

Jari Myllylahti

ACDWH
A patented method for active data warehousing

University of Turku

Faculty of Technology

Department of Computing

Computer Science

Licentiate programme

Supervised by

Assistant Professor, Tuomas Mäkilä

University of Turku

Professor Emeritus, Olli Nevalainen

University of Turku

Reviewed by

Professor, Timo Knuutila

University of Turku

Professor, Jyrki Nummenmaa

University of Tampere

The originality of this publication has been checked in accordance with the

University of Turku quality assurance system using the Turnitin OriginalityCheck

service.

ISBN 978-951-29-9640-7

Dedicated to

my wife Virpi. Who makes my days filled with love. I love you.

“She will listen to me

 When I want to speak

 About the world we live in

 And life in general”

my son Iiro. Who has inherited my bad sense of humor and who is

by far superior to me in academic capabilities. Let this be an

example of what you can accomplish yourself.

“To the infinity, and beyond!”

Clones, my brothers in scene. You know who you are.

”See the stars and see the rainbows - see it all

 Don't turn away - you're all you've got

 In a faceless world

 You can run - but you can't hide

 It's yourself who waits for you inside”

010101100110000100100000011110100111001001111010

011000100110010101101100001000000110001001110011

001000000100111001100001011100010110010101110010

011010100010000001010111011000100111010101100001

001000000101001101111001011100100110011101110000

011101010111001001100101001011000010000000110001

001110010011011000110001001000001110001010000000

100100110010000000110010001100000011001000110010

UNIVERSITY OF TURKU

Faculty of Technology

Department of Computing

Computer Science

JARI MYLLYLAHTI: AcDWH – A patented method for active data

warehousing

Licentiate thesis, 81 pages + appendices.

January 2024

ABSTRACT

The traditional needs of data warehousing from monthly, weekly or nightly batch
processing have evolved to near real-time refreshment cycles of the data, called
active data warehousing. While the traditional data warehousing methods have been
used to batch load large sets of data in the past, the business need for extremely fresh
data in the data warehouse has increased. Previous studies have reviewed different
aspects of the process along with the different methods to process data in data
warehouses in near real-time fashion. To date, there has been little research of using
partitioned staging tables within relational databases, combined with a crafted
metadata driven system and parallelized loading processes for active data
warehousing.

This study provides a throughout description and suitability assessment of the
patented AcDWH method for active data warehousing. In addition, this study
provides a review and a summary of existing research on the data warehousing area
from the era of start of data warehousing in the 1990’s to the year 2020. The review
focuses on different parts of the data warehousing process and highlights the
differences compared to the AcDWH method. Related to the AcDWH, the usage of
partitioned staging tables within a relational database in combination of meta data
structures used to manage the system is discussed in detail. In addition, two real-life
applications are disclosed and discussed on high level. Potential future extensions to
the methodology are discussed, and briefly summarized.

The results indicate that the utilization of AcDWH method using parallelized
loading pipelines and partitioned staging tables can provide enhanced throughput in
the data warehouse loading processes. This is a clear improvement on the study’s
field. Previous studies have not been considering using partitioned staging tables in
conjunction with the loading processes and pipeline parallelization. Review of
existing literature against the AcDWH method together with trial and error -approach
show that the results and conclusions of this study are genuine.

The results of this study confirm the fact that also technical level inventions
within the data warehousing processes have significant contribution to the advance
of methodologies. Compared to the previous studies in the field, this study suggests
a simple yet novel method to achieve near real-time capabilities in active data
warehousing.

KEYWORDS: active data warehousing, real-time, partitioning, staging

TURUN YLIOPISTO

Teknillinen Tiedekunta

Tietotekniikan Laitos

Tietojenkäsittelytiede

JARI MYLLYLAHTI: AcDWH – Patentoitu menetelmä aktiiviseen

tietovarastointiin

Lisensiaatin tutkielma, 81 s + liitteet.

tammikuu 2024

TIIVISTELMÄ

Perinteiset tarpeet tietovarastoinnille kuukausittaisen, viikoittaisen tai yöllisen
käsittelyn osalta ovat kehittyneet lähes reaaliaikaista päivitystä vaativaksi
aktiiviseksi tietovarastoinniksi. Vaikka perinteisiä menetelmiä on käytetty suurten
tietomäärien lataukseen menneisyydessä, liiketoiminnan tarve erittäin ajantasaiselle
tiedolle tietovarastoissa on kasvanut. Aikaisemmat tutkimukset ovat tarkastelleet
erilaisia prosessin osa-alueita sekä erilaisia menetelmiä tietojen käsittelyyn lähes
reaaliaikaisissa tietovarastoissa. Tutkimus partitioitujen relaatiotietokantojen
väliaikaistaulujen käytöstä aktiivisessa tietovarastoinnissa yhdessä räätälöidyn
metatieto-ohjatun järjestelmän ja rinnakkaislatauksen kanssa on ollut kuitenkin
vähäistä.

