I//

A

atsS OF TURKU

N

‘Yi}’/ UNIVERSITY

ACDWH

A patented method for active data warehousing

Jari Myllylahti

University of Turku

Faculty of Technology
Department of Computing
Computer Science
Licentiate programme

Supervised by

Assistant Professor, Tuomas Makila
University of Turku

Reviewed by

Professor, Timo Knuutila
University of Turku

Professor Emeritus, Olli Nevalainen
University of Turku

Professor, Jyrki Nummenmaa
University of Tampere

The originality of this publication has been checked in accordance with the
University of Turku quality assurance system using the Turnitin OriginalityCheck

service.

ISBN 978-951-29-9640-7

Dedicated to

my wife Virpi. Who makes my days filled with love. I love you.

“She will listen to me
When [want to speak
About the world we live in
And life in general”

my son liro. Who has inherited my bad sense of humor and who is
by far superior to me in academic capabilities. Let this be an
example of what you can accomplish yourself.

“To the infinity, and beyond!”

Clones, my brothers in scene. You know who you are.

"See the stars and see the rainbows - see it all
Don't turn away - you're all you've got

In a faceless world

You can run - but you can't hide

1t's yourself who waits for you inside”

010101100110000100100000011110100111001001111010
011000100110010101101100001000000110001001110011
001000000100111001100001011100010110010101110010
011010100010000001010111011000100111010101100001
001000000101001101111001011100100110011101110000
011101010111001001100101001011000010000000110001
001110010011011000110001001000001110001010000000
100100110010000000110010001100000011001000110010

UNIVERSITY OF TURKU

Faculty of Technology

Department of Computing

Computer Science

JARI MYLLYLAHTI: AcDWH — A patented method for active data
warehousing

Licentiate thesis, 81 pages + appendices.

January 2024

ABSTRACT

The traditional needs of data warehousing from monthly, weekly or nightly batch
processing have evolved to near real-time refreshment cycles of the data, called
active data warehousing. While the traditional data warehousing methods have been
used to batch load large sets of data in the past, the business need for extremely fresh
data in the data warehouse has increased. Previous studies have reviewed different
aspects of the process along with the different methods to process data in data
warehouses in near real-time fashion. To date, there has been little research of using
partitioned staging tables within relational databases, combined with a crafted
metadata driven system and parallelized loading processes for active data
warehousing.

This study provides a throughout description and suitability assessment of the
patented AcDWH method for active data warehousing. In addition, this study
provides a review and a summary of existing research on the data warehousing area
from the era of start of data warehousing in the 1990’s to the year 2020. The review
focuses on different parts of the data warehousing process and highlights the
differences compared to the AcDWH method. Related to the AcDWH, the usage of
partitioned staging tables within a relational database in combination of meta data
structures used to manage the system is discussed in detail. In addition, two real-life
applications are disclosed and discussed on high level. Potential future extensions to
the methodology are discussed, and briefly summarized.

The results indicate that the utilization of AcDWH method using parallelized
loading pipelines and partitioned staging tables can provide enhanced throughput in
the data warehouse loading processes. This is a clear improvement on the study’s
field. Previous studies have not been considering using partitioned staging tables in
conjunction with the loading processes and pipeline parallelization. Review of
existing literature against the AcDWH method together with trial and error -approach
show that the results and conclusions of this study are genuine.

The results of this study confirm the fact that also technical level inventions
within the data warehousing processes have significant contribution to the advance
of methodologies. Compared to the previous studies in the field, this study suggests
a simple yet novel method to achieve near real-time capabilities in active data
warehousing.

KEYWORDS: active data warehousing, real-time, partitioning, staging

TURUN YLIOPISTO

Teknillinen Tiedekunta

Tietotekniikan Laitos

Tietojenkasittelytiede

JARI MYLLYLAHTI: AcDWH — Patentoitu menetelma aktiiviseen
tietovarastointiin

Lisensiaatin tutkielma, 81 s + liitteet.

tammikuu 2024

TIVISTELMA

Perinteiset tarpeet tietovarastoinnille kuukausittaisen, viikoittaisen tai yollisen
kisittelyn osalta ovat kehittyneet ldhes reaaliaikaista péivitystd vaativaksi
aktiiviseksi tietovarastoinniksi. Vaikka perinteisid menetelmid on kdytetty suurten
tietoméadrien lataukseen menneisyydessd, liiketoiminnan tarve erittiin ajantasaiselle
tiedolle tietovarastoissa on kasvanut. Aikaisemmat tutkimukset ovat tarkastelleet
erilaisia prosessin osa-alueita seké erilaisia menetelmia tietojen késittelyyn ldhes
reaaliaikaisissa tietovarastoissa. Tutkimus partitioitujen relaatiotietokantojen
viliaikaistaulujen kéytosté aktiivisessa tietovarastoinnissa yhdessa raétiloidyn
metatieto-ohjatun jérjestelmén ja rinnakkaislatauksen kanssa on ollut kuitenkin
véhdisti.

Té&ma tutkielma tarjoaa kattavan kuvauksen seké arvioinnin patentoidun
AcDWH-menetelmin kéytostd aktiivisessa tietovarastoinnissa. Ty0 sisiltda
katsauksen ja yhteenvedon olemassa olevaan tutkimukseen tietovarastoinnin
alueella 1990-luvun alusta vuoteen 2020. Kirjallisuuskatsaus keskittyy eri osa-
alueisiin tietovarastointiprosessissa ja havainnollistaa eroja verrattuna AcDWH-
menetelmiin. AcDWH-menetelmén osalta kisitelldén partitioitujen
véliaikaistaulujen kéyttoa relaatiotietokannassa, yhdessa jarjestelmén
hallitsemiseen kéytettyjen metatietorakenteiden kanssa. Liséksi kahden
reaalieldmén jarjestelméin sovellukset kuvataan korkealla tasolla. Tutkimuksessa
késitellddn myos menetelmidn mahdollisia tulevia laajennuksia menetelméin
tiivistetysti.

Tulokset osoittavat, ettd AcDWH-menetelmén kayttd rinnakkaisilla
latausputkilla ja partitioitujen vélitaulujen kaytollé tarjoaa tehokkaan tietovaraston
latausprosessin. Tama on selvd parannus aikaisempaan tutkimukseen verrattuna.
Aikaisemmassa tutkimuksessa ei ole kisitelty partitioitujen véliaikaistaulujen
kéayttod ja soveltamista latausprosessin rinnakkaistamisessa.

Tamaén tutkimuksen tulokset vahvistavat, ettd myds tekniset keksinnot
tietovarastointiprosesseissa ovat merkittdvassa roolissa menetelmien
kehittymisessd. Aikaisempaan alan tutkimukseen verrattuna tdma tutkimus
ehdottaa yksinkertaista mutta uutta menetelméai lahes reaaliaikaisten
ominaisuuksien saavuttamiseksi aktiivisessa tietovarastoinnissa.

ASIASANAT: Tietovarastointi, reaaliaikaisuus, partitiointi, viliaikaistaulut

Table of Contents

Acknowledgements.........ccccccvcmiiiniinn e ———— 8
Abbreviations ... ———— 9
List of Original Publications..........ccccoccmiiiniiimmninccee e 1
1 INtroduction ... ——— 12
2 Data Warehousingcccccomriirinninnnsssssssssssssssssssssssssssssssssssssssnes 14
2.1 Background...........cco 14
2.2 Structure of the traditional DWH method.............occcviiieennn. 17
2.3 Indexing techniques for DWH ... 20
3 Challenges in DWH..........oooiiiiiir e 21
3.1 General problems on traditional DWH methods....................... 21
3.2 The high watermark problem on traditional DWH staging tables
3.3 The choking effect on near realtime DWH environments........26
3.4 Deleting data from or truncating the staging table.................... 28
4 Existing researCh........cccoociiiiininncrn e 31
4.1 1990-1999 ... e 31
4.2 2000-2009ooiiiiiie s 32
4.3 20702019 .o 39
O 0 LSS 42
4.5 Summary of literature reviewcccccccooveviiieeee e, 43
5 ACDWH Method............oo i 45
5.1 OVEBIVIEW..ooiiiii ittt e e e et eeaeeeeas 45
5.2 AcDWH structural considerationscccccccevveeeiiiiiciiiiieneeenn, 50
5.3 Generating the AcCDWH structures............ccccceeiiiiiiiiniiiieens 50
5.4 Parallel processing in AcDWH within a single bucket type and
between different bucket_types........ccoooeiiiiiiiiiii 53
5.5 Staging table partitioning in ACDWH..........occoiiiiiiiiieeee 58
5.6 Forecasting space requirements, row amounts and generating
statistics for the business in ACDWHccccooiiiiiiiiiiennnen. 62
5.7 Populating the DWH structures............ccccoiiiieeiniiiee e 62

5.8 Clearing the AcDWH stagingarea.........cccccceevvieveiiiiieec e, 64
5.8.1 Housekeeping process for the staging tables of the

ACDWH e 65
5.9 The parallelism and concurrency of AcCDWH............ccccvveeeen. 66

5.10 Logging throughput in AcDWH to analyze operation and
Process effiCienCYoccuviiiiiiiii 69
5.11 Adjusting AcDWH bucket size to enhance throughput............. 70
5.12 Repeatability in ACDWHcooviiiiiiiiiiiiieieeeeeeeeeveveeeeeveveveeeneees 70
6 Applications of the AcDWH frameworkccccceeeveecccccnneneens 73
6.1 A technical subject area DWH for a specific company A 73
6.2 Company B data analysis platformccccoooviiiiiiiiiiienn. 76
7 Extensions to the patented AcDWH framework 79
7.1 Data distribution...........ccccooei i, 79
7.2 Near real-time backup and/or restore schematics.................... 80
8 Results & DiSCUSSION.......cccccieriiicmrrr e 82
L2 T 0o o 1o {11 e o 1= 85
List of References......cccccciiiiiiiincinn e 87

Original Publicationscccccviiiininiinicere e 90

Acknowledgements

I would like to express my profound gratitude to Professor Emeritus Olli
Nevalainen for his invaluable guidance and support throughout my academic
journey. His mentorship for the past 30 years has been instrumental in fostering my
intellectual growth and also in shaping this research. His insightful comments and
constructive, detailed feedback have continuously pushed me to enhance my thesis
and develop a more comprehensive analysis. Olli’s expertise, assertiveness,
commitment, and dedication have always inspired me. I am indebted to him for his
continuous encouragement and discussions that have facilitated the advancement of
this thesis. [am forever grateful for Olli’s patience with me over the past quarter of
a century towards this very day. I am honored to have had Olli by my side on this
project throughout the journey.

Furthermore, I would like to acknowledge Assistant Professor Tuomas Mékild's
support for my work during the last years of my research journey. Despite his busy
schedule he made time to discuss with me, providing valuable guidance and advice.
His responses to my inquiries and his willingness to share his expertise have been
greatly appreciated.

I would also like to extend my sincere appreciation to my employer, Tietoevry
Corporation, for granting the original support for my post graduate studies and
allowing me to focus on my thesis as needed.

Last but surely not least, I would like to express my heartfelt gratitude to my wife
Virpi and my son liro, whose belief in my abilities has been a constant source of
motivation. Their love, understanding, and support have been the fuel to finalize
this thesis. [am forever grateful for their enduring faith in my ability to accomplish
this.

Helsinki
January 15, 2024
Jari Myllylahti

Abbreviations

BI

CPU
DM

DSS

DWH

ELT

Business Intelligence. BI means the concept of providing analytic
systems for business users. These systems provide insights on specific
business-related questions. The BI systems are usually constructed as
DWHs.

Central Processing Unit. CPU is the processor of a computer.

Data mart. DM is a lightly summarized area and structure in a DWH
that contains summarized data on a specific subject area for example
for departmental usage. DM uses typically a specific data model for
reporting and analysis which called a star schema. This data model is
focused to deliver fast reporting and analysis on one subject area, for
example customer data or customer purchase transactions in a shop.
Decision Support Systems. DSS provide analytical view to a specific
line of business or a company. These systems are used to support
decision making in companies or lines of business. DSS typically
presents or consumes data from a DWH.

Data Warehousing or Data Warehouse. DWH is a method and database
structure where operational system data are replicated into a DWH
database structure. This structure holds historical and current atomic
data usually stored in a normalized form. The methodology is further
described in Chapters 1 and 2.

Extract-Load-Transform. ELT changes the approach of ETL in manner,
that first two process elements of ELT (Extract and Load) are executed
before transform. Transform phase is executed within the database after
whereas ETL’s Transform part of the process is executed outside of the
database. This change of process for loading the source system data to
the DWH 1is made to utilize databases system’s functionality,
scalability, and efficiency for the Transform operations.

ETL

GUI

I/O

ODS

10

Extract-Transform-Load. The ETL process is typically used within
DWH environments to process data. Extract part of the process extracts
the data from source system(s), Transform part executes various data
transformations within the process and Load part loads the data to
DWH. ETL processes are typically constructed with a specific ETL tool
instead of programming the processes by yourself. There are multiple
technology products in the market for ETL. Most of them are separately
installed from the database systems, but some (like Oracle Warehouse
Builder) are installed within database systems.

Graphical User Interface. GUI is an interface that gives the ability for
users to interact with computers through graphical icons instead of text-
based user interfaces.

Input / Output. I/O means input and output peripherals, such as
keyboards, displays, disk and tape devices.

Operational Data Store. ODS is an operational database usually
integrating data from multiple source systems. It is designed to support
reporting from operational data and offloading the reporting workloads
from the operational systems. ODS also implements data integration
and usually also data cleansing, redundancy removal and data integrity
checking.

List of Original Publications

This thesis and the proposed AcDWH method are based on the following original
publication, which is referred to in the text by the Roman numeral:

I Jari Myllylahti. European Patent Specification EP 1 959 359 BI1. European
Patent Bulletin, 2017, issue 47: 30 pages.

The original publication has been reproduced with the permission of the copyright
holders.

11

1 Introduction

While data warehousing (DWH) models have been utilized for over two
decades for Decision Support Systems (DSS), analytics and business
intelligence, yet there has not been really a drive for enhanced techniques
for near real-time delivery and access of the data. The shift towards more
refreshed data in business intelligence has been the driver to implement
more fresh state of the business intelligence platforms in the form of
improved the data warehouses.

The existing DWH models rely heavily on bulk loading techniques and the
loading of data from source systems to DWH takes place typically during
the night and the load contains data from one day. These techniques are
sufficient when the transaction volumes are not too big and when there is no
real business driver to access the data more frequently than the view of the
previous day. These models have been utilized from the very beginning of
the DWH era and they are still applied in large parts of the world’s DWH
environments.

Today’s business drivers demand more fresh data, for which these typical
nightly load windows are not sufficient. Typical need is a few minutes gap
in between the refreshment cycles of the data. For these environments the
traditional way of refreshing DWH data during the night is not sufficient
anymore.

In this thesis we study and present how a partitioned staging table can be
utilized in active DWH environments. The study question is if the
partitioned staging table in combination with parallelized loading processes
to and from the staging table can help to enhance active DWH systems. The
study also presents enhancements to DWH system’s throughput and
manageability. The study reviews existing research and summarizes their
key findings. Differences between existing research and the studied
partitioned staging table and parallelized loading processes are highlighted.

Introduction

The thesis presents a patented method of a data management system
(AcDWH) which is an optimized and novel method for implementing active
DWH systems. The method allows parallel asynchronous access to the data
being delivered to the DWH. The AcDWH method divides the incoming
data into buckets and the data flow management system is based on
handling these buckets. The method consists of an arbitrary number of
asynchronous data provider and delivery processes.

The AcDWH processes deliver and distribute the data through a common
metadata layer of control data. The metadata tables log different phases of
the process and provide a safe mechanism for concurrency and data delivery
and efficiency control. The efficiency of the processes can be controlled and
throttled through the administrative metadata layer so that the process can
adjust itself to the needs of the business and to the capacity of the platform it
runs on.

The thesis also presents the foundational principles on physical access of the
data. The process can be parallelized and scaled, and different parts of the
process can be isolated from each other by utilizing this specific method.
This way the process can achieve high grade of parallelism, throughput and
near real-time freshness of the data on the DWH.

For the scope of this thesis, the focus will be of the staging table physical
structures and on the patented data management system. In addition, the
focus will be on the AcDWH processes handling the processing pipelines.
The method of applying parallelism to the different parts of processing
pipeline will be discussed and addressed separately, providing examples on
principles and correlation to real world problems.

In chapter 2, the background of DWH is discussed. Chapter 3 discusses
problems identified in active DWH with traditional techniques. Chapter 4
gives a review on studies and literature about DWH and the staging area
processing. A novel method for active DWH and data management system,
AcDWH, is described in chapter 5 and its different parts are discussed in
detail. Chapter 6 gives two examples of real-life implementations of
AcDWH system. In chapter 7 extension possibilities to AcDWH are
discussed and chapter 8 shows results and discusses the advantages of
AcDWH over traditional DWH methods. Chapter 9 concludes with a
summary of the thesis.

13

2 Data Warehousing

In this chapter the background of the data warehousing (DWH) systems is discussed.
The chapter describes the typical structures and methodologies used in DWH
solutions. The chapter also describes different parts of a typical DWH process and
addresses different indexing techniques used in these systems.

2.1 Background

A DWH is a system with techniques & methodologies for managing data
from different sources and combining them into a single DWH to provide
insights to relevant business questions. A DWH is created from multiple
components which aid the use of the specific data for strategic purposes. A
DWH provides a database and system design which helps to keep historic
details of the subject area of the DWH, to reduce the response time and to
enhance the performance of queries for reports and analytics from it. [33]

A DWH consists of large amounts of data which are designed and organized
for both historic data queries and strategic analyses in contradiction to
transaction processing systems. DWH processes incoming source system
data into business information and makes it available to business and
analytical users.

The database of the DWH is separate from the organization's operational
systems. The DWH is an environment and a database which consists of
combined information from the source systems. It is a constructed system
which provides current and historical decision support information to
business users. The previous is typically cumbersome to access and present
using operational databases and systems.

Data Warehousing

For example, a report on the financial system information on previous
company fiscal year can easily include tens of join conditions and tables.
These types of queries will slow down the response time of the query and
report on the operational system. These queries will also have effect on the
throughput of other database operations on the operational system while the
queries are run.

In DWH the database design and structure are separated into two areas; to
the actual DWH structures which are usually in normalized form and to
separate structures supporting subject area queries, so-called data marts
(DM) [1,4]. The latter structures are built with dimensional modelling and
star schema. Within the star schema the fact tables are central to the design,
holding all the relevant data for a data item. Dimension tables are holding
all the relevant data for the dimension [1,4]. In this financial system
example, the Supplier invoices table is the fact table, and the Supplier table
is the dimension table. Figure 1 shows the generic architecture of a DWH
system.

e
o
—

Partition: 1] [Partitign: 2] [Fartition: 3] [_Phahrlrthq-.MghﬂgI&gj

Figure 1. Generic architecture of a DWH.

15

Jari Myllylahti

The fact table has a column for each detail. The facts are usually numeric
values that can provide business with aggregate views, for example
providing a monetary sum of all invoices. A dimension is a specific
attribute to the fact. Dimensions are valuable items to the business, such as
supplier, invoicing month, invoicing country and so forth.

While the data is loaded into the fact table, the dimension attributes of a fact
table row are replaced by a surrogate key pointing to the dimension table.
The dimension table holds all the relevant details of a dimension record. An
example being customer dimension, where the record has attributes such as
name, address, social security number and other relevant attributes.

As an example, if the customer dimension record exists, the surrogate is
fetched from the dimension table by searching for the customer number or
name, and the surrogate key (customer id for example) is inserted into the
fact table column giving a reference to the right entity on the dimension
table. The same would apply for all the relevant dimensional attributes, that
are connected with the relevant fact.

Continuing the example, if the dimension record is not existing in the
dimension table, a new record is inserted into the dimension table. A new
customer id is generated, and the applicable dimension details are updated to
the record from the source systems. A simple star schema structure is
illustrated in Figure 2.

Figure 2. Star schema used in a DWH.

16

Data Warehousing

What is typical to the DWH, is that the dimension records are fetched from
the operational source system databases on a specified interval (such as once
per day during night) prior to the actual loading of the fact data. This causes
the dimension records being up to date when the fact table(s) are loaded
from the source systems and there is no need to generate the records during
the fact table loading.

The afore mentioned star schema requires transformation of data while
loading it into the DWH. This has an implication of having to use an
intermediate storage table to ease the processing and to minimize the
resource wear and burden on the source systems. These intermediate storage
tables are called staging tables [4]. The source system data is loaded into
these staging tables, from where the Extract, Transformation and Load
(ETL) processes move the data further into the applicable star schema tables
for analytical and query use.

2.2 Structure of the traditional DWH method

The traditional DWH processes are controlled and run on either monthly, weekly or
daily basis. Figure 3 shows a high-level model of the traditional DWH processing.

Data source Staging table Target system

72 B

Figure 3. High level process description of traditional DWH method using sources such
as databases (a), flat files (b) or message queuing systems (c).

17

Jari Myllylahti

The data sources are read on daily basis and the data is delivered to the
staging area (e.g. a staging table) for further processing. The staging table is
read and the whole data is delivered to the target system(s) for further data
analysis.

Publications on DWH discuss the design topics and relevant schematics for
this setup. These techniques are widely in use in traditional data
warehousing environments. A literature review is presented in chapter 4.

The reading of the source data takes extensive time to finish as the data from
a whole day, or even a longer period of time, is processed at once and
typically during night. The data is not transformed at this stage, and it is
written to the staging table exactly in the same format it is on the source
system. Erroneous records are written to error logging structures for
possible correcting and reprocessing of the data.

The staging table is read in the next part of the process to deliver the data
into data warehousing structures. Loading the data to the data warehousing
structures is done by reading data from staging table structures and
transforming the data to normalized model in the DWH. This transforming
phase of the landing process is the most resource consuming part of this
process.

What is typical of the DWH is that these structures are in normalized form
of data base schema and provide a solid layer for tracking changes over
time.

The data is delivered to a reporting layer (e.g., a star schema consisting of a
fact table and dimension tables) after the data has been processed in the
DWH layer. This way the data can be analyzed by viewing it in different
dimensions. Dimensional modelling provides the business users a simple yet
powerful way to browse around their analytical data and analyze it on
different aspects, i.e. one can e.g. make a summary of data for a given client
over a period of time. The data loading of the star schema takes place once a
day, aggregating the data on selected dimensions.

The main phases of the traditional DWH ETL process are:

18

Data Warehousing

1. Read the data from source system(s) and deliver it into a staging area in
the DWH

2. Transform the data to the format of the target model
3. Load the transformed data into the target DWH and reporting models

4. Rebuild indexing structures that support the reporting models

DWH systems are Decision Support Systems (DSS) by definition and they
provide an analytical view of data on aggregated and grouped level at
predefined intervals [33]. In the case the business questions do not need to
be answered more frequent than daily and there is no need to report on
transactional basis, then the refreshment of the aggregated data into the
object system can happen also on the same frequency.

Phase 1 typically inputs the data in from previous day. This part of the
process delivers the data usually in the same format or in a mixture of the
source and target formats. This way the transformation of the data can be
traced back to the staging area in the case there is something wrong with the
processing. This phase is time consuming as large amount of data is read
from sources and the reading is typically limited to a small set of reading
methods. These methods address the source data in a similar way to source
applications. One of the problems on the traditional approach is that this
phase cannot be parallelized which may create a bottleneck on the process.

Phase 2 transforms the data into the format of target model and attaches
surrogate keys for the dimension objects to the table rows. This phase also
generates new entities to dimension tables as the new dimension data is
transferred from the source systems. This phase typically involves heavy
calculations, aggregations and exotic transformations of different kinds.
This part of the ETL process takes most of the time and resources, as the
amount of records which will be addressed may be massive.

Phase 3 delivers (e.g., loads) the data into the target system, the DWH. The
writing can and most often will be done by utilizing bulk loading
mechanisms, delivering huge blocks of data directly to the database engine
to make the load in the most efficient way. At the end of the phase the index
structures must be rebuilt to facilitate the reporting on the data model. This
part takes a lot of time because the complex indexing setup is typically
heavy for reporting structures and index creation takes both CPU time and
I/O resources.

19

Jari Myllylahti

2.3 Indexing techniques for DWH

DWH systems are usually indexed with b-tree and bitmap indices like
operational databases. The indexing techniques rely on standard methods
and this is valid regardless of the data volumes in the DWH. Some DWH
environments utilize table and index partitioning to manage great data
volumes. Instead of using global non-partitioned indices DWH systems are
also using local indices which are partitioned according to underlying table
partitions. This method will help to remove the congestion on the table and
indices and enhance the throughput of different database operations [34].

In addition to the DWH structures mentioned above there are specific
indexing techniques for the star schema to support reporting. A normal way
to index a star schema is to index all dimension surrogate key attributes in
the fact table with bitmap indices. In addition, some of the required search
fields for analysis can be indexed for faster searches and aggregation. At the
end of this phase the staging table is truncated as the records are processed,
thus making the table available for the next load.

The difference between normal b-tree and bitmap indices is their internal
structure, while normal indices are arranged to a b-tree structure the bitmap
indexes are arranged in a two-dimensional binary array. The difference in
their behavior is that bitmap indices are extremely usable and fast in
addition to low space consumption in low cardinality columns. What makes
bitmap indices well superior to b-tree indices is when two or more bitmap
indexed columns can be used in search criteria. Then the database engine
can merge the bitmap indices and generate the result set extremely fast [34].

20

Challenges in DWH

3 Challenges in DWH

This chapter addresses the challenges in traditional data warehousing (DWH)
systems and approaches. The challenges have been identified both by existing
research and literature, as well as by experience while constructing the patented
AcDWH method.

3.1 General problems on traditional DWH methods

The traditional DWH methods incorporate number of drawbacks in terms of

1. efficiency,
2. repeatability, and
3. efficient concurrent read and write access to DWH structures.

Initially, the data extracting phase is limited to very narrow reading of
source systems. When the amount of data is large and the reading
mechanisms are limited to typical reading patterns of the source systems,
the outcome cannot be excellent. The source systems cannot be modified to
address the needs of the DWH process as the systems have their own
transactional needs to be fulfilled. The source systems have been designed
for facilitating only their own data accessing needs, anything else is
irrelevant.

Secondly, the data transformation to the target format takes time and
resources. As the volume of transformed data is huge, the processing will
need large amounts of memory and CPU time. The efficiency of the
transformation is highly dependent on the resources of the transformation
platform. If the platform is running short on the memory and CPU
resources, the efficiency and throughput of the DWH system will
deteriorate.

21

Jari Myllylahti

Similarly, the loading process depends on the amount of the data to be
loaded. Whenever the data is loaded in, the loading process depends on the
I/O capacity of the target DWH platform. No matter how performant the
target platform is, the loading of a day’s data will take time. This is the case
particularly for the maintenance of indexing structures for the reporting
model. These structures must be dropped before the data will be loaded in.
If the indices would be up during the load, the impact on performance
would be enormous while the indices would be kept up to date during the
loading process. Currently, the index structures are typically dropped and
then rebuilt after the data loading has been done. As the data volume loaded
is huge, the rebuilding of the index structures is time consuming.

To sum up, traditional DWH techniques suffer from several specific
efficiency problems:

1. The source system reading cannot be streamlined, parallelized and
configured in a manner where the source system would facilitate for both
the source system application and also the analysis of the full set of data
for data warehousing purposes. The reading is a time and resource
consuming process on huge volumes of data.

2. The same problems are present also in the transformation phase. As the
amount of data is large, transforming the data to the needed format for the
analysis will consume resources for the transformation engine. It cannot
be avoided.

3. The loading process efficiency is depending on the data volume loaded.
Populating large number of records and rebuilding index structures will
take a significant amount of time. This will make the solution useless to
analytical use case, with regards to the near real time requirements.

