaluated in the same way as in

Lemma 2.11 and because in the domain
(
Sα \ Sβ−π

2

)
the distance functions

can be evaluated in the same way as in Lemma 2.10, we get

kSβ (z1, z2) ≤
∫
γ1

|dz|
d (z, ∂Sβ)

+

∫
γ2

|dz|
d (z, ∂Sβ)

< sinα

∫
γ1

|dz|
d (z, ∂Sα)

+ sin
(π

2
+ α− β

)∫
γ2

|dz|
d (z, ∂Sα)

.

Because α < π
2
and π

2
< β ≤ π, clearly sinα > sin

(
π
2

+ α− β
)
. So we can

further evaluate the preceding inequality:

kSβ (z1, z2) < sinα

∫
γ1

|dz|
d (z, ∂Sα)

+ sinα

∫
γ2

|dz|
d (z, ∂Sα)

= sinα kSα (z1, z2) .

This concludes the proof.

Lemma 2.13. Let β ∈ (π
2
, π] and α ∈ [π

2
, β). For the domains Sα and Sβ

the answer to Problem 2.1 is negative for the quasihyperbolic distance.
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Proof. Now for all points in the positive part of the real axis the closest point

of the boundary of either domain is the origin. This means that d (x, ∂Sα) =

d (x, ∂Sβ) for all x ∈ R+. Then by [12, Theorem 4.10.] the quasihyperbolic

geodesic between two points on the positive real axis is a line segment for

both domains so kSα (x1, x2) = kSβ (x1, x2) for all points on the positive real

axis. So, in this case, there cannot be a constant c > 1 satisfying the assertion

of Problem 2.1.

The next theorem combines the results of the preceding lemmas.

Theorem 2.14. a) If β ∈ (0, π
2
] and α ∈ (0, β), then

1

sin
(
π
2

+ α− β
)kSβ (z1, z2) < kSα (z1, z2) ∀z1, z2 ∈ Sα.

b) If β ∈ (π
2
, π] and α ∈

(
0, π

2

)
, then

1

sinα
kSβ (z1, z2) < kSα (z1, z2) ∀z1, z2 ∈ Sα.

c) If β ∈ (π
2
, π] and α ∈ [π

2
, β), then for the domains Sα and Sβ the

answer to Problem 2.1 is negative for the quasihyperbolic distance.

Proof. Theorem follows from the four preceding lemmas.

Next we will prove that for the in�nite strip and the sector the answer to

Problem 2.1 will be negative in the case of the j-metric.

Theorem 2.15. If the domains given in Problem 2.1 are two in�nite strips

or two sectors, there does not exist a suitable constant c > 1 for the j-metric.

Proof. Let us �rst prove this theorem in the case of in�nite strips. For

h > 0 and t ∈ (0, h), let Sh = {z ∈ C : |Im (z) | < h} and St =

{z ∈ C : |Im (z) | < t}. We shall examine a limit of quotient of jSt and jSh .

Let x > 1. Now for �xed h and t

lim
x→∞

jSt (1, x)

jSh (1, x)
= lim

x→∞

log
(
1 + x−1

t

)
log
(
1 + x−1

h

) = 1

which proves the theorem in the case of in�nite strips.

The proof for two sectors is completely analogical; if we pick the same

points as before, the minimum distance once again stays constant and the

quotient approaches to 1.
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2.2 Subdomain Geometry and Cyclic Polygons

The next theorem generalizes Theorem 2.2 for a cyclic polygon and the cor-

responding circumcircle.

Theorem 2.16. If P is a cyclic polygon and C is such that ∂C is the cor-

responding circumcircle, the answer to Problem 2.1 is positive in the case of

the quasihyperbolic metric but negative in the case of the j-metric.

Proof. Let A1, ..., Ak be the vertices of P and a1, ..., ak be the edges of P .

We also de�ne r to be the radius of C and M to be the medial axis of P .

Because P is a cyclic polygon, it is also a convex polygon so M is composed

of line segments and ∂M ∩ ∂P = {A1, ..., Ak}. Because of this M divides P

into such subregions V1, ..., Vk that each of them shares one edge with P ; for

example P and V1 share a1 as in Figure 1.