Tämä tutkielma tarjoaa kattavan kuvauksen sekä arvioinnin patentoidun
AcDWH-menetelmän käytöstä aktiivisessa tietovarastoinnissa. Työ sisältää
katsauksen ja yhteenvedon olemassa olevaan tutkimukseen tietovarastoinnin
alueella 1990-luvun alusta vuoteen 2020. Kirjallisuuskatsaus keskittyy eri osa-
alueisiin tietovarastointiprosessissa ja havainnollistaa eroja verrattuna AcDWH-
menetelmään. AcDWH-menetelmän osalta käsitellään partitioitujen
väliaikaistaulujen käyttöä relaatiotietokannassa, yhdessä järjestelmän
hallitsemiseen käytettyjen metatietorakenteiden kanssa. Lisäksi kahden
reaalielämän järjestelmän sovellukset kuvataan korkealla tasolla. Tutkimuksessa
käsitellään myös menetelmän mahdollisia tulevia laajennuksia menetelmään
tiivistetysti.

Tulokset osoittavat, että AcDWH-menetelmän käyttö rinnakkaisilla
latausputkilla ja partitioitujen välitaulujen käytöllä tarjoaa tehokkaan tietovaraston
latausprosessin. Tämä on selvä parannus aikaisempaan tutkimukseen verrattuna.
Aikaisemmassa tutkimuksessa ei ole käsitelty partitioitujen väliaikaistaulujen
käyttöä ja soveltamista latausprosessin rinnakkaistamisessa.

Tämän tutkimuksen tulokset vahvistavat, että myös tekniset keksinnöt
tietovarastointiprosesseissa ovat merkittävässä roolissa menetelmien
kehittymisessä. Aikaisempaan alan tutkimukseen verrattuna tämä tutkimus
ehdottaa yksinkertaista mutta uutta menetelmää lähes reaaliaikaisten
ominaisuuksien saavuttamiseksi aktiivisessa tietovarastoinnissa.

ASIASANAT: Tietovarastointi, reaaliaikaisuus, partitiointi, väliaikaistaulut

Table of Contents

Acknowledgements .. 8

Abbreviations .. 9

List of Original Publications .. 11

1 Introduction .. 12

2 Data Warehousing ... 14
2.1 Background ... 14
2.2 Structure of the traditional DWH method 17
2.3 Indexing techniques for DWH ... 20

3 Challenges in DWH .. 21
3.1 General problems on traditional DWH methods 21
3.2 The high watermark problem on traditional DWH staging tables

 ... 23
3.3 The choking effect on near realtime DWH environments 26
3.4 Deleting data from or truncating the staging table 28

4 Existing research ... 31
4.1 1990-1999 ... 31
4.2 2000-2009 ... 32
4.3 2010-2019 ... 39
4.4 2020-.. 42
4.5 Summary of literature review .. 43

5 AcDWH Method .. 45
5.1 Overview .. 45
5.2 AcDWH structural considerations ... 50
5.3 Generating the AcDWH structures.. 50
5.4 Parallel processing in AcDWH within a single bucket_type and

between different bucket_types .. 53
5.5 Staging table partitioning in AcDWH ... 58
5.6 Forecasting space requirements, row amounts and generating

statistics for the business in AcDWH .. 62
5.7 Populating the DWH structures ... 62

5.8 Clearing the AcDWH staging area .. 64
5.8.1 Housekeeping process for the staging tables of the

AcDWH ... 65
5.9 The parallelism and concurrency of AcDWH 66
5.10 Logging throughput in AcDWH to analyze operation and

process efficiency .. 69
5.11 Adjusting AcDWH bucket size to enhance throughput 70
5.12 Repeatability in AcDWH .. 70

6 Applications of the AcDWH framework 73
6.1 A technical subject area DWH for a specific company A 73
6.2 Company B data analysis platform ... 76

7 Extensions to the patented AcDWH framework 79
7.1 Data distribution... 79
7.2 Near real-time backup and/or restore schematics 80

8 Results & Discussion ... 82

9 Conclusions ... 85

List of References .. 87

Original Publications ... 90

Acknowledgements

I would like to express my profound gratitude to Professor Emeritus Olli

Nevalainen for his invaluable guidance and support throughout my academic

journey. His mentorship for the past 30 years has been instrumental in fostering my

intellectual growth and also in shaping this research. His insightful comments and

constructive, detailed feedback have continuously pushed me to enhance my thesis

and develop a more comprehensive analysis. Olli’s expertise, assertiveness,

commitment, and dedication have always inspired me. I am indebted to him for his

continuous encouragement and discussions that have facilitated the advancement of

this thesis. I am forever grateful for Olli’s patience with me over the past quarter of

a century towards this very day. I am honored to have had Olli by my side on this

project throughout the journey.