4. The space consumption of the staging table is remarkable. In a typical
method the data is read from the source systems once per night, and the
data is transferred to the data warehousing structures with large batch jobs.
Utilizing this kind of structure within a near real-time solution would
cause the staging table to grow unmanaged, causing the system to either
halt or slow down drastically after an arbitrary amount of executions.

22

Challenges in DWH

3.2 The high watermark problem on traditional
DWH staging tables

The traditional staging tables are handled in a distinct way. The traditional
DWH process will load a standard interval portion of data into the staging
table; typical interval being either once per day, week or month.

Given the characteristics of such a construct, the loading of data into the
staging table is extremely straightforward. On the other hand, the method
will cause different issues on the efficiency of the further loading
mechanism from the staging table.

The traditional method forces the system to process the whole staging table
at a time if no additional load batch identification mechanisms are
constructed for more frequent population of the staging table. If such
additional load batch identification mechanisms are constructed, the staging
table can accommodate multiple loading batches, but at the same time the
staging table would be potentially burdened with always rising high
watermark or slowed down inserts due to additional indexing requirements.

Assume that a staging table is used to accommodate only the current bucket
of incoming data, identified with column bucket id. The loading process
would then load the bucket in a batch job, with any predefined size of a
bucket. This process would fill in the table starting from first empty data
block of the table extent and continue filling in the extent until the first
bucket (bucket id=1) is handled.

Now, processing the bucket (bucket id=1) from the staging table further to
the data warehousing structures is executed by selecting all rows from the
staging table.

SELECT [COLUMN LIST] FROM STAGING TABLE;

This will cause a full table scan, as the database engine selects all records in
the table. After successfully processing the rows further to the data
warehousing structures the staging table needs to be cleansed from the
existing data to facilitate for the next bucket id to be loaded. There are two
options to do the operation; either delete all the rows with a delete command

DELETE * FROM STAGING TABLE;

23

Jari Myllylahti

or by truncating the staging table
TRUNCATE STAGING TABLE;

The delete operation would take considerably long time to execute. This is
due to the fact, that the transaction would be logged into the redo logs of the
database engine to secure any potential rollback command. The delete
operation needs to be explicitly either committed (confirmed) or rolled back
(cancelled). With either operation, commit or rollback, the database engine
would handle transaction through the redo logs to secure consistency in the
data manipulation language (DML) command.

On the contrary, the truncate operation just marks the table as empty and all
data blocks in table extent(s) are marked free. The execution of such
truncate command is extremely fast as it is irreversible, and the action is not
recorded in the redo logs of the database engine. Truncate table is a data
definition language (DDL) command. By nature, any DDL commands are
not logged into database engine redo logs as they are not processing records,
or they are not part of any transaction thus they make the operation execute
multitudes of times faster compared to any DML commands.

Now after the deletion of the records in the first bucket (bucket id=1) or
truncation of the staging table, the system will be able to process the next
bucket of data (bucket id=2) into the staging table.

By nature, the traditional method forces the system handle any batches to be
loaded in a sequential manner, one at a time, and any parts of the further
DWH structure loading process cannot be isolated from the staging table
loading process. This creates a heavy dependency between the staging table
and data warehousing structure population processes.

Assume that a staging table would be used to accommodate multiple
buckets of incoming data, identified with column bucket id. The population
process would then load these in a batch job, with any predefined size of a
bucket. This process would fill in the table starting from first empty data
block of the table extent and continue filling in the extent until the first
bucket (bucket id=1) has been processed. Let us suppose that the system
would process the next bucket (bucket id=2) to the staging table, e.g. it
processes buckets sequentially and not asynchronously, and the first bucket
is still waiting to be processed further from the staging table. The processing
of the second bucket to the staging table would add the inserted rows at the

24

Challenges in DWH

end of table; either to the free data blocks in an extent or to a newly added
extent and its data blocks.

Processing the first bucket (bucket id=1) from the staging table further to

the data warehousing structures is then executed by selecting rows with
bucket id=I.

SELECT [COLUMN LIST] FROM STAGING TABLE
WHERE BUCKET ID=1;

In this setup, where the staging table allocates multiple buckets of data, the
staging table loading process can be by nature asynchronous with the DWH
structure loading process(es). Despite the asynchronous capabilities and
facilitation for the multiple bucket ids, this approach has two design flaws;

e Without indexing any SELECT FROM or DELETE FROM data
manipulation commands will result into a full table scan

e With additional indexing on BUCKET ID column, the SELECT FROM and
DELETE FROM data manipulation commands will scan through the index,
and address only the relevant records of the staging table

Taking the first design flaw example on staging table without any indexing;

Without the indexing any access (SELECT FROM, DELETE FROM) is
going to cost additional time and resources as the database engine needs to
scan through all data blocks of the staging table to retrieve correct rows for
the bucket id. In this setup the processing times will grow unless the
housekeeping of the staging table is executed and timed precisely right to
keep the housekeeping and space consumption of the staging table to a
minimum level. This is due to allowing multiple buckets per staging table to
facilitate asynchronous processing.

In practice this would mean, that the staging table’s housekeeping process
(e.g. the cleansing of already loaded bucket id) needs to be executed within
the loading process itself after the loading of the bucket id data and its
delivery to the data warehousing structures.

This will introduce a significant delay to the DWH structure loading process
and will harm the near real time and asynchronous loading requirements due

25

Jari Myllylahti

to the process needing to delete the records from the staging table at the end
of the loading process. The delete operation must execute a full scan to the
staging table as there are no indices supporting the addressing of the
relevant records. The cleansing process will scan through all the data blocks
of the staging table, searching for the right records with that specific

bucket _id and deleting those rows. The deletions must be committed in the
database. This DELETE FROM transaction will write redo logs for the
whole operation along with the transaction itself and the commit will make
the changes readable for other processes.

DELETE FROM STAGING TABLE
WHERE BUCKET ID=1;
COMMIT;

By introducing the cleansing phase as a mandatory part at the end of the
loading process the system would introduce a longer load time per the
loadable bucket id. This would also affect the potential scalability and
concurrency on the asynchronous loading setup.

The second design flaw related to staging table with index on bucket id
column comes to additional processing cost for maintaining the index while
loading into or deleting from the staging table. This will also introduce
additional storage needs for index within the database system. Using an
index on bucket id requires additional resources to maintain the index while
loading the data to the staging table. This does enhance the throughput of
the selecting the bucket data from the staging table during the loading
process but then again, in addition to the redo log generation as in previous
design flaw example, this will introduce additional resource needs for index
maintenance while deleting the data from the staging table on the cleansing
phase.

3.3 The choking effect on near realtime DWH
environments

Using a setup with a staging table where multiple bucket ids would be
residing during the load, there are following alternative approaches on:

[1] Populating and managing the staging table without indexing the
bucket id column

26

Challenges in DWH

[2] Populating and managing the staging table with index on the
bucket id column

Assume the staging table has no indexing on the bucket id column and the
system is loading multiple bucket ids to the staging table. Further, the
system will not delete the bucket data from the staging table as a part of the
loading process but deletes the bucket data as a separate part of the system
implementation.

Assume further that loading the data to DWH structures from the staging
table may take longer than loading the staging table from the source
systems. By implementing the system as described above we can analyze
how the system would behave running the asynchronous loading and
cleansing processes.

Assume now that the system has loaded five (5) buckets of data, each
having 50000 records, thus consisting of 250000 records in total. Then, the
record size of 512 bytes (B) would give the space consumption of
approximately 125 megabytes (MB) for the five buckets. Adding another
bucket would reserve additionally 25 MB of database space for the table
while loading the data into the staging table.

Now, loading of the data from the staging table to the DWH structures
would be slower than loading the data from source systems to the staging
table. Implementing a system like this would force the loading process to
halt after some time depending on how much table space has been reserved
for the staging table. This is due to the following;

[1] The staging table is a single logical unit of data, built from segments,
extents and data blocks within the database

[2] Processing the data from the staging table to the DWH structures is
slower than loading the staging table from the source systems (e.g.
adding new buckets of data) as assumed above, due to
transformation of data within the loading process

[3] The system is not able to delete buckets of data faster than loading
new buckets in from source systems due to the slower loading of
data from staging table to DWH structures

[4] The table will evidently over time consume growing amounts of
space from database due to the fact that loading data from source
systems to staging table is faster than data loading from staging table
to DWH structures. This yields to longer execution time gradually

27

Jari Myllylahti

on the loading process, as the full table scans will require more I/O
resources while the staging table grows.

The above will cause the staging table to consume all free space from the
tablespace. The table will grow larger until the tablespace has no more space
to allocate for the table and any insertions to the table will generate an error
and the system will halt.

3.4 Dilleting data from or truncating the staging
table

In the traditional DWH method, the staging tables are used for one batch
load at a time. E.g. the table holds data for only one bucket at a time. The
approach facilitates for easy data management but has very limited support
for systems requiring parallelism and concurrency.

By utilizing a fundamentally static staging table for one load batch (i.e.
bucket) at a time will secure fast and easy deletion of the staging table data
after the data has been loaded. This is eventually executed by a
TRUNCATE TABLE DDL command. This method is a fast and robust
mechanism to cleanse the loaded data from the staging table and the truncate
command is usually executed as the last operation of the loading process
that populates the data warehousing structures.

However, the above method allows no concurrency or parallelism in the
loading pipeline, e.g. the processing consists of sequential parts executed
after each other. Loading the next bucket of data into the staging table
requires all parts of this processing pipeline to be finalized successfully. As
a result of this, reading of records from source systems to the staging table
cannot be parallelized and the processing does not support concurrency.

Approaching the above problem by adding a column to the staging table
holding the bucket id will enhance the concurrency and parallelism. Then,
the staging table can hold multiple buckets of data at the same time. It will
also facilitate for concurrency and parallelism, as the loading from the
source systems to the staging table can be parallelized as well as the
processing pipeline that delivers data from the staging table to the DWH
structures.

28

Challenges in DWH

On the other hand, adding the bucket id column to the staging table will
introduce two distinct problems; 1) the efficiency aspect and ii) the data
skewing aspect.

For the efficiency, the problem is two-fold. Without indexing the bucket id
column, the loading from staging table to data warehousing structures will
need a full scan of the staging table for searching the rows with a correct
bucket id. This will make the loading process inefficient, but it introduces
the rising high watermark problem described in section 3.1. With indexing
the bucket id, the processing of data from staging table to DWH structures
is efficient but the data processing from source systems to the staging table
will slow down due to the need of populating the index as the data is loaded
into the staging table.

Regardless of the indexing of the bucket id column the data skewing
problem is evident. Skewing in this context means that data is not
distributed evenly on specific data blocks but has an uneven distribution
across data blocks. The rows of a specific bucket are distributed unevenly
across data blocks having empty space. A non-indexed staging table has
slower further processing and deletion of data. An indexed table supports
faster further processing and deletion of data, but slower data loading into
the staging table. The concurrent loading of multiple buckets of data into the
staging table will interleave the rows of different buckets among each other
while the system is inserting the data into the staging table.

Now, let us assume the system has inserted arbitrary amount of data buckets
into the staging table with a parallel processing pipeline. The parallel
processing pipeline inserts many buckets into the staging table during a
specific time interval. These data buckets are marked as processed and are
waiting for deletion. After executing committing the deletion, the physical
table extents and data blocks have now free space within them for additional
rows. Let us also assume that the database and staging table are generated
with such specifications that the database engine can utilize this recently
freed space within the data blocks. Now insertion of a new data bucket
means that rows are inserted into these partially emptied data blocks and
empty data blocks will be reserved at the end of the table. This introduces
data skewing to the staging table and introduces growing space consumption
for the staging table as loading more data rows to the staging table will
reserve additional extents and data blocks for the table.

29

Jari Myllylahti

It is evident and also witnessed through experimenting and resolving the
problems in the setup referenced in chapter 5.1, that this setup will
ultimately over time introduce excessive data skewing. This will eventually
generate a high watermark problem with the staging table. The staging table
will then consume additional space from the database until the free space
has been consumed. This means that the database engine cannot reserve
more space for the table, and any insert operations to the staging table will
exit with an error.

Having active DWH system processing near real time data loading mechanism
cannot stand such halt. This is due to the fact that the active DWH environment by
nature handles data loads in really short intervals. Any delay in the process of loading
data from source systems generates a heavier load on DWH loading processes. It is
fair to say that another type of solution needs to be formulated to overcome and
resolve the problems on both efficiency and data skewing.

All the parts of a typical data warehousing ETL process are affected by the
fact that there is a huge amount of records read, transformed and loaded
through the system. Each of the parts is affected individually and yet
affecting on the total throughput of the system.

Several questions still remain to be answered — for which answers are never
good enough. What if there is a need to rerun a day’s batch of data? Further,
how to rerun in the case of corrupted data? How the correctness of the data
can be ensured? How do we process the data fast enough and how do we
enable it to be reported on a very frequent, near real-time, basis?

All these questions and design flaws must be answered and refined to
achieve a high performing environment for a near real-time DWH system.

30

4 Existing research

The existing research publications were searched using Google Scholar!.
Publications were searched in the databases with keywords (data
warehousing (DWH), staging table, partitioning) and selected by the author
based on their relevance to DWH, their handling of loading processes and
staging tables. The publications were reviewed by studying their focus areas
and comparing their conclusions and findings to the traditional DWH
methods and the proposed AcDWH methodology of the present work.

4.1 1990-1999

Widom [15] studied research problems in DWH. The author described a
general DWH architecture and technical issues arising from the architecture.
The author discussed wrapper / monitor component that monitors source
system changes and provides formatted data to DWH which also informs
the integrator component of changes in the source system data. There is a
wrapper / monitor component for each data source due to different data
models in different source systems. These components also reformat the
data to the DWH required data model. The data from the wrapper / monitor
components are consumed by the integrator component. The wrapper /
monitor components read the data directly from source systems and the
integrator component writes it to the DWH. The author discusses how the
integrator component will directly write to the DWH structures. The author
discussed alternatives with data loading or maintenance of materialized
views if a DWH would be refreshed at each query execution. The author
discussed the specific extreme case where all data from source systems
would be copied into the DWH, and DWH views would be refreshed in
entirety from the copied data. The author did not discuss further the

! https://scholar.google.com

Jari Myllylahti

problems of using data from source systems versus utilizing a staging area
within the DWH itself.

4.2 2000-2009

Suresh et al. [21] patented a method and an architecture to automate the
optimization of ETL throughput within DWH systems. The inventors
proposed a pipelined and componentized approach to ETL workloads where
the pipelines are built for different atomic components, each executing
specific processing to the data. The transformation server’s components
separately decide whether to stage or stream the data to be transformed. The
pipelines are managed by the transformation server which optimizes the
system for maximum resource utilization throughput by parallelizing the
pipelines. The user is also able to define parallelism for the system by
manually defining how many pipelines the transformation server will handle
concurrently. The processing pipelines and their components reside in
memory, whereas source data originates from any of the valid source types
and the target system is a DWH. The patent describes thoroughly the
working principles of the transformation server. The transformation server
processes only data in transit through the server.

Bruckner et al. [27] studied approaches to real-time data integration for
DWHs. The study discusses an approach that applies continuous near real-
time data propagation using integration techniques. The study presented
methods available in standard Java 2 platform with a scalable ETL
environment implemented with ETLets and Enterprise Java Beans (EJB).
ETLets are small ETL components implemented with EJB that execute
specific actions, and they have standardized interfaces for the input / output
parameters. The authors discuss the business needs of near real-time DWH,
namely including continuous data integration, active decision engines and
highly available analytical and query setup. They also discuss the
differences between ODS and DWHs. ODS is an environment providing
view for current state of data across operational systems, DWH is an
environment where analytical and historical data are recorded and provided
to support business users and analysis. The authors discuss an architecture
to streamline data delivery between different layers without using
intermediate storage or staging areas. This is achieved by using ETLets and
EJB components for extracting, parsing and converting data through J2EE
connectors. In their study the authors described how their proposed system

32

Existing research

manages the source system connection pooling and ETL processing through
containers. By using the container setup on light weight Java components
and immediate file storage beneath the authors believe the setup is feasible
for near-real time DWH environments.

Nguyen and Min [24] studied a framework of a Zero-Latency DWH
(ZLDWH) in 2003. Their article addresses two aspects of ZLDWH; firstly
the Continuous Data Integration and secondly Active Decision Engine. The
first is constructed from a message queuing system and a data integration
tool. This tool receives data from heterogenous sources using a data stream
processor and a set of change data detection modules. This part of the
system manages the active DWH requirements. The methods can include
both push or pull techniques where data are either sent to the receiver or
requested by the receiver. In addition, the Continuous Data Integration
module can be formulated to handle data either in synchronous or
asynchronous fashion, and there can be single or multiple data receivers.
This part of the solution uses also continuous data stream processing where
data is usually constantly changing, and it is not practical to operate with
large data sets multiple times. The second component Active Decision
Engine handles the rules and actions within the system. Its primary function
is the automation of different tasks by analysis rules which are created
traditionally by incremental analysis of the collected data. The Active
Decision Engine uses a rule base, an event base and an action base to handle
the automation. Users are able to create and modify different rules, events
and actions through a specific end user interface or tool. There are some
foundational problems in applying continuous data stream processing
related to time consistency. These problems are evidently introduced by the
process, which realizes when the data has been valid so that the data can be
processed with properly modelled dimension data including attributes for
validity time and data load timestamp details.

Golfarelli et al. [16] discussed the horizon of beyond DWH in terms of
looking onto what will be the next trends in business Intelligence. The
authors discussed the data freshness needs related to decision making for an
organization, while trying to execute the company’s strategy. The paper
discusses different aspects and needs for data and information, indicating
that Business Performance Management (BPM) is a potential resolution for
data freshness for decision making of an organization. The research
indicates that the data needs to be continuously made available at the right
time and in the proper format to the right decision level makers. Decisions
on lower organizational levels require more fresh data due to the decisions

33

Jari Myllylahti

need to be made faster. The above referenced BPM systems provide data
and insight in the right time, instead of real-time, facilitating fresh enough
data. In addition to the freshness of the data, the lifetime of data is relatively
short. The data are needed for the dashboard usage on current performance
metrics. This can be achieved in reactive data flows, that monitor the
processes with time critical aspects. This kind of activity is called Business
Activity Monitoring (BAM). The main components of such a construct are
Right-Time Integrator (RTI) and Dynamic Data Store (DDS). RTI is an
engine integrating data from operational databases, DWHs, Enterprice
Application Integration (EAI) systems and from real-time streams. DDS
system is storing short-term data for fast retrieval needs and mining. As data
latency is of key relevance, the article proposes abandoning the Operational
Data Store (ODS) approach utilized in the DWH and concentrating on on-
the-fly techniques. These techniques utilize BAM approach, implementing
right-time processing of the relevant data. As a conclusion, the BPM
approach and its role is seen as a method to quantify the strategy and targets
and to facilitate decentralized decision making on the operational and
tactical levels of organizations.

Karaksidis et al. [20] studied utilizing ETL queues for active DWH for
maximum freshness of the data. The authors discussed different approaches
to build an active DWH, such as data streams compared to traditional
method of loading windows during night and offline population of the
DWH. The authors divided their study around four main requirements:
maximum freshness of data, easy and swift upgrade of software at the
source systems, minimized overhead to the source system and stable
interfaces at the DWH side. The study discussed an active data staging area
(ADSA), from where the data are loaded into the DWH utilizing on-line
loaders. The authors employed a queue for each ETL activity, namely
building an ETL data flow of separate queues processing data in different
manners; e.g. the processes are different consumers of data. The system
architecture consists of a data store (DBMS, application or similar), source
flow regulator for handling the data flow from data store, intermediate
staging area (ADV A) where data are cleansed and transformed, web
services for consuming data from ADVA and populating the data into
DWH. The authors proposed alternatives for the staging area, first being on
the source side, second on the target DWH side and third one as a separate
environment. The study specifically addressed the choices concerning
staging area. According to the authors, the internal staging area structure
and its tuning are the key elements of the architecture and its performance.
As the staging area is an environment of multithreaded nature and it is using

34

Existing research

shared coonstructs, race conditions and consistency should be handled
properly. The authors raise issues on the locking of the queues and its
implications to how fast the queues can be handled and emptied. Too fast
arrival rate of data from source systems generates instability and longer
queues. Alternatively, too fast service rate transmitting data off the queues
will create a lot of locking issues, thus arrival and service rates should be
close to each other to avoid problems. Also handling the data one tuple at a
time poses a large overhead to the system compared to an approach where
data are handled one block at a time. As a conclusion the study summarized
the findings as follows; the proposed system with isolated ETL tasks to a
specific area adds very limited additional costs to source side and the
proposed system also facilitates faster flow towards the DWH.

Simitsis et al. [10] addressed the optimization of the ETL processes. The
authors reviewed and focused their approach to logical transformations of
the workflow instead of implementation requirements on the physical side.
The study approaches the optimization problem of ETL processes through
different algorithms, and their effect on the outcome. The optimization
techniques included exhaustive and heuristic techniques to ETL workflows.
The study gives a comparison of the different approaches and their impact to
the execution efficiency. The study concentrates fully on the logical ETL
workflow and does not address any physical side design elements. The
authors disclosed that the research issue of physical optimization of ETL
workflows has been left unexplored.

Polyzotis et al. [23] researched utilizing streaming updates in an active
DWH. The authors studied particularly an active DWH research problem
where transactions are inputed through online data streams. Transactions are
added with details from a DWH table such as a dimension table, where the
transaction is added with surrogate keys looked up from dimension tables.
When using the traditional ETL lookup setup, the ETL logic reads the full
lookup table in the cache memory for the specific invoking of the ETL
process constituting from multiple rows. For streaming data sets the lookup
caching problem generates extensive overhead due to nature of the
processing a record at a time. For this problem the authors proposed to use a
configurable mesh join, which keeps a specified amount of mesh join
attributes in the memory to avoid re-reading of the lookup table. The
researched mesh join can be configured to either stay within a specific
memory limitation or to handle the incoming data stream at incoming rate.
The algorithm skips processing any results that are already in the lookup
table in the memory and propagates new results to the in-memory result

35

Jari Myllylahti

table. This result table is kept in the memory instead of looking it up from
the database for each execution of the ETL process. The construct amortizes
the cost of reading the lookup table over a set of tuples and thus provides far
better efficiency than typical ETL processing but at the same time it
consumes more memory.

Santos and Bernardino [9] proposed a continuous loading mechanism for
real-time DWH. The method adapts the DWH schema by duplicating the
DWH tables into temporary tables which are identical to the original DWH
table and added with a unique sequence identifier column. These temporary
tables are created without indices, primary keys or any constraints. To
refresh the DWH, all new data are loaded into these temporary tables with
autoincremented sequential identifiers. Any queries to the DWH will be
adjusted to query from both temporary and actual DWH tables. This method
will in time cause the slow-down of the insert and query operations. The
system can be optimized by moving all newly inserted data from the
temporary tables into the DWH tables.

Polyzotis et al. [25] studied meshing streaming updates that use persistent
data in an active DWH. The authors studied the drawbacks of traditional
DWH data loading on nightly basis. The study discussed a specific join of
fast source system stream originating updates (e.g. fast paced changes) to a
disk-based relation (e.g. a database table or similar). The authors proposed a
mesh-join algorithm where the algorithm keeps the lookup table on the disk
assuming the available memory is not large enough. The proposed mesh
join solution keeps a disk-based relation continuously open, performs a
cyclic scan of it continuously and maps the records against the stream
originating records. The study focused on the transformations (lookups,
joins and similar) in the ETL process.

Naeem et al. [29] studied an event-driven near real-time data integration
architecture. They presented an architecture for an event driven near real-
time ETL layer using database queues (DBQ) which is working with the
push principle. The study describes the foundational problem of continuous
extraction and transformation of data within a limited loading window. This
problem occurs especially in the management of so-called master data,
which is needed to enrichen the transactional data originating from the
source system(s). The authors gave a method how the master data can be
utilized in an efficient manner through storing it in a separate repository.
The master data and transaction data are distributed to right targets and
repositories. The transaction data is then enriched with the master data

36

Existing research

through a message driven bean which uses the master data tables as inner
tables in a join loop providing efficient throughput. Using this method, the
master data is not needed to be refreshed for each transaction but rather as
the master data itself is changed.

Seifert [5] filed for a patent on an online table move method. The author
developed a method to move a table in an online fashion without
interruptions to applications using the database. The basic principle is to
initiate a module that records all source table operations to the target table,
to establish a copy of the existing table, and to initiate replay, swap and
cleanup modules. The method uses a staging table to record any changes in
the source table while the data is copied to the target table. The swap
module will implement the name change of the source and target tables, so
that the target table will be established as the table in use. After data has
been copied from the staging table to the target table, the cleanup module
will delete the staging and source tables. The staging table is not partitioned
but indexed for the access of the changed records. The access of the staging
table relies on the indexes, and data are processed by reading the entire
staging table without parallel processing.

Jorg and DeBloch [8] studied near real-time DWH using state of the art ETL
tools. According to their study the requirements could be fulfilled using
traditional ETL tools and by shortening the DWH loading cycles. This
would not require re-implementation of any of the transformation logic. The
study is divided into sections, discussing the refreshment anomalies,
concepts of incremental loading and properties of operational sources. The
refreshment anomalies happen when DWH system addresses the source
systems’ data and their changes during the refreshment cycle of a DWH.
Two families of algorithms, eager compensating and strobe family, were
discussed and their potential to be constructed using ETL tools. Both, the
eager compensating algorithm and the strobe family algorithms are tracking
changes in source systems while data warehouse loading is executed.
Respectively they perform specific compensations for avoiding anomalies.
The authors came to a conclusion where the current ETL tools do not
provide a means of implementation for the algorithms as such. Incremental
loading aspects were discussed in detail, giving simple examples on
different approaches. The authors considered the options of full and
incremental reloading, and the distinctive characteristics that both
approaches introduce. Operational sources and their properties were
presented, having a view for example on snapshot and logged sources.
Snapshot sources are simply operational sources that allow their material to

37

Jari Myllylahti

be dumped periodically into a file system representing a state of the
operational system at the specified extraction time. In this setup change data
can be captured using successive snapshots and by comparing states
between the different snapshots. Some operational sources implement a
change log that can be utilized to extract the changes. There are multiple
possibilities to implement change data capture, like triggers included into
transaction logic or log-based change capture recording the changes for
example to log tables. In addition, database log scraping or sniffing
implementations are discussed, in which the source system changes are
collected from the active database log files instead of recording the changes
from source databases themselves. Often the source systems contain
timestamped source data, where the changes are recorded into the source
system data itself, an example being the timestamp of the record being
created or updated. The authors conclude with showing the potential of
using low latency updates using ETL tools in a micro batch manager setup,
where the loading cycles and amount of data are strictly limited. This is to
avoid refreshment anomalies and subsequent inconsistency in DWH,
implemented with different techniques in the ETL workflow and change
data capture setup.

Chakraborty and Singh [31] studied a partition-based approach supporting
active DWH streaming updates. The authors described the same
problematics as Polyzotis et al. [23]. Based on the observations in the study,
they proposed an approach to join a data stream with a persistent relation,
e.g. a lookup or dimension table using partitioning. The dimension table is
divided into partitions, where the join relation can be limited to a limited
amount of partitions from the dimension table and potentially the amount of
partitions kept in the memory will be adjusted. Additionally, the proposed
solution also addresses the 1/0O bottlenecks and eliminates locking factors
which are due to writing rows into the dimension table. This is achieved by
maintaining a wait buffer which is not written to disk, but rather kept in
memory. Compared to [23], Chakraborty and Singh have added a distinctive
partitioning method on the top of the proposed mesh join setup, which
efficiently eliminates large scale reading of the dimension table and tries to
concentrate the reads and writes into hot areas within the partition range.