Figure 1: A cyclic polygon and the corresponding circumcircle with the used

notations. The medial axis is drawn with dashed line segments.

First we prove that the quotient d(z,∂C)
d(z,∂P )

reaches the minimum value in

M . We do this by examining each of the subregions beginning with V1. For

this �rst part we assume that the circumcenter c is the origin. We also rotate

the complex plane so that a1 acts as a basis for P and is collinear with the real

axis with imaginary coordinate y1. We may do this because rotations clearly
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preserve P and C, and so they also preserve the quasihyperbolic geometry

of P and C. Next for z = teiθ ∈ V1, we get

d (z, ∂C)

d (z, ∂P )
=

r − t
t sin θ − y1

.

Let us denote the right side of the above identity by f1 (t). By di�erentiating

with respect to t, we get

f
′

1 (t) =
y1 − r sin θ

(t sin θ − y1)2 .

Now f
′
1 (t) > 0 when the line segment

[
z, reiθ

]
does not intersect the medial

axis, f
′
1 (t) = 0 when reiθ is a vertex shared by V1 and P and f

′
1 (t) < 0 when

the line segment
[
z, reiθ

]
intersects the medial axis. By repeating this process

for all subregions Vm we see that corresponding fm (t) always decreases when

it approaces M so the quotient d(z,∂C)
d(z,∂P )

reaches the minimum value in M .

Next we shall consider what happens to the quotient on the medial axis.

We start by considering the line segment (A1, I1] ⊂M where I1 is the closest

junction point to A1 on M . Next with suitable rotation and translation we

map the vertex A1 to the origin and side a1 on the positive real axis so that

the shape of P and C are preserved. Now for z = teiθ ∈ (A1, I1] we have

d (z, ∂C)

d (z, ∂P )
=
r −

√
r2 + t2 − 2rt cos β1

t sin θ

where β1 is either ∠cA1I1 or ∠I1A1c depending on the position of c /∈ (A1, I1].

We make a note that in the case c ∈ (A1, I1] the above equation becomes
d(z,∂C)
d(z,∂P )

= 1
sin θ

> 1 when z ∈ (A1, c] and
d(z,∂C)
d(z,∂P )

= 2r−t
t sin θ

> 1 when z ∈ (c, I1]

so in this case the quotient is either a constant or clearly decreasing. Then

if c /∈ (A1, I1], we mark the right hand side of the above equation with g1 (t)

and di�erentiate with respect to t. This way we get

g
′

1 (t) =
r
(
r − t cos β1 −

√
r2 + t2 − 2rt cos β1

)
t2
√
r2 + t2 − 2rt cos β1 sin θ

.

Whether this derivative is positive or not depends on the expression r −
t cos β1 −

√
r2 + t2 − 2rt cos β1. By simple calculations we see that this ex-

pression is strictly smaller than zero. This means that the quotient of the
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distance functions decreases as the point z moves farther away from the ver-

tex A1.

By repeating the above process for each line segment (Am, Im] we can

conclude that d(z,∂C)
d(z,∂P )

reaches its minimum either on some point in the set

{Im : m ∈ {1, ..., k}} or on some line segment [Iu, Iv] ∈ M where u, v ∈
{1, ..., k}. Especially, this means that the minimum of the quotient is not

reached when the point z on the medial axis approaches a vertex of P . Now

there is clearly not a point inM where the quotient of the distance functions

is equal to 1 so there must be a constant c such that d(z,∂C)
d(z,∂P )

≥ c for all z ∈ P
and especially

min

{
d (Im, ∂C)

d (Im, ∂P )
: m ∈ {1, ..., k}

}
≥ c > 1.

Finally, by the same process as in the proof of Proposition 2.6 we conclude

that

kP (z1, z2) ≥ ckC (z1, z2) ∀z1, z2 ∈ P

where c is as above.