Furthermore, I would like to acknowledge Assistant Professor Tuomas Mäkilä's

support for my work during the last years of my research journey. Despite his busy

schedule he made time to discuss with me, providing valuable guidance and advice.

His responses to my inquiries and his willingness to share his expertise have been

greatly appreciated.

I would also like to extend my sincere appreciation to my employer, Tietoevry

Corporation, for granting the original support for my post graduate studies and

allowing me to focus on my thesis as needed.

Last but surely not least, I would like to express my heartfelt gratitude to my wife

Virpi and my son Iiro, whose belief in my abilities has been a constant source of

motivation. Their love, understanding, and support have been the fuel to finalize

this thesis. I am forever grateful for their enduring faith in my ability to accomplish

this.

Helsinki

January 15, 2024

Jari Myllylahti

Abbreviations

BI Business Intelligence. BI means the concept of providing analytic

systems for business users. These systems provide insights on specific

business-related questions. The BI systems are usually constructed as

DWHs.

CPU Central Processing Unit. CPU is the processor of a computer.

DM Data mart. DM is a lightly summarized area and structure in a DWH

that contains summarized data on a specific subject area for example

for departmental usage. DM uses typically a specific data model for

reporting and analysis which called a star schema. This data model is

focused to deliver fast reporting and analysis on one subject area, for

example customer data or customer purchase transactions in a shop.

DSS Decision Support Systems. DSS provide analytical view to a specific

line of business or a company. These systems are used to support

decision making in companies or lines of business. DSS typically

presents or consumes data from a DWH.

DWH Data Warehousing or Data Warehouse. DWH is a method and database

structure where operational system data are replicated into a DWH

database structure. This structure holds historical and current atomic

data usually stored in a normalized form. The methodology is further

described in Chapters 1 and 2.

ELT Extract-Load-Transform. ELT changes the approach of ETL in manner,

that first two process elements of ELT (Extract and Load) are executed

before transform. Transform phase is executed within the database after

whereas ETL’s Transform part of the process is executed outside of the

database. This change of process for loading the source system data to

the DWH is made to utilize databases system’s functionality,

scalability, and efficiency for the Transform operations.

10

ETL Extract-Transform-Load. The ETL process is typically used within

DWH environments to process data. Extract part of the process extracts

the data from source system(s), Transform part executes various data

transformations within the process and Load part loads the data to

DWH. ETL processes are typically constructed with a specific ETL tool

instead of programming the processes by yourself. There are multiple

technology products in the market for ETL. Most of them are separately

installed from the database systems, but some (like Oracle Warehouse

Builder) are installed within database systems.

GUI Graphical User Interface. GUI is an interface that gives the ability for

users to interact with computers through graphical icons instead of text-

based user interfaces.

I/O Input / Output. I/O means input and output peripherals, such as

keyboards, displays, disk and tape devices.

ODS Operational Data Store. ODS is an operational database usually

integrating data from multiple source systems. It is designed to support

reporting from operational data and offloading the reporting workloads

from the operational systems. ODS also implements data integration

and usually also data cleansing, redundancy removal and data integrity

checking.

 11

List of Original Publications

This thesis and the proposed AcDWH method are based on the following original

publication, which is referred to in the text by the Roman numeral:

I Jari Myllylahti. European Patent Specification EP 1 959 359 B1. European

Patent Bulletin, 2017; issue 47: 30 pages.

The original publication has been reproduced with the permission of the copyright

holders.

1 Introduction

While data warehousing (DWH) models have been utilized for over two

decades for Decision Support Systems (DSS), analytics and business

intelligence, yet there has not been really a drive for enhanced techniques

for near real-time delivery and access of the data. The shift towards more

refreshed data in business intelligence has been the driver to implement

more fresh state of the business intelligence platforms in the form of

improved the data warehouses.

The existing DWH models rely heavily on bulk loading techniques and the

loading of data from source systems to DWH takes place typically during

the night and the load contains data from one day. These techniques are

sufficient when the transaction volumes are not too big and when there is no

real business driver to access the data more frequently than the view of the

previous day. These models have been utilized from the very beginning of

the DWH era and they are still applied in large parts of the world’s DWH

environments.

Today’s business drivers demand more fresh data, for which these typical

nightly load windows are not sufficient. Typical need is a few minutes gap

in between the refreshment cycles of the data. For these environments the

traditional way of refreshing DWH data during the night is not sufficient

anymore.

In this thesis we study and present how a partitioned staging table can be

utilized in active DWH environments. The study question is if the

partitioned staging table in combination with parallelized loading processes

to and from the staging table can help to enhance active DWH systems. The

study also presents enhancements to DWH system’s throughput and

manageability. The study reviews existing research and summarizes their

key findings. Differences between existing research and the studied

partitioned staging table and parallelized loading processes are highlighted.