Vassiliadis and Simitsis [12] discussed the business needs that require near
real-time DWH and such architectures that will cater for these needs. The
authors considered also the performance bottlenecks relating to near real-
time data loading, especially arranging the data into a staging area, and
processing it into DWH or data mart structures either using bulk loading

38

Existing research

mechanisms or inserting the data by a sequential insertion of rows.
Vassiliadis and Simitsis properly identified the drawbacks of such
mechanisms in relation to indexing and materialized views over the DWH
relations while inserting the data. The authors proposed an Extract-Load-
Transform (ELT) solution that snapshots operational system data into DWH
staging area, after which the transformations are managed within the DWH
platform. This enhances scalability and also secures integrity of data as all
data are kept within the database engine. The proposed solution is a
pipelined approach to the stages in the ELT process where a proposed Data
Processing Flow Regulator (DPFlowR) component controls the source
loading activities and decides which sources are ready for transmitting data.
This proposed component also regulates the source loading process and
balances the congestion posed by the loading pipeline against the overall
system throughput and responsiveness. In addition, a proposed Warehouse
Flow Regulator (WFlowR) component would similarly control the DWH
loading processes that are pipelined, balancing them to enhance system
throughput and responsiveness. Both these components act as load-
balancing tasks within the system. The authors discussed specific pipelining
and partitioning methods for the specific extraction, loading and
transformation processes. The discussed method proposes to divide the
processed data into smaller sets which would then be processed in parallel
and in pipelined fashion by different parts of the system.

4.3 2010-2019

Zuters [13] studied near real-time DWH problems and proposed a solution
to data loading setup by evolving of trickle & flip method into a multi-stage
trickle & flip setup. This trickle & flip method is used to remove scalability
issues in DWH for querying the data which has been updated concurrently
with the querying processes. Using trickle & flip the staging tables are in the
same format as the DWH tables. The staging tables are periodically
duplicated, and their copy will be swapped with the DWH tables. Applying
trickle & flip to real-time DWH means swapping the staging tables with the
active partitions of the DWH. This method implicates that the system needs
to have all changed data available since the last update in the real-time
portion of the DWH. In addition, the real-time data needs to be linked
pragmatically to static data, it needs to be extremely lightly indexed to
support the continuous data loads and to support fast queries. Using trickle
& flip imposes drawbacks to the real-time DWH setup. Copying staging

39

Jari Myllylahti

data into DWH active area for example every hour will implicate periodic
slowness on throughput and tweaking the update happening in longer
intervals just exaggerates the impact as the data swapping will take longer
time. Zuters proposed using an evolved multi-stage trickle & flip scenario
where the method introduces additional stages to the system. This would
resolve the issues of querying the tables while the data are loaded. In this
scenario the real-time data are divided into sub-partitions, where each sub-
partition holds less data than the full real-time portion of the DWH. The
staging table is proposed to be swapped in more frequently, and then only a
sub-partition of the data must be moved. This efficiently removes some of
the hindrances of querying and loading the same data window.

Thomsen and Pedersen [11] presented an ETL framework implemented in
python programming language. The framework presents an efficient way to
parallelize the ETL process itself and the typical tasks of such process. The
research addresses several constructs in python that will enable all parts of
the ETL process to be parallelized. This is achieved by both task parallelism
and data parallelism. The proposed method allows extraction in parallel to
other tasks in the process. Authors proposed to divide the tasks into flows
that are sequence collections of functions running in parallel. The method
enables the programmers to decide and control which parts of the ETL
process and data can be parallelized.

Kakish and Kraft [26] studied the ETL evolution for the real-time DWH.
The authors presented the fundamentals of the ETL processing in traditional
DWH environments and described the architecture of the DWH
environments. The authors discussed the problematics of capturing changed
data from the source systems and the complexity of defining extraction
processes. Kakish and Kraft described the techniques to achieve real-time
DWH through implementing a Change Data Capture (CDC) technique and
integrating such technique with ETL tooling. In CDC technique only the
source system changes made after previous extraction are extracted. So,
CDC mechanism uses only incremental extraction. This integrated approach
would minimize the needs for resources along with maximizing the
efficiency of the process. The study describes the three different generations
of ETL toolsets, which have evolved from operating system native code,
through proprietary ETL engines to latest generation of ETL tools which
have a distributed architecture. These third generation ETL tools eliminate
and reduce the need for an ETL hub between the systems and they pursue to
introduce distributed processing where the transformations are implemented
in the database management system side. This facilitates for distributed and

40

Existing research

optimized ETL processing. The authors came to a conclusion where the
current ETL processes need to transform from periodic processing to
continuous updates. According to the authors, effectively this would require
continuous data integration. To eliminate the disadvantages and to fulfill the
requirements, authors propose to use an intermediate data processing area
(DPA) and the architecture and methods proposed in [12]. The study
concludes with weighting the different aspects of different solutions on the
actual need; not all tasks require real-time analysis capabilities.

Waas et al. [6] discussed the problematics of near real-time DWH in the
context of the latency to get the data in the DWH for queries. The data
freshness problems were discussed. A core problem of data freshness and
latency related to time consuming data transformations and cleansing for
queries was identified. The authors propose a right-time Business
Intelligence (BI) architecture where ETL is turned into ELT processing
using database platform as the loading and transformation engine. The paper
proposes loading raw data into the DWH and handling the rest of the ELT
process with database operations through materialized views. The proposed
model has three main components: staging area called landing pad (LP),
DWH tables, and materialized view stack (MVS) providing data to the
queries and reporting instead of traditional data marts or reporting tables.
The data is provided to the queries on-demand through refreshing of
materialized views. Authors also proposed to augment the architecture with
updates through streaming data from event data sources. The streaming data
process can query and combine elements from DWH for end user
dashboards for alerting.

Bani et al. [35] studied utilizing Massively Parallel Processing (MPP)
system to provide scalability for DWH. The study focused on implementing
a MPP system with Greenplum database to perform complex queries in the
DWH. The Greenplum MPP system is built with multiple parallel physical
hosts interconnected with an interconnect network layer distributing the
MPP processing. The DWH data is partitioned across the servers and each
server has its own CPU, memory and database instance. The database
queries run in parallel using all the MPP system hosts, and each host is
returning the results. Interconnect network layer enables communication
across the database instances residing on the servers, giving the system
ability to act as a single database. The MPP solution collects daily
transactional data from the source systems. The study shows that data loads
with less than 1 000 000 rows can be handled with direct load to staging
area tables, and the staging cleansing is executed by truncating the staging

41

Jari Myllylahti

table after each successful load to DWH. Larger data loads require a dual
stage data load which means creating a file dump on source system table(s)
and loading the data from these files to staging area using databases utilities.

4.4 2020-

Gorhe [36] studied problems and categorized challenges and opportunities
in ETL processing for near real-time environments. The author identified
fast source data availability in DWH environment and providing required
data for decision making as the primary focus in near-real time DWH. Low
latency, minimum disruptions and high availability & scalability were
identified as the key characteristics of these near-real time DWH
environments. The author also discussed problems in the ETL processes.
Some key findings were performance impact of the DWH while loading the
data, the inability of proprietary ETL toolset to support near-real time usage
and complicated design due to the near-real time requirements. The author
identified key findings on the opportunities in near-realtime DWH, such as
data buffering to enable source data storage while previously extracted data
was under processing and using separate ETL for near-real time data.

Adnyana and Jendra Sulastra [37] studied data backup and synchronization
implementation for real-time DWH. The authors considered the resolution
of data synchronization to online transaction processing (OLTP) systems
and DWH databases while network problems occurred. They described a
functionality in the system which saves the data into a comma separated
values (CSV) file while network problems occur. The solution uses an
identity column on OLTP database tables to mark if the insertion has failed
or succeeded. After the insertion has succeeded to the OLTP database, the
system continues synchronizing the data into the DWH.

Biswas et al. [38] studied incremental loading techniques for real-time data
integration. The authors compared Graphical User Interface (GUI) -based
ETL tools in the market against custom coded tools. The study discusses
four programmable ETL tools Pygrametl, Petl, Scriptella and R_etl. The
authors described and measured the efficiency of each of the programmable
ETL tools from different viewpoints and discussed the modelling of the
ETL jobs. The authors divided their study to three parts: Change Data
Capture (CDC), dimension table processing and fact table processing. The
authors experimented with full reload against incremental load and they

42

Existing research

came to a conclusion that incremental loading is not only faster but also
provides lighter processing requirements for the system. Conclusions
include findings that specifically coded and crafted ETL can be the most
viable option instead of GUI-based ETL tools on the market, and also that
real-time DWH needs incremental loading mechanisms which provide better
throughput and also less system resource consumption.

Cao et al. [39] presented Timon, a time-series database implementation for
efficient telemetry data processing and analytics. The authors created the
solution for timestamped event database that supports aggregation and
handles late arrivals. Timon uses TS-LSM-Tree structure that keeps recent
data within memory. The structure also contains a time partitioned tree on
disks to which the in-memory data is periodically merged to. The non-
memory implementation is usually done with such solutions as HBase [40]
or Cassandra [41]. Timon reads the events from the source systems usually
through message queue systems and attaches a sequential ascending
identifier to each record. The solution is built to support large volumes of
timestamped data. Timon is written from scratch, and the authors have
implemented also Timon Query Language (TQL) for easier application
development.

4.5 Summary of literature review

As a summary, below is a comparison of different focus areas in the prior
literature reflecting the area of this thesis. While most of the cited studies
focus on the loading process and the staging area handling only a few of
them focus on table partitioning setup and associated methods to overcome
active DWH bottlenecks [23] [31] [39]. While the table partitioning is
studied in these papers, it is not studied for the staging area handling. Table
partitioning aspects have been studied in the context of loading process or
join processing, which are elementarily valid focus areas. The present thesis
uses table partitioning in the staging area processing. Also leveraging the
partitioning technology to enable active DWH with continuous loading and
simultaneous querying of data is be studied. As a conclusion, utilizing table
partitioning in staging tables in a standard database engine has not widely
been discussed or studied. This thesis proposes a novel approach to active
DWH staging table handling in a standard database engine using table
partitioning along with the proposed data management system.

43

Jari Myllylahti

Table 1. Comparison of focus areas in prior studies.

Referenced | Author(s) Year |Loading |Staging |Join Table
study process |area processing | partitioning
[15] Widom 1995 X

[21] Suresh et al. 2001 X

[27] Bruckner et al. 2002 X X

[24] Nguyen and Min 2003 X

[16] Golfarelli et al. 2004 X (X)

[20] Karaksidis et al. 2005 X X

[10] Simitsis et al. 2005 X

[23] Polyzotis et al. 2007 X X
[9] Santos and Bernardino 2008 X X

[25] Polyzotis et al. 2008 X

[29] Naeem et al. 2008 X

[5] Seifert 2009 X

[8] Jorg and DeRloch 2009 X

[31] Chakraborty and Singh 2009 X X
[12] Vassiliadis and Simitsis 2009 X X

[13] Zuters 2011 X X

[11] Thomsen and Pedersen 2011 X

[26] Kakish and Kraft 2012 X X

[6] Waas et al. 2013 X X

[35] Bani et al. 2018 X X

[36] Gorhe 2020 X X

[37] Adnyana and Jendra 2020 X

Sulastra
[38] Biswas et al. 2020 X
[39] Cao etal. 2020 X X

44

5 AcDWH Method

In this chapter a methodology for a rapid data warechouse (DWH) loading and
analysis platform (AcDWH) is presented. The methods presented have been granted
a European Patent (EP 1 959 359 B1) by European Patent Office on November 22nd,
2017 [1].

5.1 Overview

A high-level description of the optimized DWH loading and analysis
platform, AcDWH, is as follows:

1. Generate the AcDWH staging area and primary data warehousing
structures to enable initial loading,

2. Feed the AcDWH staging area from the source systems (data loading
module),

3. Populate the primary AcDWH structures from the staging area (delivery
module(s)),

4. Clear the staging area after transitioning the data to primary AcDWH
structures (cleaning module),

5. [Establish the AcDWH indexing structures for analytical and query use.

The foundation of the AcDWH methodology is explained in detail in the
following sections. The fundamental change of the proposed approach in
contrast to the previous DWH techniques is utilizing physical data
partitioning in a manner it was not originally intended to be used.

High level modules and their relation to the staging table(s) of the AcDWH
are illustrated in Figure 4. Step 2 is performed with the loading module, step
3 with the delivery module and step 4 with the cleaning module. Step 1 is

Jari Myllylahti

performed manually while building the system and step 5 can be performed
by triggering indexing structures recreation as a last part of delivery module.
Each target table / structure has its own system modules. Each bucket is
represented by a single table partition.

DATA MANAGEMENT SYSTEM

Loading module Delivery module Cleaning module

Staging area

Figure 4. AcDWH system modules and their relation to the staging table(s).

High level flow of the AcDWH load module is shown in Fig. 5:

Data coming from a
data source

Y
Create new partition for

the data
Y y
Store the data in the Update bucket
partition metadata
Figure 5. High level AcDWH loading module.

Each bucket in the subject area specific staging table is created with uniform
extent and bucket sizes, meaning physical table partition size and also as

46

AcDWH Method

close to an uniform amount of rows in the bucket as possible. After the
bucket has been loaded into the AcDWH staging table partition, it will be
marked as loaded and any delivery processes can start to load data from the
staging table to DWH structures.

The AcDWH system may include multiple delivery processes and thus the
system needs to track how the different delivery processes will load data
into database structures. Multiple delivery processes can load same bucket
data for example to different subject areas (data marts, DM) for reporting.
The data bucket from staging table cannot be deleted prior to all delivery
processes have processed it. To facilitate for this the system works through
the control tables and coordinates how different delivery processes work
with the data. See Figure 6 for the workflow of the AcDWH delivery
module.

Select a bucket from
staging area by bucket_id

Y
Open the partition with Update bucket metadata in
bucket_id control tables if status = ‘LOADED’

Y
Deliver the data rows
from the bucket

Y Y
Store the data in the .| Update bucket deliverers
DWH table(s) | metadata in control tables

Figure 6. High level AcDWH data delivery module.

To set different priorities on the delivery processes, each AcDWH delivery
process is assigned with priority information. The priority is indicated with
a numerical value. Value 1 has highest priority, value 2 second highest and
so forth, as many priority levels as needed can be introduced. Priorities of
delivery processes are defined for the application while the system is built.
The AcDWH system can resolve prioritization by checking if higher priority
delivery processes are in the queue to be executed. This simple method

47

Jari Myllylahti

avoids executing lower priory delivery processes before the higher priority
ones. When higher priority processes are finalized, the lower priority
processes are processed. The overall AcDWH delivery process is described
below in Figure 7.

Starting a delivery
process

\ 4
Checking priority
information

A\ 4
Different priorities NO Proceeding with the

determined delivery process
A

YES

Y

Delaying bucket
processing if necessary

TNO
N4

Possible to proceed
with the delivery
process YES

Figure 7. AcDWH Data delivery module priority determination.

After all delivery processes have moved the bucket data to AcDWH
database structures, the data buckets (e.g. staging table partitions) will be
deleted from the system to minimize the usage of the database space and the
consumption of resources. As the AcDWH staging table and its partitions
use uniform sizing on physical level, the space removals and allocations are
uniform, and the space allocation management is easy.

48

AcDWH Method

Checking the status
information of a bucket
in metadata

A

Checking the next bucket

Y

Is the status of the NO A
bucket ‘DELIVERED’?

YES

\ 4
Dropping the partition
of the bucket

Y
Update bucket status as
‘DELETED’

Figure 8. AcDWH Cleansing process.

Figure 8 describes the overall AcDWH process for cleansing of the
partitioned staging table from the processed buckets. The cleansing module
identifies the delivered buckets from the AcDWH control table (see chapter
5.4), and one by one drops them from the partitioned staging table (see
chapter 5.3). This is an efficient way to purge the already processed data
from the staging table.

The cleansing process can be established in a very simple manner. The
process analyzes from the control table if all the delivery processes have
loaded the bucket data from the staging table to the structures and deletes
the associated staging table partition. This will be repeated for any potential
additional staging table partition until no such partitions are found.

The cleansing process can be scheduled to be run periodically depending on
the need. Heavily loaded systems require more frequent cleansing of the

staging table and thereby the cleansing process might be scheduled to be run
for example every five minutes. In lighter loaded systems cleaning might be
scheduled to one hour’s schedules or even longer, for example once per day.

49

Jari Myllylahti

5.2 AcDWH structural considerations

The traditional method of loading data in large nightly batches into DWH
structures introduces performance problems on simultaneous queries and
analysis. The loading of data requires typically indices to be put offline or
dropped and rebuilt or recreated after the loading of the data. This causes the
system to perform a full table scan of the tables when making queries or
analysis on the DWH structures. Querying multiple tables joined together
without indices will render the system nonresponsive and unusable.

While the indices are turned off the loading of data to the staging area is
fast. On the other hand, any query issuing a full table scan slows down the
loading of data. This is due to the database engine scans the same physical
extents of the staging area as the loading of data process. This is the reason
why the data loading is commonly processed during night on daily, weekly
or monthly intervals.

The traditional method has also another drawback. As the indices will be put
offline or dropped during the data load, the indices need to be either rebuilt
and made online or recreated. Taking into consideration that data
warehousing tables typically are large and include millions, and sometime
billions, of data rows the rebuilding or recreation of indices will be
extremely time and resource consuming. This will cause additional resource
problems and delays on getting the data ready for queries and analysis.

The proposed AcDWH method will help overcome the above problems by
partitioning the DWH tables into smaller partitions having local indices. A
local index means that the index will be partitioned according to the
partitioned table. Now loading data into a partitioned DWH table will
address only the specific partitions it needs to insert data to, and the indices
can be kept online while loading data as the partitions are separately
addressed. This is a near perfect way to manage large data warehousing
tables and it allows simultaneous data loading and querying access.

5.3 Generating the AcDWH structures

The new methodology used in AcDWH consists of the following atomic elements
on generating the structures:

50

AcDWH Method

» Staging table structures
* Primary DWH structures

* Indexing structures

The AcDWH methodology relies heavily on the special organization of the
staging table structures. In addition, by rearranging the staging table, the
system is able to provide a widely parallelizable process for querying and
loading the DWH.

Utilizing traditional method on generating staging table structures is simple
and straight forward. The staging table(s) are generated according to the
source system specifications. The staging table has the same columns and
data types as in the source system definitions.

The AcDWH method discloses a staging table structure to manage and
handle vast amounts of data from source systems, with the ability to handle
the problematic areas of efficiency, repeatability and concurrent read/write
access to primary DWH structures.

-

‘ Staging table

[S— R —— e —
Partition: 1 Partition: Maxvalue

Figure 9. To the left, traditional staging table and to the right, the partitioned staging
table used in AcDWH using uniform partition physical size.

Staging table

The novelty with the proposed AcDWH method grants a concurrent and
efficient read/write access to the staging table, while the staging table can be
simultaneously written into, read from, and cleansed from data originating
from several different source systems.

The primary idea in the implementation of the AcDWH staging tables is to
partition the staging table into physical partitions. By this method, one can
limit the write and read accesses to dedicated physical objects within the
staging table. This method is illustrated in Figure 9.

The staging table has additional two columns to source data, namely
bucket data type and bucket id. Bucket data type, as defined in the

51

Jari Myllylahti

system meta data, defines the source system from which the data arrives.
The bucket id has an identifier for the bucket, e.g. it is a load batch
identifier.

The staging table is initially created only with one physical partition, having
the partitioning key defined as MAXVALUE. MAXVALUE is a specific
value, which does not correspond to any created actual physical values
within the bucket id.

As the loading process gets a specified number of files or rows from source
systems, it will generate a new bucket id. The loading system generates
and/or updates a row in bucket information status table to manage the status
of the incoming data buckets. The loading system also generates a new
partition in the staging table having the bucket id as the partitioning key.
The new partition is generated from the MAXVALUE partition by a split
partition command. This is illustrated in Figure 10.

This way the system will split the MAXVALUE partition into two physical
partitions; bucket id (first load batch being number 1) and MAXVALUE. In
AcDWH the split partition command is always executed against the
MAXVALUE partition, which is empty, thus no data movement is required
and the database management system is not required to transition any rows
between the MAXVALUE and newly generated partitions.

Staging table

split operation

Partition: Maxvalue

‘ Partition: 1

Partition: Maxvalue

Figure 10. lllustrating the AcDWH split partition operation where MAXVALUE partition is
split into partition 1 and partition MAXVALUE. All partitions use uniform
physical size.

The methodology described above directs all insert/update/delete database
operations into a specific physical table partition. The rows within each

52

AcDWH Method

physical partition, having a specific bucket id, will be directly accessible by
the database management system for the loading mechanism without
additional or user generated indexing for the bucket id. In this method the
staging table is managed by physically partitioning it by bucket id.

This method will relax the system from the requirement of indexing the
bucket id column. By selecting rows by bucket id from a staging table built
in this way will always direct the database engine to select the rows from
the wanted physical partition only. Such selects do not need additional
indexing, and the select operation will also be executed faster and also in
parallel by the database engine.

5.4 Parallel processing in AcDWH within a single
bucket type and between different
bucket types

The proposed AcDWH method gives clear advantage over the previous way
of populating the staging area and DWH tables. As each data bucket is
placed within a specific staging table and a specific physical partition of the
staging table, the system is able to insert multiple buckets at a time to the
same staging table regardless of the progress on other streams and processes
populating the same staging table. Concurrent streams of a particular bucket
type are not dependent of other types, or they don’t race for the same
resources within the database.

Using the AcDWH method, the system is able to load and query
concurrently the specific staging table with a greater number of processes
with a minimal impact on resource race and consumption. While a load
process (from source systems to staging table) is not finished with loading
the bucket into staging table partition, no other loading or delivery processes
will access the partition. After the bucket is loaded into staging table (and its
partition), loading process(es) are allowed to access the bucket.
Simultaneous reading of the bucket data (staging table partition) is allowed
and does not create race conditions. After all delivery modules reading the
bucket data from staging table partition are finished, the cleansing module is
allowed to access the bucket and remove its data and its underlying table
partition.

53

Jari Myllylahti

This is achieved through physical isolation of the underlying partitions of
the specific table. Each table partition is formed of specific physical
segments of data placed within the database engine. During the loading of
rows into the staging table, the database engine directs the insert operations
into the specific table partition, based on the partitioning key (bucket id) of
the table. A given partition is formed of one or many physically separated
partition extents. Any insert operation having a specific bucket id will be
directed to a specific physical extent of a partition, and that extent is
physically separated from other partitions of the table. The same will apply
for the select operations, when partition data is queried to offload the data to
actual data warehousing tables for reporting and analysis.

The partitions of the staging table are formed from physical extents which
are defined during the creation of the table and partitions. Each partition can
have a partition specific extent space. By measuring the responsiveness of
the system on different configurations, along with experience on creating
and managing the system referenced in chapter 6.1, the system can be
configured to allocate only necessary number of physical extents for a
specific partition when the partition is created. Using minimum amount of
extents for a partition the database engine does not need to allocate any time
or space for the bookkeeping of extents within a partition. This will
influence the system throughput as the system does not need to
automatically allocate additional extents as the previous extent is filled with
data. Additionally, the database system does not need to search the starting
address of the next partition extent within the tablespaces and database data
files. Tablespaces should be always created large enough to hold additional
data and the AcDWH system will monitor the space consumption and alert
the database administrators should the free space fall below a predefined
threshold, such as one day’s data space requirement.

The method of dedicating a physical extent within a partition segment for a
bucket id is the foundational element for the achieved concurrency and
effectiveness. The system can run a high level of concurrent insertions of
bucket ids to the staging table while at the same time the direct addressing
capability for the bucket id is maintained.

The status of each bucket is kept up to date within a control table by
maintaining meta data for each bucket:

. status of the bucket (processing, processed, deleted)
. number of rows
. bucket type

54

AcDWH Method

. earliest record of the bucket

. latest record of the bucket

. start and end times of bucket load

. calculated throughput (as rows processed per second)

The table row size is depending on bucket type, some staging tables might
have fixed row length while others might have variable row length due to
variable length data.

Figure 11 illustrates the three status tables that control the behavior of data
management system.

CTRL_BUCKET CTRL_DELIVERER CTRL_BUCKET_DELIVERERS

BUCKET_ID NUMBER(10) DELIVERER_ID NUMBER(4) BUCKET_ID NUMBER(10)
BUCKET_TYPE VARCHAR2(20) DELIVERER_NAME VARCHAR2(20) DELIVERER_ID NUMBER(4)
NUMBER_OF_ROWS |NUMBER(6) DELIVERER_TYPE VARCHAR2(10) DELIVERER_STARTTIME [DATETIME
EARLIEST_RECORD DATETIME DELIVERER_DESCRIPTION [VARCHAR2(100) DELIVERER_ENDTIME DATETIME
LATEST_RECORD DATETIME PRIORITY NUMBER(2) ROWS_PER_SEC NUMBER(6)
STATUS VARCHAR2(20) DELIVERER_TARGET VARCHAR2(20)
BUCKET_STARTTIME [DATETIME
BUCKET_ENDTIME DATETIME
ROWS_PER_SEC NUMBER(6)

Figure 11. The control tables used to control the AcDWH.

The control tables include data for each loaded bucket in the system. The
main control table CTRL BUCKET is used to record the buckets into the
system, in addition the table has metadata related to the loading process
efficiency, loaded data time span and bucket status. The second control table
CTRL DELIVERER is used to describe the delivery processes, their types
and target structures, and their priority (as described earlier in this chapter
5). By using priorization, AcDWH system can set different priorities based
on the different needs of delivery processes. The last control table

CTRL BUCKET DELIVERERS is used to log the activities of each
delivery process with regards to the specific bucket, it can also be used to
execute the cleaning module when all the delivery processes have
transferred the data to the needed database structures.

As the bucket id is the partitioning key for the staging table, the direct

access path to physical table partition is always up to date and available for
inserts and queries.

95

Jari Myllylahti

A typical approach in DWH solutions having large data volumes is to make
all indices offline while inserting data and rebuilding the indices online after
the batch data load. Another approach is to drop the indices prior to batch
loading data and recreate the indices after the data has been loaded. These
optional methods enable the data loading to the table to be faster. They
eliminate the need of consistently updating records in the indices one by one
during the data loading.

With the bucket id partitioned staging table there is no need to update or
uphold the bucket id based indexing and manage it either by the process or
by the database engine, as the staging table partitioning key is always
updated and managed with the table itself by the database engine.

While investigating and evaluating these different methods (keeping staging
table bucket id index online during data load; dropping bucket id index
prior to data load and recreating bucket id index after data load; and
bucket id partitioned staging table) against each other, experience and
evidence under confidentiality obligations from real life implementations
show clear benefits of using the partitioned staging table and AcDWH. If
the staging table would not be partitioned, the system would be forced to
update the index while inserting the data into the staging table. Given the
characteristics of updating the full table index while inserting, the database
engine needs to ensure the index is properly updated during the transaction
in both cases. This will introduce a delay in the insert operation as the
database engine needs to update the indexing structure during the
transaction. The database engine would need to search for physical index
extents with available space within them or add additional physical extents
to the end of index and insert the relevant values to the index. After
inserting the rows to the staging table, the insert will be committed.

In general, a commit updates a record perpetually in a database. Within
database transaction, a commit saves the changed data permanently and
ends a transaction. It also allows other users to see the committed changes.
A rollback rolls back the changes after updating the data with changes. As
commit, a rollback also ends a transaction and other users will not see any
of the changes related to the rolled back transaction. [01]

Looking into the differences of a normal staging table and a partitioned
staging table, the key characteristic differences are how large or how many
physical extents of structures need to be updated during the insert operation.
This applies to the table structures and index structures.

56

AcDWH Method

In the case of a normal staging table without table partitioning the index is
structured as a normal index having one or more physical extents. Then,
there are two approaches how to handle the staging area and also loading the
data to the DWH structures; 1) handling a batch at a time, having no
concurrency; or ii) handling multiple batches at a time introducing
concurrency.

In the first case of handling a batch at a time and designing the system for
no concurrency, the method is straightforward:

e insert the data to the staging table
e transform and load the data from staging table to the DWH structures

e delete or truncate the staging table after a successfully committed
transformation and load transaction to the DWH structures.

