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ABSTRACT 

The traditional needs of data warehousing from monthly, weekly or nightly batch 
processing have evolved to near real-time refreshment cycles of the data, called 
active data warehousing. While the traditional data warehousing methods have been 
used to batch load large sets of data in the past, the business need for extremely fresh 
data in the data warehouse has increased. Previous studies have reviewed different 
aspects of the process along with the different methods to process data in data 
warehouses in near real-time fashion. To date, there has been little research of using 
partitioned staging tables within relational databases, combined with a crafted 
metadata driven system and parallelized loading processes for active data 
warehousing.  

This study provides a throughout description and suitability assessment of the 
patented AcDWH method for active data warehousing. In addition, this study 
provides a review and a summary of existing research on the data warehousing area 
from the era of start of data warehousing in the 1990’s to the year 2020. The review 
focuses on different parts of the data warehousing process and highlights the 
differences compared to the AcDWH method. Related to the AcDWH, the usage of 
partitioned staging tables within a relational database in combination of meta data 
structures used to manage the system is discussed in detail. In addition, two real-life 
applications are disclosed and discussed on high level. Potential future extensions to 
the methodology are discussed, and briefly summarized. 

The results indicate that the utilization of AcDWH method using parallelized 
loading pipelines and partitioned staging tables can provide enhanced throughput in 
the data warehouse loading processes. This is a clear improvement on the study’s 
field. Previous studies have not been considering using partitioned staging tables in 
conjunction with the loading processes and pipeline parallelization. Review of 
existing literature against the AcDWH method together with trial and error -approach 
show that the results and conclusions of this study are genuine. 

The results of this study confirm the fact that also technical level inventions 
within the data warehousing processes have significant contribution to the advance 
of methodologies. Compared to the previous studies in the field, this study suggests 
a simple yet novel method to achieve near real-time capabilities in active data 
warehousing. 

KEYWORDS: active data warehousing, real-time, partitioning, staging   
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JARI MYLLYLAHTI: AcDWH – Patentoitu menetelmä aktiiviseen 

tietovarastointiin 

Lisensiaatin tutkielma, 81 s + liitteet. 

tammikuu 2024 

TIIVISTELMÄ 

Perinteiset tarpeet tietovarastoinnille kuukausittaisen, viikoittaisen tai yöllisen 
käsittelyn osalta ovat kehittyneet lähes reaaliaikaista päivitystä vaativaksi 
aktiiviseksi tietovarastoinniksi. Vaikka perinteisiä menetelmiä on käytetty suurten 
tietomäärien lataukseen menneisyydessä, liiketoiminnan tarve erittäin ajantasaiselle 
tiedolle tietovarastoissa on kasvanut. Aikaisemmat tutkimukset ovat tarkastelleet 
erilaisia prosessin osa-alueita sekä erilaisia menetelmiä tietojen käsittelyyn lähes 
reaaliaikaisissa tietovarastoissa. Tutkimus partitioitujen relaatiotietokantojen 
väliaikaistaulujen käytöstä aktiivisessa tietovarastoinnissa yhdessä räätälöidyn 
metatieto-ohjatun järjestelmän ja rinnakkaislatauksen kanssa on ollut kuitenkin 
vähäistä. 

Tämä tutkielma tarjoaa kattavan kuvauksen sekä arvioinnin patentoidun 
AcDWH-menetelmän käytöstä aktiivisessa tietovarastoinnissa. Työ sisältää 
katsauksen ja yhteenvedon olemassa olevaan tutkimukseen tietovarastoinnin 
alueella 1990-luvun alusta vuoteen 2020. Kirjallisuuskatsaus keskittyy eri osa-
alueisiin tietovarastointiprosessissa ja havainnollistaa eroja verrattuna AcDWH-
menetelmään. AcDWH-menetelmän osalta käsitellään partitioitujen 
väliaikaistaulujen käyttöä relaatiotietokannassa, yhdessä järjestelmän 
hallitsemiseen käytettyjen metatietorakenteiden kanssa. Lisäksi kahden 
reaalielämän järjestelmän sovellukset kuvataan korkealla tasolla. Tutkimuksessa 
käsitellään myös menetelmän mahdollisia tulevia laajennuksia menetelmään 
tiivistetysti. 

Tulokset osoittavat, että AcDWH-menetelmän käyttö rinnakkaisilla 
latausputkilla ja partitioitujen välitaulujen käytöllä tarjoaa tehokkaan tietovaraston 
latausprosessin. Tämä on selvä parannus aikaisempaan tutkimukseen verrattuna. 
Aikaisemmassa tutkimuksessa ei ole käsitelty partitioitujen väliaikaistaulujen 
käyttöä ja soveltamista latausprosessin rinnakkaistamisessa. 

Tämän tutkimuksen tulokset vahvistavat, että myös tekniset keksinnöt 
tietovarastointiprosesseissa ovat merkittävässä roolissa menetelmien 
kehittymisessä. Aikaisempaan alan tutkimukseen verrattuna tämä tutkimus 
ehdottaa yksinkertaista mutta uutta menetelmää lähes reaaliaikaisten 
ominaisuuksien saavuttamiseksi aktiivisessa tietovarastoinnissa. 

 

ASIASANAT: Tietovarastointi, reaaliaikaisuus, partitiointi, väliaikaistaulut  
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Abbreviations 

BI Business Intelligence. BI means the concept of providing analytic 

systems for business users. These systems provide insights on specific 

business-related questions. The BI systems are usually constructed as 

DWHs. 

CPU Central Processing Unit. CPU is the processor of a computer. 

DM Data mart. DM is a lightly summarized area and structure in a DWH 

that contains summarized data on a specific subject area for example 

for departmental usage. DM uses typically a specific data model for 

reporting and analysis which called a star schema. This data model is 

focused to deliver fast reporting and analysis on one subject area, for 

example customer data or customer purchase transactions in a shop. 

DSS Decision Support Systems. DSS provide analytical view to a specific 

line of business or a company. These systems are used to support 

decision making in companies or lines of business. DSS typically 

presents or consumes data from a DWH. 

DWH Data Warehousing or Data Warehouse. DWH is a method and database 

structure where operational system data are replicated into a DWH 

database structure. This structure holds historical and current atomic 

data usually stored in a normalized form. The methodology is further 

described in Chapters 1 and 2. 

ELT Extract-Load-Transform. ELT changes the approach of ETL in manner, 

that first two process elements of ELT (Extract and Load) are executed 

before transform. Transform phase is executed within the database after 

whereas ETL’s Transform part of the process is executed outside of the 

database. This change of process for loading the source system data to 

the DWH is made to utilize databases system’s functionality, 

scalability, and efficiency for the Transform operations. 
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ETL Extract-Transform-Load. The ETL process is typically used within 

DWH environments to process data. Extract part of the process extracts 

the data from source system(s), Transform part executes various data 

transformations within the process and Load part loads the data to 

DWH. ETL processes are typically constructed with a specific ETL tool 

instead of programming the processes by yourself. There are multiple 

technology products in the market for ETL. Most of them are separately 

installed from the database systems, but some (like Oracle Warehouse 

Builder) are installed within database systems. 

GUI Graphical User Interface. GUI is an interface that gives the ability for 

users to interact with computers through graphical icons instead of text-

based user interfaces. 

I/O Input / Output. I/O means input and output peripherals, such as 

keyboards, displays, disk and tape devices.  

ODS Operational Data Store. ODS is an operational database usually 

integrating data from multiple source systems. It is designed to support 

reporting from operational data and offloading the reporting workloads 

from the operational systems. ODS also implements data integration 

and usually also data cleansing, redundancy removal and data integrity 

checking. 
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1 Introduction 

While data warehousing (DWH) models have been utilized for over two 

decades for Decision Support Systems (DSS), analytics and business 

intelligence, yet there has not been really a drive for enhanced techniques 

for near real-time delivery and access of the data. The shift towards more 

refreshed data in business intelligence has been the driver to implement 

more fresh state of the business intelligence platforms in the form of 

improved the data warehouses. 

 

The existing DWH models rely heavily on bulk loading techniques and the 

loading of data from source systems to DWH takes place typically during 

the night and the load contains data from one day. These techniques are 

sufficient when the transaction volumes are not too big and when there is no 

real business driver to access the data more frequently than the view of the 

previous day. These models have been utilized from the very beginning of 

the DWH era and they are still applied in large parts of the world’s DWH 

environments. 

 

Today’s business drivers demand more fresh data, for which these typical 

nightly load windows are not sufficient. Typical need is a few minutes gap 

in between the refreshment cycles of the data. For these environments the 

traditional way of refreshing DWH data during the night is not sufficient 

anymore. 

 

In this thesis we study and present how a partitioned staging table can be 

utilized in active DWH environments. The study question is if the 

partitioned staging table in combination with parallelized loading processes 

to and from the staging table can help to enhance active DWH systems. The 

study also presents enhancements to DWH system’s throughput and 

manageability. The study reviews existing research and summarizes their 

key findings. Differences between existing research and the studied 

partitioned staging table and parallelized loading processes are highlighted. 
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The thesis presents a patented method of a data management system 

(AcDWH) which is an optimized and novel method for implementing active 

DWH systems. The method allows parallel asynchronous access to the data 

being delivered to the DWH. The AcDWH method divides the incoming 

data into buckets and the data flow management system is based on 

handling these buckets. The method consists of an arbitrary number of 

asynchronous data provider and delivery processes. 

 

The AcDWH processes deliver and distribute the data through a common 

metadata layer of control data. The metadata tables log different phases of 

the process and provide a safe mechanism for concurrency and data delivery 

and efficiency control. The efficiency of the processes can be controlled and 

throttled through the administrative metadata layer so that the process can 

adjust itself to the needs of the business and to the capacity of the platform it 

runs on. 

 

The thesis also presents the foundational principles on physical access of the 

data. The process can be parallelized and scaled, and different parts of the 

process can be isolated from each other by utilizing this specific method. 

This way the process can achieve high grade of parallelism, throughput and 

near real-time freshness of the data on the DWH. 

 

For the scope of this thesis, the focus will be of the staging table physical 

structures and on the patented data management system. In addition, the 

focus will be on the AcDWH processes handling the processing pipelines. 

The method of applying parallelism to the different parts of processing 

pipeline will be discussed and addressed separately, providing examples on 

principles and correlation to real world problems. 

 

In chapter 2, the background of DWH is discussed. Chapter 3 discusses 

problems identified in active DWH with traditional techniques. Chapter 4 

gives a review on studies and literature about DWH and the staging area 

processing. A novel method for active DWH and data management system, 

AcDWH, is described in chapter 5 and its different parts are discussed in 

detail. Chapter 6 gives two examples of real-life implementations of 

AcDWH system. In chapter 7 extension possibilities to AcDWH are 

discussed and chapter 8 shows results and discusses the advantages of 

AcDWH over traditional DWH methods. Chapter 9 concludes with a 

summary of the thesis.



2 Data Warehousing 

 

In this chapter the background of the data warehousing (DWH) systems is discussed. 

The chapter describes the typical structures and methodologies used in DWH 

solutions. The chapter also describes different parts of a typical DWH process and 

addresses different indexing techniques used in these systems. 

 

2.1 Background 

 

 

A DWH is a system with techniques & methodologies for managing data 

from different sources and combining them into a single DWH to provide 

insights to relevant business questions. A DWH is created from multiple 

components which aid the use of the specific data for strategic purposes. A 

DWH provides a database and system design which helps to keep historic 

details of the subject area of the DWH, to reduce the response time and to 

enhance the performance of queries for reports and analytics from it. [33] 

 

A DWH consists of large amounts of data which are designed and organized 

for both historic data queries and strategic analyses in contradiction to 

transaction processing systems. DWH processes incoming source system 

data into business information and makes it available to business and 

analytical users. 

 

The database of the DWH is separate from the organization's operational 

systems. The DWH is an environment and a database which consists of 

combined information from the source systems. It is a constructed system 

which provides current and historical decision support information to 

business users. The previous is typically cumbersome to access and present 

using operational databases and systems. 

 



Data Warehousing 

 15 

For example, a report on the financial system information on previous 

company fiscal year can easily include tens of join conditions and tables. 

These types of queries will slow down the response time of the query and 

report on the operational system. These queries will also have effect on the 

throughput of other database operations on the operational system while the 

queries are run. 

 

In DWH the database design and structure are separated into two areas; to 

the actual DWH structures which are usually in normalized form and to 

separate structures supporting subject area queries, so-called data marts 

(DM) [1,4]. The latter structures are built with dimensional modelling and 

star schema. Within the star schema the fact tables are central to the design, 

holding all the relevant data for a data item. Dimension tables are holding 

all the relevant data for the dimension [1,4]. In this financial system 

example, the Supplier invoices table is the fact table, and the Supplier table 

is the dimension table. Figure 1 shows the generic architecture of a DWH 

system. 

 
 

Figure 1.  Generic architecture of a DWH. 
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The fact table has a column for each detail. The facts are usually numeric 

values that can provide business with aggregate views, for example 

providing a monetary sum of all invoices.  A dimension is a specific 

attribute to the fact. Dimensions are valuable items to the business, such as 

supplier, invoicing month, invoicing country and so forth. 

 

While the data is loaded into the fact table, the dimension attributes of a fact 

table row are replaced by a surrogate key pointing to the dimension table. 

The dimension table holds all the relevant details of a dimension record. An 

example being customer dimension, where the record has attributes such as 

name, address, social security number and other relevant attributes. 

 

As an example, if the customer dimension record exists, the surrogate is 

fetched from the dimension table by searching for the customer number or 

name, and the surrogate key (customer id for example) is inserted into the 

fact table column giving a reference to the right entity on the dimension 

table. The same would apply for all the relevant dimensional attributes, that 

are connected with the relevant fact. 

 

Continuing the example, if the dimension record is not existing in the 

dimension table, a new record is inserted into the dimension table. A new 

customer id is generated, and the applicable dimension details are updated to 

the record from the source systems. A simple star schema structure is 

illustrated in Figure 2. 

 
 

Figure 2.  Star schema used in a DWH. 

Fact
table

Dim 1 Dim 2

Dim 3 Dim 4
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What is typical to the DWH, is that the dimension records are fetched from 

the operational source system databases on a specified interval (such as once 

per day during night) prior to the actual loading of the fact data. This causes 

the dimension records being up to date when the fact table(s) are loaded 

from the source systems and there is no need to generate the records during 

the fact table loading. 

 

The afore mentioned star schema requires transformation of data while 

loading it into the DWH. This has an implication of having to use an 

intermediate storage table to ease the processing and to minimize the 

resource wear and burden on the source systems. These intermediate storage 

tables are called staging tables [4]. The source system data is loaded into 

these staging tables, from where the Extract, Transformation and Load 

(ETL) processes move the data further into the applicable star schema tables 

for analytical and query use. 

 

 

2.2 Structure of the traditional DWH method 

The traditional DWH processes are controlled and run on either monthly, weekly or 

daily basis. Figure 3 shows a high-level model of the traditional DWH processing. 