To prove the case of the j-metric we translate the circumcenter c back to

the origin and let I1 + r1e
iθ1 = A1 and I2 + r2e

iθ2 = A2 where Im and Am are

constructed as above. Also let ε ∈ (0,min {r1, r2}). If w1 = I1 + (r1 − ε) eiθ1

and w2 = I2 + (r2 − ε) eiθ2 , then w1 and w2 are contained in the medial axis

and d (w1, ∂C) = ε = d (w2, ∂C). We also may assume that d (w1, ∂P ) ≤
d (w2, ∂P ). Now ε

c
≥ d (w1, ∂P ), so

jC (w1, w2)

jP (w1, w2)
=

log
(

1 + |w1−w2|
ε

)
log
(

1 + |w1−w2|
d(w1,∂P )

) ≤ log
(

1 + |w1−w2|
ε

)
log
(

1 + c|w1−w2|
ε

) .
The right side of the above inequality approaches 1 when ε approaches 0.

This means that jC(w1,w2)
jP (w1,w2)

must also approach 1 because it is always equal to

or greater than 1. In conclusion there cannot be a constant c > 1 for the

j-metric.

Corollary 2.17. If P is a regular polygon or a triangle and C is such that

∂C is the corresponding circumcircle, then

kP (z1, z2) ≥ d (I, ∂C)

d (I, ∂P )
kC (z1, z2) ∀z1, z2 ∈ P

15



where I is the intersection point of the bisectors of the internal angles of P .

There is no constant c > 1 as required in Problem 2.1 in the case of the

j-metric.

Proof. This follows directly from the proof of the preceding theorem because

in a regular polygon and in a triangle the medial axis has only one junction

point: the unique intersection point of the angle bisectors.

Corollary 2.18. If P is a cyclic polygon and C is such that ∂C is the

corresponding circumcircle, the point where the quotient d(z,∂C)
d(z,∂P )

reaches its

minimum is not generally unique.

Proof. We prove this corollary by giving an example. If P is a rectangle

that is not a square, the medial axis M has two junction points, I1 and I2,

and the circumcenter c is the midpoint of the line segment [I1, I2]. Now by

the proof of Theorem 2.16 the quotient d(z,∂C)
d(z,∂P )

decreases as z approaches a

junction point from vertex. On the other hand when z approaches c on [I1, I2],

distance d (z, ∂P ) stays constant but d (z, ∂C) increases so the quotient of the

distance functions increases. In conclusion the quotient reaches its minimum

in both I1 and I2.

In the case of an incircle and the corresponding polygon the answer to

Problem 2.1 is negative.

Proposition 2.19. There is no constant c > 1 when the regions in Problem

2.1 are a polygon P and C is such that ∂C is the corresponding incircle.

Proof. Let O be the center of C and A ∈ ∂P ∩ ∂C. Now clearly d (z, ∂P ) =

d (z, ∂C) for all points on the line segment [A,O]. Then for points z1 and z2

on the line segment [A,O], JkP [z1, z2] = [z1, z2]. Also by [12, Lemma 3.7.]

JkC [z1, z2] = [z1, z2]. From these facts it follows that

kP (z1, z2) = kC (z1, z2) ∀z1, z2 ∈ [A,O]

so there cannot be a constant c > 1.

Next we will present a lemma concerning cases when the quotient of

the distance functions approaches 1 and then consider Problem 2.1 in the

intersection of two disks.
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Lemma 2.20. Let D1 and D2 be as in Problem 2.1. If the function d(z,∂D2)
d(z,∂D1)

equals to 1 for all z ∈ D1 or approaches 1 when z ∈ D1, then there is no

constant c > 1 as required in Problem 2.1.

Proof. If d(z,∂D2)
d(z,∂D1)

= 1 for all z ∈ D1, then D1 = D2, and the result is trivial.

Let us then assume that for some z ∈ D1 the quotient d(z,∂D2)
d(z,∂D1)

6= 1. This

means that there is a curve γ ⊂ D1 such that d(z,∂D2)
d(z,∂D1)

approaches 1 on the

curve γ. Now for every ε > 0 we can pick a suitable part N of the curve γ

such that
d (z, ∂D2)

d (z, ∂D1)
− 1 < ε ∀z ∈ N.

We shall now �nish the proof by contradiction. Let us assume that there

exists c > 1 so that kD1 (z1, z2) ≥ ckD2 (z1, z2) for all points in D1. Now

we pick such ε > 0 that c
ε+1

> 1. Next by similar process as in the

proof of Proposition 2.6 we get that kD2 (z1, z2) > 1
ε+1

kD1 (z1, z2) for some

points on the curve γ. By combining the two previous inequalities we have

kD1 (z1, z2) > c
ε+1

kD1 (z1, z2) but this is impossible for c
ε+1

> 1.