If concurrency would be needed for this traditional method, the following
additional steps need to be added to the process:

e Add a loading batch identifier to the source data (e.g. a column having
the bucket id or load_id identifier)

e Index the staging table based on the previous identifier column

e Manage the DWH structures loading process with deleting the applied
rows with the previous identifier

The concurrency-added method will introduce specific problems:

e The need for database engine managing the identifier index, addressing
the global staging table (e.g. the table must be able to keep multiple
identifiers)

e The need for database engine managing the data allocation in different
extents of the staging table.

AcDWH system with partitioned staging table as proposed with the present
work omits the following operations from the system in relation to the
staging table and to manage multiple batches of source system data:

e index dropping and recreation

e making index offline and rebuilding the index

o7

Jari Myllylahti

The presented AcDWH method facilitates for automatic management of the
staging table and staging table identifier index, cleansing of the staging table
after successful transformation of the data to data warehousing structures
and deletion of the transformed data for any bucket types.

To sum up, the key differences between traditional DWH and the presented
AcDWH method are;

e Different types of data are divided into different bucket types within the
system

e The data for a specific bucket type is stored in a bucket specific staging
table and tablespace

e An AcDWH specific partitioned staging table is utilized for parallel
loading and concurrency

The parallelism and concurrency between different bucket types create
more distributed workloads. This is due to data residing in different physical
areas and data loading processes accessing separate staging tables
concurrently.

5.5 Staging table partitioning in AcDWH

In AcDWH, partitioning of the staging table eliminates the need to index the
bucket id and all I/O operations related to searching the bucket id index are
eliminated. This gives an efficiency boost to the operations loading into or
from the staging table. In addition, this enhances the housekeeping process,
as purging the loaded data from staging table is done through dropping the
partition. The drop partition command does not require any search of
indices or updating/recreating indices. The command is DDL and simply
removes the partition from the staging table.

For the staging table partitioning, the following basic elements need to be
specified:

e What is the maximum value the partition can contain (based on the
partitioning key)

e What is the initial physical extent size of the table partition

58

AcDWH Method

e What is the additional physical extent size of any additionally needed
extent. Additional specifications may include details like what is the
tablespace the partition is defined to reside on

— I —
Staging table

Partition: 1 Partition: n Partition: Maxvalue
.............

Figure 12. General setup of the partitioned staging table.

Figure 12 shows a general setup of the partitioned staging table structure
where there is an arbitrary number of partitions (buckets), illustrated as
partitions 1 to n. Additionally the table has a MAXVALUE partition that
contains any overflow data, that is not specified to reside in any of the
partitions 1 to n. E.g. partition 1 will hold data with bucket id=1, partition 2
will hold data with bucket id=2, and so forth. Overflow data would be any
data that would get into the staging table due to an error in the AcDWH
loading process. The MAXVALUE partition can be continuously monitored
for any rows to catch such error situations.

As an example, assuming n=100 a row having bucket id=101 would be
residing in the MAXVALUE partition by definition. The MAXVALUE
partition is created to store any inserts with illegal bucket id and thus avoid
catching an error or exception from the database engine within AcDWH
system. Any rows with bucket id column value is greater than n (the highest
value defined) are stored in partition MAXVALUE.

Each partition is created with a specification of the maximum value it can
hold, e.g. the bucket id. The partition will hold any rows fulfilling that
specification, examples being rows with bucket id=3 would reside in
partition 3, rows for which bucket id=8 reside in partition 8 and rows for
which bucket id=n reside in partition n.

Each staging table in the setup is initially created with one partition and
partitioning key equal to MAXVALUE, see Figure 13.

59

Jari Myllylahti

‘ Staging table

Partition: Maxvalue

Figure 13. Initial construct of a partitioned staging table in AcDWH.

MAXVALUE represents a value that is always greater than the largest
possible value existing in the partitioning key, e.g. an upper bound.
MAXVALUE partition acts as the overflow partition catching any non-
defined values.

Now, initiating the load from a source system to the staging table, the
system will collect the relevant records to the first bucket, bucket id=1, and
generate the partition 1 in the staging table. This is achieved by issuing an
alter table SQL language command:

ALTER TABLE STAGING TABLE
SPLIT PARTITION MAXVALUE
INTO (PARTITION PARTITION 0001 VALUES (1),
PARTITION MAXVALUE VALUES LESS THAN MAXVALUE);

The ALTER TABLE SPLIT PARTITION command adds a partition to an
partitioned table by splitting an existing partition. There is practically no
limit to the number of table partitions. By executing an ALTER TABLE
SPLIT PARTITION command, the database engine creates two new
partitions (0001 and MAXVALUE) and splits the contents (if any) of the
old MAXVALUE partition between the new partitions per the constraints
laid out in the partitioning definition; rows with bucket id=1 to partition 1
and any rows with a larger value to partition MAXVALUE. This is
illustrated in Figure 14.

60

AcDWH Method

‘ Staging table

Partition: 1 Partition: Maxvalue

Figure 14. Splitting maxvalue partition into partitions 1 and maxvalue.

The ALTER TABLE SPLIT PARTITION command can include also the
tablespace definition to specify in which tablespace the split partition will
reside. This will for example give the possibility for a database
administrator to spread the staging table physical extents across different
storage areas of the DWH system for more I/O throughput. If the tablespace
is not defined, the partition will be created in the tablespace defined for the
table.

For the use case of this data management system and the initial example
above, no indices will be generated for the partitioned staging table. Any
INSERT INTO or UPDATE command having WHERE BUCKET ID=1
will utilize partition pruning. Pruning happens when an SQL operation on a
partitioned object is executed. The database engine will recognize the
criteria and will address only specific partition(s). This behavior enables the
database engine to access only the partitions with relevant data and ignore
rest of the partitions. Any database operation addressing a specific
bucket id will be directed only to the partition containing that specific
bucket id. This will isolate the operation from accessing any other partition,
limiting the amount of I/O operations and the needed physical object
accesses to the specific partition only.

Assuming the system has been running for a while, and inserted n new

bucket ids to the partitioned table, the resulting structure is illustrated in
Figure 15.

61

Jari Myllylahti

ﬁ Staging table

Figure 15. Structure of AcDWH staging table after inserting n buckets.

5.6 Forecasting space requirements, row amounts
and generating statistics for the business in
AcDWH

For the sake of generating added value from the AcDWH and data gathered
during the loading process there are clear areas where AcDWH can be
further developed.

The data gathered from the loading process (rows per extent, extent sizes)
can be used to generate an automated or a semi-automated system to
forecast space requirements and consumption on a specific source area (e.g.
a specific staging table). This way the database administrator can forecast
and manage the needed storage space for tablespace files for the specific
staging tables. This method will remove the potential drawbacks of the
halted loading process in case of filled tablespace files.

While AcDWH will map and log the extent sizes of the staging table
partitions and their row amounts, the system can be used to report the trend
and the prognosis of the needed space for the staging tables.

5.7 Populating the DWH structures

Populating the DWH structures from the staging table is isolated from the
previous part of the process in AcDWH, which loads data from a source
system and inserts it into the AcDWH staging table. This populating process
is the second isolated process area in AcDWH. The structure and construct
of using a partitioned staging table is the foundation for the asynchronous

62

AcDWH Method

processing of data to staging table simultaneously with processing the data
from the AcDWH staging table to DWH structures.

The processing of data from the staging table to AcDWH structures is from
process perspective as elegantly simple as loading the staging table. The
process will check from the data management system meta data tables, what
is the first bucket id to be handled and the process will then move the rows
with found bucket id from staging table to the AcDWH structures.

The actual processing of data to the AcDWH structures is more complex
than the previous part of the input process. This is due to the nature of the
complexity of the processing; the processing typically aggregates the data to
a specific level, processing will also generate the dimension table details as
and if new dimension details are found. Depending on the construct how
this part of process is implemented in a particular solution, there are
potentially additional elements to be managed. A specific construct is
discussed to more detail in chapter 6.1 giving insights into the index
management requirements on the referenced technical subject area DWH.

The AcDWH population process has the following process steps:

1. Identify the first bucket id to be loaded from the staging table

2. Mark the status of bucket id to “processing” in the bucket metadata table
3. Initialize and launch the AcDWH loading process(es)
4

Update the bucket id status to “processed” after the AcDWH loading processes
for the bucket id have ended

5. Repeat from step 1, if no new bucket ids are to be processed, sleep for predefined
amount of time (such as one minute) and try again

63

Jari Myllylahti

ﬁ Staging - ﬁ
s R - e < —

D D /]

Figure 16. Processing data from AcDWH staging table partition 1 (bucket_id=1) to
AcDWH data warehousing and/or data mart structures. Example shows only
data mart example.

A high level and simplified overview of AcDWH loading process is in
Figure 16. The AcDWH loading process is marked as f(x). The process will
read the first non-processed bucket id from the bucket metadata table (for
the purposes of this example, bucket id=1), mark the bucket id as
“processing” to the bucket metadata table, and initialize the DWH load
process. When the processing is finished, the process will calculate the time
used, how many rows were processed, and how many rows per second were
processed and insert the values to the bucket metadata table.

After this, the next scheduled launch of this DWH structure loading process
will repeat the process, e.g. read the first non-processed bucket
(bucket id=2) and process as described previously.

5.8 Clearing the AcDWH staging area

64

AcDWH Method

The third process part of the AcDWH is independent from the previous
process parts (i.e., data loading into staging table and processing data from
staging table to DWH structures). The third process part is designed to
manage the housekeeping process with the staging table(s). AcDWH
manages the staging table’s space consumption in an efficient way with a
direct access to the specific bucket id without additional indexing.

5.8.1 Housekeeping process for the staging tables of the
AcDWH

The housekeeping process of the AcDWH cleans up the staging table(s).
This secures minimal space consumption of the staging table(s) and
concurrent processing of the different parts of the AcDWH system. The
main intention for the housekeeping process is to eliminate the growing
space reservation of the staging table.

The housekeeping process can simply address the purgeable staging table
partitions one by one. This is achieved by selecting the lowest BUCKET ID
from the BUCKET STATUS table where status is ‘processed’ and altering
the staging table by dropping that specific partition.

ALTER TABLE STAGING TABLE DROP PARTITION
PARTITION_||(SELECT MIN(BUCKET ID) FROM
BUCKET_STATUS WHERE STATUS ="PROCESSED’);

UPDATE TABLE BUCKET STATUS

SET STATUS = ‘DELETED’

WHERE BUCKET ID=(SELECT MIN(BUCKET ID) FROM
BUCKET _STATUS WHERE STATUS =’PROCESSED’);
COMMIT;

This method issues a data definition language (DDL) command which alters
the table structure by dropping the partition and freeing the reserved space
for the partition. The system is not able to roll back this operation as it is not
a data manipulation language (DML) command.

The speed difference on the DDL and DML operations is phenomenal.
While the DML commands generate redo logs and need to be committed,
e.g. the rows will actually be deleted, the DDL commands do not generate
redo logs and they do not touch the rows of data but rather only execute a
command to drop a table partition.

65

Jari Myllylahti

A DDL command executes typically within a few milliseconds and reserves
no additional resources from the database when compared to the DML
commands where additional resources and space are required.

5.9 The parallelism and concurrency of AcDWH

The AcDWH staging table is constructed by partitioning the staging table to
partitions. The cleaning of processed data does not generate extra overhead,
nor affect the efficiency of the DWH. Even loading intervals of the data
from source systems to the staging table remain unchanged. Similarly, the
loading of the data rows from staging table to the AcDWH structures is not
affected by the cleaning process. The cleaning process does not generate any
overhead for loading processes or cause congestion for the same resources
within the database.

Each of the staging table partitions is a separate logical and physical object.
Any database operation targeted towards a partition is directly referencing
the specific data blocks belonging to that partition. The operation does not
access any data blocks belonging to other partitions.

Let us assume staging table would have partitions with bucket id 1,2 and 3.
The setup is illustrated in Figure 17 below.

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

Figure 17. AcDWH staging table having data with bucket_id 1,2 and 3.

Let us assume the following statuses for buckets:
e Bucket id =1, bucket_status = ‘PROCESSED’ (data loaded to
DWH)
e Bucket id =2, bucket status = ‘PROCESSING’ (data loading to
DWH)

66

AcDWH Method

e Bucket id =3, bucket status = ‘LOADING’ (data loading to staging
table)

Assume that the processing of all three parts of the AcDWH system will be
performed in parallel. These processes run independent of each other,
concurrent, and the processes are coordinated by the bucket status metadata
table.

The system includes three processes:

1) Staging table loading process — delivers data from source systems to
the partitioned staging table

2) DWH loading process — delivers data rows from staging table
partition to data warehousing structures

3) Cleansing process — removes staging table rows one bucket at a time

The described behavior isolates the operations from each other, in respect of
data access and race for same resources. All partitions reside in physical
extents separated from each other.

Process 1) addresses partition 3 with data rows having bucket id = 3. The
process inserts rows from source system(s) to the specific partition 3.

Process 2) addresses staging table partition 2 with data rows having
bucket id = 2. The process selects data rows from the specific staging table
partition 2.

Process 3) addresses staging table partition 1 with data rows having
bucket id = 1. The process alters the staging table by dropping the partition.
The alter table drop partition command is executed in milliseconds and it
does not render rest of the table unaccessible or unusable while the alter
table command is executing.

67

Jari Myllylahti

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

Partition: 1

=

extent data block

Figure 18. Physical structure of table partition in AcDWH (extents and data blocks).

Considering each partition resides on its own physical extent(s) consisting
of data blocks as illustrated in Figure 18, the described structure directs the
database engine to access separate areas of database with each system
process (process 1-3). These processes can run concurrently without access
or congestion on the same data blocks of the data base. This simple method
enables the isolation and concurrency of all the process parts. It also
provides for asynchronous and independent execution of different process
parts using BUCKET STATUS metadata table.

The independence between the overall process parts is the key element of
the method used in AcDWH. A separated physical structure allows the
system to remove the staging table partitions independent from other parts.
The removal of the partitions by process 3) does not require long execution
or wait time or accessing same physical objects with processes 1) and 2).
The process 3) is a simple cleaning module, removing processed partitions
from the staging table.

If we look onto the disks under the data files, there are multitude of options
how the system can be configured for parallelism. The datafiles can be
distributed throughout the physical disks. This can be manually achieved by
the system administrators, or through the disk system itself. The disks can
be configured on the disk system using any level of RAID configuration
[32]. Using a RAID configuration, the underlying disk systems can be
configured to provide additional parallelism compared to the database level
operations.

68

AcDWH Method

RAIDO provides striping using the disks defined under that RAID-array, e.g.
slicing the physical data across the RAID array disks. RAIDO is however
not fault tolerant. RAID1 provides mirroring, any given disk is mirrored
with a similar disk having exact copy of the same data. This causes no
overhead when writing to the RAID1 disk setup as the same data is written
to both disks at the same time. This in change brings a reading performance
boost as data can be read from both drives at the same time. There are also
advanced RAID configurations (e.g. RAIDS or RAID6/7) that provide fault
tolerance with smaller tradeoff in redundant disk space usage. AcDWH has
been constructed on systems utilizing different RAID levels ranging from
RAIDO to RAIDS.

2.10 Logging throughput in AcDWH to analyze
operation and process efficiency

The AcDWH includes a method to log the process throughput and process
details for further analysis. One use scenario for the process data is to fine
tune the size of a data bucket to achieve maximal throughput in the
environment in which system is running. While the system is running in
production, the BUCKET STATUS metadata table holds process details
such as bucket size and rows per second, which indicates the speed by
which the staging table loading process or data warehousing structure
loading processes are executing.

This metadata can be used against source system statistical data to secure
optimal processing. The system can be modified easily by adjusting the
bucket size higher or lower while recording the throughput of the process.
The bucket size can be modified to achieve a throughput higher than what
the source systems are generating data per each day. This way the system
can analyze its operation against the incoming data and any buffering
requirements. A buffering requirement would be for example that the data
management system can handle 50% more incoming data per day than the
source systems generate. By having a buffer in the processing speed the
system can keep up with any backlog operations sometimes needed due to
connectivity or any other issues getting the data from source systems.

If this reference data is not available, the system cannot adjust its operation
and in the worst case the throughput of the system is not keeping up with the

69

Jari Myllylahti

pace of the source system(s) which generate and offload data. This would
cause a queuing effect on the data warehousing system, where more and
more incoming data is queued in the incoming interface of the system over
time due to the system not being capable of processing the incoming data in
a required pace.

5.11 Adjusting AcDWH bucket size to enhance
throughput

The data bucket size is kept in the system meta data table. The loading
processes can be adjusted by changing the data bucket size in the metadata
table, each loading process fetches the data bucket size from the system
metadata table when they execute.

When the process throughput is analyzed and potentially fine tuning is
required as described in previous chapter, the data bucket size can be altered
simply through changing this parameter in the system metadata table. The
loading processes will take the new data bucket size into use the next time
processes execute. After adjusting the bucket size the staging table default
extent size might be too small and each partition might consume two extents
going forward.

If the space consumption of the staging table starts to be too high, the
database administrator can adjust the default extent size to eliminate
unnecessary space consumption. The system can be built in a way that it
will self-adjust the data bucket size until a maximum throughput is
achieved, also automatic tuning of the extent size can be implemented
easily.

5.12 Repeatability in AcDWH

One of the key design elements of the AcDWH is repeatability.
Repeatability means the ability to process any loading batches again in case
of corrupted data on erroneous loading logic. This would mean removing
the invalid data from the DWH and loading the batch of data again through
AcDWH. The data are organized as a set of buckets which will are managed
by the system. As previously described, each bucket of data consists of an

70

AcDWH Method

arbitrary amount of records. Due to the nature of this construct, AcDWH
system can be enhanced easily to handle repeatability.

In traditional DWH system repeatability is managed by processing a day’s
material again, if the data has been invalidated by the erroneous DWH
transformation logic or invalid source system data. In case of erroneous
logic, the transformation logic needs to be corrected, invalid data removed
from the DWH and the correct data reloaded. For example, loading one
day’s data from a source system to a DWH again would mean the following:

e Removing or updating any atomic and aggregate information which
is infected by the invalid source system data

e Loading the data identified as invalid or infected by erroneous logic
again from source system to staging table(s)

e Transforming the previously infected data again from staging
table(s) to DWH structures

Considering the nature of the physical construct of the AcDWH system,
securing the repeatability of the transformation and loading processes in
case of invalid transformation logic is extremely simple and straight
forward.

The AcDWH can be enhanced for example with two simple alternative
methods where the incoming source system data will be exported either
within the staging table loading process or the house keeping process.

In the first alternative altering the staging table loading process is simple.
The source system data can be simultaneously loaded into the staging table
and concurrently to a fixed width or delimited text file as a secondary target.
This would be an easy method to secure backups of the source system data
that can be reloaded into the DWH. This is due to each of the staging table
records has the bucket id identifier as one attribute to of the record. Any of
these files including the data for the bucket can be handled through a
deviation reload process, where these data files can be reloaded into the
staging table. Their bucket id is then changed to status=loaded and the
system will pick the bucket up for DWH processing from the staging table
during the next runs of the DWH loading process.

In the second alternative, the housekeeping process can be changed in a
simple way: prior to removing the staging table partition with an ALTER

71

Jari Myllylahti

TABLE DROP PARTITION command, the bucket can be exported by the
house keeping process either by writing the records to a fixed width or
delimited text file as in staging table load process. Or as an alternative by
exporting the partition data by using the database engine’s data export
utility. These table partition exports can be easily imported into the staging
table by using the database engine utilities.

Both of these options are similarly easy to implement and provide easy
reload capabilities for the AcDWH.

72

6 Applications of the AcDWH
framework

In the present section the concepts of the proposed AcDWH framework are
demonstrated by the means of two real-life applications for data warehousing
(DWH). Both of these have been architected to use the AcDWH method for active
DWH.

Due to the nature of the designed systems only a high-level description of
both systems is disclosed.? A specific line of business or the real business
use scenarios are not disclosed but rather the architecture, business needs
and implementation overview are discussed.

6.1 A technical subject area DWH for a specific
company A

The AcDWH method is in use within company 4. AcDWH is a platform
and data management software used to construct the DWH. The DWH
solution uses AcDWH for active DWH to enable continuous loading of the
data from source systems to construct a specific technical subject area
DWH. The solution is built to analyze technical behavior and error
situations in the company 4 technical systems.

A technical element record consists of predefined attributes of a technical
events. It typically includes hundreds of fields on the attributes. From a
single event at least two records are created, originating record from the
outgoing event and the destinating record from the incoming event. In

2 The examples are real-life systems, that are architected or co-architected by the author. Due
to confidentiality obligations, the subject area specific details are not disclosed in this
thesis. Examples cover Company 4 and company B, which represent different lines of
business and different business use scenarios.

Jari Myllylahti

addition to the originating and destinating records, business A has
configured their systems to provide intermittent records from the events,
providing additional details when for example either the originating or
terminating event transitions to another system segment. In addition to
normal event records, the system provides technical records from system
components. These records provide technical and statistical details from
each system component.

The company A gathers all these different records from the system
components as flat text files, using fixed width format for the data fields.
The record data files are gathered in 10 minutes intervals, and the files are
delivered to the company DWH platform. There are separate definitions and
system component files for different record data types, examples being
records for four different services.

The AcDWH groups the record data files by the record data types into
buckets of approximately 50000 records and loads the data into the AcDWH
staging tables. There is a similar staging table for each of the record data
types and the loading of data is done in parallel for the different record data

types.

The records are loaded to the AcDWH structures from the AcDWH staging
tables. All these loading processes are run in parallel and AcDWH keeps
track of the loaded buckets. The fact tables in the AcDWH structures are
partitioned by each hour, e.g. each day has 24 partitions. The records reside
in the fact table partitions based on their record timestamp. It has been
recorded that in the company the past volumes have been on the range of
100 million records loaded per day. This amounts four million records per
hour in an average. An event record has over 500 fields of data, and the
average record size is 800 bytes.

Given the details above, the daily source system data volume for the event
DWH is of the size 74,5 gigabytes. This amount of data is required to be
loaded daily from source systems, transformed to right format and relational
model within the event DWH, while, in addition, the technical subject area
DWH is simultaneously queried.

The reason for partitioning the fact tables per hour is due to managing the
indices. This specific line of business requires to have the fact table
refreshed with maximum ten minutes intervals. Any queries from the fact
table require indices being in place, otherwise any given query would issue

74

Applications of the AcDWH framework

a full table scan of the fact table. By partitioning the fact tables per hour, the
system can isolate the loading and index updating in most cases into a single
fact table partition and in the worst case the operations will modify two fact
table partitions. The same applies for the index partitions. By partitioning
the fact table the system can manage indices being updated while the data is
loaded. If the loading window would for some reason extend too long, there
is an additional option to alter the partitions of indices offline while
inserting the data into the fact table. After the load the index partitions can
be rebuilt and made online again.

The technical subject area DWH creates technical summaries of the source
system data for the business use. The usages cover for example system
capacity planning, peak usage analysis during events and prognosis of
system inefficiencies. These analyses are delivered into planning systems to
be used as planning data for system development and capacity planning.

System
Source system Target system

component

D
010 © 0 o
[o][0]
=

-8

!

Grouping procedure

Figure 19. Architecture of the company A technical subject area DWH up until to staging
area in AcDWH.

Figure 19 describes the architecture of the company A4 technical subject area
DWH up until staging table in DWH. The figure is simplified, the system
consists of multiple components and devices.

The devices act as the central point in the system setup. All components and
devices belong to the same system, and the devices pull the records from the

75

Jari Myllylahti

components periodically; marked as process (A) in the figure. These data
files are pushed during the same process by the devices to the technical
subject area DWH, marked with (B). The DWH resides in a system segment
securely accessible by the devices.

The DWH system assigns the acquired flat files to buckets having at
minimum 50000 records in each; marked with (C). This is done by
catenating the specific files into one file. From this point onwards the data
loading, delivery and cleaning processes are handled by the AcDWH.

Compared to traditional design principles of such DWH, AcDWH removes
obstacles in near real-time loading approach in combination with the 24/7
availability for queries and reporting.

6.2 Company B data analysis platform

The AcDWH data management system is also in use within company B with
a slightly modified configuration. Like in description for company 4
technical subject area DWH in chapter 6.1, the solution uses AcDWH to
deliver near-real time loading of the data from source systems to the
company B Transaction DWH (TDWH).

A source system is typically a terminal at company site. The data consists of
predefined attributes of a transaction at the site and it includes all the details
of the transaction. These include for example the transaction date and time,
products and their details as well as the summary of the transaction,
potential additional identifiers and the transaction id.

The AcDWH gathers all the transaction details from the sources using a
messaging gateway software, such as IBM MQ?. The data are pulled by an
ETL tool from IBM MQ which gathers the incoming data from sources in
10 minutes intervals.

The AcDWH data management system used by the TDWH groups the data
acquired from the MQ system to data buckets of predefined sizes (initially

20000 records). The AcDWH then loads the data into the partitioned staging
table and the data are loaded to the TDWH structures from the staging table.

3 https://www.ibm.com/products/mq

76

Applications of the AcDWH framework

All these loading processes are run in parallel and AcDWH keeps track of
the loaded buckets. The fact table partitions in the TDWH structures include
data for each day, e.g. each year has 365 or 366 partitions. The data reside in
the fact table partitions based on their record timestamps.

The reason for partitioning the fact tables per day is due to managing the
indices. The company B business requirements are not as time critical as in
the case of company A4 business described in chapter 6.1. Queries from the
fact table greatly benefit from partitioning of the fact tables because its use
speeds up the queries essentially. By partitioning the fact tables per day, the
system can isolate the loading and index updating in most cases into a single
fact table partition. The same applies for index partitions. By partitioning
the fact table to one day partitions, the system can manage the index
partitions being altered offline while inserting the data into the fact table.
After data load the index partitions can be rebuilt and made online again.

The TDWH of company B creates also technical summaries of the source
system data for the business use. These include for example terminal usage
and transaction volume, which can help company B to identify rush hours at
the site and plan resources accordingly. These analyses are delivered into
resource planning systems to be used as planning data for inventory refresh
and employee capacity planning.

Aggregator
System (MQ)

Y
e

Terminal

Target system

—
EH=" (@)

‘ Staging table
«@©_ O
\

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

Figure 20. Architecture of the company B TDWH up until staging table in AcDWH.

77

Jari Myllylahti

Like in the technical subject area DWH of company A4, the same basic
methodology applies for company B TDWH. The data is gathered from the
devices (terminals at the company site) by the aggregator system but now
via the message queue server; marked as (A) in Figure 20. The aggregator
system then offers the records through its message queue interface to the
data analysis platform (B). Different from the company 4 case, the data
analysis platform itself consumes and requests data from the aggregator
system having a message queue server offering the data. The buckets are
now formed within the data analysis platform and written onto the AcDWH
staging table in 20000 record buckets. When the records are consumed from
the message queue and confirmed written to the staging table partition
bucket by AcDWH, the message queue client marks the records in the queue
as read. The records will eventually get purged from the message queue
server itself after new records have been inserted onto the queue.

78

7 Extensions to the patented AcDWH
framework

Two examples of extensions to the AcDWH are presented in this chapter.
The first extension deals with the automated data distribution functionality.
This extension can enhance the throughput of data loading into partitioned
tables. The second extension enhances the AcDWH with an online backup
and restore functionality supporting the near real-time operations. The two
extensions are examples how the AcDWH can be, due to its constructs,
easily extended for additional features and functionalities further enhancing
the system.

7.1 Data distribution

This method extends the functionality of the AcDWH system by leveraging
the meta data stored within the process and using it to enhance the
parallelism & concurrency of a partitioned DWH table to which data are
loaded. This method requires the DWH table to be partitioned with hash
partitioning.