 

 

Figure 3. High level process description of traditional DWH method using sources such 
as databases (a), flat files (b) or message queuing systems (c). 

Data source Staging table Target system

(a)

(b)

(c)
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The data sources are read on daily basis and the data is delivered to the 

staging area (e.g. a staging table) for further processing. The staging table is 

read and the whole data is delivered to the target system(s) for further data 

analysis. 

 

Publications on DWH discuss the design topics and relevant schematics for 

this setup. These techniques are widely in use in traditional data 

warehousing environments. A literature review is presented in chapter 4. 

 

The reading of the source data takes extensive time to finish as the data from 

a whole day, or even a longer period of time, is processed at once and 

typically during night. The data is not transformed at this stage, and it is 

written to the staging table exactly in the same format it is on the source 

system. Erroneous records are written to error logging structures for 

possible correcting and reprocessing of the data. 

 

The staging table is read in the next part of the process to deliver the data 

into data warehousing structures. Loading the data to the data warehousing 

structures is done by reading data from staging table structures and 

transforming the data to normalized model in the DWH. This transforming 

phase of the landing process is the most resource consuming part of this 

process. 

 

What is typical of the DWH is that these structures are in normalized form 

of data base schema and provide a solid layer for tracking changes over 

time. 

 

The data is delivered to a reporting layer (e.g., a star schema consisting of a 

fact table and dimension tables) after the data has been processed in the 

DWH layer. This way the data can be analyzed by viewing it in different 

dimensions. Dimensional modelling provides the business users a simple yet 

powerful way to browse around their analytical data and analyze it on 

different aspects, i.e. one can e.g. make a summary of data for a given client 

over a period of time. The data loading of the star schema takes place once a 

day, aggregating the data on selected dimensions. 

 

The main phases of the traditional DWH ETL process are: 
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1. Read the data from source system(s) and deliver it into a staging area in 

the DWH 

2. Transform the data to the format of the target model 

3. Load the transformed data into the target DWH and reporting models 

4. Rebuild indexing structures that support the reporting models 

 

DWH systems are Decision Support Systems (DSS) by definition and they 

provide an analytical view of data on aggregated and grouped level at 

predefined intervals [33]. In the case the business questions do not need to 

be answered more frequent than daily and there is no need to report on 

transactional basis, then the refreshment of the aggregated data into the 

object system can happen also on the same frequency. 

 

Phase 1 typically inputs the data in from previous day. This part of the 

process delivers the data usually in the same format or in a mixture of the 

source and target formats. This way the transformation of the data can be 

traced back to the staging area in the case there is something wrong with the 

processing. This phase is time consuming as large amount of data is read 

from sources and the reading is typically limited to a small set of reading 

methods. These methods address the source data in a similar way to source 

applications. One of the problems on the traditional approach is that this 

phase cannot be parallelized which may create a bottleneck on the process. 

 

Phase 2 transforms the data into the format of target model and attaches 

surrogate keys for the dimension objects to the table rows. This phase also 

generates new entities to dimension tables as the new dimension data is 

transferred from the source systems. This phase typically involves heavy 

calculations, aggregations and exotic transformations of different kinds. 

This part of the ETL process takes most of the time and resources, as the 

amount of records which will be addressed may be massive. 

 

Phase 3 delivers (e.g., loads) the data into the target system, the DWH. The 

writing can and most often will be done by utilizing bulk loading 

mechanisms, delivering huge blocks of data directly to the database engine 

to make the load in the most efficient way. At the end of the phase the index 

structures must be rebuilt to facilitate the reporting on the data model. This 

part takes a lot of time because the complex indexing setup is typically 

heavy for reporting structures and index creation takes both CPU time and 

I/O resources. 
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2.3 Indexing techniques for DWH 

 

DWH systems are usually indexed with b-tree and bitmap indices like 

operational databases. The indexing techniques rely on standard methods 

and this is valid regardless of the data volumes in the DWH. Some DWH 

environments utilize table and index partitioning to manage great data 

volumes. Instead of using global non-partitioned indices DWH systems are 

also using local indices which are partitioned according to underlying table 

partitions. This method will help to remove the congestion on the table and 

indices and enhance the throughput of different database operations [34]. 

  

In addition to the DWH structures mentioned above there are specific 

indexing techniques for the star schema to support reporting.  A normal way 

to index a star schema is to index all dimension surrogate key attributes in 

the fact table with bitmap indices. In addition, some of the required search 

fields for analysis can be indexed for faster searches and aggregation. At the 

end of this phase the staging table is truncated as the records are processed, 

thus making the table available for the next load. 

 

The difference between normal b-tree and bitmap indices is their internal 

structure, while normal indices are arranged to a b-tree structure the bitmap 

indexes are arranged in a two-dimensional binary array. The difference in 

their behavior is that bitmap indices are extremely usable and fast in 

addition to low space consumption in low cardinality columns. What makes 

bitmap indices well superior to b-tree indices is when two or more bitmap 

indexed columns can be used in search criteria. Then the database engine 

can merge the bitmap indices and generate the result set extremely fast [34]. 

  



Challenges in DWH 

 21 

3 Challenges in DWH 

This chapter addresses the challenges in traditional data warehousing (DWH) 

systems and approaches. The challenges have been identified both by existing 

research and literature, as well as by experience while constructing the patented 

AcDWH method. 

 

3.1 General problems on traditional DWH methods 

 

 

The traditional DWH methods incorporate number of drawbacks in terms of 

 

1.  efficiency, 

2.  repeatability, and 

3.  efficient concurrent read and write access to DWH structures. 

 

Initially, the data extracting phase is limited to very narrow reading of 

source systems. When the amount of data is large and the reading 

mechanisms are limited to typical reading patterns of the source systems, 

the outcome cannot be excellent. The source systems cannot be modified to 

address the needs of the DWH process as the systems have their own 

transactional needs to be fulfilled. The source systems have been designed 

for facilitating only their own data accessing needs, anything else is 

irrelevant. 

 

Secondly, the data transformation to the target format takes time and 

resources. As the volume of transformed data is huge, the processing will 

need large amounts of memory and CPU time. The efficiency of the 

transformation is highly dependent on the resources of the transformation 

platform. If the platform is running short on the memory and CPU 

resources, the efficiency and throughput of the DWH system will 

deteriorate. 
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Similarly, the loading process depends on the amount of the data to be 

loaded. Whenever the data is loaded in, the loading process depends on the 

I/O capacity of the target DWH platform. No matter how performant the 

target platform is, the loading of a day’s data will take time. This is the case 

particularly for the maintenance of indexing structures for the reporting 

model. These structures must be dropped before the data will be loaded in. 

If the indices would be up during the load, the impact on performance 

would be enormous while the indices would be kept up to date during the 

loading process. Currently, the index structures are typically dropped and 

then rebuilt after the data loading has been done. As the data volume loaded 

is huge, the rebuilding of the index structures is time consuming. 

 

To sum up, traditional DWH techniques suffer from several specific 

efficiency problems: 

 

1. The source system reading cannot be streamlined, parallelized and 

configured in a manner where the source system would facilitate for both 

the source system application and also the analysis of the full set of data 

for data warehousing purposes. The reading is a time and resource 

consuming process on huge volumes of data. 

2. The same problems are present also in the transformation phase. As the 

amount of data is large, transforming the data to the needed format for the 

analysis will consume resources for the transformation engine. It cannot 

be avoided. 

3. The loading process efficiency is depending on the data volume loaded. 

Populating large number of records and rebuilding index structures will 

take a significant amount of time. This will make the solution useless to 

analytical use case, with regards to the near real time requirements. 

4. The space consumption of the staging table is remarkable. In a typical 

method the data is read from the source systems once per night, and the 

data is transferred to the data warehousing structures with large batch jobs. 

Utilizing this kind of structure within a near real-time solution would 

cause the staging table to grow unmanaged, causing the system to either 

halt or slow down drastically after an arbitrary amount of executions. 



Challenges in DWH 

 23 

3.2 The high watermark problem on traditional 
DWH staging tables 

The traditional staging tables are handled in a distinct way. The traditional 

DWH process will load a standard interval portion of data into the staging 

table; typical interval being either once per day, week or month. 

 

Given the characteristics of such a construct, the loading of data into the 

staging table is extremely straightforward. On the other hand, the method 

will cause different issues on the efficiency of the further loading 

mechanism from the staging table. 

 

The traditional method forces the system to process the whole staging table 

at a time if no additional load batch identification mechanisms are 

constructed for more frequent population of the staging table. If such 

additional load batch identification mechanisms are constructed, the staging 

table can accommodate multiple loading batches, but at the same time the 

staging table would be potentially burdened with always rising high 

watermark or slowed down inserts due to additional indexing requirements. 

 

Assume that a staging table is used to accommodate only the current bucket 

of incoming data, identified with column bucket_id. The loading process 

would then load the bucket in a batch job, with any predefined size of a 

bucket. This process would fill in the table starting from first empty data 

block of the table extent and continue filling in the extent until the first 

bucket (bucket_id=1) is handled. 

 

Now, processing the bucket (bucket_id=1) from the staging table further to 

the data warehousing structures is executed by selecting all rows from the 

staging table. 

 

 SELECT [COLUMN LIST] FROM STAGING_TABLE; 

 

This will cause a full table scan, as the database engine selects all records in 

the table. After successfully processing the rows further to the data 

warehousing structures the staging table needs to be cleansed from the 

existing data to facilitate for the next bucket_id to be loaded. There are two 

options to do the operation; either delete all the rows with a delete command 

 

 DELETE * FROM STAGING_TABLE; 
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or by truncating the staging table 

 

 TRUNCATE STAGING_TABLE; 

 

The delete operation would take considerably long time to execute. This is 

due to the fact, that the transaction would be logged into the redo logs of the 

database engine to secure any potential rollback command. The delete 

operation needs to be explicitly either committed (confirmed) or rolled back 

(cancelled). With either operation, commit or rollback, the database engine 

would handle transaction through the redo logs to secure consistency in the 

data manipulation language (DML) command. 

 

On the contrary, the truncate operation just marks the table as empty and all 

data blocks in table extent(s) are marked free. The execution of such 

truncate command is extremely fast as it is irreversible, and the action is not 

recorded in the redo logs of the database engine. Truncate table is a data 

definition language (DDL) command. By nature, any DDL commands are 

not logged into database engine redo logs as they are not processing records, 

or they are not part of any transaction thus they make the operation execute 

multitudes of times faster compared to any DML commands. 

 

Now after the deletion of the records in the first bucket (bucket_id=1) or 

truncation of the staging table, the system will be able to process the next 

bucket of data (bucket_id=2) into the staging table. 

 

By nature, the traditional method forces the system handle any batches to be 

loaded in a sequential manner, one at a time, and any parts of the further 

DWH structure loading process cannot be isolated from the staging table 

loading process. This creates a heavy dependency between the staging table 

and data warehousing structure population processes. 

 

Assume that a staging table would be used to accommodate multiple 

buckets of incoming data, identified with column bucket_id. The population 

process would then load these in a batch job, with any predefined size of a 

bucket. This process would fill in the table starting from first empty data 

block of the table extent and continue filling in the extent until the first 

bucket (bucket_id=1) has been processed. Let us suppose that the system 

would process the next bucket (bucket_id=2) to the staging table, e.g. it 

processes buckets sequentially and not asynchronously, and the first bucket 

is still waiting to be processed further from the staging table. The processing 

of the second bucket to the staging table would add the inserted rows at the 
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end of table; either to the free data blocks in an extent or to a newly added 

extent and its data blocks. 

 

Processing the first bucket (bucket_id=1) from the staging table further to 

the data warehousing structures is then executed by selecting rows with 

bucket_id=1. 

 

 SELECT [COLUMN LIST] FROM STAGING_TABLE 

 WHERE BUCKET_ID=1; 

 

In this setup, where the staging table allocates multiple buckets of data, the 

staging table loading process can be by nature asynchronous with the DWH 

structure loading process(es). Despite the asynchronous capabilities and 

facilitation for the multiple bucket_ids, this approach has two design flaws; 

 

• Without indexing any SELECT FROM or DELETE FROM data 

manipulation commands will result into a full table scan 

• With additional indexing on BUCKET_ID column, the SELECT FROM and 

DELETE FROM data manipulation commands will scan through the index, 

and address only the relevant records of the staging table 

 

Taking the first design flaw example on staging table without any indexing; 

 

Without the indexing any access (SELECT FROM, DELETE FROM) is 

going to cost additional time and resources as the database engine needs to 

scan through all data blocks of the staging table to retrieve correct rows for 

the bucket_id. In this setup the processing times will grow unless the 

housekeeping of the staging table is executed and timed precisely right to 

keep the housekeeping and space consumption of the staging table to a 

minimum level. This is due to allowing multiple buckets per staging table to 

facilitate asynchronous processing. 

 

In practice this would mean, that the staging table’s housekeeping process 

(e.g. the cleansing of already loaded bucket_id) needs to be executed within 

the loading process itself after the loading of the bucket_id data and its 

delivery to the data warehousing structures. 

 

This will introduce a significant delay to the DWH structure loading process 

and will harm the near real time and asynchronous loading requirements due 
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to the process needing to delete the records from the staging table at the end 

of the loading process. The delete operation must execute a full scan to the 

staging table as there are no indices supporting the addressing of the 

relevant records. The cleansing process will scan through all the data blocks 

of the staging table, searching for the right records with that specific 

bucket_id and deleting those rows. The deletions must be committed in the 

database. This DELETE FROM transaction will write redo logs for the 

whole operation along with the transaction itself and the commit will make 

the changes readable for other processes. 

 

DELETE FROM STAGING_TABLE 

WHERE BUCKET_ID=1; 

COMMIT; 

 

By introducing the cleansing phase as a mandatory part at the end of the 

loading process the system would introduce a longer load time per the 

loadable bucket_id. This would also affect the potential scalability and 

concurrency on the asynchronous loading setup. 

 

The second design flaw related to staging table with index on bucket_id 

column comes to additional processing cost for maintaining the index while 

loading into or deleting from the staging table. This will also introduce 

additional storage needs for index within the database system. Using an 

index on bucket_id requires additional resources to maintain the index while 

loading the data to the staging table. This does enhance the throughput of 

the selecting the bucket data from the staging table during the loading 

process but then again, in addition to the redo log generation as in previous 

design flaw example, this will introduce additional resource needs for index 

maintenance while deleting the data from the staging table on the cleansing 

phase. 

 

3.3 The choking effect on near realtime DWH 
environments 

Using a setup with a staging table where multiple bucket_ids would be 

residing during the load, there are following alternative approaches on: 

 

[1] Populating and managing the staging table without indexing the 

bucket_id column 
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[2] Populating and managing the staging table with index on the 

bucket_id column 

 

Assume the staging table has no indexing on the bucket_id column and the 

system is loading multiple bucket_ids to the staging table. Further, the 

system will not delete the bucket data from the staging table as a part of the 

loading process but deletes the bucket data as a separate part of the system 

implementation. 