Theorem 2.21. Let ∂C1 and ∂C2 be such circles that ∂C1 ∩ ∂C2 = {A,B}.
Now for domains D1 = C1∩C2 and D2 = C1∪C2 there is no constants c > 1

satisfying the assertion of Problem 2.1 for either of the two metrics.

Proof. Let us �rst de�ne few notations. Let rm be the radius of the circle

∂Cm. Without loss of generality we may assume that the center of C1, c1, is

the origin, that the center of the other circle, c2, is on the positive real axis and

that Im(B) > 0. We shall begin by proving the case of the quasihyperbolic

metric.

First we let z = teiθ ∈ D1 and solve what is the equation for t when z

is on the medial axis of D1, M . Now d (z, ∂C1) = r1 − t and d (z, ∂C2) =

r2−|c2−z| = r2−
√
c2

2 + t2 − 2c2t cos θ. Clearly z is onM when d (z, ∂C1) =

d (z, ∂C2). By solving this equation for t we get t = (c2+r1−r2)(c2−r1+r2)
2(−r1+r2+c2 cos θ)

.

Second let z = teiθ be on the medial axis. Because of symmetry and

because we are only interested what happens close to a border point, we

may assume Im(z) > 0. We shall prove that the quotient of the distance

functions d(z,∂D2)
d(z,∂D1)

approaches 1 when θ approaches arg (B) > 0. Clearly

17



|z −B| = d (z, ∂D2). Now by the law of cosines we have

d (z, ∂D2)

d (z, ∂D1)
=

√
r2

1 + t2 − 2tr1 cos (arg (B)− θ)
r1 − t

.

By making the substitution t = (c2+r1−r2)(c2−r1+r2)
2(−r1+r2+c2 cos θ)

we reach

d (z, ∂D2)

d (z, ∂D1)
=

2 (r1 − r2 − c2 cos θ)
√
f (θ)

c2
2 + r2

1 − r2
2 − 2c2r1 cos θ

where

f (θ) = r2
1 +

(c2 + r1 − r2)2 (c2 − r1 + r2)2

4 (−r1 + r2 + c2 cos θ)2

− r1 (c2 + r1 − r2) (c2 − r1 + r2) cos (arg (B)− θ)
−r1 + r2 + c2 cos θ

.

Next by straightforward calculation

lim
θ→arg(B)

d (z, ∂D2)

d (z, ∂D1)
= 1

so the claim for quasihyperbolic metric follows from Lemma 2.20.

The case of the j-metric is proved fundamentally in the same way as in

the proof of Theorem 2.16.

2.3 Subdomain Geometry and Supercircles

In this section we shall answer to Conjecture 2.5 in certain cases. First we

must prove few preliminary results concerning subdomain geometry.

The following problem was presented by M. Vuorinen in an informal con-

versation at the University of Turku sometime during the summer of 2013.

Problem 2.22. Let G ( Rn and w ∈ G. Point b ∈ ∂G is such that

d (w, ∂G) = |w − b|. Does there exist a domain D ( G that �lls conditions

1. [w, b) ( D

and

2. ∃c > 1 : kD (z1, z2) ≥ ckG (z1, z2) ∀z1, z2 ∈ D ?

18



The following theorem shows that the answer to this problem is positive

in the case of the complex plane.

Theorem 2.23. Let G ( C. Then there exists a domain D ( G as required

for Problem 2.22.

Proof. First let

Sα =
{
z ∈ H :

π

2
− α < arg (z) <

π

2
+ α

}
for a �xed α ∈

(
0, arcsin

(
1
16

))
. Now by Theorem 2.14

1

sinα
kH (z1, z2) < kSα (z1, z2) ∀z1, z2 ∈ Sα

where 1
sinα

> 16.