Hash partitioning is a table partitioning technique where a hash key is used
to distribute rows to the table partitions [3]. Hash partitioning can be used in
settings where range partitioning isn’t naturally usable or appropriate. By
using hash partitioning, a row is placed into a partition based on the result of
a hash algorithm against the partitioning key. Using the hash partitioning
approach, data can be automatically distributed across the table partitions by
the database engine. Hash partitioned tables also support partition-wise
joins, parallel index access, and the use of parallel data manipulation
language (DML).

When using the hash partitioning, the database engine calculates a hash
value for the partitioning key column and distributes the records randomly

Jari Myllylahti

across the partitions based on the hash value of the partitioning key. This
method can be used to enhance throughput by distributing data to more
partitions automatically by the database engine. The data redistribution
happens automatically by the database engine when a partition is added to a
hash partitioned table. When queries address the partitioning key column,
the database engine addresses the right partition by the hash value.

For illustration and example;
e adata warchouse (DWH) table is hash partitioned into five partitions
e there is a pre-defined limitation on table loading time per bucket
e data management system loads data into this hash partitioned table
e data management system records the efficiency of aforementioned
data loads into the system meta data tables

Using this scenario, the AcCDWH can identify a situation where data loading
into a hash partitioned table will consume too much time. Long loading
times may result from the large number of rows in a partition which mirrors
in more time consuming index updates performed online. In this situation
the data management system can automatically issue a rearrangement of
table partitions by adding additional partitions to the table. The database
engine will automatically redistribute the data between partitions in the hash
partitioned table. This happens by applying a new hash algorithm to the
rows and the database engine relocates the rows into right partitions by the
new hash values. This operation is done online and does not require any of
the system elements halting the data loading or queries addressed to the
table.

For the efficiency reasons, the threshold value for the maximum data
loading time per bucket must be defined reasonably low to accommodate for
the extra time consumption of the re-distribution of data and online index
re-arrangement.

7.2 Near real-time backup and/or restore
schematics

The data in near real-time environments is typically changing repeatedly and
all the time. This poses large problems for the backup and restore operations
of the said near real-time environments. Either the systems need to be
periodically in read-only mode or the storage and disk systems need to be

80

Extensions to the patented AcDWH framework

duplicated or mirrored to enable a snapshot of such systems to be taken for
backup purposes. Backing up the snapshots will take long time, thus the
only viable option in such near real-time loading system is to detach the
mirrored disks and take a backup from them.

Restoring the snapshots from detached mirrored disks requires rebuilding
the database control files to bring the restored database back online. Neither
of the options described are feasible for backing up and restoring near real-
time environments.

A simple extension to the AcDWH will provide a method to establish an
automated data backup system for DWH tables partitioned by time. The
meta data tables of the AcDWH can be added with information on the
loaded data. Bucket meta data can be added with information what is the
earliest transaction time stamp loaded into the target DWH table. By using
this information, the AcDWH can identify which DWH table partitions have
been fully populated.

The system can be augmented with a process which will identify these
DWH table partitions and execute data offloading into either a fixed width
or delimited flat file. Alternatively, the data may be offloaded through a
database export utility targeting export of single partition at a time.

In case of corrupted data in the database, any of the exported partitions can
be dropped and recreated along with their local indices, and the partition
data is easy to load from the partition export. This way the partition indices
can be kept online during the loading.

This extension to the data management system would be particularly

effective in the company A4 technical subject area DWH case study
described in chapter 6.1.

81

8 Results & Discussion

The proposed AcDWH framework with partitioned staging tables and
metadata steered loading system is enhancement over the prior studies in the
field for data warehousing (DWH). Prior studies and literature review show
that the focus on previous work has been mostly on loading process, join
processing and staging area handling. On the other hand, the partitioning of
tables has devoted less interest. The prior studies and literature have focused
on an industry standard way of handling the staging area with flat files,
temporary or in-memory tables, whereas the present study and the proposed
AcDWH system use standard database table partitioning functionality in
combination with metadata driven loading system.

AcDWH presented in chapter 5 uses a pipelined approach that relies on
table partitioning on three main processes: staging table load, DWH load
and staging table cleansing.

The AcDWH specific components can be implemented as database
procedures and/or external scripts or coding that are executed as pre-source,
mid-process or post-target actions within standard ETL tools.

The proposed AcDWH system has the following abilities:

i. it efficiently handles loading parallelism even with standard ETL tools
avoiding excessive hand-coded solutions,

ii. eliminates the problems of ever-growing high watermark problem in
industry standard non-partitioned staging tables while it uses parallel
bucket loading and cleansing processes into the staging table,

iii. enhances the system’s throughput while handling parallel insertions,
queries and removals of buckets on the staging table,

iv. avoids large extent self-coded systems by utilizing standard
functionality in an innovative way, and

Results & Discussion

v. leaves door open for additional enhancement opportunities, such as data
distribution extension and near real-time backup and restore setup of the
source data described in chapter 7.

AcDWH with partitioned staging table(s) and metadata steered loading
system indicates enhancement over the prior studies and solutions in the
field.

The purpose of this study was to identify if a partitioned staging table along
with parallelized loading processes would enhance a DWH system’s
throughput and manageability. This chapter includes discussion of findings
related to the previous studies and literature on data loading, staging area
handling, ETL processes and table partitioning in a DWH. The chapter
includes also discussion of the limitations of the study, areas for future
research, and a brief summary.

The key contribution on this study is the enhancement on a DWH system’s
throughput of data processing pipelines by using the patented AcDWH
method two-fold approach: first using a partitioned staging table and
secondly parallelizing the DWH loading processes using the staging table as
a target or source. This study implicates that utilizing a partitioned staging
table enhances DWH loading processes on multiple areas.

The AcDWH method is suitable for the near real-time DWH systems, where
the latency of loading data into DWH is of most importance to enable the
system to provide as fresh data as possible for the business users. The
method proposed in this study enhances the staging area handling
considerably with near real-time DWH systems.

The previous studies as outlined in the chapter 4 have discussed areas close
to the research question focus area, but none of the previous studies have
explicitly studied the usage of partitioned staging table in DWH systems.
While Vassiliadis and Simitsis [12] proposed a logical level approach
similar to the AcDWH presented in this study, their implementation and
study is concentrating only on the logical aspects of the solution. Also, their
study does not show how the parallelization of different processes can be
enhanced together with the system’s throughput if a specifically crafted
staging table along with the metadata steered loading system would be in
place. In addition to the previous, the proposed AcDWH data management

83

Jari Myllylahti

system indicates advantages on the housekeeping routines of the staging
area that further enhance the capabilities of the system.

This study has its limitations since implementation has been tested only
using Oracle and IBM database technologies. Other database vendors have
not been tested for the implementation and therefore the results on other
database vendors are unknown.

84

9 Conclusions

The key findings of this study are that the use of a traditional staging table is
not sufficient for near real-time data warehouse systems or that these
systems can be considerably enhanced. Using normal table as a staging table
will introduce a) space allocation problems, b) scattered data within the
staging table, ¢) performance problems on staging table handling and d) and
process complexity while trying to maintain the performance of the system.
The focus of this study was to discuss different staging and data loading
process approaches and to also identify if a partitioned staging table along
with parallelized loading processes would enhance a DWH system’s
throughput and manageability. The literature review identified that previous
studies had approached the performance and data freshness problems
through the process and system setup aspects while none of the previous
studies had studied the staging table constructs to a detailed level.
Materialized views were discussed in previous studies, along with using
different source types such as flat files, external source database tables,
message queues and data streams. Previous studies discussed also join
processing and data processing.

One of the architectural design aspects behind the data management system
is to manage the incoming data flow requirements in conjunction of the
cleansing process for efficient staging table handling. In traditional DWH
the process manages data loading from source systems throughout the whole
process to DWH and reporting structures. The process cannot be optimized
and tuned without modifying the processing logic or without adding
resources to the system, such as more CPUs, more disk drives on storage
system or more network interfaces.

We studied if the partitioned staging table in combination with parallelized
loading processes to and from the staging table can help to enhance active
DWH systems. This study identified that the process for a near real-time
DWH can be materially enhanced and simplified by using partitioned
staging table constructs, parallelized loading processes utilizing the
partitioned staging table and a metadata driven data loading process, such as
the AcDWH. The hypothesis and implementation of the method was tested

Jari Myllylahti

through experimental implementation of the two real life systems presented
in Chapter 6.

We have tested the AcDWH with two leading technology vendors (Oracle
Enterprise Edition and IBM DB?2). It should be noted that not all database
technology suppliers potentially can provide the specific table partitioning
technology that has been used and therefore are not suitable to be used with
the AcDWH method.

Future research potential lays with different implementation techniques and
options with additional database technology suppliers along with leveraging
the same constructs further inside the DWH system to assess if enhancement
of data loading and processing can be achieved utilizing same setup.
Additionally, the future extensions of data distribution and near real-time
backup and restore schematics as described in chapter 7 would potentially
be a good focus for future research.

86

List of References

[1] Building The Data Warchouse. Third edition; WH Inmon; John Wiley & Sons; 2005;
http://www.r-5.org/files/books/computers/databases/warehouses/W_H_Inmon-
Building_the Data Warehouse-EN.pdf

[2] Description of the database normalization basics; Microsoft.com docs; 2020;
https://support.microsoft.com/en-us/help/283878/description-of-the-database-normalization-
basics

[3] A review on partitioning techniques in database; International Journal of Computer Science
and Mobile Computing, Vol. 3, Issue. 5, May 2014, pg.342 - 347; 2014;
https://www.researchgate.net/publication/264546464 A Review_on_Partitioning Techniqu
es_in_Database

[4] The data warehouse toolkit: The definitive guide to dimensional modeling, third edition; R
Kimball & M Ross; John Wiley & Sons, Inc.; 2013;
https://books.google.fi/books?hl=en&lr=&id=4rF Xzk8wAB8C&oi=fnd&pg=PT18&dq=the
+data+warehouse+toolkit

[S] Online table move; J Seifert; US Patent application US2009/0319581A1 - Google patents;
2009; http://patentimages.storage.googleapis.com/pdfs/US20090319581.pdf

[6] On-Demand ELT Architecture for Right-Time BI: Extending the Vision; F Waas, R Wrembel,
T Freudenreich, M Thiele, C Koncilia & P Furtado; International Journal of Data Warehousing
and Mining; 2013; https://www.igi-global.com/article/content/78285

[7] Data warehousing technologies for large-scale and right-time data; X Liu; PhD Thesis,
Aalborg University; 2012;
https://orbit.dtu.dk/files/110670162/Data_ Warehousing_Technologies.pdf

[8] Near Real-time Data Warehousing Using State-of-the- art ETL Tools; T Jorg & S Dessloch;
International Workshop on Business Intelligence for the Real-Time Enterprise; 2009;
https://link.springer.com/chapter/10.1007/978-3-642-14559-9 7

[9] Real-time Data Warehouse Loading Methodology; RJ Santos & J Bernardino; IDEAS '08:
Proceedings of the 2008 international symposium on Database engineering & applications;
2008; https://dl.acm.org/doi/abs/10.1145/1451940.1451949

[10] Optimizing ETL Processes in Data Warehouses; A Simitsis, P Vassiliadis & T Sellis; 21%
International Conference on data engineering; April 2005;
https://ieeexplore.ieee.org/abstract/document/1410172

[11] Easy and Effective Parallel Programmable ETL; C Thomsen & TB Pedersen; DOLAP '11:
Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP;
October 2011; https://doi.org/10.1145/2064676.2064684

[12] Near Real Time ETL; New Trends in Data Warehousing and Data Analysis, pages 1-31; 2009;
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.5574 &rep=rep 1 &type=pdf

[13] Near Real-time Data Warehousing with Multi-stage Trickle & Flip; J Zuters; International
Conference on Business Informatics Research; 2011;
https://www .lu.lv/fileadmin/user upload/lu_portal/projekti/datorzinatnes_pielietojumi/publik
acijas/8 atsk/Zuters BIR.pdf

Jari Myllylahti

88

[14] An overview of data warehousing and OLAP technology; S Chaudhuri, U Dayal; ACM
Sigmod record, 1997; https://dl.acm.org/doi/abs/10.1145/248603.248616

[15] Research problems in data warehousing; J Widom; CIKM ’95: Proceedings of the fourth
international conference on Information and knowledge management, December 1995; pages
25-30; https://dl.acm.org/doi/pdf/10.1145/221270.221319

[16] Beyond data warehousing: what’s next in business intelligence?; M Golfarelli, S Rizzi, I Cella;
DOLAP '04: Proceedings of the 7th ACM international workshop on Data warehousing and
OLAP; November 2004 Pages 1-6; https://doi.org/10.1145/1031763.1031765 (Cited by 513)

[17] A comparison of data warehousing methodologies; A Sen, A P Sinha; Communications of the
ACM; March 2005; https://doi.org/10.1145/1047671.1047673

[18] Data integration in data warehouse; D Calvanese, G De Giacomo, M Lenzerini, D Nardi and R
Rosati; International Journal of Cooperative Information Systems, Vol. 10, No. 03; pages 237-
271; 2001; https://doi.org/10.1142/S0218843001000345

[19] Real time data warehousing; J J Jonas; US Patent 8,452,787; Google Patents; 2013;
https://patents.google.com/patent/US8452787B2/en

[20] ETL queues for active data warehousing; A Karasidikis, P Vassiliadis & E Pitoura; IQIS '05:
Proceedings of the 2nd international workshop on Information quality in information systems;
June 2005; pages 28-39; https://doi.org/10.1145/1077501.1077509

[21] Method and architecture for automated optimization of ETL throughput in data warehousing
applications; S Suresh, J P Gautam, G Pancha, FJ DeRose & M Sankaran; 2001; US Patent
6,208,990; https://patents.google.com/patent/US6208990B1/en

[22] Current practices in data warehousing; R Hackathorn; Bolder Technology, Inc.; November
2002,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.539.8508 &rep=rep 1 &type=pdf

[23] Supporting streaming updates in an active data warchouse; Neoklis Polyzotis ; Spiros
Skiadopoulos ; Panos Vassiliadis ; Alkis ~ Simitsis ; Nils-Erik ~ Frantzell; IEEE 23%
International conference on data engineering; 2007,
https://ieeexplore.ieee.org/abstract/document/4221696/

[24] Zero-Latency Data Warehousing for Heterogeneous Data Sources and Continuous Data
Streams; TM Nguyen & AM Tjoa; iiWAS'2003 - The Fifth International Conference on
Information Integrationand Web-based Applications Services; September 2003;
https://www.researchgate.net/publication/221237759 Zero-

Latency Data Warehousing for Heterogeneous_Data Sources and Continuous Data Stre
ams

[25] Meshing Streaming Updates with Persistent Data in an Active Data Warehouse; N Polyzotis,
S Skiadopoulos, P Vassiliadis, A Simitsis & N-E Frantzell; IEEE Transactions on knowledge
and data engineering, Volume 20, Issue 7; 2008;
https://ieeexplore.ieee.org/abstract/document/4441713/

[26] ETL Evolution for Real-Time Data Warehousing; K Kakish & TA Kraft; 2012 Proceedings of
the Conference on Information Systems Applied Research; November 2012;
https://www.researchgate.net/publication/280837435 ETL Evolution_for Real-

Time Data Warehousing

[27] Striving towards Near Real-Time Data Integration for Data Warehouses; RM Bruckner, B List
& J Schiefer; International Conference on Data Warehousing and Knowledge Discovery 2002,
pages 317-326; 2002; https://link.springer.com/chapter/10.1007/3-540-46145-0_31

[28] X Hybridjoin for near-real-time data warechousing; MA Naeem, G Dobbie & G Webber;
British national conference on databases. Advances on databases pages 33-47; 2011;
https://link.springer.com/chapter/10.1007/978-3-642-24577-0_5

[29] An Event-Based Near Real-Time Data Integration Architecture; MA Naeem, G Dobbie & G
Webber; 12th Enterprise Distributed Object Computing Conference Workshops; 2008;
https://iecexplore.ieee.org/abstract/document/4815048/

[30] Active data warehousing: a new breed of decision support; J Probst; Proceedings. 13th
International Workshop on Database and Expert Systems Applications; 2002;
https://ieeexplore.ieee.org/abstract/document/1045990/

[31] A Partition-based Approach to Support Streaming Updates over Persistent Data in an Active
Data Warehouse; A Chakraborty & A Singh; International symposium on parallel and
distributed processing; 2009; https://ieeexplore.iece.org/abstract/document/5161064/

[32] Introduction to redundant arrays of inexpensive disks (RAID); DA Patterson, P Chen, G
Gibson, RH Katz; COMPCON Spring 89; 1989 - computer.org

[33] Fundamentals of Data Warehouses; Jarke, M., Lenzerini, M., Vassiliou, Y.: Panos Vassiliadis;
Springer Verlag, 2nd, rev. and extended ed., XIV (2003)

[34] Comparative study of indexing techniques in DBMS; Gupta, M. & Badal, D.;
https://www.researchgate.net/publication/333844844 Comparative_study of indexing_tech
niques_in DBMS

[35] Implementation of database massively parallel processing system to build scalability on
process data warehouse; Bani, Fajar Ciputra Daeng, et al.; Procedia Computer Science, 2018,
135:68-79.; https://www.sciencedirect.com/science/article/pii/S1877050918314376

[36] ETL in Near-Real Time Environment: Challenges and Opportunities; Gorhe, Swapnil; no.
April, 2020.; https://www.researchgate.net/profile/Swapnil-
Gorhe/publication/340938742 ETL in Near-real-
time_Environment A Review_of Challenges and Possible Solutions/links/5tbe17d89285
1¢933£5812cd/ETL-in-Near-real-time-Environment-A-Review-of-Challenges-and-Possible-
Solutions.pdf

[37] Implementation of Data Backup and Synchronization Based on Identity Column Real Time
Data Warehouse; Adnyana, I. Gede; Endra Sulastra, I. M. D.; Lontar Komputer: Jurnal Ilmiah
Teknologi Informasi, 2020, 11.1: 9.
https://pdfs.semanticscholar.org/d300/befa2333fdfe6de66afb23152827fa17d450.pdf

[38] Efficient incremental loading in ETL processing for real-time data integration; Biswas, Neepa;
Sarkar, Anamitra; Mondal, Kartick Chandra; Innovations in Systems and Software
Engineering, 2020, 16.1: 53-61.; https://link.springer.com/article/10.1007/s11334-019-
00344-4

[39] Timon: A timestamped event database for efficient telemetry data processing and analytics;
CAO, Wei, et al.; Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 2020. p- 739-753;
https://dl.acm.org/doi/abs/10.1145/3318464.3386136

[40] Apache. Hbase. https://hbase.apache.org/, 2008.

[41] Apache. Cassandra. http://cassandra.apache.org/, 2008.

89

Original Publications

Myllylahti, J, (2017)
European patent specification EP 1 959 359 B1.
European Patent Office Bulletin 2017/47

EP 1 959 359 B1

{19} Furapliaches

Palentamt
Eurspean
Patent Offire
Office eurapien

des brevets

{11 EP 1 959 359 B1

{12) EUROPEAN PATENT SPECIFICATION

{45} Date of publication and mantion
of the grant of the patent:
22.11.2017 Bulletin 201747

{21) Application number: 07003386.5
{22} Date of filing; 19.02.2007
(54} A data management system

Datenverwaltungssystem

Systéme de gestion de donnges

{51} Int Gl
GOBF 17:30170050%

{84} Designated Contracting States:
ATBEBGCHCY CZDEDK EEES FIFR GB GR
HUIE IS IT LILT LU LV MC NL PL FTRC SE 81
SKTR

{43} Date of publication of application:
20.08.2008 Bulletin 2008134

{73} Proprietor: Tieto Oyj
00440 Helsinki (FI}

{72} Inventor: Myliylahti, Jari
00840 Helsinki (Fl}

(74} Representative: Papula Oy
P.0O.Box 981
00401 Helsinki {F1}

{56} References cited:
EP-A- 1591914
Us-B1-7 093 232

US-A1- 2004 225 664

AEJAZET AL.: "Utllizing Staging Tables In Data
Intagration te Lead Data into Materialized Viaws”
SPRINGER VERLAG, [Online] vol. 33142004,
2004, pages 685-691, XP002439036 Berlin,
Germany Retrieved from the Internet:

URL :http:faww.springerlink.com/content/ud
ad41nnwvitje3hwifulltext.pdf> [retrieved on
2007-06-25]

MATENA WV ET AL: "ENTERPRISE JAVARBEANS -
DRAFT SPECIFICATION, VERSION 0.9", SUN
MICROSYSTEMS SPECIFICATION, XX, XX, no.
V0.9, 4 February 1998 (1998-02-04), pages 1-177,
XP002424103,

Note: Wittun nine manths of the publication of the mention of the grant of the European palent in the European Patent
Bulletin, any person may give nolice to the European Patent Office of oppasition to that patenl, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been

paid. (Art, 92(1) European Patent Canvention).

Fmeen by loue, TR | PARIR (FRY

1 EP 1 959 359 B1 2

Description
FIELD OF THE INVENTION

[0001] The present invention relates to data manage-
ment systems. Particularly, the invention relates ta navel
methods, a computer program and a data management
system for managing data for example in near real-time
environmenls.

BACKGROUND OF THE INVENTION

[0002] Databases are typically used to slore various
kinds of data put in a certain format. In order to store
data, a solution has lo be provided lo collecl data inta
the database.

[0003] One a very typical way lo collect data into a
database syslem is to use an intermediate data store in
lhe data collection pracess. Figure 1 discloses one ex-
ample of a simple data collection and analyzing architec-
ture. A dala source 100 is a source Lhat generales data
abaut e.g. ransactions. An exemplary transaction could
be a sales fransaction. A sales lransaction occurs eg
when ane pays for his'her purchase at a cash desk. The
cash register generates a transaction that includes e.g.
timeidate, what was purchased and what was the total
amount of the purchases. A dala source 100 represents
the data source that temporarily stores the transaction
data. The data source may take any appropriate farm of
data storage from which it is possible to load data for
further processing. The dala source 100 is 2.g, a dala-
base ar a flat file.

[0004] A dalz management syslem includes ane or
mare loading processes that are aranged lo load data
from the data source into a tetmporary dala storage area
that is often called 28 "a staging area” or a "slaging table”
102, The stating table 102 may, for example, include data
relating to all the transactions af a single day. The data
is typically indexed in the staging table 102. The Inading
process loads, for example, a whole day's transactions
ar for example 10000 transactions from the data source
at a time and stares the lransactians in the staging table
wilh unigue index in case of smaller set of rows than a
whole day. Both methods apply. The next set of transac-
tians will be stored after the previously indexed set of
transactions with a new index. As transaclions areloadad
into the staging table, the size of the staging table in-
creasss.

[0005] The data management syslem further lypically
comprisesone or more delivery processes thatread data
from the staging table and lransfer it to a target system
104, When a delivery process has processed a set of
transaction relating to a certain index, the data relating
la the index has to be deleted from the staging table. This
maans also that lhe indexes have to be updated. The
actual memory space which was previously allccated for
the deleted transaction data relating to the index will not
be freed. Therefore, as new transaclions are loaded into

20

30

35

A

£5

o

the staging table, the size of the table increases all the
time although some of the transaction data may already
have been deleted by the delivery processes. One way
to solve this problem 1s to use a cleaning operation every
naw and ther. Due 1o the cleaning process, data loading
processes and data delivery processes have to be sus-
pended for the duration of the cleaning pracess and the
index has to be rebuilt again.

[0006] OQne possible larget sysiem 104 in Figure 1 i
adata warehouse. Previously, every near real time data
warehousing praject has often been implamented using
uniquely designed processes which contain general data
loading components trying togather all the incoming data
at particular paint of time, Data warehousing processes
has been siruclured in huge mappings. In come cases,
even minor changes in one part of the process could
result in large process modifications. Furthermore, the
staging tables tend to hold data for the whole loading
window (typically a day) and the loading addresses the
whole period of data which results in long-running huge
processes.

[0007] EP-A-1531914 discloses a method, computer
program product and device for imporling a plurality of
data sets into a system. The method camprises praviding
dala setsto be imported on a data sterage medium; read-
ing said data sets from said data storage medium; storing
said dala sels in a firsl {able in said system, subslantially
without processing said data sets; reading said stared
data sets from said first table, preferably data set by data
set; and writing one or mare data segments of each data
sel inlo sub-lables, each sub-table comprising al least
one data field, said datafield being preferably associated
with predefined categaries.

[0008] WS-B1-7093232 discloses a component stager
whizh aceepts from developers one or more versions of
acemponent of a product, and associales wilh each ver-
sion a time lhat is one of a number of the periodically
recurring times (also called "ticks"), €.g. an upceming
Wednesday, if the periadically recurring times happen
on a weekly basis, .e. every Wednesday. Such asscci-
alions may be used to identify one or mere versions that
are associated with a specific tick, e.q. to identify the
amount of work done between Lo licks and/or {o find ver-
sions that are currently available for release, which may
be baged on a mest recent tick, or a tick associated with
a milestone in the past,

[0009] Thesolutiondisclosed inUS 2004/225664 stag-
es data from various sources and performs an automated
series of steps on the dala to assimilale it into a masler
SKU table and to make it useable for and available 1o
olher applications, ineluding systems for making the in-
formatian available ta 8 web site hosting an online store.
The system includes the use of an abstraction layer to
reconcile iter idenlifiers between and amongst various
dala sources.

[0610] A. Ejaz etal.: "Utilizing Staging Tables in Bata
Integrationtie Load Data into Materialized Views", Spring-
er Verlag, vol. 3314/2004, 2004, pages 685691,

3 EP 1 959 358 B1 4

XP002439046 Berlin, proposes an approach to data in-
tegration and migration from a collection of heteragene-
ous andindependentdatasources inloa dala warehouse
schema.

[0011] Basad on the above there is an obvious need
for a data managementsystem thatwould mitigate and/or
alleviate the above drawbacks.

SUMMARY OF THE INVENTION

[0012] Accarding ta one aspect of the invention, there
Is provided & computer-implemented methed for
processing data in a data managing system comprising
at least ane staging area into which data can be loaded.,
The following source data loading process laop is exe-
cuted at least once for a data type of the source data:
Ioading sourcedalafrom a data source, whereinthelaad-
ed amount of scurce data constitutes a bucket and
wherein the bucket comprises at least one row of data:
creating a new partition in a staging area for the bucket,
wherein the parlition is a physical partition in the staging
area; delermining. based an an identifier scheme, a
unigue idertilier for the bucket; assigning a partitioniden-
tifier far the partition, the partition identifier camprising
the unique idenlifier of the buckel; tagging sach row of
data in the bucket with the unique identifier; and storing
the bucket in the partilion idenlified by lhe partitioniden-
tifier.

[0013] The following delivery process i& executed at
least once for the data type of the source data stared by
the loading process: selecting a buckst stored by the
loading pracess ina partition of a staging area; delivering
the selected bucket 1 a larget system: and updating in
bucketdeliverer's metadata that the delivery process has
finished processing the bucket.

[0014] The following cleaning process is executed at
predefined lime intervals far a buckel lype. the bucket
type in bucket metadata indicating the data type of data
in a bueket: checking, from the bucket metadata of a
bucket, whether the bucket has been processed by all
delivery processes processing the bucket; drapping the
partition containing the bucket, when all delivery proc-
esses processing lhe buckel have processed the bucket;
and updating in the bucket metadata that the bucket has
been dropped.

[0015] According to another aspect of the Invention,
there is provided a computer program comprising pro-
gram code configured to perferm the method of the in-
venlion when execuled in a data processing device.
[0016] According to another aspect of the Invention,
thereis pravided a data managemenl system camprising
at least ane staging area in which source data can be
stored. The data managemsnt system comprises a load-
ing module for lnading data in the data managing syslem,
wherein the leading module is configured to execute the
following scurce data leading process loop at least once
for a dala type of the source data: load source data from
adatasource, wherein the lbaded amount of source data

20

30

35

41

45

Bl

constitutes a bucket and wherein the bucket comprises
atleastone row of data; create a new partition in astaging
area far the bucket, wherein the partilion is a physical
partitionin the staging area; determine. basedon aniden-
tifier scheme, a unique idenlifier for the bucket; assign a
partition identifier for the partition, the partition identifier
comprising the unigue identifier of the bucket; and store
the bucket in the partition identified by the partition iden-
tifier.