 

Assume further that loading the data to DWH structures from the staging 

table may take longer than loading the staging table from the source 

systems. By implementing the system as described above we can analyze 

how the system would behave running the asynchronous loading and 

cleansing processes. 

 

Assume now that the system has loaded five (5) buckets of data, each 

having 50000 records, thus consisting of 250000 records in total. Then, the 

record size of 512 bytes (B) would give the space consumption of 

approximately 125 megabytes (MB) for the five buckets. Adding another 

bucket would reserve additionally 25 MB of database space for the table 

while loading the data into the staging table. 

 

Now, loading of the data from the staging table to the DWH structures 

would be slower than loading the data from source systems to the staging 

table. Implementing a system like this would force the loading process to 

halt after some time depending on how much table space has been reserved 

for the staging table. This is due to the following; 

 

[1] The staging table is a single logical unit of data, built from segments, 

extents and data blocks within the database 

[2] Processing the data from the staging table to the DWH structures is 

slower than loading the staging table from the source systems (e.g. 

adding new buckets of data) as assumed above, due to 

transformation of data within the loading process 

[3] The system is not able to delete buckets of data faster than loading 

new buckets in from source systems due to the slower loading of 

data from staging table to DWH structures 

[4] The table will evidently over time consume growing amounts of 

space from database due to the fact that loading data from source 

systems to staging table is faster than data loading from staging table 

to DWH structures. This yields to longer execution time gradually 
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on the loading process, as the full table scans will require more I/O 

resources while the staging table grows. 

 

The above will cause the staging table to consume all free space from the 

tablespace. The table will grow larger until the tablespace has no more space 

to allocate for the table and any insertions to the table will generate an error 

and the system will halt. 

3.4 Deleting data from or truncating the staging 
table 

In the traditional DWH method, the staging tables are used for one batch 

load at a time. E.g. the table holds data for only one bucket at a time. The 

approach facilitates for easy data management but has very limited support 

for systems requiring parallelism and concurrency. 

 

By utilizing a fundamentally static staging table for one load batch (i.e. 

bucket) at a time will secure fast and easy deletion of the staging table data 

after the data has been loaded. This is eventually executed by a 

TRUNCATE TABLE DDL command. This method is a fast and robust 

mechanism to cleanse the loaded data from the staging table and the truncate 

command is usually executed as the last operation of the loading process 

that populates the data warehousing structures. 

 

However, the above method allows no concurrency or parallelism in the 

loading pipeline, e.g. the processing consists of sequential parts executed 

after each other. Loading the next bucket of data into the staging table 

requires all parts of this processing pipeline to be finalized successfully. As 

a result of this, reading of records from source systems to the staging table 

cannot be parallelized and the processing does not support concurrency. 

 

Approaching the above problem by adding a column to the staging table 

holding the bucket_id will enhance the concurrency and parallelism. Then, 

the staging table can hold multiple buckets of data at the same time. It will 

also facilitate for concurrency and parallelism, as the loading from the 

source systems to the staging table can be parallelized as well as the 

processing pipeline that delivers data from the staging table to the DWH 

structures. 
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On the other hand, adding the bucket_id column to the staging table will 

introduce two distinct problems; i) the efficiency aspect and ii) the data 

skewing aspect. 

 

For the efficiency, the problem is two-fold. Without indexing the bucket_id 

column, the loading from staging table to data warehousing structures will 

need a full scan of the staging table for searching the rows with a correct 

bucket_id. This will make the loading process inefficient, but it introduces 

the rising high watermark problem described in section 3.1. With indexing 

the bucket_id, the processing of data from staging table to DWH structures 

is efficient but the data processing from source systems to the staging table 

will slow down due to the need of populating the index as the data is loaded 

into the staging table. 

 

Regardless of the indexing of the bucket_id column the data skewing 

problem is evident. Skewing in this context means that data is not 

distributed evenly on specific data blocks but has an uneven distribution 

across data blocks. The rows of a specific bucket are distributed unevenly 

across data blocks having empty space. A non-indexed staging table has 

slower further processing and deletion of data. An indexed table supports 

faster further processing and deletion of data, but slower data loading into 

the staging table. The concurrent loading of multiple buckets of data into the 

staging table will interleave the rows of different buckets among each other 

while the system is inserting the data into the staging table. 

 

Now, let us assume the system has inserted arbitrary amount of data buckets 

into the staging table with a parallel processing pipeline. The parallel 

processing pipeline inserts many buckets into the staging table during a 

specific time interval. These data buckets are marked as processed and are 

waiting for deletion. After executing committing the deletion, the physical 

table extents and data blocks have now free space within them for additional 

rows. Let us also assume that the database and staging table are generated 

with such specifications that the database engine can utilize this recently 

freed space within the data blocks. Now insertion of a new data bucket 

means that rows are inserted into these partially emptied data blocks and 

empty data blocks will be reserved at the end of the table. This introduces 

data skewing to the staging table and introduces growing space consumption 

for the staging table as loading more data rows to the staging table will 

reserve additional extents and data blocks for the table. 
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It is evident and also witnessed through experimenting and resolving the 

problems in the setup referenced in chapter 5.1, that this setup will 

ultimately over time introduce excessive data skewing. This will eventually 

generate a high watermark problem with the staging table. The staging table 

will then consume additional space from the database until the free space 

has been consumed. This means that the database engine cannot reserve 

more space for the table, and any insert operations to the staging table will 

exit with an error. 

 

Having active DWH system processing near real time data loading mechanism 

cannot stand such halt. This is due to the fact that the active DWH environment by 

nature handles data loads in really short intervals. Any delay in the process of loading 

data from source systems generates a heavier load on DWH loading processes. It is 

fair to say that another type of solution needs to be formulated to overcome and 

resolve the problems on both efficiency and data skewing. 

All the parts of a typical data warehousing ETL process are affected by the 

fact that there is a huge amount of records read, transformed and loaded 

through the system. Each of the parts is affected individually and yet 

affecting on the total throughput of the system. 

 

Several questions still remain to be answered – for which answers are never 

good enough. What if there is a need to rerun a day’s batch of data? Further, 

how to rerun in the case of corrupted data? How the correctness of the data 

can be ensured? How do we process the data fast enough and how do we 

enable it to be reported on a very frequent, near real-time, basis? 

 

All these questions and design flaws must be answered and refined to 

achieve a high performing environment for a near real-time DWH system.



4 Existing research 

The existing research publications were searched using Google Scholar1. 

Publications were searched in the databases with keywords (data 

warehousing (DWH), staging table, partitioning) and selected by the author 

based on their relevance to DWH, their handling of loading processes and 

staging tables. The publications were reviewed by studying their focus areas 

and comparing their conclusions and findings to the traditional DWH 

methods and the proposed AcDWH methodology of the present work. 

 

4.1 1990-1999 

 

Widom [15] studied research problems in DWH. The author described a 

general DWH architecture and technical issues arising from the architecture. 

The author discussed wrapper / monitor component that monitors source 

system changes and provides formatted data to DWH which also informs 

the integrator component of changes in the source system data. There is a 

wrapper / monitor component for each data source due to different data 

models in different source systems. These components also reformat the 

data to the DWH required data model. The data from the wrapper / monitor 

components are consumed by the integrator component. The wrapper / 

monitor components read the data directly from source systems and the 

integrator component writes it to the DWH. The author discusses how the 

integrator component will directly write to the DWH structures. The author 

discussed alternatives with data loading or maintenance of materialized 

views if a DWH would be refreshed at each query execution. The author 

discussed the specific extreme case where all data from source systems 

would be copied into the DWH, and DWH views would be refreshed in 

entirety from the copied data. The author did not discuss further the 

 

 
1 https://scholar.google.com 
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problems of using data from source systems versus utilizing a staging area 

within the DWH itself. 

 

4.2 2000-2009 

 

Suresh et al. [21] patented a method and an architecture to automate the 

optimization of ETL throughput within DWH systems. The inventors 

proposed a pipelined and componentized approach to ETL workloads where 

the pipelines are built for different atomic components, each executing 

specific processing to the data. The transformation server’s components 

separately decide whether to stage or stream the data to be transformed. The 

pipelines are managed by the transformation server which optimizes the 

system for maximum resource utilization throughput by parallelizing the 

pipelines. The user is also able to define parallelism for the system by 

manually defining how many pipelines the transformation server will handle 

concurrently. The processing pipelines and their components reside in 

memory, whereas source data originates from any of the valid source types 

and the target system is a DWH.  The patent describes thoroughly the 

working principles of the transformation server. The transformation server 

processes only data in transit through the server. 

 

Bruckner et al. [27] studied approaches to real-time data integration for 

DWHs. The study discusses an approach that applies continuous near real-

time data propagation using integration techniques. The study presented 

methods available in standard Java 2 platform with a scalable ETL 

environment implemented with ETLets and Enterprise Java Beans (EJB). 

ETLets are small ETL components implemented with EJB that execute 

specific actions, and they have standardized interfaces for the input / output 

parameters. The authors discuss the business needs of near real-time DWH, 

namely including continuous data integration, active decision engines and 

highly available analytical and query setup. They also discuss the 

differences between ODS and DWHs. ODS is an environment providing 

view for current state of data across operational systems, DWH is an 

environment where analytical and historical data are recorded and provided 

to support business users and analysis. The authors discuss an architecture 

to streamline data delivery between different layers without using 

intermediate storage or staging areas. This is achieved by using ETLets and 

EJB components for extracting, parsing and converting data through J2EE 

connectors. In their study the authors described how their proposed system 
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manages the source system connection pooling and ETL processing through 

containers. By using the container setup on light weight Java components 

and immediate file storage beneath the authors believe the setup is feasible 

for near-real time DWH environments. 

 

Nguyen and Min [24] studied a framework of a Zero-Latency DWH 

(ZLDWH) in 2003. Their article addresses two aspects of ZLDWH; firstly 

the Continuous Data Integration and secondly Active Decision Engine. The 

first is constructed from a message queuing system and a data integration 

tool. This tool receives data from heterogenous sources using a data stream 

processor and a set of change data detection modules. This part of the 

system manages the active DWH requirements. The methods can include 

both push or pull techniques where data are either sent to the receiver or 

requested by the receiver. In addition, the Continuous Data Integration 

module can be formulated to handle data either in synchronous or 

asynchronous fashion, and there can be single or multiple data receivers. 

This part of the solution uses also continuous data stream processing where 

data is usually constantly changing, and it is not practical to operate with 

large data sets multiple times. The second component Active Decision 

Engine handles the rules and actions within the system. Its primary function 

is the automation of different tasks by analysis rules which are created 

traditionally by incremental analysis of the collected data. The Active 

Decision Engine uses a rule base, an event base and an action base to handle 

the automation. Users are able to create and modify different rules, events 

and actions through a specific end user interface or tool. There are some 

foundational problems in applying continuous data stream processing 

related to time consistency. These problems are evidently introduced by the 

process, which realizes when the data has been valid so that the data can be 

processed with properly modelled dimension data including attributes for 

validity time and data load timestamp details. 

 

Golfarelli et al. [16] discussed the horizon of beyond DWH in terms of 

looking onto what will be the next trends in business Intelligence. The 

authors discussed the data freshness needs related to decision making for an 

organization, while trying to execute the company’s strategy. The paper 

discusses different aspects and needs for data and information, indicating 

that Business Performance Management (BPM) is a potential resolution for 

data freshness for decision making of an organization. The research 

indicates that the data needs to be continuously made available at the right 

time and in the proper format to the right decision level makers. Decisions 

on lower organizational levels require more fresh data due to the decisions 
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need to be made faster. The above referenced BPM systems provide data 

and insight in the right time, instead of real-time, facilitating fresh enough 

data. In addition to the freshness of the data, the lifetime of data is relatively 

short. The data are needed for the dashboard usage on current performance 

metrics. This can be achieved in reactive data flows, that monitor the 

processes with time critical aspects. This kind of activity is called Business 

Activity Monitoring (BAM). The main components of such a construct are 

Right-Time Integrator (RTI) and Dynamic Data Store (DDS). RTI is an 

engine integrating data from operational databases, DWHs, Enterprice 

Application Integration (EAI) systems and from real-time streams. DDS 

system is storing short-term data for fast retrieval needs and mining. As data 

latency is of key relevance, the article proposes abandoning the Operational 

Data Store (ODS) approach utilized in the DWH and concentrating on on-

the-fly techniques. These techniques utilize BAM approach, implementing 

right-time processing of the relevant data. As a conclusion, the BPM 

approach and its role is seen as a method to quantify the strategy and targets 

and to facilitate decentralized decision making on the operational and 

tactical levels of organizations. 

 

Karaksidis et al. [20] studied utilizing ETL queues for active DWH for 

maximum freshness of the data. The authors discussed different approaches 

to build an active DWH, such as data streams compared to traditional 

method of loading windows during night and offline population of the 

DWH. The authors divided their study around four main requirements: 

maximum freshness of data, easy and swift upgrade of software at the 

source systems, minimized overhead to the source system and stable 

interfaces at the DWH side. The study discussed an active data staging area 

(ADSA), from where the data are loaded into the DWH utilizing on-line 

loaders. The authors employed a queue for each ETL activity, namely 

building an ETL data flow of separate queues processing data in different 

manners; e.g. the processes are different consumers of data. The system 

architecture consists of a data store (DBMS, application or similar), source 

flow regulator for handling the data flow from data store, intermediate 

staging area (ADVA) where data are cleansed and transformed, web 

services for consuming data from ADVA and populating the data into 

DWH. The authors proposed alternatives for the staging area, first being on 

the source side, second on the target DWH side and third one as a separate 

environment. The study specifically addressed the choices concerning 

staging area. According to the authors, the internal staging area structure 

and its tuning are the key elements of the architecture and its performance. 

As the staging area is an environment of multithreaded nature and it is using 
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shared coonstructs, race conditions and consistency should be handled 

properly. The authors raise issues on the locking of the queues and its 

implications to how fast the queues can be handled and emptied. Too fast 

arrival rate of data from source systems generates instability and longer 

queues. Alternatively, too fast service rate transmitting data off the queues 

will create a lot of locking issues, thus arrival and service rates should be 

close to each other to avoid problems. Also handling the data one tuple at a 

time poses a large overhead to the system compared to an approach where 

data are handled one block at a time. As a conclusion the study summarized 

the findings as follows; the proposed system with isolated ETL tasks to a 

specific area adds very limited additional costs to source side and the 

proposed system also facilitates faster flow towards the DWH. 

 

Simitsis et al. [10] addressed the optimization of the ETL processes. The 

authors reviewed and focused their approach to logical transformations of 

the workflow instead of implementation requirements on the physical side. 

The study approaches the optimization problem of ETL processes through 

different algorithms, and their effect on the outcome. The optimization 

techniques included exhaustive and heuristic techniques to ETL workflows. 