Introduction

 13

The thesis presents a patented method of a data management system

(AcDWH) which is an optimized and novel method for implementing active

DWH systems. The method allows parallel asynchronous access to the data

being delivered to the DWH. The AcDWH method divides the incoming

data into buckets and the data flow management system is based on

handling these buckets. The method consists of an arbitrary number of

asynchronous data provider and delivery processes.

The AcDWH processes deliver and distribute the data through a common

metadata layer of control data. The metadata tables log different phases of

the process and provide a safe mechanism for concurrency and data delivery

and efficiency control. The efficiency of the processes can be controlled and

throttled through the administrative metadata layer so that the process can

adjust itself to the needs of the business and to the capacity of the platform it

runs on.

The thesis also presents the foundational principles on physical access of the

data. The process can be parallelized and scaled, and different parts of the

process can be isolated from each other by utilizing this specific method.

This way the process can achieve high grade of parallelism, throughput and

near real-time freshness of the data on the DWH.

For the scope of this thesis, the focus will be of the staging table physical

structures and on the patented data management system. In addition, the

focus will be on the AcDWH processes handling the processing pipelines.

The method of applying parallelism to the different parts of processing

pipeline will be discussed and addressed separately, providing examples on

principles and correlation to real world problems.

In chapter 2, the background of DWH is discussed. Chapter 3 discusses

problems identified in active DWH with traditional techniques. Chapter 4

gives a review on studies and literature about DWH and the staging area

processing. A novel method for active DWH and data management system,

AcDWH, is described in chapter 5 and its different parts are discussed in

detail. Chapter 6 gives two examples of real-life implementations of

AcDWH system. In chapter 7 extension possibilities to AcDWH are

discussed and chapter 8 shows results and discusses the advantages of

AcDWH over traditional DWH methods. Chapter 9 concludes with a

summary of the thesis.

2 Data Warehousing

In this chapter the background of the data warehousing (DWH) systems is discussed.

The chapter describes the typical structures and methodologies used in DWH

solutions. The chapter also describes different parts of a typical DWH process and

addresses different indexing techniques used in these systems.

2.1 Background

A DWH is a system with techniques & methodologies for managing data

from different sources and combining them into a single DWH to provide

insights to relevant business questions. A DWH is created from multiple

components which aid the use of the specific data for strategic purposes. A

DWH provides a database and system design which helps to keep historic

details of the subject area of the DWH, to reduce the response time and to

enhance the performance of queries for reports and analytics from it. [33]

A DWH consists of large amounts of data which are designed and organized

for both historic data queries and strategic analyses in contradiction to

transaction processing systems. DWH processes incoming source system

data into business information and makes it available to business and

analytical users.

The database of the DWH is separate from the organization's operational

systems. The DWH is an environment and a database which consists of

combined information from the source systems. It is a constructed system

which provides current and historical decision support information to

business users. The previous is typically cumbersome to access and present

using operational databases and systems.

Data Warehousing

 15

For example, a report on the financial system information on previous

company fiscal year can easily include tens of join conditions and tables.

These types of queries will slow down the response time of the query and

report on the operational system. These queries will also have effect on the

throughput of other database operations on the operational system while the

queries are run.

In DWH the database design and structure are separated into two areas; to

the actual DWH structures which are usually in normalized form and to

separate structures supporting subject area queries, so-called data marts

(DM) [1,4]. The latter structures are built with dimensional modelling and

star schema. Within the star schema the fact tables are central to the design,

holding all the relevant data for a data item. Dimension tables are holding

all the relevant data for the dimension [1,4]. In this financial system

example, the Supplier invoices table is the fact table, and the Supplier table

is the dimension table. Figure 1 shows the generic architecture of a DWH

system.

Figure 1. Generic architecture of a DWH.

Jari Myllylahti

16

The fact table has a column for each detail. The facts are usually numeric

values that can provide business with aggregate views, for example

providing a monetary sum of all invoices. A dimension is a specific

attribute to the fact. Dimensions are valuable items to the business, such as

supplier, invoicing month, invoicing country and so forth.

While the data is loaded into the fact table, the dimension attributes of a fact

table row are replaced by a surrogate key pointing to the dimension table.

The dimension table holds all the relevant details of a dimension record. An

example being customer dimension, where the record has attributes such as

name, address, social security number and other relevant attributes.

As an example, if the customer dimension record exists, the surrogate is

fetched from the dimension table by searching for the customer number or

name, and the surrogate key (customer id for example) is inserted into the

fact table column giving a reference to the right entity on the dimension

table. The same would apply for all the relevant dimensional attributes, that

are connected with the relevant fact.

Continuing the example, if the dimension record is not existing in the

dimension table, a new record is inserted into the dimension table. A new

customer id is generated, and the applicable dimension details are updated to

the record from the source systems. A simple star schema structure is

illustrated in Figure 2.

Figure 2. Star schema used in a DWH.