[0617] The data management system also camprises
adelivarymadule for delivering data inthe data managing
system, wherein Lhe delivery module Is configured to ex-
scute the Tollowing delivery process at leasl once for the
data type of the source data stored by the loading madule:
selecl a buckelstored by lhe Inading process ina parlilicn
of a staging area: deliver the selected bucket o a target
system; and updale in bucket deliverer's metadata that
the delivery process has finished processing the bucket,
[0018] The data management system alsc comprises
acleaning module for cleaning data in the data manage-
ment syslem. wherein lhe cleaning module is canfigured
1o execute the fallowing cleaning process at predefined
time intervals for a bucket type, the bucket type in bucket
metadata indicaling the data type of data in a bucket:
checking, from bucket metadala of a bucket, whether the
bucket has been processed by all delivery processes
pracessing the buckel; dropping the partitian containing
the bucket, when all delivery processes pracessing the
bucket have pracessed the bucket; and updaling in the
bucket metadata that the bucket has been dropped.
[0019] ' ene embodiment, the loading module is fur-
thercanfigured to generate bucket metadatafor the buck-
2l, the buckel metadata delermining properiies for the
bucket stored in the partition. In one embodiment the
bucket metadata comprises al least one of the following:
bucket identifier. buckel type, number of records in the
bucket, earliest recard in the bucket, latest record in the
bucket, status of the bucket, bucket start time, bucket
end tirme and loaded rows per second.

[0020] In cne embediment, the loading medule is fur-
ther configured to stare a duplicale of the bucket into an
addilionaldata store during the loading process, and pro-
vide ihe data with the same unique idenlilier

[021] Incne embodiment, the buckat size is fixed. In
anather embadiment, the bucket size is changed at least
once.

[0022] Inane embodiment, the delivery module is con-
figured to select the buckel based on al least of the fol-
lowing: a buckel identifier; and a time stamp in a buckel
metadata,

[0023] In one embediment, the delivery module is fur-
ther configured tc update the slatus information of the
bucket in the bucket metadata to ‘deliveting’, when start-
ing processing the bucket with the delivery process.
[0024] In one embodiment, the delivery module is fur-
ther configured te update bucket deliverer's metadata,
when the delivery madule starts pracessing the bucket,
the updating comprising; adding a deliverer identifier in

3 EP 1 959 359 B1 8

the bucket deliverer's metadata, and adding a deliverer
start time in the bucket deliverer's metadata.

[0025] In ane embodiment, lhe delivery module is fur-
ther configured to update the bucket deliverer's metada-
ta, when the delivery moduls ends processing the bueket,
the updating comprising: adding a deliverer end time in
the buckst deliverer's metadala.

[0028] In one embodiment, the delivery module is fur-
ther configured to check, whether the buckal deliverer's
metadata comprises other deliverer identifiers identifying
delivery pracesses thal process the same data type,
check, whether there exists a deliverer end time for each
deliverar identifier, and update the stalus information in
the bucket metadata to ‘delivered’, when there exists a
deliverar end time Tor each deliverer idenlifier.

[0027] Inone embodiment, the data management sys-
lem comprises dalivery process metadata for each de-
livery pracess, the metadata comprising at least ane of
Lhe following: an identifier of the delivery process, a name
of the delivery process, a type of the delivery process, a
description for the delivery process, priorily of the delivery
process, and a target bucket type of the delivery process.
[0028] In one embadiment, a pricrity is set to al least
ane delivery process.

[0029] In one embodiment, the amount of simulane-
ausly executed delivery processes is limited.

[0030] In one embodiment, the properties of al least
ane delivery process are changed.

[0031] In one embadiment, the amount of delivery
processes is changed.

[0032] Inoneembadiment, the cleaning madule is fur-
ther configured to check, whether the bucket deliverer's
metadata comprises alher deliversr identiliers identifying
delivery processes that process the same data lyps:
check, whether there exists a deliverer end time for each
deliverer identifier; and update the status infermatian in
the buckel metadata to ‘delivered’, when there exists a
deliverer end time for each deliver identifier.

[0033] In the invention, all delivery processes may run
in parallel and are isolated from sach other. Therefore,
the delivery processes can address the same bucket si-
multanecusly, which gives the system ability to be par-
allelized and scaled up or out when performance baost
is needed.

[0034] The advantages of the invention relate to im-
proved source data handling stared in Lhe staging area.
For example, the leading process may be executed in-
dependenlly from the dalivery process{es). Correspond-
ingly, the delivery process{es} may be executed inde-
pendently from the leading process as leng as there are
buckets in the staging lable that are not processed yet

BRIEF DESCRIPTION OF THE DRAWINGS

[0035] The accompanying drawings, which are includ-
edto provide a further understanding of the invention and
canslitute a part of this specification, illustrate embodi-
ments of the invention and together with the description

20

30

35

A

£5

o

help to explain the principles of the invertion. In the draw-
ings:

Figure 1 ene example of a simple pricr art data col-
lection and analyzing architecture:

Figure 2 discloses a general model of a data man-
agemant system according to one embodimert of
the invention:

Figure 3A explains \he operation of a lpading proc-
ess in a data management system according to one
embodimant of the invention;

Figure 3B one possible form of bucket metadata ac-
cording to one embodiment of the invention;
Figure 3C explains the operation of a leading proc-
ess in a dala management syslem accarding 1o an-
other embadiment of the invention;

Flgure 4 discloses meladala relating to a delivery
process according to one embadiment of Lhe inven-
lion;

Figure 5A explains the aperation of a delivery proc-
ess in a dala managemenl syslem according lo one
embadiment of the invention;

Flgure 5B discloses bucket deliverer’s metadata ae-
cording to one embodiment of the invention:
Figure 5C explains the operalion of a delivery proc-
ss in a data management system according to an-
ather embadiment of the invention;

Figure 5D explains the aperation of a delivery proc-
es3 in the data management system according to
another embodiment of the invenlion,

Figure 6A discloses a parlition cleaning process ac-
cording ta one embadiment of the invention;
Figure 6B discloses a partition cleaning process ac-
cording to another embodiment of the inventian;
Flgure 7 discloses an example of prioritization of
delivery processes according Lo one embodiment of
the invention: and

Figure 8 discloses a data management system ac-
cording to one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0036] Reference will now be made indeiail lo lhe em-
bodiments of the present invention, examples of which
are illustrated in the accompanying drawings.

[0037] Figure 2 represents a general model of a data
management system according to one embodiment of
the invenlion. The madel includes at least one data
source 200 thal is e.g. a dzatabase, a flal file, an xml file,
message queue etc, Data is read from the data source
200 inte a staging area 202 {or staging table) in variable
row amounts, The amount of rows loaded from the data
soUrce at a time may be e.g. fixed on a system level. In
anather embodiment, the amount of rows may be varia-
ble and it can be delermined upon starling aloading proc-
ess 206 e.g. from a parameter or a parameter file. The
concept of varying the amount of rows ta be loaded from
the data source will be discussed in more detail later.

7 EP 1 959 358 B1 8

[0D38] A term "buckel” or "bucketing” will be used
throughout the description to represent the amount of
data {e.g. data rows) lcaded from lhe data source 200 at
atime.,

[00239] When a bucket has been read from the data
source 200, the data management system determines a
unigue identifier for the bucket. In one embodiment, the
identifier is unigue anly among the buckets of the same
data lype, In anoiher embodiment, the identifier is unique
among all buckets of all data types. When the unique
identifier has been determined far the buckst, the data
management system creates a new partition 210 inthe
staging table 202 for lhe bucket. At the same time, the
partition may be given an identifier, Let's assume that
the unique idenlifier for the bucket would be 0000009
In this case, the identifier for the partition could be e.g.
stage cust1Z3frans p0000000. Cust!Z3 identifies the
customer and trans identifier the data type {in this case,
transaction). P refers to parlition and GO000001 s the
bucket identifier. Therefore, in one embodiment, the par-
tition identilier direclly identilies also lhe bucket identifier.
If the partition identifier does not directly identify alsa the
buckelidentilier, in one embodiment, there is a mapping
table that creates a mapping between the partitian iden-
tifier and the bucket identifier.

[0040] The data stored in the partitions 210in the stag-
ing lable 202 is processed by one or more delivery proc-
esses 208, Independently of the loading pracesses 208
that load data te the slating table 200 from the data
source(s) 200, the delivery processes 208 process data
stored in the partiians 210, The delivery pracesses de-
liver data to target system(s) 204, e.g. to a data ware-
hause population, data marl pepulation or external inter-
faces or authorities. There may be several delivery proc-
esses that are run in parallel mannar.

[0041] The loading processes 206 and delivery proc-
esses will be discussed in more delail shortly.

[0042] The principal idea in the data management sys-
tem disclosed in Figure 2 is that data is leaded frem the
data source(s) 200 into separate partitions 210 in the
staging table 202. Due to this fact, there are no dala lock-
ing problems while the data is processed since each par-
tition is @ separate physical siructure,

[0043] Furthermore, In yet another embodiment of the
invention there are further advantages. The processes
are implemented with asynchronaus process modules,
Therefore, the modules are detached from each other
and they communicats enly through common adminis-
tralive data model or data layer. In elher words, the load-
ing processes 206 and delivery processes 208 operate
independently fram each ether. Furthermars. all delivery
processes may berunin parallel and they may be isalated
from each other. Each delivery process can address the
same bucket simultanecusly which gives the system abil-
ity io be parallelized and scaled up or out when perferm-
ance boost is needed.

[0044] Figure 3A explains the operation of a loading
process inthe data managemenl system according to

20

30

35

41

45

Bl

one embodiment of the invention. The operation is ex-
plained together with Figure 3B which represents cne
passible alternative for bucket metadata. The bucket
metadata 320 stores information about the bucket. The
term 'meladata’ is used throughout the deseription to ra-
fer to system informatian that determines general prap-
arties for .. data buckets and delivety processes.
[0045] When a data source starts to provide data (step
300). a naw partilion is crealed for the data {slep 302) in
a staging table, Before the partition is created for the
dala, it may be necessary lo craale a zera partition in the
staging table, The zero partition is never toughed and
therefore there is always one partition (zere partilisn] in
the staging table. In the following a term "bucket” refers
1o a cerlain amouni of source dala thal is loaded alalime
fram the data source. The bucket size may be predeter-
mined {e.g. S0000 rows) - In other wards, it may be fixed
onsystem level, [Lmay alsa be variable called upon stage
load precess launch via parameter or parameter file or it
may be decided on performance metrics from metadata
on pracess launch lime. An idenlifier is determined for
the bucket {step 304}. In ane embodiment, the identifier
is unigue only among the buckets of the same data type
In anather embadiment, the identifier is uniqgue amcng
all buckets of all dala types. The data management sys-
tem comprises a control bucket 310 {in other words, a
coniral table or bucket metadala) which stores various
pieces af infarmation about the bucket. When the parti-
tion has been created and the identifier determined, the
loading process updates the bucket meladata 320 and
add a new enlry (i.e., 3 new row] for the buckel, The
following pieces of infarmation are added ar updated for
the bueket in the bucket metadata:

- BUCKET_ID (326). E.q. a sequential number start-
ing from 1. Each bucket has a unique identifier (.g.
number). In one embadiment, if the identifiers are
seguentially allocated. the identifiers also determine
the loading order of buckets inlo the stating table. In
otherwords, a bucket having a smaller identifier than
that of another bucket has been loaded and stored
earlier,

- BUCKET TYPE(328). BUCKET TYPEdefines the
type of the bucket, for example, transactian’, ‘cus-
Lamer dala' etc.

- STATUS {created) {336). Current status of the buck-
et, for example, created’, “loading’, delivering, ‘de-
livered’, ‘deleted elc.

[C048] When the data loading actually starts (step
306), the actual data rows may be tagged with (he bucket
identifier {e.g. there is added a bucket_id column to the
staging table) and the following pieces of information are
added or updated for the bucket in the bucket metadata;

- STATUS {foading) {336},
- BUCKET STARTTIWE {338). This infarmalion indi-
cates a limestamp of the creation of the bugket,

9 EP 1 959 359 B1 10

[0047] Whenthe bucket has been loadead, the fellowing
pleces of information are updated for the bucket in the
bucket metadata:

- NUMBER OF RCWS(330). The numberof rows in
the bucket,

- EARLIEST_RECORM{332). Timestamp of the aar-
liest recorditransaction in the bucket.

- LATEST RECORD {334). Timaslamp of he latest
recorditransaction in the bucket.

- STATUS (lsaded) {336} Current status of tha buck-
et

- BUCKET EMNDTIME (340). Timestamp after finaliz-
ing the bucket (all data has been loaded in the par-
tition}.

- ROWS_PER_SEC (342), The number of rows load-
ed in the staging table per second

[0048] The column 322 refers to the used variables in
general and the column 324 indicates a variable type of
each variable. Furthermare, although Figure 3A repre-
sents that hucket metadata is updated after certain steps,
it is also possible lo update the bucket meladata in dil-
ferent pracess stages than disclosed in Figure 3A. Fur-
thermare. Figure 3B discloses only one embodiment of
passible bucket metadata, and therefore in other embod-
iments the bucket meladata may differ from ihe bucket
metadata disclosed i Figure 3B. For example, at least
one of ROWS_PER_SEC, BUCKET_STARTTIME and
BUCKET_ENTTIME may be missing in other embodi-
ments or there may be some addilional meladata entries,
[004%] In one embodiment of the invention, bucketing
(that is, the amount of raws) is dane initially based an an
initial value. Later an based an e.g. the metrics collected
from stage loading and data delivery operations may
change the initial value. Furthermore, bucket meladata
may contain also performance metrics which can be uli-
lized continuausly on future bucket sizing functions for
best perfermanee (for example, auto throttling, the load-
ing system can adjust itself based on the collected met-
rics for best possible throughput. central processing unit
utilization etc.}.

[0050] Summarizing the above, buckets contain 1ton
rows of data {variable bucket size) and each bucket is
represented by a partition on the staging table. In ane
embodiment, If there multiple data types, each different
data type uses a dedicated staging table. Partitioning the
staging lable {e.9. arange or a list) is dene e.g. based
an the bucketidentifier which is unique either inside each
data type ar the whale system. Furthermere, the bucket-
irg alsa isolates the reading aperations. Partitioning the
data by buckets enables the data delivery processes to
address only the rows of the distinct bucket without in-
dexing the tables. With this structurs the staging tables
do not hava to have any indexes lo give performance an
bucket reads. Actually, indexing cn staging tables may
bring lower performance on papulaling the slaging tables
on initial load.

20

30

35

A

£5

o

[0851] Figure 3C explaing the operation of a lading
process in the data management system according to
anather embadiment of the inventian,

[0652] When adata source starts to provide data (step
360}, a new partition is crealed for the data {step 362} in
a staging table. Befcre the partition is created for the
data, it may be necessary to create a zero partition inthe
staging table. The zero partition is never touched and
therefora lhere is always ane partition (zero partition) in
the staging table. The data is then stored in the created
partition. The same Inading process repeats when new
dala is ready to the loaded into the staging table, The
loading process again creates a new partition for the new
data and stores the data in the new partition {step 384),
The parilions are prefarably identified 8.g. by sequential
numbers, The next set of saurce data 1s stored in a par-
tition whose idenlifier is greater (han that of the previous.
partition. Therefare, the order of the partition identifies
also the loading order of the source data in the partilions
[0053] Figure 4 discloses possible metadata 400 relat-
ing to a delivery process according to one embodiment
of the nvention. A delivery process is a process that
reads partitions in a staging iable and delivers the data
{rows) from the partitions to a target syslem or target
systems. The target system may include e.g. one of the
following: a data warehcuse structure population, adata
mart populalion, external inlerfaces and autlhorities.
[0054] The data management system may comprise
built-in delivery processes. In another ambodiment, it is
passible to define new delivery processes as the need
arises. The amounl of delivery progcesses is not limited
to any certain amount. There can be as many delivery
pracesses as the data maragement syslem nesds to
have. In ane embeodiment, delivery processes may be
prioritized. In other words, for example in one case adata
warehouse structure population mustbe dane befare any
olherdelivery pracess is allowed ta tauch the same buck-
et. In another embodiment, all the delivery processes
stand on the same ling and they all can run in parallel.
[0055] In the embodiment of Figure 4, each delivery
process has been assigned the following metadata:

- DELIVERER 1D (402). Unigue identilier for the de-
liverer (.e. delivery pracess).

- DELWVERER MAME {404). Name of the delivery
process, for example, 'STORAGE',
‘DATAMART_SALES', 'DATAMART_CUTLET atc.

- DELIVERER_TYPE [406). Typeof the delivery proc-
ess, for example, 'DW, ‘Dalamarl’, “Interface’ slc.

- DELIVERER_DESCRIPTION (408). Short descrip-
lian of the delivery pracess, for example. DW pop-
ulation”, "Sales datamart pepulation’, Interface 1 to
authorities' ete.

- PRIORITY (410). Prigrity of the delivery process.

- DELIVERER TARGET (412). Type of the data that
the delivery processdelivers, for example, ‘customer
data’. This variable links to BUCKET TYPE variable
in the bucket metadata.

" EP 1 959 358 B1 12

[0056] Figure 4 discloses only one embodimentof pos-
sible deliverer metadata, and therefore in other embod-
iments the deliverer metadata may differ Irom the mela-
data disclosed in Figure 4. Faor example, in other embod-
iment some meladata entties may be missing or there
may be some additional metadata entries.

[0057] Figure 5A explains Lhe aperalion of a delivery
process in the data management system according to
ong embadimeant of ihe invention, The operation s x-
plained together with Figure 5B which represents one
possible allernative for bucket deliverar's metadata 520
The bucket metadata stores information about the buck-
1

[0058] A delivery process selects a bucket from the
staging area {slep 500). The delivery process may select
the bucket by determining the smallest bucket identifier
which paints to a bucket thal has not yet been processed
In another embediment, the bucket selection may be
macde based on a timestamp in the metadata relating to
the bucket. The timestarnp used may e.g. be the one that
identifies when the bucket has been created. Yet in an-
ather embadiment, the selection may be made based an
both the bucket identifier and the timestamp. This may
be the case e.g. when the sequential identifier "turns”
aver, that is, slarts again from number one. Inthis case.
the bucket having a bucket identifier *1" is not the earliest
one since the bucket numbering has started again from
the beginning. Therefore, the delivery process may alsa
use the timastamp value in the bucket metadata in de-
termine which one of the buckets is the earliest ane. In
this example, lhe buckels are processed in the same
arder that they were stored in partitions in the loading
pracess. One way laimplement is that a sequential iden-
tifier is assigned for each bucket. When comparing the
identifier. a smaller identifier refers to an earlier bucket.
[0059] Thedelivery pracess apens the partition holding
the data of the bucket idenlifier (step 502) . When the
status of a bucket in the bucket metadata is 'loaded’, the
bucketis waiting for the delivery process to slart process-
ing the bucket. 'Loaded means that the bucket has been
suceessfully loaded into the staging table. When the de-
livery process starts to process the determined bucket,
the status of the buckel is updated as “delivering” in the
bucket metadata {step 504). If the status of the bucket is
already "delivering', it means that that are several differ-
ent delivery processes that may process the buckst at
the same time. Furthermere. if the status of the bucket
is already ‘delivering’, the delivery process leaves the
buckel metadata unlouched.

[00€0] ‘When the delivery process starts to deliver data
rows from the staging table, each delivery process
processing the bucket creates (step 3103 a new row with
the fallowing pieces of information in the bueckat deliver-
er's metadala 520

- BUCKET_ID (522). E.g. a sequential number start-
ing from 1. Each bucket has a unique identifier
(number). In one embodiment, if the identifiers are

20

30

35

41

45

Bl

@
&

seguentially allacated, the identifiers also determine
the loading order of buckets into the stating table. In
atherwards, 2 buckel having asmaller idenlifier than
that of another bucket has been Inaded and stored
earlier

- DELIVERER_{D{524). Deliverer identifier.

- DELIVERER_STARTTIME (528) Timestamp, when
the deliver started processing.

[0061] Next, the delivery process starts to deliver data
rows from the bucket {partition} {step 508). When the
deliverer has delivered all the data (rows) contained in
the bucket, the bucket deliverer’'s metadata is again up-
dated (step 5109 and the partition is dropped {step 508):

- DELIVERER_ENMDTIME (528). Timastamp, when
Lhe deliver ended processing

- ROWS_PER_SEC 1530), The number of rows de-
livered per second.

[0062] The column 532 refers lo the used variables in
general and the calumn 534 indicates a variable type of
each variable. The length disclosed after each variable
type gives one passiblelength andthus alsc other lengths
<an be implemented. Furthermore, although Figure SA
represents that the bucket metadata is updated after cer-
1ain steps, il is also passible to update the meladata in
different process stages than disclosed in Figure 5A. Fur-
thermore, Figure 58 discloses only ane embodiment of
passible bucketl deliverer's metadata, and therefore in
olher embodiments the metadata may differ from the
metadata disclosed in Figure 4. For example, in other
embodiment some meladala entries may be missing or
there may be some additional meladata entries.

[0063] Figure 5A disclosed an embodiment in which a
delivery process does naot itself update the status infar-
matian in the buckel meladata as "delivered”. Figure 5C
discloses another embediment in which the last delivery
pracess processing a bucket {partition) also updales the
bucket metadata.

[0064] The processing starts from step 508 of Figure
54, Thedelivery process checks from the deliverer meta-
dala (see Figure 4) how many delivery processes are
assigned to process this particular bucket type (step
540). Next the delivery process checks from the bucket
deliverer's metadata the number of delivery process end
times for the bucket type (step 542). If the number of
delivery processes assigned to process the bucket type
is the same as the number of end limes in lhe buckel
delverer's metadata {step 544), it means that all the de-
livery pracesses assigned to process the bucket type
have already performed their processing. Therefare, the
delivery process updates the status information in the
bucket metadata as 'delivered” (step 548). If the number
ol delivery processes assigned o process the buckel
type is not the same as the number of end times in the
buckat deliverer's meladata, it means that al lsast cne
delivery process has not done ils processing on the buck-

13 EP 1 959 359 B1 14

et

[0065] Figure 50 explains the operation of a delivery
process in {he dala managemenl system according la
another embadiment of the invention. In this embodi-
ment, the dala management syslem samprisas only ane
delivery process.

[0068] The delivery process selects from a slaging ta-
ble & partition that centains the earliest source data (step
560}, The earliest source dala is determined e.g. by par-
tition identifiers. In one embadiment, the partition having
the smallest partition idenlifier containg the earliest
source data. In other words, the delivery process proc-
esses the data in the staging table by the "first in first out”
principle. The oldest partition Is processed first, When
tha oldest partition has been determined, source data
stared in the partition is delivered to at least one target
system (step 562). When all the data contained in the
partition has been delivered, Lhe partition is deleted (step
564)

[0067] Figure 6Adisclosesa partition cleaning process
according to one embodiment of lhe invention. The par-
tition cleaning pracess disclased in Figure 6A is not tied
lo the earier disclosed leading and delivering procass
In other words, the partition cleaning process cperates
as an independent deman process,

[00&8] ‘When the processing starts, the cleaning prac-
ess checks the sialus information of a buckel in the buck-
et metadata {step 600, If the status information of the
bueketis ‘deliverad (step 602}, it means that all delivery
processes have performed their pracessing. Therefore,
when the status information of the bucket is ‘delivered’,
the partition comprising the bucket is deleted {step 804).
After that the status informatian far the bucketin the buek-
et metadala is updated to 'deleted’. The processing ad-
vances to step 808 in which the cleaning process starts
the same processing for a next bucket. If the status in-
formation of lhe bucket was not delivered’ {step 802),
the processing advances directly to step 808 in which
the cleaning process starts the same processing for a
next bucket.

[0069] In one embodiment of Figure BA, the cleaning
progess inrun at predetermined intervals. The interval is
determined e.g. by a system parameter. The parameler
may e.g. determine thatthe cleaning process inexecuted
£.0. once in an hour, in two hours, in sis hours, in one
day ar any other apprapriate interval.

[0070] Figure 6B discloses a partition cleaning process
acearding to one emhodiment of the invention, The par-
litien clezaning process disclesed in Figure 88 is nol tied
to the earlier disclosed loading and delivering process.
In other words, the partition cleaning process oparates
as an independent deman process.

[0071] When the processing starts, the cleaning proc-
esschecks the status information of a buckst in the buck-
el meladata (stap 620). IT the slaius information of the
bucketis ‘delivered’ (step 622}, itmeans that all delivery
processes have performed their processing. Therefors,
when the status infarmation of the bucket is 'delivered’,

20

30

35

A

£5

o

the partition comprising the bucket is deleted {step 624).
After thatthe status information for the bucket in the buek-
el meladala is updated to deleted' {step 626). The
processing advances to step 628 in which the cleaning
pracess slarts ihe same pracassing kor a next bucket. If
the status information of the bucket was not “delivered
{step 622, the processing advances directly to step 628
inwhich the cleaning process starts the same processing
for & nexl buckel.

[0672] When the bucket metadata has been updated
in slep B26, the claaning process checks fram the deliv-
erer metadata (see Figure 4) how many delivery proc-
esses are assigned to process this parlicular bucket type
{step 628). Next the cleaning process checks from the
bucket delivarers metadata the number of delivery proc-
essend timesfor the buckettype (step 830). Ifthe number
of delivery processes assigned o process the bucket
type is the same as the number of end times in the bucket
deliverer's meladata {step 632), it means that all the de-
livery processes assigned to process the bucket type
have already performed Lheir processing. Therefore, lhe
cleaning process updates the status information in the
bucket metadata as 'delivered’ (step §24). [T the number
of delivery processes assigned to process the bucket
type is not ihe same as the number of end times in the
bucket deliverer's metadata, it means that al least one
delivery process has not done ils processing on the buck-
et. If a delivery process has not finished its processing
{and the status inthe buckat metadata is still ‘delivaring),
the cleaning process cantinues (o step 628 in which the
cleaning process starts the same processing for a next
bucket.

[0073] In ane embadimant of Figure 6B, the cleaning
pracess in run at predetermined intervals. The interval is
determined e.q. by a system parameter. The parameter
may e.q. determine that the cleaning process in executed
e.g. ance in an hour, in two hours, in six hours, in one
day or any other appropriate interval.

[0074] By utilizing buckeling via range or list partition-
ing it is possible to ensure that the performance of the
staging tables is the highest possible. There will be no
issues of rising high watermarks or staging table rebuilds
as the delelion of raws of a buckel addresses only a lable
partition. An actual bucket deletion (when all delivery
pracesses processing a bucket have finished) happens
via table partilion dropping, not by deleting rows. The
bucketipartition cleanup process will run. in ane embod-
iment, asynchronously with delivery processes and op-
erations afl lhe cleanup process are done based on ad-
ministrative metadata from process status tables.
[0075] Figure 7 disclases an example of priorilizaticn
of delivery processes accarding to one embodiment of
the invention. When a delivery process start processing
a bucket {a partition) {step 700}, it checks priority infor-
malian relaling 1o the delivary processes ingeneral (slep
702). Far example, a system designer may have priori-
tized some delivery processas before others. A first de-
livery pracess, for example, may have a pricrity 01 in its

13 EP 1 959 358 B1 16

priority figld (step 704). At the same time. a secend de-
livery process may have a priority 02 in its prierity fleld.
This means. for example, that the first delivery process
has to be finished before the second delivery process
may start processing the same bucket {step 706} The
first delivery process may determine, for example, from
the bueket defiverer's matadata {see Figure 58] whether
the second delivery process has finished its processing
wilh the bucket, If, in lhig case, there is an end ime up-
dated in the bucket deliverer's metadata for the second
delivery process (step 708), the first delivery process is
now able to may procesd with its bucket pracessing (step
710

[0076] I all the delivery processed have the same pri-
ority or there has not bean assigned priorities to lhe de-
livery processes at all, the delivery process may proceed
wilh its bucket processing {step 710]

[0077] Theabave prioritization example was descrined
by using only two delivery processes. It is evident to a
man skilled in the art that there may be more than two
delivery processes which have been prioritized based an
same prioritization scheme.