Second let G ( C, w ∈ G and b ∈ ∂G be as in Problem 2.22. Now

we de�ne G′ ⊂ G to be a simply connected domain that includes the line

segment [w, b). This kind of domain must exist, because d (w, ∂G) = |w − b|
implies that B (w, |w − b|) ⊂ G. By Riemann mapping theorem there exists

a biholomorphic and conformal map frmt from G′ onto D. Then Möbius

transformation

m1 (z) = eiθ
z − frmt (w)

1− frmt (w)z

with suitable θ is an automorphism of the unit disk that maps frmt (w) to

the origin and frmt (b) to −1. Another Möbius transformation

m2 (z) =
iz + i

−z + 1

maps the unit disk D onto the upper half-plane H so that m2 (−1) = 0

and m2 (0) = i. Now, the composite function f1 = m2 ◦m1 ◦ frmt maps G′

bijectively and conformally onto H and especially b to the origin and w to i so

that curve f1 ([w, b)) meets the real axis at right angle. Finally, if we choose

appropriate coe�cient 0 < a ≤ 1 and de�ne f = af1, then f ([w, b)) ( Sα.

Third let us de�ne D = f−1 (Sα). Now, by [9, Proposition 1.6.], we get

1

4
kD (z1, z2) ≤ kSα (f (z1) , f (z2)) ≤ 4kD (z1, z2) ∀z1, z2 ∈ D
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and

1

4
kG′ (z1, z2) ≤ kH (f (z1) , f (z2)) ≤ 4kG′ (z1, z2) ∀z1, z2 ∈ G′.

By combining these two two-sided inequalities and the one from the �rst part

of the proof, we have

kD (z1, z2) ≥ 1

4
kSα (f (z1) , f (z2))

>
1

4 sinα
kH (f (z1) , f (z2))

≥ 1

16 sinα
kG′ (z1, z2)

for all z1, z2 in D. Also G′ ⊂ G, so kG′ (z1, z2) ≥ kG (z1, z2) which �nally

gives us

kD (z1, z2) >
1

16 sinα
kG (z1, z2) ∀z1, z2 ∈ D.

Clearly, 1
16 sinα

> 1. This means that D is as required in the theorem, and

the proof is complete.

We can also give a positive answer to Problem 2.22 in the general case of

Rn as the following proof, suggested by T. Sugawa during an informal con-

versation at the Second Chinese-Finnish Seminar and Workshop on Modern

Trends in Classical Analysis and Applications in August 2013, shows.

Theorem 2.24. Let G ( Rn. Then there exists a domain D ( G as required

for Problem 2.22.

Proof. Let G ( Rn, w ∈ G and b ∈ ∂G be as in Problem 2.22. Also let

B be such an Euclidean ball that b ∈ ∂B ∩ ∂G and that it includes the

line segment [w, b). Next we de�ne Cβ to be such a right circular cone that

Cβ ⊂ G, [w, b) ⊂ Cβ and ∂Cβ ∩ ∂G = b, and Cα to be an other right circular

cone such that Cα ( Cβ, [w, b) ⊂ Cα and ∂Cα ∩ ∂Cβ = b.

Now by a similar argument as in the proof of Lemma 2.10 we get

1

sin
(
π
2

+ α− β
)kCβ (z1, z2) < kCα (z1, z2) ∀z1, z2 ∈ Cα
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and because Cβ ⊂ B ⊂ G, we �nally get

1

sin
(
π
2

+ α− β
)kG (z1, z2) < kCα (z1, z2) ∀z1, z2 ∈ Cα

so Cα is suitable for the region D in Problem 2.22.

Based upon the proof of Theorem 2.23 M. Vuorinen presented the follow-

ing problem in an informal discussion at the University of Turku sometime

during the summer of 2013.

Problem 2.25. Does there exist such a domain D ⊂ H that ∂D is di�eren-

tiable at the origin O, that ∂D ∩ ∂H = {O} and that the answer to Problem

2.1 is positive for the domains D and H?

We shall show that answer to this problem is negative.

Theorem 2.26. There does not exist any such domain D as described in

Problem 2.25.

Proof. We shall prove this claim by considering the quotient of the distance

functions d(z,∂H)
d(z,∂D)

when z is on the imaginary axis. First from the de�nition of

D it follows that the derivative of ∂D at the origin O is 0 for otherwise ∂D

would continue below the real axis which is impossible. From this it follows

that there exist b > 0 such that the line segment (O, ib] ⊂ D for otherwise

the derivative would not be 0 at the origin.