Fact
table

Dim 1 Dim 2

Dim 3 Dim 4

Data Warehousing

 17

What is typical to the DWH, is that the dimension records are fetched from

the operational source system databases on a specified interval (such as once

per day during night) prior to the actual loading of the fact data. This causes

the dimension records being up to date when the fact table(s) are loaded

from the source systems and there is no need to generate the records during

the fact table loading.

The afore mentioned star schema requires transformation of data while

loading it into the DWH. This has an implication of having to use an

intermediate storage table to ease the processing and to minimize the

resource wear and burden on the source systems. These intermediate storage

tables are called staging tables [4]. The source system data is loaded into

these staging tables, from where the Extract, Transformation and Load

(ETL) processes move the data further into the applicable star schema tables

for analytical and query use.

2.2 Structure of the traditional DWH method

The traditional DWH processes are controlled and run on either monthly, weekly or

daily basis. Figure 3 shows a high-level model of the traditional DWH processing.

Figure 3. High level process description of traditional DWH method using sources such
as databases (a), flat files (b) or message queuing systems (c).

Data source Staging table Target system

(a)

(b)

(c)

Jari Myllylahti

18

The data sources are read on daily basis and the data is delivered to the

staging area (e.g. a staging table) for further processing. The staging table is

read and the whole data is delivered to the target system(s) for further data

analysis.

Publications on DWH discuss the design topics and relevant schematics for

this setup. These techniques are widely in use in traditional data

warehousing environments. A literature review is presented in chapter 4.

The reading of the source data takes extensive time to finish as the data from

a whole day, or even a longer period of time, is processed at once and

typically during night. The data is not transformed at this stage, and it is

written to the staging table exactly in the same format it is on the source

system. Erroneous records are written to error logging structures for

possible correcting and reprocessing of the data.

The staging table is read in the next part of the process to deliver the data

into data warehousing structures. Loading the data to the data warehousing

structures is done by reading data from staging table structures and

transforming the data to normalized model in the DWH. This transforming

phase of the landing process is the most resource consuming part of this

process.

What is typical of the DWH is that these structures are in normalized form

of data base schema and provide a solid layer for tracking changes over

time.

The data is delivered to a reporting layer (e.g., a star schema consisting of a

fact table and dimension tables) after the data has been processed in the

DWH layer. This way the data can be analyzed by viewing it in different

dimensions. Dimensional modelling provides the business users a simple yet

powerful way to browse around their analytical data and analyze it on

different aspects, i.e. one can e.g. make a summary of data for a given client

over a period of time. The data loading of the star schema takes place once a

day, aggregating the data on selected dimensions.

The main phases of the traditional DWH ETL process are:

Data Warehousing

 19

1. Read the data from source system(s) and deliver it into a staging area in

the DWH

2. Transform the data to the format of the target model

3. Load the transformed data into the target DWH and reporting models

4. Rebuild indexing structures that support the reporting models

DWH systems are Decision Support Systems (DSS) by definition and they

provide an analytical view of data on aggregated and grouped level at

predefined intervals [33]. In the case the business questions do not need to

be answered more frequent than daily and there is no need to report on

transactional basis, then the refreshment of the aggregated data into the

object system can happen also on the same frequency.

Phase 1 typically inputs the data in from previous day. This part of the

process delivers the data usually in the same format or in a mixture of the

source and target formats. This way the transformation of the data can be

traced back to the staging area in the case there is something wrong with the

processing. This phase is time consuming as large amount of data is read

from sources and the reading is typically limited to a small set of reading

methods. These methods address the source data in a similar way to source

applications. One of the problems on the traditional approach is that this

phase cannot be parallelized which may create a bottleneck on the process.

Phase 2 transforms the data into the format of target model and attaches

surrogate keys for the dimension objects to the table rows. This phase also

generates new entities to dimension tables as the new dimension data is

transferred from the source systems. This phase typically involves heavy

calculations, aggregations and exotic transformations of different kinds.

This part of the ETL process takes most of the time and resources, as the

amount of records which will be addressed may be massive.

Phase 3 delivers (e.g., loads) the data into the target system, the DWH. The

writing can and most often will be done by utilizing bulk loading

mechanisms, delivering huge blocks of data directly to the database engine

to make the load in the most efficient way. At the end of the phase the index

structures must be rebuilt to facilitate the reporting on the data model. This

part takes a lot of time because the complex indexing setup is typically

heavy for reporting structures and index creation takes both CPU time and

I/O resources.

Jari Myllylahti

20

2.3 Indexing techniques for DWH

DWH systems are usually indexed with b-tree and bitmap indices like

operational databases. The indexing techniques rely on standard methods

and this is valid regardless of the data volumes in the DWH. Some DWH

environments utilize table and index partitioning to manage great data

volumes. Instead of using global non-partitioned indices DWH systems are

also using local indices which are partitioned according to underlying table

partitions. This method will help to remove the congestion on the table and

indices and enhance the throughput of different database operations [34].