[0078] Figure 8 discloses a data managemenl system
808 accerding la one embadiment of the inventian. The
data management system comprises a loading maduls
800 for loading data in a data managing system. The
loading module 800 is configured to execute the following
source data loading process loop at least ance for a data
type of Lhe saurce data: load source data from a data
source, wherein Lthe loaded amount of source data con-
stitules a buckel; determine a unique identifier for the
bucket based on an identifier scheme; creale a new par-
tition im a slaging area BOG far the bucket; and slore the
bucket in the partition,

[0079] Thedata management system further compris-
es a delivery module 802 for delivering data in a data
managing system. The delivery module 802 is configured
to execute the following delivery process at least once
for a data type of the source data: select a bucket from
the staging area 806, wherein the staging area 806 com-
prises at least one partition, each parlition stering a buck-
et comprising source data loaded from at least one data
source; deliver ihe buckel storedin the parlitionto a larget
system; and update bucket delivers metadata,

[0080] The data management system may also com-
prise & cleaning module 804 for cleaning at least one
staging area 206 in the data managing system. The
dashed line of the box 804 means that the ¢leaning mod-
ule may be an optional feature. Further, the cleaning op-
erations may also be executed manually e.g. by an ad-
ministrater. I there is a cleaning module inthe data man-
agement system, the ¢leaning module 804 is configured
to execute the following cleaning process at predefined
timeintervals far a bucket type; chack, whelher the status
of a buckelis ‘delivered' in a buckel metadata; delete the
partition, from the stagng area 806, containing the buck-
et; and update the status of the buckat to ‘deleted’ in the
bucket metadata.

20

30

35

41

45

Bl

[0081] The embodiment described above discloses
that the cleaning process is an autematic process. Inan-
olher embediment af the invention. the cleaning process
may be executed manually. Needed actions are execut-
ed e.y. by a dalabase administrator.

[0082] In anather embediment of Figure 8, the loading
module may be simpler than disclosed abave. When a
data source starts to provide data, the loading module
800 is configured 1o crale a new partilian in the staging
area BOB. Before the partition is created for the data, it
may be necessary ta create a zero partition inthe staging
table. The zero partition is never touched and therefore
there is always ane partition (zero partition} inthe staging
table, The data s then stored in the created partition. The
operalion af the lnoading module repeats when new dala
is ready to the loaded into the staging area 806, The
Isading module again creates a new partition for the new
data and stores the data in the new partition. The parti-
tions are preferably idenlified 2.g. by sequential numbers
The next set of source data is stared in a partition whose
idenlifier is greater than thal of the previous parlilion
Therefore, the arder of the partitiens identifies also the
loading order of the source data in the partitions.
[C0B3] When saurce data is to be delivered, the deliv-
ery module 802 is configured to select from the staging
area 806 a partition that contains the earliest source data.
The earliest source dala is delermined e.g. by parlition
identifiers. In one embodiment, the partition having the
smallest partition identifier contains the earliest source
data. In other werds, the delivery process processes the
dala in the staging table by the "first in first oul" principle,
The cldest partition is processed first. When the oldest
partition has been delermined, the delivery module 802
is canfigured deliver the stored source data to at least
one farget system. When all the data contained in the
partition has been delivered, the delivery module 806 is
configured to delele the partiticn.

[coB4] 'n ene emboediment of the invention, it is possi-
ble 1o limit the number of simultaneously performed de-
livery processes. This can be achieved, for example, with
a systemn metadata that determines how many delivery
processes can be executed simullansously.

[0085] Inone embodiment af the inventian, simultane-
ously with populating the bucket partition the data may
be loaded inta, for example, flat files for archival, backup
and possible reload purposes. This way itis possible to
hold only the needed amount of buckets in the staging
table and fetch the clder buckets from a file system if
necessary.

[C088] In cne embadiment of the invention. the inven-
tien enables alse the reload of a bad dala bucket [bucket
containing ilegal or corrupted data fram a source system
ot changed pracessing logic in delivery process). The
data can easily be identified by ils buckel idenlifier if bad
dala is loaded, for example, lo dala warehouse struc-
tures, data marts or external interfaces. Deletion of the
data and reloading the bucket will be fast as lhe data
structures in the data warehouse, data marts or external

17 EP 1 959 359 B1 18

interfaces will be indexed alse basad on the bucket iden-
tifier. It buckets are kept in the staging table for a day or
morg, the possible reloading is much easier as lhe reload
data already resides inthe database structures {the stag-
ing table) and there is na nead te feteh it from the backup
files.

[0087] In ane embodiment of the invention, the inven-
tion is able to provide an auto throttie feature. The data
management system may monitor what is, for example,
the relationship between throughput and bucket size.
Based an the moniloring, it is possible lo change the
bucket size dynamically based on various emphasizes,
for example:

- the crealion of buckets is as asl as possible

- the creation of buckets is as fast as possible and the
dalivery procasses work as fast as possible

- the delivery processes work as fast as possible,

[0088] In other words, the data management system
may aplimize lhe buckel size based on dilferenl empha-
sizes,

[0088] Accarding fo one embodiment of the invention
the inventicn combines all process parts in one manage-
able solutian, resulting in 2 flexible loading scheme based
an bucketed incoming data and collected process flow
informalion. The melhod also delaches the solution from
the distinctive contents of a single data flow giving per-
speclive onwhale process and reseuree usage. Further-
more, because data loading and data delivery are sep-
arale and independent processes, they can be executed
asynchronously.

[0090] Furthermare, the present invention solves the
averall challenges, for example, for data warehousing
process of 24¢7 {or near-realtime) environments. Partie-
ularly, the invention solves the problem of staging table
(area) handling, which typically faces the challenges of
rising high water marks, lack of load throttling based on
melrics collecied, identifying bad buckets of data, reload-
ing and process part isclation.

[0091] Ingeneral, the invertion is applicable for all en-
vironments that can utilize range or list partitioning an
tables. Dalabases supporling ilher af these parlitioning
schemes are e.g. Oracle, MySQL, DB2 v (Viper), Tera-
data and alsa parlly Microsoft SQLServer and Sybase.
[0092] The exemplary embadiments can include, for
example, any suitable servers, workstations, and the like,
capable of performing the processes of the exemplary
embodimenls.

[0093] It Is to be understood that the exemplary em-
bodiments are for exemplary purposes, as many varia-
tions of the specific hardware used to implement the ex-
emplary embodiments are possible, as will be appreci-
ated by those skilled in the hardware andfor software
arl{s). For example, 1he lunctionality of one or more of
the components of the exemplary embodiments can be
implemanted via one or more hardware andior saftware
devices.

20

30

35

A

£5

o

[0094] The exemplary embadiments can store infor-
mation relating to various processes described herein.
This informatien can be stored in ong or more memories,
such as a hard disk, optical disk, magnetooptical disk,
RAM, and the like. One or more databases can store the
information used to implement the exemplary embadi-
ments of the present inventions. The databases can be
organized using data structures {e.q., records, tatles,
arrays, fields, graphs, frees, lisls, and the like] included
inoneor more memones or storage devices listed herein,
The processes described with respect {o the axamplary
embodiments can include appropriate data structures for
storing data collected andior generated by the processes
of the devices and subsystems of the exemplary embod-
imenis in one of more databases.

[00a5] All or a portion of the exemplary embodiments
can be conveniently implementad using one or mare gen-
eral pUrpase processors, micropracessors, digital signal
processors, micro-controllers, and the like, programmed
according to the teachings of the exemplary embadi-
ments of the present invenlions, as will be apprecialed
by those skilled in the computer and/ar software art(s).
Appropriate software can be readily prepared by pro-
grammers of ardinary skill based on the teachings of the
exemplary embodiments, aswill be appreciated by ihose
skilled in the software art. In addition, the exemplary em-
badiments can ke implementied by the preparalion of ap-
plication-specific integrated circuits ar by intercannecting
an appropriate netwerk of conventional component cir-
cuits, as will be appreciated by those skilled in the elec-
trical art(s). Thus, lhe exemplary embodiments are not
limited to any specific combination of hardware andior
software.

[0096] Stored on any one or on & combination of com-
puter readable media, the exemplary embodimerts of
the present inventions can include software far contrel
ling the companents af the exemplary embodiments, for
driving the components of the exemplary embodiments,
for enabling the componerits of the exemplary embodi-
ments to interact with a human user, and the like. Such
software can include, but is not limited to, device drivers,
firnmware. operating systems, development toals, appli-
calions soflware, and the like, Such compuler readzable
media further can include the computer pragram product
of an embodiment of the present inventions for perfarm-
ing all or a portion {if processing is dislributed) af the
processing perfermed in implementing the inventions.
Camputer code devices of lhe exemplary embodiments
of lhe presenl invenlions can include any suilable inter-
pretable or executable code mechanism, mcluding but
nal limiled to seripts. interpretable pregramas. dynamic
link libraries (OLLs). Java classes and applets. complete
executable programs, Common Object Request Broker
Architecture {COR-BA) abjecls, and the like. Moreover,
parts of the processing of the exemplary embodiments
of the present inventions can be distributed for better
performance, reliability, cost, and the like

[0097] As stated above, the components of the exem-

19 EP 1 959 358 B1 20

plary embediments can include computer readable me-
dium or memeries for holding instructions programmed
accerding to the teachings of the present inventions and
for halding data structures, tables, records, and/or other
data described harein. Computsr readabls medium can
include any suitable medium that participates in providing
instructions Lo a processar far execulion. Such a medium
can take many forms, including but not limited to. non-
valatile madia, volatile media, transmission media, and
the like. Non-volatile media can include, far example. op-
tical ar magnetic disks, magneto-oplical disks, and the
like. Volatile media can include dynamic memaries, and
the like. Comman ferms of computer-readable media can
include, for example, a floppy disk, a flexible disk, nard
disk, magnetic tape, any ather suitable magnetic medi-
um, a £D-ROM, CDR, CD-RW, DVD, DVD-ROM,
DVD ' RW, DVD ' R, any other suilable optical medium,
punch cards, paper tape, optical mark sheets, any other
suitable physical medium with patterns of holes or other
optically recognizable indicia, a RAM. a PROM, an
EPROM. a FLASH-EPROM. any other suilable memory
chip ar carfridge, a earrier wave ar any ather suitable
medium fram which a computer can read.

[0098] While the present inventions have been de-
scribed in connection with a number of exemplary em-
badiments, and implementations, the present inventions
are not so limited, bul rather cover various modifications,
and equivalent arrangements, which fall within the pur-
view of prospective claims

Claims

1. Acomputer-implemented method for pracessing da-
ta in a data managing system comprising at least
one staging area {202) into which data can be load-
ed,
characterised in that the method comprises:

executing the following source data loading
process (206} al least ance for a data type of
source data;

leading source data from 2 data source
{200) storing source dala as rows of data,
wherein the loaded amount of source data
constitutes a bucket and wherain the bucket
comprises at least one row of data;
creating a new partition {210} in 2 slaging
area for the bucket;

determining a unigue identifier for the buck-
€l, the unique identifier being unique among
buckets of the same data type or amang all
buckets of all data types;

assigning a parlilion identifier for the parti-
tien £216), the partition identifier comprising
the unique identifier of the bucket;

tagging each row of data in the bucket with

20

30

35

41

45

Bl

the unigue identifier;

storing the bucket in the partition identified
by the parlition identifier; and

generating bucket metadata for the bucket,
the bucket metadata dstermining propertias
for the bucket stared in the partition,

executing the following delivery pracess (208)
at least once for 3 bucket, the delivery process
acting as a bucket deliverer having associated
metzadata:

selecting a bucket stored by the loading
process ina partition of a staging area {202);
delivering the selecled bucket 1o a targel
system (204): and

updating in bucket deliverers metadata that
the delivery process (208) has finished
processing the bucket;

executing the following cleaning process at pre-
defined time intervals for a bucket;

checking, fram the bucket metadata of a
bugket. whether ihe bucket has been proc-
essed by all delivery processes (208)
processing the bucket;
dropping the partition cantaining the bucket,
when alldelivery procasses {208) process-
ing the bucket have processed the buckst;
and

updating in the bucket metadata that the
buckel has been dropped.

wherein the loading process (206), the delivery proc-
ess (208) and the cleaning process are executed
asynchranously.

2. Themethod aceording to claim 1, wherein the bucket

metadata comprises at least one of the following:

bucket identifier;

bucket type;

number of records in the bucket;
earliest record in the bucket;
latest record in the bucket:
status of the bucket;

bucket start time;,

bucket end lime; and

Icaded rows per second.

3. The method according to any of claims 1 - 2, further
comprising:

sloring a duplicate of the bucket into an addi-
tonal data stare during the loading process
(208); and

proviging the duplicate data with the same

21 EP 1 959 359 B1

uhigue identifier,

The method according to any of claims 1 - 3, wherein
the bucket size is fixed.

The method according to any of claims 1 - 3, further
comprising:

changing the bucket size al lsast ance.

The method aceording 1o claim 1, wherein lhe se-
lecting comprises at least one of the following:

selecting the bucket based on a bucketidentifier;
and

selecting the bucket based on a time stamp in
a bucket metadata

The method according to claim 1, wherein during the
execution of the delivery process (208}, the method
further comprises:

updating status information of the bucket in the
bucket metadata ta ‘delivering’, when the deliv-
oy process starts delivering the data in the
bucket.

The method according ta anyofclaims 1 - 7, wherein
during the execution of Lhe delivery process (208),
the method further comprises.

updating bucket deliverer's metadata, when the
delivery process starts processing the bueket,
the updating comprising:

adding a deliverer identifier in the bucket
deliverer's metadala; and

adding a deliverer start time in the bucket
deliver's metadata.

The method aceording to claim 8, wheregin during the
execution of the delivery process {208}, the method
further comprises;

updating lhe bucketdeliverer's meladata, when
the delivery pracess ends precessing the buck-
at, the updating cemprising:

adding a deliverer end time in the buckst
deliverser's metadata,

10. The method according to claim 9. wherein during the

execution of the cleaning process, the method fur-
ther comprises;

checking, whether the bucket deliverer's meta-
data comprises other deliverer identifiers iden-
tifying delivery processes (208) that process the

30

35

A

£5

o

@
&

1.

22

same data type;

checking. whether there exists a deliverer end
lime for each deliverer identifier; and

updating the status information in the bucket
mstadata to ‘deliversd’. when there exists a de-
liverer end time for each deliver identifier.

The method accarding toany ofclaims 1- 10, where-
in the data management system comprises delivery
process metadata for each delivery process (208),
Ihe metadata comprising atleastone of the fallowing:

an identifier of the delivery process;

a name of the delivery process;

a lype of ihe delivery process;

a description for the delivery pracess;
prierity of the delivery process; and

a target bucket type of the delivery process,

. A computer program comprising program code con-

ligured to perfarm the melhod of any of claims 1- 11
when executed in a data processing device.

. The computer program according ta claim 12, em-

badied on a computer-readable medium,

A dala management sysiem (BOB) comprising al
least one staging area (808} in which source data
can be stored;

charactarisadinthat the data managemenl system
{808) comprises:

a loading madule [E00) for laading data in the
data management system (808), wherein the
leading module ¢800) is configured to execute
the following source data leading process at
least once for a data type of source data:

load source data from a data souree {200)
storing source data as rows of data, wherein
the loaded amount of source dala consti-
lutes a bucket and whergin the bucket com-
prises al least one row of dala;

create a new partition in a staging area for
the buckat;

determine a unigue identifier for the bucket,
the unique identifier being unigue ameng
buckets of the same data type or among all
buckets of all dala lypes;

assign a partition identifier far the partition,
the partition identifier comprising the unigue
identifier of the bucket:

tag each row of data in the bucket with the
unique identifier;

slore the bucket in the partition identified by
the partition identifier; and

generate bucket metadata for the bucket,
the bucketmetadata determining properties

23
for the bucket stared in the partition;

adelivery module (802) for deliveringdatainthe
data management system (808}, wherein the
delivery module (802) is configurad 1o exacute
the following delivery process (206) at lzastonce
for a bucket , the delivery process acting as a
bucket deliverer having associated metadata:

select a bucket stored by the loading proc-
ess in a partition (210} of a staging area
{202, 806);

deliver the selected bucket to a target sys-
tem (204); and

update in bucket deliverer's metadata that
the delivery process (206) has finished
pracessing the bucket; and

a cleaning module {804} for cleaning data in the
data management system (808), wherein the
cleaning module {804) is configured o execute
the following cleaning process at predefined
time intervals for a bucket:

checking, rom buckel metadala of a buck-
et, whether the bucket has been pracessed
by all delivery processes {206} processing
the bucket;

dropping the partition conlaining the bueket,
when all delivery processes (208) pracess.
ing the bucke! have processed the bucket;
and

updating in lhe bucket metadata that the
bucket has been dropped;

wherein the loading module (800), the delivery mod-
ule (802) and Lhe cleaning medule (304) are config-

ured to be executed asynchrencusly.

15. The data management system (808) according to

claim 14, wherein the bucket metadata comprises at

least one of the following;

bucket identrfier;

bucket type;

number of recards in the bucket:
earliest record in the bucket:
latest record in the bucket;
status of the bucket:

bucket start time;

bucket end time; and

loaded rows per second

16. The data management system (808) according to
any of claims 14 - 15, wherein the loading medule is

configured to:

store a duplicate of the bucketinlo an additional

20

30

35

41

45

Bl

@
&

20,

21,

22,

23,

EP 1 959 358 B1 24

data stare during the loading process; and
provide the data with the same unigue [dentifier.

. The data management system {808} according to

anyofelaims 14 - 15, wherein the bucket size is fixed.

. The data management system (808} aceerding to

any of ¢laims 14 - 17, wherein the loading module is
canfigured to:

change the buckel size at least onca

. The data management systern (808} according to

claim 14, whereln the delivery module (802) Is con-
figured to select the bucket based on at least of the
following:

a bucket identifier; and
a tims stamp in a8 bucket metadata.

The data management syslem {BO8} according to
claim 14, wherein the delivery module (802} is can-
figured to:

update status information of the bucket in the
bucket metadata ta ‘delivering’, when starting
processing lhe bucket wilh the delivery process.

The data management syslem (B08) according to
any of claims 14 . 20, wherein the delivery module
{802) is configured fo;

update bueket deliverers metadala, when the
delivery module (802 starts processing the
bucket, the updating comprising:

adding a deliverer idenlifier in the buckel
deliverer's metadata; and

adding a deliverer start time in the bucket
deliver's metadata.

The data management system {808} accerding to
claim 21, wherein lhe delivery module {802} is con-
figqured to:

update the bucket deliverer's metadata, when
the delivery module (802) ends processing the
bucket, the updating comprising:

adding a deliverer end time in the bucket
deliverer's meladata

The data management system (808} according to
any of claims 14 - 22, wherein the data management
system (808) comprises delivery process metadata
for each delivery process (2083, the metadata com-
prising at laast one of e following:

25 EP 1 959 359 B1

an identifier of the delivery process;

a name of the delivery process:

a type of the delivery pracess;

a description for the delivery process;
prictity of the delivery process; and

a targst bucket type of the delivery process.

24. The data management system (808) according to

any of claims 14 - 23, wherein the cleaning module
(804} is configured to:

check, whether a bucket deliverer's meladata
comprises other deliverer identiliers identifying
delivery processes {206} that process the same
dala type;

check, whether there exists a deliverer end time
for each delivarer identifier; and

update lhe status information in the bucket
metadata lo ‘delivered’, when there exists a de-
liverer end time for each deliver identifier.

Patentanspriiche

1.

Computerimplementiertes Verfahren zur Yerarbei-
tung von Daten in einem Datenverwaltungssystem

mindestens einem Einspeicherungsbereich

[202). in welchen Daten geladen werden konnen,
dadurch gekennzeichnet, dass das verfahren um-
fasst:

mindestens einmaliges Ausfihren des folgen-
den Cueldatenladeprozesses (208) flr ginen
Datentyp von Quelldaten:

Laden von Guelldaten aus einer Datenquel-
le 1200}, welche Quelldaten als Zgilen von
Daten speichert, wobei die geladene Men-
ge von CQuelldaten einen Eimer darstellt.
und wobei der Eimer mindestens eine Zeile
von Daten umfasst:

Bilden einer neusn Partition (210) in einem
Einspeicherungsbereich fiir den Eimer;
Bestimmen einer eindeutigen Kennung flr
den Eimet, wobei die eindeutige Kennung
unter Eimern des gleichen Datentyps oder
unter allen Eimern aller Datenty pen eindeu-
tig ist;

Zuordnen einer Partilicnskennung fur die
Partition {210). wobel die Parlitionsken-
nung die eindeutige Kennung des Eimers
umfasst:

Kennzeichnen jeder Zaile von Daten im Ei-
mer mit der eindeutigen Kennung;
Speichern des Eimers in der Partilion, die
durch die Partitonskennung identifiziert
wird;

Erzeugen von Eimer-Megadaten fiir den Ei-

20

30

35

A

£5

o

26

mer, wobei die Eimer-Megadaten Eigen-
schaften fr den Eimer bestimmen, der in
der Partition gespeichert wird,

mindestens einmaliges Ausfiihren des folgen-
den Zustellprozesses (208) fir einen Eimer, wo-
beider Zustellprozess als Eimerzusteller mitas-
soziierten Metadaten fungiert:

Auswahlen eines Eimers, der durch den La-
deprozass in einer Parliion des Einspei-
cherungshersichs (202) gespeichert wird;
Zustellen des ausgewdhiten Eimers an ein
Zielsystem (204); und

Aklualisieran in Eimerzusteller-Metadalen,
dassder Zustellprozess (208) Verarbeitung
des Eimers abgeschlossen hat;

Ausiiihren des folgenden Loschprozesses in
vordefinierten Zeitintervallen fur einen Eimer:

Prifen anhand der Eimer-Metadaten eines
Eimers, ob der Eimer durch alle Zustellpro-
zesse (208}, die den Eimer verarbeilen. ver-
arbeilet wurde:

Verwerfen der Partition, die den Eimer ent-
hélt, wenn alle Zustellprozesse {208}, die
den Eimer verarbeiten, den Eimer verarbei-
tet haben; und

Aktualisieren in den Eimer-Meladaten,
dass der Eimer verwarfen wurde,

wobei der Ladeprozess (206). der Zustellpro-
zess (208) und der Leschprozess asynchron
ausgeflhrt werden.

2. Verfahren nach Anspruch 1, wobei die Eimer-Meta-
daten mindestens eines von Falgendem umfassen:

Eimerkennung;

Eimerlyp;

Anzahl von Datensétzen im Eimer.
friuhesiem Dalensalz im Eimer;
letztem Datensatz im Eimer;
Stalus des Eimers;
Eimer-Startzeit.

Eimer-Endzeit: und

geladenen Zeilen pro Sekunde,

Verfahren nach einem der Anspriche 1 bis 2, ferner
urnfassend:

Speichern eines Duplikats des Eimers in einem
zusatzlichen Datenspeicher wahrend des Lade-
prozesses {208); und

Wersehen der duplizierten Daten mit der glei-
chen eindeutigen Kennung.

27 EP 1 959 358 B1 28

Vetfahren nach einem der Ansprilche 1 bis 3, wobei
die Eimergrane fest ist.

Wetfahren nach einem der Anspriiche 1 big 3, ferner
Limfassend:

mindestens einmaliges Andern der Eimergrifie

Werfahren nach Anspruch 1, wobgi das Auswihlen
mindestens eines von Folgendem umfassen;

Auswahlen des Eimers basierend auf einer Ei-
merkennung; und

Auswihlen des Eimers basierend auf einem
Zeilslempe! in Eimer-Metadaten

Werfahren nach Anspruch 1, wobei das Verfahren
wahrend der Ausfuhrung des 2Zustellprozesses (208)
ferner umiasst:

Aktualisieren von Stalusinformationen des Ei-
mers in den Eimer-Meladaten auf 'Es wird zu-
gesielll’, wenn der Zustellprozess mil dem Zu-
stellen der Daten im Eimer beginnt.

Verfahren nach einem der Anspriche 1 bis 7, wobel
das Verfahren wahrend der Ausfithrung des Zustell-
prozesses (208} ferner umfasst:

Aklualisieren von Eimerzusteller-Metadaten,
wenn der Zustellprazess mit der Verarbeilung
des Eimers beginnt, wobei das Aklualisieren
umfasst:

Hinzufligen einer Zustellerkennung in den
Eimerzusteller-Metadaten; und
Hinzuflgen einer Zusteller-Starlzeit in den
Eimerzusteller-Metadaten.

9. Verfahren nach Anspruch 8, wobei das Verfahren

whhrend der Ausfihrung des Zustellprozesses {208}
ferner umfasst:

Aklualisieren der Eimerzusteller-Metadaten,
wenn der Zustellprozess die Verarbeitung des
Eimers besndet, wobei das Aktualisisren um-
fasst:

Hinzuflgen einer Zusleller-Endzeil in den
Eimerzusteller-Metadaten.

10. Verfahren nach Anspruch 9, wobei das ‘Yerfahren

wahrend der Ausfuhrung desLdschprozesses farmer
umfasst:

Prifen, ob die Eimerzusteller-Metadaten ande-
re Zustellerkennungen umfassen, welche Zu-
stellprozesse (208) identifiziersn, die den glei-

20

30

35

41

45

Bl

@
&

11,

chen Datentyp verarbeiten;

Priifen. cb eine Zusteller-Endzeit fir jede Zu-
stellerkennung verhanden ist; und
Aktualisieren der Statusinformationen inden E-
mer-Metadaten auf ‘zugestelll, wenn eine Zu-
steller-Endzeit fir jede Zustellerkennung vor-
handen ist.

Varfahren nagh sinem der Apsprilche 1 bis 10, webei
das Datenverwaltungssystem Zuste llprozess-Meta-
daten fir jeden Zusteliprozess {208} umfassl, wobei
die Metadaten mindestens eines von Folgendem
umfassen:

einer Kennung des Zustellprozesses;
einem Mamen des Zustellprozesses;
cinem Typ des Zustellprozesses;

einer Beschreibung fir den Zustellprozess:
Prioritat des Zuslellprozesses; und

einem Ziel-Eimertyp des Zustellprozesses.