If d(z,∂H)
d(z,∂D)

= 1 for some points on the line segment (O, ib], then the claim

follows from Lemma 2.20. Otherwise let ∂D+ = {z ∈ ∂D : Re (z) ≥ 0} and
∂D− = {z ∈ ∂D : Re (z) ≤ 0}. We may assume without losing generality

that d (z, ∂D+) ≤ d (z, ∂D−) when z ∈ (O, ic] where c ≤ b.

Next we shall prove that the quotient d(z,∂H)
d(z,∂D+)

approaches 1 as z ap-

proaches the origin on the line segment (O, ic]. Let P = (x, if (x)) be such a

part of the curve ∂D+ that f is strictly increasing. P must exist for otherwise

D would not be as de�ned. Let K ∈ P be such a point that |z−K| = d (z, P )

for z ∈ (O, ic]. Let z = iy and let us solve y for K = (x, f (x)). By making

use of the fact that the line segment [z,K] is normal to the point K we get

y − f (x) = − 1

f ′ (x)
(0− x)
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so we get

y =
x

f ′ (x)
+ f (x) .

Then by using the de�nition of the Euclidean distance we get

|z −K| =

√
x2 +

(
x

f ′ (x)

)2

.

Finally, we are ready to evaluate the quotient d(z,∂H)
d(z,∂D+)

on the line segment

(O, ic]. It is clear that the origin O is the closest point to z on ∂H, so now

d (z, ∂H)

d (z, ∂D+)
=

x
f ′ (x)

+ f (x)√
x2 +

(
x

f ′ (x)

)2

=
1√

1 + (f ′ (x))2
+

(
f (x)

x

) 1√
1 + (f ′ (x))−2

 .

Now z approaches the origin on (O, ic] as x approaches 0. We make use of the

algebraic limit theorem and the fact that f
′
(0) = 0 together with f (0) = 0

implies limx→0
f(x)
x

= 0 and calculate

lim
x→0

d (z, ∂H)

d (z, ∂D+)
= 1 + 0 · 0 = 1.

The claim follows from this and by Lemma 2.20.

Corollary 2.27. If D1 and D2 are as in Problem 2.25 and D1 ⊂ D2, then

there is no constant c > 1 as required in Problem 2.1.

Proof. Now for all z ∈ D1 we have

d (z, ∂D2)

d (z, ∂D1)
=
d (z, ∂D2)

d (z, ∂H)

d (z, ∂H)

d (z, ∂D1)
.

Both the quotients on the right hand side of the above relation approach 1

when z approaches the origin on the imaginary axis, so the claim follows by

Lemma 2.20.

With the help of Theorem 2.26 and Corollary 2.27, we may now go over

some cases of Conjecture 2.5. We shall begin with a general lemma and then

proceed to results concerning the conjecture itself.
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Lemma 2.28. Let D1 and D2 be two domains as in Problem 2.1 and let

c = inf
{
d(z,∂D2)
d(z,∂D1)

: z ∈ D1

}
> 1. If JkD1

[w1, w2] = JkD2
[w1, w2] for points in

a nonempty W ⊂ D1 and if the in�mum c is reached in the closure of W ,

then c is the best possible constant that �lls the requirements of Problem 2.1.

Proof. We shall prove by contradiction. Let us suppose h > c and that

kD1 (z1, z2) ≥ hkD2 (z1, z2) for all points in the domain D1. Especially for

points in W we get∫
J

c|dz|
d (z, ∂D2)

<

∫
J

h|dz|
d (z, ∂D2)

≤
∫
J

|dz|
d (z, ∂D1)

where J is a geodesic joining the points z1 and z2. Because the path is the

same in each integral and because the integrand is now always positive, we

get
c

d (z, ∂D2)
<

h

d (z, ∂D2)
≤ 1

d (z, ∂D1)

and

c < h ≤ d (z, ∂D2)

d (z, ∂D1)
∀z ∈ W.

This implies that h = inf
{
d(z,∂D2)
d(z,∂D1)

: z ∈ D1

}
which is a contradiction, and

so the claim follows.

Proposition 2.29. If s = 1 and t > 2, then Conjecture 2.5 is false but there

is a constant c > 1 as required in Problem 2.1.