The study gives a comparison of the different approaches and their impact to 

the execution efficiency. The study concentrates fully on the logical ETL 

workflow and does not address any physical side design elements. The 

authors disclosed that the research issue of physical optimization of ETL 

workflows has been left unexplored. 

 

Polyzotis et al. [23] researched utilizing streaming updates in an active 

DWH. The authors studied particularly an active DWH research problem 

where transactions are inputed through online data streams. Transactions are 

added with details from a DWH table such as a dimension table, where the 

transaction is added with surrogate keys looked up from dimension tables. 

When using the traditional ETL lookup setup, the ETL logic reads the full 

lookup table in the cache memory for the specific invoking of the ETL 

process constituting from multiple rows. For streaming data sets the lookup 

caching problem generates extensive overhead due to nature of the 

processing a record at a time. For this problem the authors proposed to use a 

configurable mesh join, which keeps a specified amount of mesh join 

attributes in the memory to avoid re-reading of the lookup table. The 

researched mesh join can be configured to either stay within a specific 

memory limitation or to handle the incoming data stream at incoming rate. 

The algorithm skips processing any results that are already in the lookup 

table in the memory and propagates new results to the in-memory result 
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table. This result table is kept in the memory instead of looking it up from 

the database for each execution of the ETL process. The construct amortizes 

the cost of reading the lookup table over a set of tuples and thus provides far 

better efficiency than typical ETL processing but at the same time it 

consumes more memory. 

 

Santos and Bernardino [9] proposed a continuous loading mechanism for 

real-time DWH. The method adapts the DWH schema by duplicating the 

DWH tables into temporary tables which are identical to the original DWH 

table and added with a unique sequence identifier column. These temporary 

tables are created without indices, primary keys or any constraints. To 

refresh the DWH, all new data are loaded into these temporary tables with 

autoincremented sequential identifiers. Any queries to the DWH will be 

adjusted to query from both temporary and actual DWH tables. This method 

will in time cause the slow-down of the insert and query operations. The 

system can be optimized by moving all newly inserted data from the 

temporary tables into the DWH tables. 

 

Polyzotis et al. [25] studied meshing streaming updates that use persistent 

data in an active DWH. The authors studied the drawbacks of traditional 

DWH data loading on nightly basis. The study discussed a specific join of 

fast source system stream originating updates (e.g. fast paced changes) to a 

disk-based relation (e.g. a database table or similar). The authors proposed a 

mesh-join algorithm where the algorithm keeps the lookup table on the disk 

assuming the available memory is not large enough. The proposed mesh 

join solution keeps a disk-based relation continuously open, performs a 

cyclic scan of it continuously and maps the records against the stream 

originating records. The study focused on the transformations (lookups, 

joins and similar) in the ETL process. 

 

Naeem et al. [29] studied an event-driven near real-time data integration 

architecture. They presented an architecture for an event driven near real-

time ETL layer using database queues (DBQ) which is working with the 

push principle. The study describes the foundational problem of continuous 

extraction and transformation of data within a limited loading window. This 

problem occurs especially in the management of so-called master data, 

which is needed to enrichen the transactional data originating from the 

source system(s). The authors gave a method how the master data can be 

utilized in an efficient manner through storing it in a separate repository. 

The master data and transaction data are distributed to right targets and 

repositories. The transaction data is then enriched with the master data 
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through a message driven bean which uses the master data tables as inner 

tables in a join loop providing efficient throughput. Using this method, the 

master data is not needed to be refreshed for each transaction but rather as 

the master data itself is changed. 

 

Seifert [5] filed for a patent on an online table move method. The author 

developed a method to move a table in an online fashion without 

interruptions to applications using the database. The basic principle is to 

initiate a module that records all source table operations to the target table, 

to establish a copy of the existing table, and to initiate replay, swap and 

cleanup modules. The method uses a staging table to record any changes in 

the source table while the data is copied to the target table. The swap 

module will implement the name change of the source and target tables, so 

that the target table will be established as the table in use. After data has 

been copied from the staging table to the target table, the cleanup module 

will delete the staging and source tables. The staging table is not partitioned 

but indexed for the access of the changed records. The access of the staging 

table relies on the indexes, and data are processed by reading the entire 

staging table without parallel processing. 

 

Jörg and Deßloch [8] studied near real-time DWH using state of the art ETL 

tools. According to their study the requirements could be fulfilled using 

traditional ETL tools and by shortening the DWH loading cycles. This 

would not require re-implementation of any of the transformation logic. The 

study is divided into sections, discussing the refreshment anomalies, 

concepts of incremental loading and properties of operational sources. The 

refreshment anomalies happen when DWH system addresses the source 

systems’ data and their changes during the refreshment cycle of a DWH. 

Two families of algorithms, eager compensating and strobe family, were 

discussed and their potential to be constructed using ETL tools. Both, the 

eager compensating algorithm and the strobe family algorithms are tracking 

changes in source systems while data warehouse loading is executed. 

Respectively they perform specific compensations for avoiding anomalies. 

The authors came to a conclusion where the current ETL tools do not 

provide a means of implementation for the algorithms as such. Incremental 

loading aspects were discussed in detail, giving simple examples on 

different approaches. The authors considered the options of full and 

incremental reloading, and the distinctive characteristics that both 

approaches introduce. Operational sources and their properties were 

presented, having a view for example on snapshot and logged sources. 

Snapshot sources are simply operational sources that allow their material to 
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be dumped periodically into a file system representing a state of the 

operational system at the specified extraction time. In this setup change data 

can be captured using successive snapshots and by comparing states 

between the different snapshots. Some operational sources implement a 

change log that can be utilized to extract the changes. There are multiple 

possibilities to implement change data capture, like triggers included into 

transaction logic or log-based change capture recording the changes for 

example to log tables. In addition, database log scraping or sniffing 

implementations are discussed, in which the source system changes are 

collected from the active database log files instead of recording the changes 

from source databases themselves. Often the source systems contain 

timestamped source data, where the changes are recorded into the source 

system data itself, an example being the timestamp of the record being 

created or updated. The authors conclude with showing the potential of 

using low latency updates using ETL tools in a micro batch manager setup, 

where the loading cycles and amount of data are strictly limited. This is to 

avoid refreshment anomalies and subsequent inconsistency in DWH, 

implemented with different techniques in the ETL workflow and change 

data capture setup. 

 

Chakraborty and Singh [31] studied a partition-based approach supporting 

active DWH streaming updates. The authors described the same 

problematics as Polyzotis et al. [23]. Based on the observations in the study, 

they proposed an approach to join a data stream with a persistent relation, 

e.g. a lookup or dimension table using partitioning. The dimension table is 

divided into partitions, where the join relation can be limited to a limited 

amount of partitions from the dimension table and potentially the amount of 

partitions kept in the memory will be adjusted. Additionally, the proposed 

solution also addresses the I/O bottlenecks and eliminates locking factors 

which are due to writing rows into the dimension table. This is achieved by 

maintaining a wait buffer which is not written to disk, but rather kept in 

memory. Compared to [23], Chakraborty and Singh have added a distinctive 

partitioning method on the top of the proposed mesh join setup, which 

efficiently eliminates large scale reading of the dimension table and tries to 

concentrate the reads and writes into hot areas within the partition range. 

 

Vassiliadis and Simitsis [12] discussed the business needs that require near 

real-time DWH and such architectures that will cater for these needs. The 

authors considered also the performance bottlenecks relating to near real-

time data loading, especially arranging the data into a staging area, and 

processing it into DWH or data mart structures either using bulk loading 
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mechanisms or inserting the data by a sequential insertion of rows. 

Vassiliadis and Simitsis properly identified the drawbacks of such 

mechanisms in relation to indexing and materialized views over the DWH 

relations while inserting the data. The authors proposed an Extract-Load-

Transform (ELT) solution that snapshots operational system data into DWH 

staging area, after which the transformations are managed within the DWH 

platform. This enhances scalability and also secures integrity of data as all 

data are kept within the database engine. The proposed solution is a 

pipelined approach to the stages in the ELT process where a proposed Data 

Processing Flow Regulator (DPFlowR) component controls the source 

loading activities and decides which sources are ready for transmitting data. 

This proposed component also regulates the source loading process and 

balances the congestion posed by the loading pipeline against the overall 

system throughput and responsiveness. In addition, a proposed Warehouse 

Flow Regulator (WFlowR) component would similarly control the DWH 

loading processes that are pipelined, balancing them to enhance system 

throughput and responsiveness. Both these components act as load-

balancing tasks within the system. The authors discussed specific pipelining 

and partitioning methods for the specific extraction, loading and 

transformation processes. The discussed method proposes to divide the 

processed data into smaller sets which would then be processed in parallel 

and in pipelined fashion by different parts of the system. 

 

4.3 2010-2019 

 

Zuters [13] studied near real-time DWH problems and proposed a solution 

to data loading setup by evolving of trickle & flip method into a multi-stage 

trickle & flip setup. This trickle & flip method is used to remove scalability 

issues in DWH for querying the data which has been updated concurrently 

with the querying processes. Using trickle & flip the staging tables are in the 

same format as the DWH tables. The staging tables are periodically 

duplicated, and their copy will be swapped with the DWH tables. Applying 

trickle & flip to real-time DWH means swapping the staging tables with the 

active partitions of the DWH.  This method implicates that the system needs 

to have all changed data available since the last update in the real-time 

portion of the DWH. In addition, the real-time data needs to be linked 

pragmatically to static data, it needs to be extremely lightly indexed to 

support the continuous data loads and to support fast queries. Using trickle 

& flip imposes drawbacks to the real-time DWH setup. Copying staging 
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data into DWH active area for example every hour will implicate periodic 

slowness on throughput and tweaking the update happening in longer 

intervals just exaggerates the impact as the data swapping will take longer 

time.  Zuters proposed using an evolved multi-stage trickle & flip scenario 

where the method introduces additional stages to the system. This would 

resolve the issues of querying the tables while the data are loaded. In this 

scenario the real-time data are divided into sub-partitions, where each sub-

partition holds less data than the full real-time portion of the DWH. The 

staging table is proposed to be swapped in more frequently, and then only a 

sub-partition of the data must be moved. This efficiently removes some of 

the hindrances of querying and loading the same data window. 

 

Thomsen and Pedersen [11] presented an ETL framework implemented in 

python programming language. The framework presents an efficient way to 

parallelize the ETL process itself and the typical tasks of such process. The 

research addresses several constructs in python that will enable all parts of 

the ETL process to be parallelized. This is achieved by both task parallelism 

and data parallelism. The proposed method allows extraction in parallel to 

other tasks in the process. Authors proposed to divide the tasks into flows 

that are sequence collections of functions running in parallel. The method 

enables the programmers to decide and control which parts of the ETL 

process and data can be parallelized. 

 

Kakish and Kraft [26] studied the ETL evolution for the real-time DWH. 

The authors presented the fundamentals of the ETL processing in traditional 

DWH environments and described the architecture of the DWH 

environments. The authors discussed the problematics of capturing changed 

data from the source systems and the complexity of defining extraction 

processes. Kakish and Kraft described the techniques to achieve real-time 

DWH through implementing a Change Data Capture (CDC) technique and 

integrating such technique with ETL tooling. In CDC technique only the 

source system changes made after previous extraction are extracted. So, 

CDC mechanism uses only incremental extraction. This integrated approach 

would minimize the needs for resources along with maximizing the 

efficiency of the process. The study describes the three different generations 

of ETL toolsets, which have evolved from operating system native code, 

through proprietary ETL engines to latest generation of ETL tools which 

have a distributed architecture. These third generation ETL tools eliminate 

and reduce the need for an ETL hub between the systems and they pursue to 

introduce distributed processing where the transformations are implemented 

in the database management system side. This facilitates for distributed and 
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optimized ETL processing. The authors came to a conclusion where the 

current ETL processes need to transform from periodic processing to 

continuous updates. According to the authors, effectively this would require 

continuous data integration. To eliminate the disadvantages and to fulfill the 

requirements, authors propose to use an intermediate data processing area 

(DPA) and the architecture and methods proposed in [12]. The study 

concludes with weighting the different aspects of different solutions on the 

actual need; not all tasks require real-time analysis capabilities. 

 

Waas et al. [6] discussed the problematics of near real-time DWH in the 

context of the latency to get the data in the DWH for queries. The data 

freshness problems were discussed. A core problem of data freshness and 

latency related to time consuming data transformations and cleansing for 

queries was identified. The authors propose a right-time Business 

Intelligence (BI) architecture where ETL is turned into ELT processing 

using database platform as the loading and transformation engine. The paper 

proposes loading raw data into the DWH and handling the rest of the ELT 

process with database operations through materialized views. The proposed 

model has three main components: staging area called landing pad (LP), 

DWH tables, and materialized view stack (MVS) providing data to the 

queries and reporting instead of traditional data marts or reporting tables. 

The data is provided to the queries on-demand through refreshing of 

materialized views. Authors also proposed to augment the architecture with 

updates through streaming data from event data sources. The streaming data 

process can query and combine elements from DWH for end user 

dashboards for alerting. 

 

Bani et al. [35] studied utilizing Massively Parallel Processing (MPP) 

system to provide scalability for DWH. The study focused on implementing 

a MPP system with Greenplum database to perform complex queries in the 

DWH. The Greenplum MPP system is built with multiple parallel physical 

hosts interconnected with an interconnect network layer distributing the 

MPP processing. The DWH data is partitioned across the servers and each 

server has its own CPU, memory and database instance. The database 

queries run in parallel using all the MPP system hosts, and each host is 

returning the results. Interconnect network layer enables communication 

across the database instances residing on the servers, giving the system 

ability to act as a single database. The MPP solution collects daily 

transactional data from the source systems. The study shows that data loads 

with less than 1 000 000 rows can be handled with direct load to staging 

area tables, and the staging cleansing is executed by truncating the staging 
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table after each successful load to DWH. Larger data loads require a dual 

stage data load which means creating a file dump on source system table(s) 

and loading the data from these files to staging area using databases utilities. 

 

4.4 2020- 

 

Gorhe [36] studied problems and categorized challenges and opportunities 

in ETL processing for near real-time environments. The author identified 

fast source data availability in DWH environment and providing required 

data for decision making as the primary focus in near-real time DWH. Low 

latency, minimum disruptions and high availability & scalability were 

identified as the key characteristics of these near-real time DWH 

environments. The author also discussed problems in the ETL processes. 

Some key findings were performance impact of the DWH while loading the 

data, the inability of proprietary ETL toolset to support near-real time usage 

and complicated design due to the near-real time requirements. The author 

identified key findings on the opportunities in near-realtime DWH, such as 

data buffering to enable source data storage while previously extracted data 

was under processing and using separate ETL for near-real time data. 