In addition to the DWH structures mentioned above there are specific

indexing techniques for the star schema to support reporting. A normal way

to index a star schema is to index all dimension surrogate key attributes in

the fact table with bitmap indices. In addition, some of the required search

fields for analysis can be indexed for faster searches and aggregation. At the

end of this phase the staging table is truncated as the records are processed,

thus making the table available for the next load.

The difference between normal b-tree and bitmap indices is their internal

structure, while normal indices are arranged to a b-tree structure the bitmap

indexes are arranged in a two-dimensional binary array. The difference in

their behavior is that bitmap indices are extremely usable and fast in

addition to low space consumption in low cardinality columns. What makes

bitmap indices well superior to b-tree indices is when two or more bitmap

indexed columns can be used in search criteria. Then the database engine

can merge the bitmap indices and generate the result set extremely fast [34].

Challenges in DWH

 21

3 Challenges in DWH

This chapter addresses the challenges in traditional data warehousing (DWH)

systems and approaches. The challenges have been identified both by existing

research and literature, as well as by experience while constructing the patented

AcDWH method.

3.1 General problems on traditional DWH methods

The traditional DWH methods incorporate number of drawbacks in terms of

1. efficiency,

2. repeatability, and

3. efficient concurrent read and write access to DWH structures.

Initially, the data extracting phase is limited to very narrow reading of

source systems. When the amount of data is large and the reading

mechanisms are limited to typical reading patterns of the source systems,

the outcome cannot be excellent. The source systems cannot be modified to

address the needs of the DWH process as the systems have their own

transactional needs to be fulfilled. The source systems have been designed

for facilitating only their own data accessing needs, anything else is

irrelevant.

Secondly, the data transformation to the target format takes time and

resources. As the volume of transformed data is huge, the processing will

need large amounts of memory and CPU time. The efficiency of the

transformation is highly dependent on the resources of the transformation

platform. If the platform is running short on the memory and CPU

resources, the efficiency and throughput of the DWH system will

deteriorate.

Jari Myllylahti

22

Similarly, the loading process depends on the amount of the data to be

loaded. Whenever the data is loaded in, the loading process depends on the

I/O capacity of the target DWH platform. No matter how performant the

target platform is, the loading of a day’s data will take time. This is the case

particularly for the maintenance of indexing structures for the reporting

model. These structures must be dropped before the data will be loaded in.

If the indices would be up during the load, the impact on performance

would be enormous while the indices would be kept up to date during the

loading process. Currently, the index structures are typically dropped and

then rebuilt after the data loading has been done. As the data volume loaded

is huge, the rebuilding of the index structures is time consuming.

To sum up, traditional DWH techniques suffer from several specific

efficiency problems:

1. The source system reading cannot be streamlined, parallelized and

configured in a manner where the source system would facilitate for both

the source system application and also the analysis of the full set of data

for data warehousing purposes. The reading is a time and resource

consuming process on huge volumes of data.

2. The same problems are present also in the transformation phase. As the

amount of data is large, transforming the data to the needed format for the

analysis will consume resources for the transformation engine. It cannot

be avoided.

3. The loading process efficiency is depending on the data volume loaded.

Populating large number of records and rebuilding index structures will

take a significant amount of time. This will make the solution useless to

analytical use case, with regards to the near real time requirements.

4. The space consumption of the staging table is remarkable. In a typical

method the data is read from the source systems once per night, and the

data is transferred to the data warehousing structures with large batch jobs.

Utilizing this kind of structure within a near real-time solution would

cause the staging table to grow unmanaged, causing the system to either

halt or slow down drastically after an arbitrary amount of executions.

Challenges in DWH

 23

3.2 The high watermark problem on traditional
DWH staging tables

The traditional staging tables are handled in a distinct way. The traditional

DWH process will load a standard interval portion of data into the staging

table; typical interval being either once per day, week or month.

Given the characteristics of such a construct, the loading of data into the

staging table is extremely straightforward. On the other hand, the method

will cause different issues on the efficiency of the further loading

mechanism from the staging table.

The traditional method forces the system to process the whole staging table

at a time if no additional load batch identification mechanisms are

constructed for more frequent population of the staging table. If such

additional load batch identification mechanisms are constructed, the staging

table can accommodate multiple loading batches, but at the same time the

staging table would be potentially burdened with always rising high

watermark or slowed down inserts due to additional indexing requirements.

Assume that a staging table is used to accommodate only the current bucket

of incoming data, identified with column bucket_id. The loading process

would then load the bucket in a batch job, with any predefined size of a

bucket. This process would fill in the table starting from first empty data

block of the table extent and continue filling in the extent until the first

bucket (bucket_id=1) is handled.

Now, processing the bucket (bucket_id=1) from the staging table further to

the data warehousing structures is executed by selecting all rows from the

staging table.