Proof. For all z ∈ D1 we have

d (z, ∂Dt)

d (z, ∂D1)
=
d (z, ∂Dt)

d (z, ∂D2)

d (z, ∂D2)

d (z, ∂D1)
.

We know by the proof of Theorem 2.16 and by Corollary 2.27 that each of

the quotients on the right hand side of the above relation reaches its in�mum

on the medial axis M , of D1. Next by the proof of Theorem 2.16 we also

know that d(w,∂D2)
d(w,∂D1)

=
√

2 for all points on M . Then the quotient d(w,∂Dt)
d(w,∂D2)

= 1

on M as t > 2. In conclusion we have

d (z, ∂Dt)

d (z, ∂D1)
≥
√

2 ∀z ∈ D1.
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From this it follows that kD1 (z1, z2) ≥
√

2kDt (z1, z2) for all points in D1.

Finally we prove that the conjecture is false in this case. First 21− 1
2 ≥

21− 1
t if and only if t ≤ 2. Then by [12, Lemma 3.7.] JkD1

[z1, z2] = JkDt [z1, z2]

for all points on the line segment (i,−i). Now by Lemma 2.28 the constant√
2 is the best possible and so the conjecture is false.

Proposition 2.30. If 1 < s < t for the domains in Conjecture 2.5, there is

no constant c > 1 as required in Problem 2.1.

Proof. If we make a translation t (z) = z + i, the situation becomes as in

Corollary 2.27 and the claim follows.

Proposition 2.31. If 0 < s < 1 and t = 2, then Conjecture 2.5 is true.

Proof. Let D1 be a domain such that Ds ⊂ D1 ⊂ Dt. Then for all points

z ∈ Ds, we have
d (z, ∂Dt)

d (z, ∂Ds)
=
d (z, ∂Dt)

d (z, ∂D1)

d (z, ∂D1)

d (z, ∂Ds)
.

First by the proof of Theorem 2.16 the quotient d(z,∂Dt)
d(z,∂D1)

reaches its in�mum

on the medial axis M , of D1, where it is the constant
√

2. Then by the proof

of Theorem 2.3 the quotient d(z,∂D1)
d(z,∂Ds)

reaches its in�mum at the origin, O and

the minimum is 2
1
s
−1. Because O ∈M , we get

d (z, ∂Dt)

d (z, ∂Ds)
≥
√

2 · 2
1
s
−1 = 2

1
s
− 1

2 ∀z ∈ Ds.

Now the claim follows by a similar argument as in the proof of Proposition

2.6.

Proposition 2.32. If 0 < s < 1 and t > 2, then Conjecture 2.5 is false but

there is a constant c > 1 as required in Problem 2.1.

Proof. Let D2 be a domain such that Ds ⊂ D2 ⊂ Dt. Then for all points

z ∈ Ds, we have
d (z, ∂Dt)

d (z, ∂Ds)
=
d (z, ∂Dt)

d (z, ∂D2)

d (z, ∂D2)

d (z, ∂Ds)
.
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First as in the proof of Lemma 2.29 the quotient d(z,∂Dt)
d(z,∂D2)

reaches its in�mum

on the medial axis M , of D2, where it is the constant 1. Second, by Propo-

sition 2.31, the quotient d(z,∂D2)
d(z,∂Ds)

reaches its in�mum value 2
1
s
− 1

2 at the origin

O ∈M . From these facts we conclude that

d (z, ∂Dt)

d (z, ∂Ds)
≥ 1 · 2

1
s
− 1

2 = 2
1
s
− 1

2 ∀z ∈ Ds.

From this it follows that kDs (z1, z2) ≥ 2
1
s
− 1

2kDt (z1, z2) for all points in Ds.

Finally 2
1
s
− 1

2 < 2
1
s
− 1
t and 2

1
s
− 1

2 is the best possible coe�cient in this case

by a similar argument as in the proof of Lemma 2.29 so Conjecture 2.5 is

false.

2.4 Subdomain Geometry and Homeomorphisms

We can also ask whether homeomorphisms preserve the condition of Problem

2.1. To deal with this question we �rst introduce a new de�nition.

De�nition 2.33. If f : D → D′ and ϕ : [0,∞) → [0,∞) are homeomor-

phisms and if

ϕ−1 (kD (z1, z2)) ≤ kD′ (f (z1) , f (z2)) ≤ ϕ (kD (z1, z2))

for all points in D, then f is ϕ-solid. If above condition is true for all subsets

of D then f is fully ϕ-solid.