 

Adnyana and Jendra Sulastra [37] studied data backup and synchronization 

implementation for real-time DWH. The authors considered the resolution 

of data synchronization to online transaction processing (OLTP) systems 

and DWH databases while network problems occurred. They described a 

functionality in the system which saves the data into a comma separated 

values (CSV) file while network problems occur. The solution uses an 

identity column on OLTP database tables to mark if the insertion has failed 

or succeeded. After the insertion has succeeded to the OLTP database, the 

system continues synchronizing the data into the DWH. 

 

Biswas et al. [38] studied incremental loading techniques for real-time data 

integration. The authors compared Graphical User Interface (GUI) -based 

ETL tools in the market against custom coded tools. The study discusses 

four programmable ETL tools Pygrametl, Petl, Scriptella and R_etl. The 

authors described and measured the efficiency of each of the programmable 

ETL tools from different viewpoints and discussed the modelling of the 

ETL jobs. The authors divided their study to three parts: Change Data 

Capture (CDC), dimension table processing and fact table processing. The 

authors experimented with full reload against incremental load and they 
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came to a conclusion that incremental loading is not only faster but also 

provides lighter processing requirements for the system. Conclusions 

include findings that specifically coded and crafted ETL can be the most 

viable option instead of GUI-based ETL tools on the market, and also that 

real-time DWH needs incremental loading mechanisms which provide better 

throughput and also less system resource consumption. 

 

Cao et al. [39] presented Timon, a time-series database implementation for 

efficient telemetry data processing and analytics. The authors created the 

solution for timestamped event database that supports aggregation and 

handles late arrivals. Timon uses TS-LSM-Tree structure that keeps recent 

data within memory. The structure also contains a time partitioned tree on 

disks to which the in-memory data is periodically merged to. The non-

memory implementation is usually done with such solutions as HBase [40] 

or Cassandra [41]. Timon reads the events from the source systems usually 

through message queue systems and attaches a sequential ascending 

identifier to each record. The solution is built to support large volumes of 

timestamped data. Timon is written from scratch, and the authors have 

implemented also Timon Query Language (TQL) for easier application 

development. 

 

4.5 Summary of literature review 

 

As a summary, below is a comparison of different focus areas in the prior 

literature reflecting the area of this thesis. While most of the cited studies 

focus on the loading process and the staging area handling only a few of 

them focus on table partitioning setup and associated methods to overcome 

active DWH bottlenecks [23] [31] [39]. While the table partitioning is 

studied in these papers, it is not studied for the staging area handling. Table 

partitioning aspects have been studied in the context of loading process or 

join processing, which are elementarily valid focus areas. The present thesis 

uses table partitioning in the staging area processing. Also leveraging the 

partitioning technology to enable active DWH with continuous loading and 

simultaneous querying of data is be studied. As a conclusion, utilizing table 

partitioning in staging tables in a standard database engine has not widely 

been discussed or studied. This thesis proposes a novel approach to active 

DWH staging table handling in a standard database engine using table 

partitioning along with the proposed data management system. 
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Table 1. Comparison of focus areas in prior studies. 

Referenced 

study 

Author(s) Year Loading 

process 

Staging 

area 

Join 

processing 

Table 

partitioning 

[15] Widom 1995 X    

[21] Suresh et al. 2001 X    

[27] Bruckner et al. 2002 X  X  

[24] Nguyen and Min 2003 X    

[16] Golfarelli et al. 2004 X (X)   

[20] Karaksidis et al. 2005 X X   

[10] Simitsis et al. 2005 X    

[23] Polyzotis et al. 2007   X X 

[9] Santos and Bernardino 2008 X X   

[25] Polyzotis et al. 2008   X  

[29] Naeem et al. 2008 X    

[5] Seifert 2009  X   

[8] Jörg and Deßloch 2009 X    

[31] Chakraborty and Singh 2009   X X 

[12] Vassiliadis and Simitsis 2009 X X   

[13] Zuters 2011 X X   

[11] Thomsen and Pedersen 2011 X    

[26] Kakish and Kraft 2012 X X   

[6] Waas et al. 2013 X X   

[35] Bani et al. 2018 X  X  

[36] Gorhe 2020 X X   

[37] Adnyana and Jendra 
Sulastra 

2020 X    

[38] Biswas et al. 2020 X    

[39] Cao et al. 2020 X X  X 



5 AcDWH Method 

In this chapter a methodology for a rapid data warehouse (DWH) loading and 

analysis platform (AcDWH) is presented. The methods presented have been granted 

a European Patent (EP 1 959 359 B1) by European Patent Office on November 22nd, 

2017 [I].  

 

5.1 Overview 

 

A high-level description of the optimized DWH loading and analysis 

platform, AcDWH, is as follows: 

 

1. Generate the AcDWH staging area and primary data warehousing 

structures to enable initial loading, 

2. Feed the AcDWH staging area from the source systems (data loading 

module), 

3. Populate the primary AcDWH structures from the staging area (delivery 

module(s)), 

4. Clear the staging area after transitioning the data to primary AcDWH 

structures (cleaning module), 

5. Establish the AcDWH indexing structures for analytical and query use. 

 

The foundation of the AcDWH methodology is explained in detail in the 

following sections. The fundamental change of the proposed approach in 

contrast to the previous DWH techniques is utilizing physical data 

partitioning in a manner it was not originally intended to be used. 

 

High level modules and their relation to the staging table(s) of the AcDWH 

are illustrated in Figure 4. Step 2 is performed with the loading module, step 

3 with the delivery module and step 4 with the cleaning module. Step 1 is 



Jari Myllylahti 

46 

performed manually while building the system and step 5 can be performed 

by triggering indexing structures recreation as a last part of delivery module. 

Each target table / structure has its own system modules. Each bucket is 

represented by a single table partition. 

 

Figure 4. AcDWH system modules and their relation to the staging table(s). 

 

High level flow of the AcDWH load module is shown in Fig. 5: 

 

Figure 5. High level AcDWH loading module. 

Each bucket in the subject area specific staging table is created with uniform 

extent and bucket sizes, meaning physical table partition size and also as 

DATA MANAGEMENT SYSTEM
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Data coming from a 
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Create new partition for 
the data

Store the data in the 
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Update bucket 
metadata
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close to an uniform amount of rows in the bucket as possible. After the 

bucket has been loaded into the AcDWH staging table partition, it will be 

marked as loaded and any delivery processes can start to load data from the 

staging table to DWH structures. 

 

The AcDWH system may include multiple delivery processes and thus the 

system needs to track how the different delivery processes will load data 

into database structures. Multiple delivery processes can load same bucket 

data for example to different subject areas (data marts, DM) for reporting. 

The data bucket from staging table cannot be deleted prior to all delivery 

processes have processed it. To facilitate for this the system works through 

the control tables and coordinates how different delivery processes work 

with the data. See Figure 6 for the workflow of the AcDWH delivery 

module. 

 

Figure 6. High level AcDWH data delivery module. 

To set different priorities on the delivery processes, each AcDWH delivery 

process is assigned with priority information. The priority is indicated with 

a numerical value. Value 1 has highest priority, value 2 second highest and 

so forth, as many priority levels as needed can be introduced. Priorities of 

delivery processes are defined for the application while the system is built. 

The AcDWH system can resolve prioritization by checking if higher priority 

delivery processes are in the queue to be executed. This simple method 
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avoids executing lower priory delivery processes before the higher priority 

ones. When higher priority processes are finalized, the lower priority 

processes are processed. The overall AcDWH delivery process is described 

below in Figure 7. 

 

Figure 7. AcDWH Data delivery module priority determination. 

After all delivery processes have moved the bucket data to AcDWH 

database structures, the data buckets (e.g. staging table partitions) will be 

deleted from the system to minimize the usage of the database space and the 

consumption of resources. As the AcDWH staging table and its partitions 

use uniform sizing on physical level, the space removals and allocations are 

uniform, and the space allocation management is easy. 
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Figure 8. AcDWH Cleansing process. 

Figure 8 describes the overall AcDWH process for cleansing of the 

partitioned staging table from the processed buckets. The cleansing module 

identifies the delivered buckets from the AcDWH control table (see chapter 

5.4), and one by one drops them from the partitioned staging table (see 

chapter 5.3). This is an efficient way to purge the already processed data 

from the staging table. 

 

The cleansing process can be established in a very simple manner. The 

process analyzes from the control table if all the delivery processes have 

loaded the bucket data from the staging table to the structures and deletes 

the associated staging table partition. This will be repeated for any potential 

additional staging table partition until no such partitions are found. 

 

The cleansing process can be scheduled to be run periodically depending on 

the need. Heavily loaded systems require more frequent cleansing of the 

staging table and thereby the cleansing process might be scheduled to be run 

for example every five minutes. In lighter loaded systems cleaning might be 

scheduled to one hour’s schedules or even longer, for example once per day. 
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5.2 AcDWH structural considerations 

 

The traditional method of loading data in large nightly batches into DWH 

structures introduces performance problems on simultaneous queries and 

analysis. The loading of data requires typically indices to be put offline or 

dropped and rebuilt or recreated after the loading of the data. This causes the 

system to perform a full table scan of the tables when making queries or 

analysis on the DWH structures. Querying multiple tables joined together 

without indices will render the system nonresponsive and unusable. 

 

While the indices are turned off the loading of data to the staging area is 

fast. On the other hand, any query issuing a full table scan slows down the 

loading of data. This is due to the database engine scans the same physical 

extents of the staging area as the loading of data process. This is the reason 

why the data loading is commonly processed during night on daily, weekly 

or monthly intervals. 

 

The traditional method has also another drawback. As the indices will be put 

offline or dropped during the data load, the indices need to be either rebuilt 

and made online or recreated. Taking into consideration that data 

warehousing tables typically are large and include millions, and sometime 

billions, of data rows the rebuilding or recreation of indices will be 

extremely time and resource consuming. This will cause additional resource 

problems and delays on getting the data ready for queries and analysis. 

 

The proposed AcDWH method will help overcome the above problems by 

partitioning the DWH tables into smaller partitions having local indices. A 

local index means that the index will be partitioned according to the 

partitioned table. Now loading data into a partitioned DWH table will 

address only the specific partitions it needs to insert data to, and the indices 

can be kept online while loading data as the partitions are separately 

addressed. This is a near perfect way to manage large data warehousing 

tables and it allows simultaneous data loading and querying access. 

 

5.3 Generating the AcDWH structures 

The new methodology used in AcDWH consists of the following atomic elements 

on generating the structures: 
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• Staging table structures 

• Primary DWH structures 

• Indexing structures 

 

The AcDWH methodology relies heavily on the special organization of the 

staging table structures. In addition, by rearranging the staging table, the 

system is able to provide a widely parallelizable process for querying and 

loading the DWH.  

 

Utilizing traditional method on generating staging table structures is simple 

and straight forward. The staging table(s) are generated according to the 

source system specifications. The staging table has the same columns and 

data types as in the source system definitions. 

 

The AcDWH method discloses a staging table structure to manage and 

handle vast amounts of data from source systems, with the ability to handle 

the problematic areas of efficiency, repeatability and concurrent read/write 

access to primary DWH structures. 

 

Figure 9. To the left, traditional staging table and to the right, the partitioned staging 
table used in AcDWH using uniform partition physical size. 

The novelty with the proposed AcDWH method grants a concurrent and 

efficient read/write access to the staging table, while the staging table can be 

simultaneously written into, read from, and cleansed from data originating 

from several different source systems. 

 

The primary idea in the implementation of the AcDWH staging tables is to 

partition the staging table into physical partitions. By this method, one can 

limit the write and read accesses to dedicated physical objects within the 

staging table. This method is illustrated in Figure 9. 

 

The staging table has additional two columns to source data, namely 

bucket_data_type and bucket_id. Bucket_data_type, as defined in the 

Staging table

Partition: 1 Partition: n Partition: Maxvalue………….

Staging table
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system meta data, defines the source system from which the data arrives. 

The bucket_id has an identifier for the bucket, e.g. it is a load batch 

identifier. 

 

The staging table is initially created only with one physical partition, having 

the partitioning key defined as MAXVALUE. MAXVALUE is a specific 

value, which does not correspond to any created actual physical values 

within the bucket_id. 

 

As the loading process gets a specified number of files or rows from source 

systems, it will generate a new bucket_id. The loading system generates 

and/or updates a row in bucket_information status table to manage the status 

of the incoming data buckets. The loading system also generates a new 

partition in the staging table having the bucket_id as the partitioning key. 

The new partition is generated from the MAXVALUE partition by a split 

partition command. This is illustrated in Figure 10. 

 

This way the system will split the MAXVALUE partition into two physical 

partitions; bucket_id (first load batch being number 1) and MAXVALUE. In 

AcDWH the split partition command is always executed against the 

MAXVALUE partition, which is empty, thus no data movement is required 

and the database management system is not required to transition any rows 

between the MAXVALUE and newly generated partitions. 

 

Figure 10. Illustrating the AcDWH split partition operation where MAXVALUE partition is 
split into partition 1 and partition MAXVALUE. All partitions use uniform 
physical size. 

The methodology described above directs all insert/update/delete database 

operations into a specific physical table partition. The rows within each 

Staging table

Partition: Maxvalue

split operation

Partition: 1 Partition: Maxvalue
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physical partition, having a specific bucket_id, will be directly accessible by 

the database management system for the loading mechanism without 

additional or user generated indexing for the bucket_id. In this method the 

staging table is managed by physically partitioning it by bucket_id. 

 

This method will relax the system from the requirement of indexing the 

bucket_id column. By selecting rows by bucket_id from a staging table built 

in this way will always direct the database engine to select the rows from 

the wanted physical partition only. Such selects do not need additional 

indexing, and the select operation will also be executed faster and also in 

parallel by the database engine. 

 

5.4 Parallel processing in AcDWH within a single 
bucket_type and between different 
bucket_types 

 

The proposed AcDWH method gives clear advantage over the previous way 

of populating the staging area and DWH tables. As each data bucket is 

placed within a specific staging table and a specific physical partition of the 

staging table, the system is able to insert multiple buckets at a time to the 

same staging table regardless of the progress on other streams and processes 

populating the same staging table. Concurrent streams of a particular bucket 

type are not dependent of other types, or they don’t race for the same 

resources within the database.  

 

Using the AcDWH method, the system is able to load and query 

concurrently the specific staging table with a greater number of processes 

with a minimal impact on resource race and consumption. While a load 

process (from source systems to staging table) is not finished with loading 

the bucket into staging table partition, no other loading or delivery processes 

will access the partition. After the bucket is loaded into staging table (and its 

partition), loading process(es) are allowed to access the bucket. 

Simultaneous reading of the bucket data (staging table partition) is allowed 

and does not create race conditions. After all delivery modules reading the 

bucket data from staging table partition are finished, the cleansing module is 

allowed to access the bucket and remove its data and its underlying table 

partition. 
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This is achieved through physical isolation of the underlying partitions of 

the specific table. Each table partition is formed of specific physical 

segments of data placed within the database engine. During the loading of 

rows into the staging table, the database engine directs the insert operations 

into the specific table partition, based on the partitioning key (bucket_id) of 

the table. A given partition is formed of one or many physically separated 

partition extents. Any insert operation having a specific bucket_id will be 

directed to a specific physical extent of a partition, and that extent is 

physically separated from other partitions of the table. The same will apply 

for the select operations, when partition data is queried to offload the data to 

actual data warehousing tables for reporting and analysis. 