 SELECT [COLUMN LIST] FROM STAGING_TABLE;

This will cause a full table scan, as the database engine selects all records in

the table. After successfully processing the rows further to the data

warehousing structures the staging table needs to be cleansed from the

existing data to facilitate for the next bucket_id to be loaded. There are two

options to do the operation; either delete all the rows with a delete command

 DELETE * FROM STAGING_TABLE;

Jari Myllylahti

24

or by truncating the staging table

 TRUNCATE STAGING_TABLE;

The delete operation would take considerably long time to execute. This is

due to the fact, that the transaction would be logged into the redo logs of the

database engine to secure any potential rollback command. The delete

operation needs to be explicitly either committed (confirmed) or rolled back

(cancelled). With either operation, commit or rollback, the database engine

would handle transaction through the redo logs to secure consistency in the

data manipulation language (DML) command.

On the contrary, the truncate operation just marks the table as empty and all

data blocks in table extent(s) are marked free. The execution of such

truncate command is extremely fast as it is irreversible, and the action is not

recorded in the redo logs of the database engine. Truncate table is a data

definition language (DDL) command. By nature, any DDL commands are

not logged into database engine redo logs as they are not processing records,

or they are not part of any transaction thus they make the operation execute

multitudes of times faster compared to any DML commands.

Now after the deletion of the records in the first bucket (bucket_id=1) or

truncation of the staging table, the system will be able to process the next

bucket of data (bucket_id=2) into the staging table.

By nature, the traditional method forces the system handle any batches to be

loaded in a sequential manner, one at a time, and any parts of the further

DWH structure loading process cannot be isolated from the staging table

loading process. This creates a heavy dependency between the staging table

and data warehousing structure population processes.

Assume that a staging table would be used to accommodate multiple

buckets of incoming data, identified with column bucket_id. The population

process would then load these in a batch job, with any predefined size of a

bucket. This process would fill in the table starting from first empty data

block of the table extent and continue filling in the extent until the first

bucket (bucket_id=1) has been processed. Let us suppose that the system

would process the next bucket (bucket_id=2) to the staging table, e.g. it

processes buckets sequentially and not asynchronously, and the first bucket

is still waiting to be processed further from the staging table. The processing

of the second bucket to the staging table would add the inserted rows at the

Challenges in DWH

 25

end of table; either to the free data blocks in an extent or to a newly added

extent and its data blocks.

Processing the first bucket (bucket_id=1) from the staging table further to

the data warehousing structures is then executed by selecting rows with

bucket_id=1.

 SELECT [COLUMN LIST] FROM STAGING_TABLE

 WHERE BUCKET_ID=1;

In this setup, where the staging table allocates multiple buckets of data, the

staging table loading process can be by nature asynchronous with the DWH

structure loading process(es). Despite the asynchronous capabilities and

facilitation for the multiple bucket_ids, this approach has two design flaws;

• Without indexing any SELECT FROM or DELETE FROM data

manipulation commands will result into a full table scan

• With additional indexing on BUCKET_ID column, the SELECT FROM and

DELETE FROM data manipulation commands will scan through the index,

and address only the relevant records of the staging table

Taking the first design flaw example on staging table without any indexing;

Without the indexing any access (SELECT FROM, DELETE FROM) is

going to cost additional time and resources as the database engine needs to

scan through all data blocks of the staging table to retrieve correct rows for

the bucket_id. In this setup the processing times will grow unless the

housekeeping of the staging table is executed and timed precisely right to

keep the housekeeping and space consumption of the staging table to a

minimum level. This is due to allowing multiple buckets per staging table to

facilitate asynchronous processing.

In practice this would mean, that the staging table’s housekeeping process

(e.g. the cleansing of already loaded bucket_id) needs to be executed within

the loading process itself after the loading of the bucket_id data and its

delivery to the data warehousing structures.

This will introduce a significant delay to the DWH structure loading process

and will harm the near real time and asynchronous loading requirements due

Jari Myllylahti

26

to the process needing to delete the records from the staging table at the end

of the loading process. The delete operation must execute a full scan to the

staging table as there are no indices supporting the addressing of the

relevant records. The cleansing process will scan through all the data blocks

of the staging table, searching for the right records with that specific

bucket_id and deleting those rows. The deletions must be committed in the

database. This DELETE FROM transaction will write redo logs for the

whole operation along with the transaction itself and the commit will make

the changes readable for other processes.

DELETE FROM STAGING_TABLE

WHERE BUCKET_ID=1;

COMMIT;

By introducing the cleansing phase as a mandatory part at the end of the

loading process the system would introduce a longer load time per the

loadable bucket_id. This would also affect the potential scalability and

concurrency on the asynchronous loading setup.

The second design flaw related to staging table with index on bucket_id

column comes to additional processing cost for maintaining the index while

loading into or deleting from the staging table. This will also introduce

additional storage needs for index within the database system. Using an

index on bucket_id requires additional resources to maintain the index while

loading the data to the staging table. This does enhance the throughput of

the selecting the bucket data from the staging table during the loading

process but then again, in addition to the redo log generation as in previous

design flaw example, this will introduce additional resource needs for index

maintenance while deleting the data from the staging table on the cleansing

phase.