If the above inequality is missing the left hand side, f is ϕ-semisolid.

Proposition 2.34. Let D1 and D2 be such subdomains of Rn that they ful�ll

the conditions of Problem 2.1 for the quasihyperbolic metric with a constant

c > 1. If f : D2 → D
′
2 is fully ϕ-solid, D

′
1 is the image of D1 under f

and ϕ (t) ≤ t for all t, then kD′
1

(f (z1) , f (z2)) ≥ ckD′
2

(f (z1) , f (z2)) for all

points in D1.

Proof. First because ϕ is a homeomorphism from [0,∞) to [0,∞), ϕ and

its inverse are strictly increasing. From this and the fact that ϕ (t) ≤ t, it

follows that ϕ−1 (t) ≥ t for all t.

Now because f is fully ϕ-solid, kD′
1

(f (z1) , f (z2)) ≥ ϕ−1 (kD1 (z1, z2)).
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Then because the domains D1 and D2 �ll the criteria of Problem 2.1 and

because of the inequalities mentioned in the previous paragraph, we get

kD′
1

(f (z1) , f (z2)) ≥ ϕ−1 (ckD2 (z1, z2))

≥ ckD2 (z1, z2) ≥ cϕ (kD2 (z1, z2)) .

Finally we again use the fact that f is fully ϕ-solid and get that

kD′
1

(f (z1) , f (z2)) ≥ ckD′
2

(f (z1) , f (z2))

for all points in D
′
1 which proves the claim.

Proposition 2.35. Let D1 and D2 be such subdomains of Rn that they ful�ll

the conditions of Problem 2.1 for the quasihyperbolic metric with a constant

c > 1. If f : D2 → D
′
2 is fully ϕ-solid, D

′
1 is the image of D1 under f and

ϕ (t) = Mtp with M ≥ 1 and p > 1, then

kD′
1

(f (z1) , f (z2)) ≥
( c

M2

) 1
p
(
kD′

2
(f (z1) , f (z2))

) 1
p2

for all points in D1.

Proof. Let z1 and z2 be points in D1. First because f is fully ϕ-solid, we get

kD′
1

(f (z1) , f (z2)) ≥ ϕ−1 (kD1 (z1, z2)) =

(
1

M
kD1 (z1, z2)

) 1
p

.

Then because ϕ is stricly increasing, ϕ−1 is also stricly increasing, and so we

get

kD′
1

(f (z1) , f (z2)) ≥
( c

M
kD2 (z1, z2)

) 1
p

=
( c

M2

) 1
p

(MkD2 (z1, z2))
1
p .

But M
1
p ≥M

1
p2 and (kD2 (z1, z2))

1
p = ((kD2 (z1, z2))p)

1
p2 , so we have

kD′
1

(f (z1) , f (z2)) ≥
( c

M2

) 1
p

(M (kD2 (z1, z2))p)
1
p2 .

Finally M (kD2 (z1, z2))p = ϕ (kD2 (z1, z2)) and f is ϕ-solid, so

kD′
1

(f (z1) , f (z2)) ≥
( c

M2

) 1
p
(
kD′

2
(f (z1) , f (z2))

) 1
p2

.
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3 Concluding Remarks

The most important results of this thesis deal with Problem 2.1 that con-

cerns comparing hyperbolic type distances in subdomains to hyperbolic type

distances in the original domains. This problem was �rst introduced and an-

swered to in certain cases in the article [8] by R. Klén, Y. Li and M. Vuorinen.

In this thesis the previous research was expanded which is most apparent in

Theorem 2.16 that generalizes an erstwhile theorem concerning a square and

the corresponding circumcircle to all cyclic polygons. For future research,

this problem could be studied in the case of other metrics discussed in [20]

that were not mentioned in this thesis.

Also noteworthy is the advancement in the study of Conjecture 2.5 that

deals with Problem 2.1 in the case of supercircles. Propositions 2.29, 2.30,

2.31 and 2.32 cover some cases of this conjecture and hopefully they will in

the future help turning the conjecture into proven theorems.
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