 

The partitions of the staging table are formed from physical extents which 

are defined during the creation of the table and partitions. Each partition can 

have a partition specific extent space. By measuring the responsiveness of 

the system on different configurations, along with experience on creating 

and managing the system referenced in chapter 6.1, the system can be 

configured to allocate only necessary number of physical extents for a 

specific partition when the partition is created. Using minimum amount of 

extents for a partition the database engine does not need to allocate any time 

or space for the bookkeeping of extents within a partition. This will 

influence the system throughput as the system does not need to 

automatically allocate additional extents as the previous extent is filled with 

data. Additionally, the database system does not need to search the starting 

address of the next partition extent within the tablespaces and database data 

files. Tablespaces should be always created large enough to hold additional 

data and the AcDWH system will monitor the space consumption and alert 

the database administrators should the free space fall below a predefined 

threshold, such as one day’s data space requirement. 

 

The method of dedicating a physical extent within a partition segment for a 

bucket_id is the foundational element for the achieved concurrency and 

effectiveness. The system can run a high level of concurrent insertions of 

bucket_ids to the staging table while at the same time the direct addressing 

capability for the bucket_id is maintained. 

 

The status of each bucket is kept up to date within a control table by 

maintaining meta data for each bucket: 

• status of the bucket (processing, processed, deleted) 

• number of rows 

• bucket_type 
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• earliest record of the bucket 

• latest record of the bucket 

• start and end times of bucket load 

• calculated throughput (as rows processed per second) 

 

The table row size is depending on bucket_type, some staging tables might 

have fixed row length while others might have variable row length due to 

variable length data. 

 

Figure 11 illustrates the three status tables that control the behavior of data 

management system. 

 

Figure 11. The control tables used to control the AcDWH. 

The control tables include data for each loaded bucket in the system. The 

main control table CTRL_BUCKET is used to record the buckets into the 

system, in addition the table has metadata related to the loading process 

efficiency, loaded data time span and bucket status. The second control table 

CTRL_DELIVERER is used to describe the delivery processes, their types 

and target structures, and their priority (as described earlier in this chapter 

5). By using priorization, AcDWH system can set different priorities based 

on the different needs of delivery processes. The last control table 

CTRL_BUCKET_DELIVERERS is used to log the activities of each 

delivery process with regards to the specific bucket, it can also be used to 

execute the cleaning module when all the delivery processes have 

transferred the data to the needed database structures. 

 

As the bucket_id is the partitioning key for the staging table, the direct 

access path to physical table partition is always up to date and available for 

inserts and queries. 

 

BUCKET_ID NUMBER(10) DELIVERER_ID NUMBER(4) BUCKET_ID NUMBER(10)

BUCKET_TYPE VARCHAR2(20) DELIVERER_NAME VARCHAR2(20) DELIVERER_ID NUMBER(4)

NUMBER_OF_ROWS NUMBER(6) DELIVERER_TYPE VARCHAR2(10) DELIVERER_STARTTIME DATETIME

EARLIEST_RECORD DATETIME DELIVERER_DESCRIPTION VARCHAR2(100) DELIVERER_ENDTIME DATETIME

LATEST_RECORD DATETIME PRIORITY NUMBER(2) ROWS_PER_SEC NUMBER(6)

STATUS VARCHAR2(20) DELIVERER_TARGET VARCHAR2(20)

BUCKET_STARTTIME DATETIME

BUCKET_ENDTIME DATETIME

ROWS_PER_SEC NUMBER(6)

CTRL_BUCKET CTRL_DELIVERER CTRL_BUCKET_DELIVERERS
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A typical approach in DWH solutions having large data volumes is to make 

all indices offline while inserting data and rebuilding the indices online after 

the batch data load. Another approach is to drop the indices prior to batch 

loading data and recreate the indices after the data has been loaded. These 

optional methods enable the data loading to the table to be faster. They 

eliminate the need of consistently updating records in the indices one by one 

during the data loading. 

 

With the bucket_id partitioned staging table there is no need to update or 

uphold the bucket_id based indexing and manage it either by the process or 

by the database engine, as the staging table partitioning key is always 

updated and managed with the table itself by the database engine. 

 

While investigating and evaluating these different methods (keeping staging 

table bucket_id index online during data load; dropping bucket_id index 

prior to data load and recreating bucket_id index after data load; and 

bucket_id partitioned staging table) against each other, experience and 

evidence under confidentiality obligations from real life implementations 

show clear benefits of using the partitioned staging table and AcDWH. If 

the staging table would not be partitioned, the system would be forced to 

update the index while inserting the data into the staging table. Given the 

characteristics of updating the full table index while inserting, the database 

engine needs to ensure the index is properly updated during the transaction 

in both cases. This will introduce a delay in the insert operation as the 

database engine needs to update the indexing structure during the 

transaction. The database engine would need to search for physical index 

extents with available space within them or add additional physical extents 

to the end of index and insert the relevant values to the index. After 

inserting the rows to the staging table, the insert will be committed. 

 

In general, a commit updates a record perpetually in a database. Within 

database transaction, a commit saves the changed data permanently and 

ends a transaction. It also allows other users to see the committed changes. 

A rollback rolls back the changes after updating the data with changes. As 

commit, a rollback also ends a transaction and other users will not see any 

of the changes related to the rolled back transaction. [01] 

 

Looking into the differences of a normal staging table and a partitioned 

staging table, the key characteristic differences are how large or how many 

physical extents of structures need to be updated during the insert operation. 

This applies to the table structures and index structures. 
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In the case of a normal staging table without table partitioning the index is 

structured as a normal index having one or more physical extents. Then, 

there are two approaches how to handle the staging area and also loading the 

data to the DWH structures; i) handling a batch at a time, having no 

concurrency; or ii) handling multiple batches at a time introducing 

concurrency. 

 

In the first case of handling a batch at a time and designing the system for 

no concurrency, the method is straightforward: 

• insert the data to the staging table 

• transform and load the data from staging table to the DWH structures 

• delete or truncate the staging table after a successfully committed 

transformation and load transaction to the DWH structures. 

 

If concurrency would be needed for this traditional method, the following 

additional steps need to be added to the process: 

• Add a loading batch identifier to the source data (e.g. a column having 

the bucket_id or load_id identifier) 

• Index the staging table based on the previous identifier column 

• Manage the DWH structures loading process with deleting the applied 

rows with the previous identifier 

 

The concurrency-added method will introduce specific problems: 

• The need for database engine managing the identifier index, addressing 

the global staging table (e.g. the table must be able to keep multiple 

identifiers) 

• The need for database engine managing the data allocation in different 

extents of the staging table. 

 

AcDWH system with partitioned staging table as proposed with the present 

work omits the following operations from the system in relation to the 

staging table and to manage multiple batches of source system data: 

• index dropping and recreation 

• making index offline and rebuilding the index 
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The presented AcDWH method facilitates for automatic management of the 

staging table and staging table identifier index, cleansing of the staging table 

after successful transformation of the data to data warehousing structures 

and deletion of the transformed data for any bucket_types. 

 

To sum up, the key differences between traditional DWH and the presented 

AcDWH method are; 

• Different types of data are divided into different bucket_types within the 

system 

• The data for a specific bucket_type is stored in a bucket specific staging 

table and tablespace 

• An AcDWH specific partitioned staging table is utilized for parallel 

loading and concurrency 

 

The parallelism and concurrency between different bucket_types create 

more distributed workloads. This is due to data residing in different physical 

areas and data loading processes accessing separate staging tables 

concurrently. 

5.5 Staging table partitioning in AcDWH 

 

In AcDWH, partitioning of the staging table eliminates the need to index the 

bucket_id and all I/O operations related to searching the bucket_id index are 

eliminated. This gives an efficiency boost to the operations loading into or 

from the staging table. In addition, this enhances the housekeeping process, 

as purging the loaded data from staging table is done through dropping the 

partition. The drop partition command does not require any search of 

indices or updating/recreating indices. The command is DDL and simply 

removes the partition from the staging table.  

 

For the staging table partitioning, the following basic elements need to be 

specified: 

• What is the maximum value the partition can contain (based on the 

partitioning key) 

• What is the initial physical extent size of the table partition 
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• What is the additional physical extent size of any additionally needed 

extent. Additional specifications may include details like what is the 

tablespace the partition is defined to reside on 

 

Figure 12. General setup of the partitioned staging table. 

Figure 12 shows a general setup of the partitioned staging table structure 

where there is an arbitrary number of partitions (buckets), illustrated as 

partitions 1 to n. Additionally the table has a MAXVALUE partition that 

contains any overflow data, that is not specified to reside in any of the 

partitions 1 to n. E.g. partition 1 will hold data with bucket_id=1, partition 2 

will hold data with bucket_id=2, and so forth. Overflow data would be any 

data that would get into the staging table due to an error in the AcDWH 

loading process. The MAXVALUE partition can be continuously monitored 

for any rows to catch such error situations. 

 

As an example, assuming n=100 a row having bucket_id=101 would be 

residing in the MAXVALUE partition by definition. The MAXVALUE 

partition is created to store any inserts with illegal bucket_id and thus avoid 

catching an error or exception from the database engine within AcDWH 

system. Any rows with bucket_id column value is greater than n (the highest 

value defined) are stored in partition MAXVALUE. 

 

Each partition is created with a specification of the maximum value it can 

hold, e.g. the bucket_id. The partition will hold any rows fulfilling that 

specification, examples being rows with bucket_id=3 would reside in 

partition 3, rows for which bucket_id=8 reside in partition 8 and rows for 

which bucket_id=n reside in partition n. 

 

Each staging table in the setup is initially created with one partition and 

partitioning key equal to MAXVALUE, see Figure 13. 

Staging table

Partition: 1 Partition: n Partition: Maxvalue
………….
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Figure 13. Initial construct of a partitioned staging table in AcDWH. 

MAXVALUE represents a value that is always greater than the largest 

possible value existing in the partitioning key, e.g. an upper bound. 

MAXVALUE partition acts as the overflow partition catching any non-

defined values. 

 

Now, initiating the load from a source system to the staging table, the 

system will collect the relevant records to the first bucket, bucket_id=1, and 

generate the partition 1 in the staging table. This is achieved by issuing an 

alter table SQL language command: 

 

ALTER TABLE STAGING_TABLE 

SPLIT PARTITION MAXVALUE 

INTO (PARTITION PARTITION_0001 VALUES (1), 

      PARTITION MAXVALUE VALUES LESS THAN MAXVALUE); 

 

The ALTER TABLE SPLIT PARTITION command adds a partition to an 

partitioned table by splitting an existing partition. There is practically no 

limit to the number of table partitions. By executing an ALTER TABLE 

SPLIT PARTITION command, the database engine creates two new 

partitions (0001 and MAXVALUE) and splits the contents (if any) of the 

old MAXVALUE partition between the new partitions per the constraints 

laid out in the partitioning definition; rows with bucket_id=1 to partition 1 

and any rows with a larger value to partition MAXVALUE. This is 

illustrated in Figure 14. 

Staging table

Partition: Maxvalue
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Figure 14. Splitting maxvalue partition into partitions 1 and maxvalue. 

The ALTER TABLE SPLIT PARTITION command can include also the 

tablespace definition to specify in which tablespace the split partition will 

reside. This will for example give the possibility for a database 

administrator to spread the staging table physical extents across different 

storage areas of the DWH system for more I/O throughput. If the tablespace 

is not defined, the partition will be created in the tablespace defined for the 

table. 

 

For the use case of this data management system and the initial example 

above, no indices will be generated for the partitioned staging table. Any 

INSERT INTO or UPDATE command having WHERE BUCKET_ID=1 

will utilize partition pruning. Pruning happens when an SQL operation on a 

partitioned object is executed. The database engine will recognize the 

criteria and will address only specific partition(s). This behavior enables the 

database engine to access only the partitions with relevant data and ignore 

rest of the partitions. Any database operation addressing a specific 

bucket_id will be directed only to the partition containing that specific 

bucket_id. This will isolate the operation from accessing any other partition, 

limiting the amount of I/O operations and the needed physical object 

accesses to the specific partition only. 

 

Assuming the system has been running for a while, and inserted n new 

bucket_ids to the partitioned table, the resulting structure is illustrated in 

Figure 15. 

Staging table

Partition: 1 Partition: Maxvalue
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Figure 15. Structure of AcDWH staging table after inserting n buckets. 

5.6 Forecasting space requirements, row amounts 
and generating statistics for the business in 
AcDWH 

 

For the sake of generating added value from the AcDWH and data gathered 

during the loading process there are clear areas where AcDWH can be 

further developed. 

 

The data gathered from the loading process (rows per extent, extent sizes) 

can be used to generate an automated or a semi-automated system to 

forecast space requirements and consumption on a specific source area (e.g. 

a specific staging table). This way the database administrator can forecast 

and manage the needed storage space for tablespace files for the specific 

staging tables. This method will remove the potential drawbacks of the 

halted loading process in case of filled tablespace files. 

 

While AcDWH will map and log the extent sizes of the staging table 

partitions and their row amounts, the system can be used to report the trend 

and the prognosis of the needed space for the staging tables. 

 

5.7 Populating the DWH structures 

Populating the DWH structures from the staging table is isolated from the 

previous part of the process in AcDWH, which loads data from a source 

system and inserts it into the AcDWH staging table. This populating process 

is the second isolated process area in AcDWH. The structure and construct 

of using a partitioned staging table is the foundation for the asynchronous 

Staging table

Partition: 1 Partition: n Partition: Maxvalue
………….
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processing of data to staging table simultaneously with processing the data 

from the AcDWH staging table to DWH structures. 

 

The processing of data from the staging table to AcDWH structures is from 

process perspective as elegantly simple as loading the staging table. The 

process will check from the data management system meta data tables, what 

is the first bucket_id to be handled and the process will then move the rows 

with found bucket_id from staging table to the AcDWH structures. 

 

The actual processing of data to the AcDWH structures is more complex 

than the previous part of the input process. This is due to the nature of the 

complexity of the processing; the processing typically aggregates the data to 

a specific level, processing will also generate the dimension table details as 

and if new dimension details are found. Depending on the construct how 

this part of process is implemented in a particular solution, there are 

potentially additional elements to be managed. A specific construct is 

discussed to more detail in chapter 6.1 giving insights into the index 

management requirements on the referenced technical subject area DWH. 

 

The AcDWH population process has the following process steps: 

1. Identify the first bucket_id to be loaded from the staging table 

2. Mark the status of bucket_id to “processing” in the bucket metadata table 

3. Initialize and launch the AcDWH loading process(es) 

4. Update the bucket_id status to “processed” after the AcDWH loading processes 

for the bucket_id have ended 

5. Repeat from step 1, if no new bucket_ids are to be processed, sleep for predefined 

amount of time (such as one minute) and try again 
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Figure 16. Processing data from AcDWH staging table partition 1 (bucket_id=1) to 
AcDWH data warehousing and/or data mart structures. Example shows only 
data mart example. 