. Computerprogramm, umfassend Pregrammeode,

derso kanfigurierlist, dass er bei Ausfilhrung in einer
Datenverarbeitungsvorrichtung das Verfahren nach
einem der Ansprilche 1 bis 11 durchfijhrt,

. Computerpragramm nach Anspruch 12, das auf ei-

nem camputerlesbaren Medium enthalten ist

. Datenverwaltungssystem (808), umfassend min-

destens einen Einspeicherungsbereich {806}, inwel-
chem Quelldaten gespeichert werden konnen;
dadurch gekennzeichnet, dass das Datenverwal-
tungssystem (808) umfasst:

gin Lademodul {800} zum Laden ven Daten im
Dalenverwallungssystem (808), wobei das La-
demadul {800} so konfiguriert ist, dass es den
folgendan Quelldatenladeprozess fUr einen Da-
tentyp von Quelldaten mindestens einmal aus-
fihrt:

Laden von Quelldaten aus einer Dalenguel-
le {200}, welche Quelldaten als Zeilen von
Draten speichert, wobei die geladene Men-
ge von Quelldaten einen Eimer darstellt,
und wobei der Eimer mindestens eine Zeile
van Daten umfasst,

Bilden einer neuen Partilion in einem Ein-
spelcherungsbereich fir den Eimer:
Bestimmen einer eindeutigen Kennung flr
den Eimer, wobel die gindeutige Kennung
unter Eimern des gleichen Datentyps oder
unter allen Eimerm aller Datentypen eindeu-
tig ist;

Zuordnen einer Partitionskennung fir die
Partition, wobei die Partitionskennung die
eindeutige Kennung des Eimers umfasst:

28 EP 1 959 359 B1 30

Kennzeichnen jeder Zeils von Daten im Ei-
mer mit der eindeutigen Kennung:
Speichern des Eimers in der Parlilion, die
durch die Partitionskennung identifiziert
wird; und

Erzeugen van Eimer-Megadatenfir den Ei-
mer, wobel die Eimer-Megadaten Eigen-
schaften flr den Eimer bestimmen. der in
der Partition gespeicherl wird;

ein Zustelmodul {802} 2um Zustelien von Daten
im Datenverwaltungssystem {808). wobei das
Zustellmodul {802} so konfiguriert ist, dass es
den folgenden Zustellprozess (208) fur einen Ei-
mer mindeslens ainmal ausfuhrt, wobei der Zu-
stellprozess als Eimerzusteller mit assoziiertten
Metadaten fungiert:

Auswahlen eines Eimers, der durchdenla-
deprozess in einer Partition (210) des Ein-
speicherungsbereichs {202, BO6) gespei-
chert wird;

Zustellen des ausgewahlen Eimers an ein
Zielsystem {204); und

Aklualisieren in den Eimerzusteller-Meta-
daten, dass der Zustellprozess (206) Ver-
arbeitung des Eimers abgeschlossen hal;
und

ein Loschmodul (804) zum Loschen von Daten
im Dalenverwallungssystem {808), wobei das
Laschmodul (804) so kanfiguriert ist, dass es
den folganden Lischprozess fir einen Eimer in
vordefinierten Zeitintervallsn ausfihrt:

Prafen anhand von Eimer-Meladaten eines
Eimers, ob der Eimer durch alle Zustellpro-
zesse (206), die denEimer verarbeiten, ver-
arbeitet wurde;

Verwerfen der Parlilion, die den Eimer enl-
halt, wenn alle Zustellprozesse (206), die
den Eimer verarbeiten. den Eimer verarbei-
tel haben; und

Aktualisieren in den Eimer-Metadaten,
dass der Eimer verworfen wurde,

wobel das Lademadul (800}, das Zustslimadul
(802) und das Léschmedul (804} se kenfiguriert
sind, dass sie asynchron ausgefihrt werden.

15. Datenverwaltungssystem (808) nach Anspruch 14,

wabei die Eimer-Metadaten mindestens eines von
Folgendem umfassen:

Eimerkennung;

Eimertyp;

Anzahl ven Datensatzen im Eimer;
frihestem Datensatz im Eimer:

20

30

35

A

£5

o

@
&

letztem Datensatz im Eimer;
Status des Eimers;
Eimer-Startzeit;

Eimer-Endzeit; und

geladenan Zeilen pro Sekunde.

16. Datenverwaltungssystem (808) nach einem der An-
spriche 14 bis 15, wobeidas Lade modul konfiguriert
ist zum,

Spaichern eines Duplikats des Eimers in 2inem
zusatzlichen Datenspeicher wihrend des Lade-
prozesses; und

Yersehen der Daten mit der gleichen eindeuti-
gen Kennung

17. Datenverwaltungssystem (808) nach einem der An-
sprische 14 bis 15, wobel die Eimergrole fest ist,

18. Datenverwaltungssystem (808) nach einem der An-
spriiche 14 bis 17, wobeidas Lademadul kanfigurierl
ist zum:

mindestens einmaligen Andern der Eimergro-
e,

19. Dalenverwallungssystem (808) nach Anspruch 14,
wobei das Zustellmodul (802) so kanfigunert ist,
dass es den Eimer basierend auf mindestens einem
von Folgendem auswahit:

einer Eimerkennung: und
einem Zeitsternpel in Eimer-Metadaten

20.

=1

Datenverwaltungssystem (808) nach einem der An-
spriiche 14 bis 15, wobei das Zustellmodul {802)
konfigurier! ist zum:

Aktualisieren von Statusinformationen des Ei-
mers in den Eimer-Metadaten auf "Es wird zu-
gestelt beiBeginnder Verarbeitung des Eimers
mil dem Zustellprozess.,

21.

Datenverwaltungssystem (808) nach einem der An-
spriiche 14 bis 20, wobel das Zustellmodul {802)
konfiguriert ist zum:

Aktuzlisieren van Eimerzusteller-Metadaten,
wenn das Zustellmadul (BO2) mit der Verarbei-
tung des Eimers beginnt, wobel das Aktualisie-
ren umfasst:

Hinzufugen einer Zustellerkennung in den
Eimerzusteller-Metadaten; und
Hinzuiflgen einer Zusieller-Siartzeit in den
Eimerzusteller-Metadaten.

22. Datenvenwaltungssystem {808) nach Anspruch 21,

31 EP 1 959 358 B1

wobei das Zustellmedul (802) kanfiguriert ist zum:

Aktualisiersn der Eimerzusteller-Metadaten,
wenn das Zustellmodul {802} die Verarbeitung
des Eimers beendel, wabei das Aklualisieren
umfasst:

HinzufUgen einer Zusteller-Endzeit in den
Eimerzustaller-Metadalen.

23. Dalenverwaltungssystem {808) nach einem der An-
sprilche 14 bis 22, wobel das Datenverwaltungssys-
tem (808) Zustellprozess-Metadaten fir jeden Zu-
stellprozess {206% umfasst, wobei die Metadaten
mindestens eines von Folgendem umfassen

giner Kennung des Zustellprozesses:
einemn Namen des Zuslellprozesses;
einem Typ des Zuslellprozesses;

einer Beschreibung fir den Zustellprozess;
Priarital des Zustellprozesses; und

einem Ziel-Eimertyp des Zustellprazesses.

24. Dalenverwaltungssystem (808} nach einem der An-
spriiche 14 bis 23, wobeidas Loschmodul (804} kan-
figuriert ist zum:

Prafen, ab Eimerzusteller-Metadalen andere
Zuslellerkennungen umiassen, welche Zustell-
prozesse (206) identifizieren, die den gleichen
Datentyp verarbeiten;

Prifen, ab eine Zusteller-Endzeit fur jede Zu-
stellerkennung vorhanden ist; und
Aklualisiersn der Statusinformationan in den Ei-
mer-Metadaten auf “zugestelt’, wenn eine Zu-
steller-Endzeit flir jede Zustellerkennung vor-
handen ist.

Revendications

1. Procéde mis en oeuyre par ardinateur, pour le frai-
lement de données dans un systéme de geslion de
données comprenant au meing une zone te prépa-
ration (202) dans laquelle des données peuvent &lre
chargées.
caractérisé en ce gue le procédé consiste a

exécuter aumains une fois le frailement de char-
gement de données sources suivant {(206) pour
un type de données de données sources, con-
sistant a .

charger des données sources d'une source
de donnéaes {200} conlenant an mémoire
des données sources sous forme de ran-
gées de donnses, dans laquel 1a quantits
chargée de données sources constitue un

20

30

35

41

45

Bl

3z

greupement et dans lequel le groupement
comprend au moins une rangée de
dennées ;

créer une nouvelle partition {210} destinée
au groupemenl dans une zane de
préparation ;

déterminer unidentificateur unique du grou-
pement, I'identificateur unigue étant unigue
parmi des groupemenis du mame type de
données ou parmi tous les groupements de
tous les types de donnges ;

attribuer un identificateur de partition & la
partition (210), lidentificateur de partition
comprenant [identificateur unigue du
groupement ;

étiqueter chague rangée de données du
groupement avec ldentificaleur unique ;
mémeriser ke groupement dans |a partition
identifise par lidentificateur de partiion ; et
générer des métadonnées de groupement
du groupemenl, les metadonnées de grou-
pement déterminant des propriétés du
groupement mémarisé dans la partition,

exécuter au mains ung fais le traitement de dis-
tributian suivant {208} pour un groupement, le
traitement de distribution servant de distributeur
de groupement comportant des métadonnées
associées, consistant &

sélectionner un groupement mémarisé par
le traitement de chargement dans une par-
tilion &'une zone de préparation (202 ;
distribuer le groupement sélectionné & un
sysléme clble (204) ; et

medire 2 jour des meétadannées du distribu-
teur de graupement indiguant gue le traite-
ment de distribution {208} a terminé de trai-
ter le groupement ;

exécuter le frailement de nettoyage suivantdun
groupement & des intervalles de temps prédefi-
nis, consislant a:

wérifier, & parlir des métadonnées de grou-
pementd un graupemeant, si l& groupement
a fait Fobjet de tous les traitements de dis-
tribution (208} de ftraitement du
groupement ;

éliminer la partition contenant le groupe-
ment, lorsque tous les tratements de distri-
bution {208} de traitement du groupement
ant traite le groupement | et

metire a jour les métadonnées de graupe-
mentindiquanl que le groupamenl a &lé éli-
miné,

dans lequel le traitement de chargement {206),

33 EP 1 959 359 B1 4

letraitement de distribution {208) etle traitement
de nettoyage sont exécutés de fagon asynchro-
ne.

Procéde selon la revendication 1, dans leguel les
métadonnées de groupement comprennent au
meins I'une des composantes suivantes :

un identficaleur de groupement ;
un type de groupement ;

un nombre denregistrements dans e
groupement ;
l'enregistrernent le plus ancien dans e
groupement ;
I'enregisirement le plus récenl dans e
groupement ;

un état du groupament ;

un instant de début de groupement ;
un instant de fin de groupement ; et
les rangées chargées par seconde.

Pracédé selon 'une quelcongue des revendications
1et?2, consistanl encutre &

mémariser une repreduclion du groupement
dans une mémoire de données supplémentaire
pendant |e trailement de chargement {208} ; el
attribuer le méme identificateur unique aux don-
hées reproduites.

Procédé selon ['une quelconque des revendications
1 a3, dans lequel le groupement a une taille fixe.

Pracédé selon 'une quelcongue des revendications
14 3, consistant enoutre & :

modifier au mains une fois |a Laille de groupe-
ment.

Pracedé selon la revendication 1, dans lequel la sé-
lection cemprend au meins lune des sélections
suivantes :

une sélection du groupement sur la base d'un
identificateur de groupement ; et

une sélection de groupement sur la base d'une
astampille temperelle de m étadonnées de grou-
pement.

Pracédé selon la revendication 1, dans lequel. pen-
dant l'execution du trailement de distribution (208),
le proceédé consiste en outre & ¢

metire a jour des informations d'elat du groupe-
meni des métadonnees da groupament a I'etat
« en cours de distribution », lorsque le traite-
ment da dislribution commenee la distribution
des données du groupement,

20

35

A

£5

o

Procédé selon Mune guelcongue des revendications.
147, danslequel, pendant 'execution du traitement
de distribulion (208), le procéds consiste enoulrea ;

meltre & jour des méladonnées du dislributeur
de groupement. lorsque le traitement de distri-
bution commence a traiter le graupement, la mi-
se & jour consistant & ;

ajouter un identificateur de distributeur aux
meétadonnées du distributeur de
groupement ; et

ajouter un instant de début du distributeur
aux métadonnées du distributeur de grou-
pement

Procédé selon |a revendicalion B, dans lequel, pen-
dant "'exécution du traitement de distribution (208),
le procedé consiste en oulre a :

mettre & jour les métadonnéas du distribuleur
de groupement, lorsque le traitement de distri-
bution termine le traitement du groupement. la
mise & jaur consistant & :

ajouter un instant de fin de distributeur aux
méladonnées du distributeur de groupe-
ment.

10. Procéde selon |a revendicalion 8. dans lequel, pen-

dant 'exécution du traiterment de nettovage, le pro-
cédé consiste enoulre 4 :

vérifier si les métadannéss de distributeur de
groupement comprennent dautres identifica-
leurs de distributeur identifiant des Iraitements
de distribution {208} qui traitent |z méme lype
de dannees ;

vetifier la présence éventuslle d'un instant de
fin de distributeur de chaque identificateur de
distributeur ; el

mettre & jour les informations d'élat des méta-
données de groupement 3 élat « disiribué »,
lors de la présence d'un instant de fin de distri-
buteur pour chague identificateur de distribu-
tion,

11. Procédé selon Mune quelcongue des revendications

13 10,dans lequel lesystemede geslionde données
comprend des métadonnées de traitement de distri-
butien pour chagque raitement de distribution (208),
les métadannées comprenant au mains une compa-
sante parmi les composantes suivantes :

un idenlificateur du trailement de distribulion
un nem du traitement de distribution
un lype du fraitement de distribution ;
une description du traitement de distribution ;

12.

33
une priorité attribuée au fraitement de
distribution ; et
un type de groupement cible du traitement de
distribution.

Programme infarmatique comprenant un code de
pragramme congu pour metire en ceuvre le procédé
selon I'une quelconque des revendications 1 4 11
lorsqu’il est exécula dans un dispasilf de traitement
de données.

. Programme informatique selen la revendication 12,

intégré 4 un supporl lisitle par ordinateur.

Sysléme de gestion de donnaes (BO&) comprenant
AU moins une zone de préparation (806) dans |a-
guslle des donndes sources peuvenl élre
mémorisées :

caractérisé en ce que le systeme de gestion de
données (808) comprend

unmadule de chargement (800) servant & char-
ger des données dans le systéme de geslion de
donnges (808), dans lequel le module de char-
gement (800) est configurd pour exéculer au
meins une fois le traitement de chargement de
données sources suivant pour un type de don-
nées de données sources, consistant &

charger des données saurces dune source
de données (200) contenant en mémaire
des données sources sous farme de ran-
gées de données, dans laquel 1a quantité
chargée de données sources constitue un
groupement et dans leguel le groupement
comprend au moins une rangée de
dannees ;

créer une nouvelle partition destinée au
groupement dans ure Zone de préparation
déterminer un identificateur unique dugrou-
pement. lidentificatewr unique &tant unigue
parmi des groupements du méme type de
daonnees ou parmi tous les groupements de
tous les types de donnéeas ;

atfribuer un identificateur de partition & la
partition, lidentificateur de partition com-
prenant lidentificateur unigue du
groupement ;

éliqueler chague rangee de donnees du
groupement avec |'identificateur uniqus ;
mémariser le groupemenl dans la partition
identifiée par lNidentificateur de partition ; et
générar des métadonnéas de groupement
du groupement, les métadonnées de grau-
perment determinani des proprigles du
groupement mémerisé dans la partition ;

un module de distribution (802) servant a distri-

20

30

35

41

45

Bl

EP 1 959 358 B1 36

buer des données dans |e systéme de gestion
de données, dans lequel le medule de distribu-
tion {802) est configure pour exéculer au moins
une fois le traitement de distribution suivant
{208) pour un groupement, le traitement de dis-
tribution servant de distributeur de groupement
comportant des méladonnées associées., con-
sistant 4

sélectionner un groupement mémaorisé par
le traitement de chargement dans une par-
tition {2103 d'une zone de préparation (202,
808) ;

distribuer le groupement sélectionné & un
systéme cible (204) ; at

mettre & jour des métadonnées du distribu-
teur de graupement indiguant gue le traite-
ment de distribulion {206} a terming de trai-
ter le groupement ; et

un module de nettayage (804) servanla netloysr
des données dans le systéme de gestion de
dannées {B08), dans lequel le module de net-
toyage (804) est configuré pour exécuter le trai-
tement de netloyage suivant a des intervalles
de temps prédéfinis paur un groupement, can-
sistant a :

vérifier, 4 partir de matadonnées de grou-
pementd un groupemenl, si le graupement
@ €l@ Iraité par lous les trailements de dis-
tribution {206) de fraitement du
groupement |

éliminer la partition cantenant le groupe-
ment, lorsque tous les traitements de distri-
bution {208} de traitement du groupement
ont lraité le groupement ; et

mettre d jour les métadonnées de groupe-
ment indiquant que le groupement a été
éliming ;

dans lequel le moadule de chargement (800), le
module de distribution (802) el le module de nel-
toyage (B04) sont configurés pour une exécution
asynehrone.

15. Systeme de gestion de données (B08) selon Ia re-
vendication 14, dans lequel les métadonnées de
groupement comprennent au moins Fune des com-
pasantes suivantes :

un identificateur de groupement ;
un type de groupement ;

un nembre denregistrernents dans e
groupement ;
I'enregistrement le plus ancien dans le
groupement ;

'enregistrement le plus récent dans e

37 EP 1 959 359 B1 38

graupement ;

un état du groupement ;

un instanl de début de groupement ;
un instant de fin de groupement : et
lgs rangées chargéas par saconde.

16. Systéme de gestion de données {808} salon ['une

1

1

1

20.

o

o

©

(=)

quelcongue desrevendications 14 et 15, dans lequel
le module de chargement est configuré pour :

mémariser une reproduclion du groupement
dans une mémaire de données supplémentaire
pendant e traitement de chargement | et
attribuer le méme identificateur unique aux don-
nees

Systéme de gestion de donnees {808} selon I'une
quelcengue desrevendications 14 €115, dans lequel
le groupement a une taille fixe.

Sysléme de gestion de données {808} selon I'une
quelcongue des revendicatons 14 417, dans lequel
le module de chargement est configure pour

modifier au mains ung fois |a taile de groupe-
ment.

Systéme de gestion de données (B08) selon la re-
vendication 14, dans laquel le module de distribution
(802} est configuré pour sélectionner le groupement
sur la base dau moins I'une des composentes
suivantes :

un identificateur de groupement ; et
une estampille temperelle des métadonnées de
graupement.

Systéme de gestion de données (808) selon la re-
vendieation 14, dans leguel le module de distribution
802) est configuré paur

metlre & jour des informations d'elat du groupe-
menl des méladonnees de groupement a I'etat
% en cours de distribution », au debut du traite-
ment du grouperrent au moyen du tratement
de distribulion.

21. Sysléme de gestion de données {802} salon 'une

guelcongue des revendicalions 14 4 20, dans lequel
le module de distribution {802} est conhiguré pour :

metlre & jour des metadonnées du distributeur
de groupement, lorsgue le module de distribu-
tion {802} cammence 3 lraiter le groupement, la
mise & jour consistant a

ajouter un identificateur de distributeur aux
métadonnées du distributeur de

20

30

35

A

£5

o

@
&

20

groupemernt ; et

ajouter un instant de début de distributeur
aux metadonnses du distributeur de grou-
pement.

22. Systéme de gestion de donnges (808) selon la re-

vendication 21, dans lequel le module de distribution
(802) est configuré pour :

mettre & jour les métadonnées du distributeur
de groupement, larsque e module de distribu-
tion (802) terming le tratement du groupement,
la mise & jour consistant & :

ajouter un instant de fin de distribuleur aux
métadonnées du distributeur de groupe-
mant

23. Systeme de gestion de données [808) selon une

guelcongue des revendications 14 4 22, dans leguel
le systame de gestian de donnees (808) comprend
des métadonnées de traitement de distribution paur
chaqua fraitement de distribution (208}, les méia-
données comprenantau mains I'une des composan-
tes suivanles ;

un idenlificateur du traitement de distribulion ;
un nom du traitement de distribution ;

un type du traitement de distribution ;

une description du lraitemenl de distribution ;
une prigrité altribuée au fraitement de
distribution ; et

unt type de graupement cible du trailemant de
distribution.

24, Syslame de gestion de données (808) selon une

quelcongue des revendicalians 14 2 23. dans lequel
le module de nettoyage (804) est canfiguré pour

vérifier si des metadonnées du distnbuteur de
groupement comprennent daulres identifica-
leurs de distributeur identifiant des trailtements
de distribution (208) qui raitent Iz méme lype
de données ;

vetifier la présence éventuelle d'un instant de
fin de distributeur pour chague identificateur de
distributeur ; et

mettre & jour les informations d'état des méta-
donnees de groupement & 'élat ¢ disiribug »,
lors de la présence d'un instant de fin de distri-
buteur pour chague identificaleur de distribu-
leur.

EP 1 959 358 B1

I(I)O 1([12 1?4
DATA SOURCE STAGING TABLE TARGET SYSTEM

iy

FIG. 1

pal

EP 1 959 359 B1

T DIA

01z

(SYWHLSAS

kg
Laoavl [P | luNolLLavd| - oo —| (PFIOS

viva

Amm:mmﬂUOm_m AdTAI'TAd (SAISSHOOUd OZJ&mOA
80T 90T

HT19V.L ONIDVLS

(AU

22

EP 1 959 358 B1

100 | DATA COMING FROM
A DATA SOURCE
302 | CREATE A NEW PARTITION
FOR THE BUCKET
304 - DETERMINE AN IDENTIFIER
FOR THE BUCKET L
‘ y
UPDATE BUCKET
06 L0 A——
306 —{LOADING Ti-IE DATA ETADATA
[
308 —{ALL DATA LOADED|- k) 310
FIG. 3A
CTRL_BUCKET — 320
BUCKET_ID NUMBER(10) | 326
BUCKET TYPE VARCHARZ(20} | 328
NUMBER_OF_ROWS NUMBER(6) __|— 330
EARLIEST_RECORD DATETIME |- 332
TATEST RECORD DATETIME |- 334
STATUS VARCHARZ(Z0) | 336
BUCKET_STARTTIME DATETIME | -338
BUCKET_ENDTIME DATELIME |- 340
ROWS_PER_SFC NUMBER(6) |— 342
7 /
322 324

FIG. 3B

23

EP 1 959 359 B1

360 DATA COMING FROM
1A DATA SOURCE
153 | CREATE A NEW PARTITION
FOR THE DATA
364 | STORE THE DATA IN
THE PARTITION
FIG. 3C
B CTRL,_DELIVERER 400
DELIVERER_ID NUMBER(@) |—402
DELIVERER NAME VARCHARZ(D) b— 404
DELIVERER_TYPE VARCHARD(10) |— 406
DETIVERER_DESCRIPTION | VARCHARZ(100) | - 408
PRIORITY NUMBER() 410
DELIVERER_TARGET VARCHAR2(20) L 412
7 /
414 416

FIG. 4

24

EP 1 959 358 B1

SELECTING A BUCKET
500-—FROM THE STAGING
AREA
OPENING THE PARTITION UPDATING BUCKET
502 —_|COMPRISING DATA RELATING——# [METADATA IF THE
TO THE BUCKET_ID STATUS IS 'LOADED'
I
504
s _|PELIVERING DATA ROWS
FROM THE BUCKET
510
DROPPING THE PARTITION, |
58| WHEN ALL DATA HAS BEEN UPDATING BUCKET
DELIVERED FROM THE » DELIVERERS
BUCKET METADATA
FIG. 5A
CTRL_BUCKET DELIVERERS 520
BUCKET _ID NUMBER(10) _ [—522
DELIVERER_ID NUMBER(4) _ |-524
DELIVERER STARTTIME | DATETIME __ |—526
DELIVERER_ENDTIME DATETIME | 528
ROWS_PER SEC NUMBER(G) _ |—530
7 7
532 534

FIG. 5B

25

EP 1 959 359 B1

308

CHECKING DELIVER

—
340 METADATA

CHECKING BUCKET
542—\DELIVERERS
METADATA

THE NUMBER OF BUCKET]

44 TYPE DELIVERERS = THE | NO_[STOP THE

NUMBER OF DELIVERY " IOPERATION

—546

PROCESS END TIMES?
{ YES
UPDATING STATUS
548—IN BUCKET METADATA
'DELIVERED'

FIG. 5C

SELECTING A PARTITION
560~ THAT CONTAINS THE EARLIEST
SOURCE DATA

b

562 _iDELIVERING THEDATA
FROM THE PARTITION

564 —|DELETING THE PARTITION

FIG. 5D

26

EP 1 959 358 B1

CHECKING THE STATUS
400 INFORMATION OF A

608
BUCKET IN THE |

BUCKET METADATA CHECKING THE
! NEXT BUCKET

602_'15 THE STATUS OF THE| NO j‘ 4

BUCKET DELIVERED?
+ YES

DELETING THE PARTITION

COMPRISING THE BUCKET

v

UPDATE BUCKET
606

604—

STATUS AS
'DELETED

FIG. 6A

27

620—

622—

624—

626—STATUS A8

628—

630—DELIVERERS

EP 1 959 359 B1

START

CHECKING THE STATUS

METADATA

'

BUCKET 'DELIVERED'?
v YES

DELETING THE PARTITION
COMPRISING THE BUCKET

UPDATE BUCKET

‘DELETED'

CHECKING DELIVER
METADATA

CHECKING BUCKET]

METADATA

THE NUMBER OF BUCKET
TYPE DELIVERERS = THE

INFORMATION OF A 628
BUCKET IN THE BUCKET |

IS THE STATUS OF THE| NO ttt

NG

CHECKING THE
NEXT BUCKET

632 NUMBER OF DELIVERY

634—IN BUCKET METADATA

PROCESS END TIMES?

v YES
UPDATING STATUS

'DELIVERED

FIG. 6B

25

EP 1 959 358 B1

STARTING A

700—
DELLIVERY PROCESS

CHECKING PRIORITY
INFORMATION
DIFFERENT PRIORITIES|NO | PROCEEDING WITH
T4 S ETERMINED? THE DELIVERY
: PROCESS

+ YES = I
DELAYING BUCKET 710
706 — PROCESSING [F
NECESSARY

T

POSSIBLE TO PROCEED,
708 — WITH THE DELIVERY
PROCESS?

[vES

TF02—

Y

NO

FIG. 7

DATA MANAGEMENT SYSTEM

8(1)2
800 LOADING DELIVERY CLEANING
MODULE MODULE MODULE

i
k 804
STAGING

806 AREA

808
FIG. 8

EP 1959 359 B1
REFERENCES CITED IN THE DESCRIPTICH
This list uf references cited by the applicant is for the reader's convenience only. Il does nof form part of the European
patent document Even though greal care Nas been taken in comphing the references, errors or omissions cannot be
excluded and the EPO disclatms all Vability in this regard.
Patent documents cited in the description
+ EP 1591914 A [0007) + US 2004225664 A [0009]
= US 7093232 B1 [0008B]
Non-patent literature cited in the description
+ A EJAZ et al. Utlizmg Staging Tables in Data Inte-

gralion to Load Datainto Materialized Views. Spring-
er Verlag, 2004, vol. 3314/2004, 685-651 [0010]

30

	Table of Contents
	Acknowledgements
	Abbreviations
	List of Original Publications
	1 Introduction
	2 Data Warehousing
	2.1 Background
	2.2 Structure of the traditional DWH method
	2.3 Indexing techniques for DWH

	3 Challenges in DWH
	3.1 General problems on traditional DWH methods
	3.2 The high watermark problem on traditional DWH staging tables
	3.3 The choking effect on near realtime DWH environments
	3.4 Deleting data from or truncating the staging table

	4 Existing research
	4.1 1990-1999
	4.2 2000-2009
	4.3 2010-2019
	4.4 2020-
	4.5 Summary of literature review

	5 AcDWH Method
	5.1 Overview
	5.2 AcDWH structural considerations
	5.3 Generating the AcDWH structures
	5.4 Parallel processing in AcDWH within a single bucket_type and between different bucket_types
	5.5 Staging table partitioning in AcDWH
	5.6 Forecasting space requirements, row amounts and generating statistics for the business in AcDWH
	5.7 Populating the DWH structures
	5.8 Clearing the AcDWH staging area
	5.8.1 Housekeeping process for the staging tables of the AcDWH

	5.9 The parallelism and concurrency of AcDWH
	5.10 Logging throughput in AcDWH to analyze operation and process efficiency
	5.11 Adjusting AcDWH bucket size to enhance throughput
	5.12 Repeatability in AcDWH

	6 Applications of the AcDWH framework
	6.1 A technical subject area DWH for a specific company A
	6.2 Company B data analysis platform

	7 Extensions to the patented AcDWH framework
	7.1 Data distribution
	7.2 Near real-time backup and/or restore schematics

	8 Results & Discussion
	9 Conclusions
	List of References
	Original Publications