A high level and simplified overview of AcDWH loading process is in 

Figure 16. The AcDWH loading process is marked as f(x). The process will 

read the first non-processed bucket_id from the bucket metadata table (for 

the purposes of this example, bucket_id=1), mark the bucket_id as 

“processing” to the bucket metadata table, and initialize the DWH load 

process. When the processing is finished, the process will calculate the time 

used, how many rows were processed, and how many rows per second were 

processed and insert the values to the bucket metadata table. 

 

After this, the next scheduled launch of this DWH structure loading process 

will repeat the process, e.g. read the first non-processed bucket 

(bucket_id=2) and process as described previously. 

 

5.8 Clearing the AcDWH staging area 

 

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

f(x) Fact
table

Dim 1 Dim 2

Dim 3 Dim 4
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The third process part of the AcDWH is independent from the previous 

process parts (i.e., data loading into staging table and processing data from 

staging table to DWH structures). The third process part is designed to 

manage the housekeeping process with the staging table(s). AcDWH 

manages the staging table’s space consumption in an efficient way with a 

direct access to the specific bucket_id without additional indexing. 

5.8.1 Housekeeping process for the staging tables of the 
AcDWH 

The housekeeping process of the AcDWH cleans up the staging table(s). 

This secures minimal space consumption of the staging table(s) and 

concurrent processing of the different parts of the AcDWH system. The 

main intention for the housekeeping process is to eliminate the growing 

space reservation of the staging table. 

 

The housekeeping process can simply address the purgeable staging table 

partitions one by one. This is achieved by selecting the lowest BUCKET_ID 

from the BUCKET_STATUS table where status is ‘processed’ and altering 

the staging table by dropping that specific partition. 

 
ALTER TABLE STAGING_TABLE DROP PARTITION 

PARTITION_||(SELECT MIN(BUCKET_ID) FROM 

BUCKET_STATUS WHERE STATUS = ’PROCESSED’); 

 
UPDATE TABLE BUCKET_STATUS 

SET STATUS = ‘DELETED’ 

WHERE BUCKET_ID=(SELECT MIN(BUCKET_ID) FROM 

BUCKET_STATUS WHERE STATUS = ’PROCESSED’); 

COMMIT; 

 

This method issues a data definition language (DDL) command which alters 

the table structure by dropping the partition and freeing the reserved space 

for the partition. The system is not able to roll back this operation as it is not 

a data manipulation language (DML) command. 

 

The speed difference on the DDL and DML operations is phenomenal. 

While the DML commands generate redo logs and need to be committed, 

e.g. the rows will actually be deleted, the DDL commands do not generate 

redo logs and they do not touch the rows of data but rather only execute a 

command to drop a table partition. 



Jari Myllylahti 

66 

 

A DDL command executes typically within a few milliseconds and reserves 

no additional resources from the database when compared to the DML 

commands where additional resources and space are required. 

 

5.9 The parallelism and concurrency of AcDWH 

 

The AcDWH staging table is constructed by partitioning the staging table to 

partitions. The cleaning of processed data does not generate extra overhead, 

nor affect the efficiency of the DWH. Even loading intervals of the data 

from source systems to the staging table remain unchanged. Similarly, the 

loading of the data rows from staging table to the AcDWH structures is not 

affected by the cleaning process. The cleaning process does not generate any 

overhead for loading processes or cause congestion for the same resources 

within the database. 

 

Each of the staging table partitions is a separate logical and physical object. 

Any database operation targeted towards a partition is directly referencing 

the specific data blocks belonging to that partition. The operation does not 

access any data blocks belonging to other partitions. 

 

Let us assume staging table would have partitions with bucket_id 1,2 and 3. 

The setup is illustrated in Figure 17 below. 

 

Figure 17. AcDWH staging table having data with bucket_id 1,2 and 3. 

Let us assume the following statuses for buckets: 

• Bucket_id = 1, bucket_status = ‘PROCESSED’ (data loaded to 

DWH) 

• Bucket_id = 2, bucket_status = ‘PROCESSING’ (data loading to 

DWH) 

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue
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• Bucket_id = 3, bucket_status = ‘LOADING’ (data loading to staging 

table) 

 

Assume that the processing of all three parts of the AcDWH system will be 

performed in parallel. These processes run independent of each other, 

concurrent, and the processes are coordinated by the bucket_status metadata 

table. 

 

The system includes three processes: 

 

1) Staging table loading process – delivers data from source systems to 

the partitioned staging table 

2) DWH loading process – delivers data rows from staging table 

partition to data warehousing structures 

3) Cleansing process – removes staging table rows one bucket at a time 

 

The described behavior isolates the operations from each other, in respect of 

data access and race for same resources. All partitions reside in physical 

extents separated from each other. 

 

Process 1) addresses partition 3 with data rows having bucket_id = 3. The 

process inserts rows from source system(s) to the specific partition 3. 

 

Process 2) addresses staging table partition 2 with data rows having 

bucket_id = 2. The process selects data rows from the specific staging table 

partition 2. 

 

Process 3) addresses staging table partition 1 with data rows having 

bucket_id = 1. The process alters the staging table by dropping the partition. 

The alter table drop partition command is executed in milliseconds and it 

does not render rest of the table unaccessible or unusable while the alter 

table command is executing. 
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Figure 18. Physical structure of table partition in AcDWH (extents and data blocks). 

Considering each partition resides on its own physical extent(s) consisting 

of data blocks as illustrated in Figure 18, the described structure directs the 

database engine to access separate areas of database with each system 

process (process 1-3). These processes can run concurrently without access 

or congestion on the same data blocks of the data base. This simple method 

enables the isolation and concurrency of all the process parts. It also 

provides for asynchronous and independent execution of different process 

parts using BUCKET_STATUS metadata table. 

 

The independence between the overall process parts is the key element of 

the method used in AcDWH. A separated physical structure allows the 

system to remove the staging table partitions independent from other parts. 

The removal of the partitions by process 3) does not require long execution 

or wait time or accessing same physical objects with processes 1) and 2). 

The process 3) is a simple cleaning module, removing processed partitions 

from the staging table. 

 

If we look onto the disks under the data files, there are multitude of options 

how the system can be configured for parallelism. The datafiles can be 

distributed throughout the physical disks. This can be manually achieved by 

the system administrators, or through the disk system itself. The disks can 

be configured on the disk system using any level of RAID configuration 

[32]. Using a RAID configuration, the underlying disk systems can be 

configured to provide additional parallelism compared to the database level 

operations. 

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

extent data block

Partition: 1
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RAID0 provides striping using the disks defined under that RAID-array, e.g. 

slicing the physical data across the RAID array disks. RAID0 is however 

not fault tolerant. RAID1 provides mirroring, any given disk is mirrored 

with a similar disk having exact copy of the same data. This causes no 

overhead when writing to the RAID1 disk setup as the same data is written 

to both disks at the same time. This in change brings a reading performance 

boost as data can be read from both drives at the same time. There are also 

advanced RAID configurations (e.g. RAID5 or RAID6/7) that provide fault 

tolerance with smaller tradeoff in redundant disk space usage. AcDWH has 

been constructed on systems utilizing different RAID levels ranging from 

RAID0 to RAID5. 

 

5.10 Logging throughput in AcDWH to analyze 
operation and process efficiency 

 

The AcDWH includes a method to log the process throughput and process 

details for further analysis. One use scenario for the process data is to fine 

tune the size of a data bucket to achieve maximal throughput in the 

environment in which system is running. While the system is running in 

production, the BUCKET_STATUS metadata table holds process details 

such as bucket size and rows per second, which indicates the speed by 

which the staging table loading process or data warehousing structure 

loading processes are executing. 

 

This metadata can be used against source system statistical data to secure 

optimal processing. The system can be modified easily by adjusting the 

bucket size higher or lower while recording the throughput of the process. 

The bucket size can be modified to achieve a throughput higher than what 

the source systems are generating data per each day. This way the system 

can analyze its operation against the incoming data and any buffering 

requirements. A buffering requirement would be for example that the data 

management system can handle 50% more incoming data per day than the 

source systems generate. By having a buffer in the processing speed the 

system can keep up with any backlog operations sometimes needed due to 

connectivity or any other issues getting the data from source systems. 

 

If this reference data is not available, the system cannot adjust its operation 

and in the worst case the throughput of the system is not keeping up with the 
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pace of the source system(s) which generate and offload data. This would 

cause a queuing effect on the data warehousing system, where more and 

more incoming data is queued in the incoming interface of the system over 

time due to the system not being capable of processing the incoming data in 

a required pace. 

 

 

5.11 Adjusting AcDWH bucket size to enhance 
throughput 

The data bucket size is kept in the system meta data table. The loading 

processes can be adjusted by changing the data bucket size in the metadata 

table, each loading process fetches the data bucket size from the system 

metadata table when they execute. 

 

When the process throughput is analyzed and potentially fine tuning is 

required as described in previous chapter, the data bucket size can be altered 

simply through changing this parameter in the system metadata table. The 

loading processes will take the new data bucket size into use the next time 

processes execute. After adjusting the bucket size the staging table default 

extent size might be too small and each partition might consume two extents 

going forward. 

 

If the space consumption of the staging table starts to be too high, the 

database administrator can adjust the default extent size to eliminate 

unnecessary space consumption. The system can be built in a way that it 

will self-adjust the data bucket size until a maximum throughput is 

achieved, also automatic tuning of the extent size can be implemented 

easily. 

 

5.12 Repeatability in AcDWH 

 

One of the key design elements of the AcDWH is repeatability. 

Repeatability means the ability to process any loading batches again in case 

of corrupted data on erroneous loading logic. This would mean removing 

the invalid data from the DWH and loading the batch of data again through 

AcDWH. The data are organized as a set of buckets which will are managed 

by the system. As previously described, each bucket of data consists of an 
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arbitrary amount of records. Due to the nature of this construct, AcDWH 

system can be enhanced easily to handle repeatability. 

 

In traditional DWH system repeatability is managed by processing a day’s 

material again, if the data has been invalidated by the erroneous DWH 

transformation logic or invalid source system data. In case of erroneous 

logic, the transformation logic needs to be corrected, invalid data removed 

from the DWH and the correct data reloaded. For example, loading one 

day’s data from a source system to a DWH again would mean the following: 

 

• Removing or updating any atomic and aggregate information which 

is infected by the invalid source system data 

• Loading the data identified as invalid or infected by erroneous logic 

again from source system to staging table(s) 

• Transforming the previously infected data again from staging 

table(s) to DWH structures 

 

Considering the nature of the physical construct of the AcDWH system, 

securing the repeatability of the transformation and loading processes in 

case of invalid transformation logic is extremely simple and straight 

forward. 

 

The AcDWH can be enhanced for example with two simple alternative 

methods where the incoming source system data will be exported either 

within the staging table loading process or the house keeping process. 

 

In the first alternative altering the staging table loading process is simple. 

The source system data can be simultaneously loaded into the staging table 

and concurrently to a fixed width or delimited text file as a secondary target. 

This would be an easy method to secure backups of the source system data 

that can be reloaded into the DWH. This is due to each of the staging table 

records has the bucket_id identifier as one attribute to of the record. Any of 

these files including the data for the bucket can be handled through a 

deviation reload process, where these data files can be reloaded into the 

staging table. Their bucket_id is then changed to status=loaded and the 

system will pick the bucket up for DWH processing from the staging table 

during the next runs of the DWH loading process. 

 

In the second alternative, the housekeeping process can be changed in a 

simple way: prior to removing the staging table partition with an ALTER 
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TABLE DROP PARTITION command, the bucket can be exported by the 

house keeping process either by writing the records to a fixed width or 

delimited text file as in staging table load process. Or as an alternative by 

exporting the partition data by using the database engine’s data export 

utility. These table partition exports can be easily imported into the staging 

table by using the database engine utilities. 

 

Both of these options are similarly easy to implement and provide easy 

reload capabilities for the AcDWH. 

 

 

 



6 Applications of the AcDWH 
framework 

In the present section the concepts of the proposed AcDWH framework are 

demonstrated by the means of two real-life applications for data warehousing 

(DWH). Both of these have been architected to use the AcDWH method for active 

DWH. 

 

Due to the nature of the designed systems only a high-level description of 

both systems is disclosed.2 A specific line of business or the real business 

use scenarios are not disclosed but rather the architecture, business needs 

and implementation overview are discussed. 

 

6.1 A technical subject area DWH for a specific 
company A 

The AcDWH method is in use within company A. AcDWH is a platform 

and data management software used to construct the DWH. The DWH 

solution uses AcDWH for active DWH to enable continuous loading of the 

data from source systems to construct a specific technical subject area 

DWH. The solution is built to analyze technical behavior and error 

situations in the company A technical systems. 

 

A technical element record consists of predefined attributes of a technical 

events. It typically includes hundreds of fields on the attributes. From a 

single event at least two records are created, originating record from the 

outgoing event and the destinating record from the incoming event. In 

 

 
2 The examples are real-life systems, that are architected or co-architected by the author. Due 

to confidentiality obligations, the subject area specific details are not disclosed in this 
thesis. Examples cover Company A and company B, which represent different lines of 
business and different business use scenarios. 
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addition to the originating and destinating records, business A has 

configured their systems to provide intermittent records from the events, 

providing additional details when for example either the originating or 

terminating event transitions to another system segment. In addition to 

normal event records, the system provides technical records from system 

components. These records provide technical and statistical details from 

each system component. 

 

The company A gathers all these different records from the system 

components as flat text files, using fixed width format for the data fields. 

The record data files are gathered in 10 minutes intervals, and the files are 

delivered to the company DWH platform. There are separate definitions and 

system component files for different record data types, examples being 

records for four different services. 

 

The AcDWH groups the record data files by the record data types into 

buckets of approximately 50000 records and loads the data into the AcDWH 

staging tables. There is a similar staging table for each of the record data 

types and the loading of data is done in parallel for the different record data 

types. 

 

The records are loaded to the AcDWH structures from the AcDWH staging 

tables. All these loading processes are run in parallel and AcDWH keeps 

track of the loaded buckets. The fact tables in the AcDWH structures are 

partitioned by each hour, e.g. each day has 24 partitions. The records reside 

in the fact table partitions based on their record timestamp. It has been 

recorded that in the company the past volumes have been on the range of 

100 million records loaded per day. This amounts four million records per 

hour in an average. An event record has over 500 fields of data, and the 

average record size is 800 bytes. 

 

Given the details above, the daily source system data volume for the event 

DWH is of the size 74,5 gigabytes. This amount of data is required to be 

loaded daily from source systems, transformed to right format and relational 

model within the event DWH, while, in addition, the technical subject area 

DWH is simultaneously queried. 

 

The reason for partitioning the fact tables per hour is due to managing the 

indices. This specific line of business requires to have the fact table 

refreshed with maximum ten minutes intervals. Any queries from the fact 

table require indices being in place, otherwise any given query would issue 
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a full table scan of the fact table. By partitioning the fact tables per hour, the 

system can isolate the loading and index updating in most cases into a single 

fact table partition and in the worst case the operations will modify two fact 

table partitions. The same applies for the index partitions. By partitioning 

the fact table the system can manage indices being updated while the data is 

loaded. If the loading window would for some reason extend too long, there 

is an additional option to alter the partitions of indices offline while 

inserting the data into the fact table. After the load the index partitions can 

be rebuilt and made online again. 

 

The technical subject area DWH creates technical summaries of the source 

system data for the business use. The usages cover for example system 

capacity planning, peak usage analysis during events and prognosis of 

system inefficiencies. These analyses are delivered into planning systems to 

be used as planning data for system development and capacity planning. 

 

Figure 19. Architecture of the company A technical subject area DWH up until to staging 
area in AcDWH. 

Figure 19 describes the architecture of the company A technical subject area 

DWH up until staging table in DWH. The figure is simplified, the system 

consists of multiple components and devices. 

 

The devices act as the central point in the system setup. All components and 

devices belong to the same system, and the devices pull the records from the 

System
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components periodically; marked as process (A) in the figure. These data 

files are pushed during the same process by the devices to the technical 

subject area DWH, marked with (B). The DWH resides in a system segment 

securely accessible by the devices. 

 

The DWH system assigns the acquired flat files to buckets having at 

minimum 50000 records in each; marked with (C). This is done by 

catenating the specific files into one file. From this point onwards the data 

loading, delivery and cleaning processes are handled by the AcDWH. 

 

Compared to traditional design principles of such DWH, AcDWH removes 

obstacles in near real-time loading approach in combination with the 24/7 

availability for queries and reporting. 

 

6.2 Company B data analysis platform 

The AcDWH data management system is also in use within company B with 

a slightly modified configuration. Like in description for company A 

technical subject area DWH in chapter 6.1, the solution uses AcDWH to 

deliver near-real time loading of the data from source systems to the 

company B Transaction DWH (TDWH). 

 

A source system is typically a terminal at company site. The data consists of 

predefined attributes of a transaction at the site and it includes all the details 

of the transaction. These include for example the transaction date and time, 

products and their details as well as the summary of the transaction, 

potential additional identifiers and the transaction id. 

 

The AcDWH gathers all the transaction details from the sources using a 

messaging gateway software, such as IBM MQ3. The data are pulled by an 

ETL tool from IBM MQ which gathers the incoming data from sources in 

10 minutes intervals. 

 

The AcDWH data management system used by the TDWH groups the data 

acquired from the MQ system to data buckets of predefined sizes (initially 

20000 records). The AcDWH then loads the data into the partitioned staging 

table and the data are loaded to the TDWH structures from the staging table. 

 

 
3 https://www.ibm.com/products/mq 
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All these loading processes are run in parallel and AcDWH keeps track of 

the loaded buckets. The fact table partitions in the TDWH structures include 

data for each day, e.g. each year has 365 or 366 partitions. The data reside in 

the fact table partitions based on their record timestamps. 

 

The reason for partitioning the fact tables per day is due to managing the 

indices. The company B business requirements are not as time critical as in 

the case of company A business described in chapter 6.1. Queries from the 

fact table greatly benefit from partitioning of the fact tables because its use 

speeds up the queries essentially. By partitioning the fact tables per day, the 

system can isolate the loading and index updating in most cases into a single 

fact table partition. The same applies for index partitions. By partitioning 

the fact table to one day partitions, the system can manage the index 

partitions being altered offline while inserting the data into the fact table. 

After data load the index partitions can be rebuilt and made online again. 

 

The TDWH of company B creates also technical summaries of the source 

system data for the business use. These include for example terminal usage 

and transaction volume, which can help company B to identify rush hours at 

the site and plan resources accordingly. These analyses are delivered into 

resource planning systems to be used as planning data for inventory refresh 

and employee capacity planning. 

 

Figure 20. Architecture of the company B TDWH up until staging table in AcDWH. 
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Like in the technical subject area DWH of company A, the same basic 

methodology applies for company B TDWH. The data is gathered from the 

devices (terminals at the company site) by the aggregator system but now 

via the message queue server; marked as (A) in Figure 20. The aggregator 

system then offers the records through its message queue interface to the 

data analysis platform (B). Different from the company A case, the data 

analysis platform itself consumes and requests data from the aggregator 

system having a message queue server offering the data. The buckets are 

now formed within the data analysis platform and written onto the AcDWH 

staging table in 20000 record buckets. When the records are consumed from 

the message queue and confirmed written to the staging table partition 

bucket by AcDWH, the message queue client marks the records in the queue 

as read. The records will eventually get purged from the message queue 

server itself after new records have been inserted onto the queue. 

 



7 Extensions to the patented AcDWH 
framework 

Two examples of extensions to the AcDWH are presented in this chapter. 

The first extension deals with the automated data distribution functionality. 

This extension can enhance the throughput of data loading into partitioned 

tables. The second extension enhances the AcDWH with an online backup 

and restore functionality supporting the near real-time operations. The two 

extensions are examples how the AcDWH can be, due to its constructs, 

easily extended for additional features and functionalities further enhancing 

the system. 

 

7.1 Data distribution 

This method extends the functionality of the AcDWH system by leveraging 

the meta data stored within the process and using it to enhance the 

parallelism & concurrency of a partitioned DWH table to which data are 

loaded. This method requires the DWH table to be partitioned with hash 

partitioning. 

 

Hash partitioning is a table partitioning technique where a hash key is used 

to distribute rows to the table partitions [3]. Hash partitioning can be used in 

settings where range partitioning isn’t naturally usable or appropriate. By 

using hash partitioning, a row is placed into a partition based on the result of 

a hash algorithm against the partitioning key. Using the hash partitioning 

approach, data can be automatically distributed across the table partitions by 

the database engine. Hash partitioned tables also support partition-wise 

joins, parallel index access, and the use of parallel data manipulation 

language (DML). 

 

When using the hash partitioning, the database engine calculates a hash 

value for the partitioning key column and distributes the records randomly 
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across the partitions based on the hash value of the partitioning key. This 

method can be used to enhance throughput by distributing data to more 

partitions automatically by the database engine. The data redistribution 

happens automatically by the database engine when a partition is added to a 

hash partitioned table. When queries address the partitioning key column, 

the database engine addresses the right partition by the hash value. 

 

For illustration and example; 

• a data warehouse (DWH) table is hash partitioned into five partitions 

• there is a pre-defined limitation on table loading time per bucket 

• data management system loads data into this hash partitioned table 

• data management system records the efficiency of aforementioned 

data loads into the system meta data tables 

 

Using this scenario, the AcDWH can identify a situation where data loading 

into a hash partitioned table will consume too much time. Long loading 

times may result from the large number of rows in a partition which mirrors 

in more time consuming index updates performed online. In this situation 

the data management system can automatically issue a rearrangement of 

table partitions by adding additional partitions to the table. The database 

engine will automatically redistribute the data between partitions in the hash 

partitioned table. This happens by applying a new hash algorithm to the 

rows and the database engine relocates the rows into right partitions by the 

new hash values. This operation is done online and does not require any of 

the system elements halting the data loading or queries addressed to the 

table. 

 

For the efficiency reasons, the threshold value for the maximum data 

loading time per bucket must be defined reasonably low to accommodate for 

the extra time consumption of the re-distribution of data and online index 

re-arrangement. 

 

7.2 Near real-time backup and/or restore 
schematics 

The data in near real-time environments is typically changing repeatedly and 

all the time. This poses large problems for the backup and restore operations 

of the said near real-time environments. Either the systems need to be 

periodically in read-only mode or the storage and disk systems need to be 
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duplicated or mirrored to enable a snapshot of such systems to be taken for 

backup purposes. Backing up the snapshots will take long time, thus the 

only viable option in such near real-time loading system is to detach the 

mirrored disks and take a backup from them. 

 

Restoring the snapshots from detached mirrored disks requires rebuilding 

the database control files to bring the restored database back online. Neither 

of the options described are feasible for backing up and restoring near real-

time environments. 

 

A simple extension to the AcDWH will provide a method to establish an 

automated data backup system for DWH tables partitioned by time. The 

meta data tables of the AcDWH can be added with information on the 

loaded data. Bucket meta data can be added with information what is the 

earliest transaction time stamp loaded into the target DWH table. By using 

this information, the AcDWH can identify which DWH table partitions have 

been fully populated. 

 

The system can be augmented with a process which will identify these 

DWH table partitions and execute data offloading into either a fixed width 

or delimited flat file. Alternatively, the data may be offloaded through a 

database export utility targeting export of single partition at a time. 

 

In case of corrupted data in the database, any of the exported partitions can 

be dropped and recreated along with their local indices, and the partition 

data is easy to load from the partition export. This way the partition indices 

can be kept online during the loading. 

 

This extension to the data management system would be particularly 

effective in the company A technical subject area DWH case study 

described in chapter 6.1. 

 



8 Results & Discussion 

The proposed AcDWH framework with partitioned staging tables and 

metadata steered loading system is enhancement over the prior studies in the 

field for data warehousing (DWH). Prior studies and literature review show 

that the focus on previous work has been mostly on loading process, join 

processing and staging area handling. On the other hand, the partitioning of 

tables has devoted less interest. The prior studies and literature have focused 

on an industry standard way of handling the staging area with flat files, 

temporary or in-memory tables, whereas the present study and the proposed 

AcDWH system use standard database table partitioning functionality in 

combination with metadata driven loading system. 

 

AcDWH presented in chapter 5 uses a pipelined approach that relies on 

table partitioning on three main processes: staging table load, DWH load 

and staging table cleansing. 

 

The AcDWH specific components can be implemented as database 

procedures and/or external scripts or coding that are executed as pre-source, 

mid-process or post-target actions within standard ETL tools. 

 

The proposed AcDWH system has the following abilities: 

i. it efficiently handles loading parallelism even with standard ETL tools 

avoiding excessive hand-coded solutions, 

ii. eliminates the problems of ever-growing high watermark problem in 

industry standard non-partitioned staging tables while it uses parallel 

bucket loading and cleansing processes into the staging table, 

iii. enhances the system’s throughput while handling parallel insertions, 

queries and removals of buckets on the staging table, 

iv. avoids large extent self-coded systems by utilizing standard 

functionality in an innovative way, and 
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v. leaves door open for additional enhancement opportunities, such as data 

distribution extension and near real-time backup and restore setup of the 

source data described in chapter 7. 

 

AcDWH with partitioned staging table(s) and metadata steered loading 

system indicates enhancement over the prior studies and solutions in the 

field. 

 

The purpose of this study was to identify if a partitioned staging table along 

with parallelized loading processes would enhance a DWH system’s 

throughput and manageability. This chapter includes discussion of findings 

related to the previous studies and literature on data loading, staging area 

handling, ETL processes and table partitioning in a DWH. The chapter 

includes also discussion of the limitations of the study, areas for future 

research, and a brief summary. 

 

The key contribution on this study is the enhancement on a DWH system’s 

throughput of data processing pipelines by using the patented AcDWH 

method two-fold approach: first using a partitioned staging table and 

secondly parallelizing the DWH loading processes using the staging table as 

a target or source. This study implicates that utilizing a partitioned staging 

table enhances DWH loading processes on multiple areas. 

 

The AcDWH method is suitable for the near real-time DWH systems, where 

the latency of loading data into DWH is of most importance to enable the 

system to provide as fresh data as possible for the business users. The 

method proposed in this study enhances the staging area handling 

considerably with near real-time DWH systems. 

 

The previous studies as outlined in the chapter 4 have discussed areas close 

to the research question focus area, but none of the previous studies have 

explicitly studied the usage of partitioned staging table in DWH systems. 

While Vassiliadis and Simitsis [12] proposed a logical level approach 

similar to the AcDWH presented in this study, their implementation and 

study is concentrating only on the logical aspects of the solution. Also, their 

study does not show how the parallelization of different processes can be 

enhanced together with the system’s throughput if a specifically crafted 

staging table along with the metadata steered loading system would be in 

place. In addition to the previous, the proposed AcDWH data management 
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system indicates advantages on the housekeeping routines of the staging 

area that further enhance the capabilities of the system. 

 

This study has its limitations since implementation has been tested only 

using Oracle and IBM database technologies. Other database vendors have 

not been tested for the implementation and therefore the results on other 

database vendors are unknown. 

 

 

 



9 Conclusions 

The key findings of this study are that the use of a traditional staging table is 

not sufficient for near real-time data warehouse systems or that these 

systems can be considerably enhanced. Using normal table as a staging table 

will introduce a) space allocation problems, b) scattered data within the 

staging table, c) performance problems on staging table handling and d) and 

process complexity while trying to maintain the performance of the system. 

The focus of this study was to discuss different staging and data loading 

process approaches and to also identify if a partitioned staging table along 

with parallelized loading processes would enhance a DWH system’s 

throughput and manageability. The literature review identified that previous 

studies had approached the performance and data freshness problems 

through the process and system setup aspects while none of the previous 

studies had studied the staging table constructs to a detailed level. 

Materialized views were discussed in previous studies, along with using 

different source types such as flat files, external source database tables, 

message queues and data streams. Previous studies discussed also join 

processing and data processing. 

One of the architectural design aspects behind the data management system 

is to manage the incoming data flow requirements in conjunction of the 

cleansing process for efficient staging table handling. In traditional DWH 

the process manages data loading from source systems throughout the whole 

process to DWH and reporting structures. The process cannot be optimized 

and tuned without modifying the processing logic or without adding 

resources to the system, such as more CPUs, more disk drives on storage 

system or more network interfaces. 

We studied if the partitioned staging table in combination with parallelized 

loading processes to and from the staging table can help to enhance active 

DWH systems. This study identified that the process for a near real-time 

DWH can be materially enhanced and simplified by using partitioned 

staging table constructs, parallelized loading processes utilizing the 

partitioned staging table and a metadata driven data loading process, such as 

the AcDWH. The hypothesis and implementation of the method was tested 
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through experimental implementation of the two real life systems presented 

in Chapter 6. 

We have tested the AcDWH with two leading technology vendors (Oracle 

Enterprise Edition and IBM DB2). It should be noted that not all database 

technology suppliers potentially can provide the specific table partitioning 

technology that has been used and therefore are not suitable to be used with 

the AcDWH method. 

Future research potential lays with different implementation techniques and 

options with additional database technology suppliers along with leveraging 

the same constructs further inside the DWH system to assess if enhancement 

of data loading and processing can be achieved utilizing same setup. 

Additionally, the future extensions of data distribution and near real-time 

backup and restore schematics as described in chapter 7 would potentially 

be a good focus for future research. 
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