3.3 The choking effect on near realtime DWH
environments

Using a setup with a staging table where multiple bucket_ids would be

residing during the load, there are following alternative approaches on:

[1] Populating and managing the staging table without indexing the

bucket_id column

Challenges in DWH

 27

[2] Populating and managing the staging table with index on the

bucket_id column

Assume the staging table has no indexing on the bucket_id column and the

system is loading multiple bucket_ids to the staging table. Further, the

system will not delete the bucket data from the staging table as a part of the

loading process but deletes the bucket data as a separate part of the system

implementation.

Assume further that loading the data to DWH structures from the staging

table may take longer than loading the staging table from the source

systems. By implementing the system as described above we can analyze

how the system would behave running the asynchronous loading and

cleansing processes.

Assume now that the system has loaded five (5) buckets of data, each

having 50000 records, thus consisting of 250000 records in total. Then, the

record size of 512 bytes (B) would give the space consumption of

approximately 125 megabytes (MB) for the five buckets. Adding another

bucket would reserve additionally 25 MB of database space for the table

while loading the data into the staging table.

Now, loading of the data from the staging table to the DWH structures

would be slower than loading the data from source systems to the staging

table. Implementing a system like this would force the loading process to

halt after some time depending on how much table space has been reserved

for the staging table. This is due to the following;

[1] The staging table is a single logical unit of data, built from segments,

extents and data blocks within the database

[2] Processing the data from the staging table to the DWH structures is

slower than loading the staging table from the source systems (e.g.

adding new buckets of data) as assumed above, due to

transformation of data within the loading process

[3] The system is not able to delete buckets of data faster than loading

new buckets in from source systems due to the slower loading of

data from staging table to DWH structures

[4] The table will evidently over time consume growing amounts of

space from database due to the fact that loading data from source

systems to staging table is faster than data loading from staging table

to DWH structures. This yields to longer execution time gradually

Jari Myllylahti

28

on the loading process, as the full table scans will require more I/O

resources while the staging table grows.

The above will cause the staging table to consume all free space from the

tablespace. The table will grow larger until the tablespace has no more space

to allocate for the table and any insertions to the table will generate an error

and the system will halt.

3.4 Deleting data from or truncating the staging
table

In the traditional DWH method, the staging tables are used for one batch

load at a time. E.g. the table holds data for only one bucket at a time. The

approach facilitates for easy data management but has very limited support

for systems requiring parallelism and concurrency.

By utilizing a fundamentally static staging table for one load batch (i.e.

bucket) at a time will secure fast and easy deletion of the staging table data

after the data has been loaded. This is eventually executed by a

TRUNCATE TABLE DDL command. This method is a fast and robust

mechanism to cleanse the loaded data from the staging table and the truncate

command is usually executed as the last operation of the loading process

that populates the data warehousing structures.

However, the above method allows no concurrency or parallelism in the

loading pipeline, e.g. the processing consists of sequential parts executed

after each other. Loading the next bucket of data into the staging table

requires all parts of this processing pipeline to be finalized successfully. As

a result of this, reading of records from source systems to the staging table

cannot be parallelized and the processing does not support concurrency.

Approaching the above problem by adding a column to the staging table

holding the bucket_id will enhance the concurrency and parallelism. Then,

the staging table can hold multiple buckets of data at the same time. It will

also facilitate for concurrency and parallelism, as the loading from the

source systems to the staging table can be parallelized as well as the

processing pipeline that delivers data from the staging table to the DWH

structures.

Challenges in DWH

 29

On the other hand, adding the bucket_id column to the staging table will

introduce two distinct problems; i) the efficiency aspect and ii) the data

skewing aspect.

For the efficiency, the problem is two-fold. Without indexing the bucket_id

column, the loading from staging table to data warehousing structures will

need a full scan of the staging table for searching the rows with a correct

bucket_id. This will make the loading process inefficient, but it introduces

the rising high watermark problem described in section 3.1. With indexing

the bucket_id, the processing of data from staging table to DWH structures

is efficient but the data processing from source systems to the staging table

will slow down due to the need of populating the index as the data is loaded

into the staging table.

Regardless of the indexing of the bucket_id column the data skewing

problem is evident. Skewing in this context means that data is not

distributed evenly on specific data blocks but has an uneven distribution

across data blocks. The rows of a specific bucket are distributed unevenly

across data blocks having empty space. A non-indexed staging table has

slower further processing and deletion of data. An indexed table supports

faster further processing and deletion of data, but slower data loading into

the staging table. The concurrent loading of multiple buckets of data into the

staging table will interleave the rows of different buckets among each other

while the system is inserting the data into the staging table.

Now, let us assume the system has inserted arbitrary amount of data buckets

into the staging table with a parallel processing pipeline. The parallel

processing pipeline inserts many buckets into the staging table during a

specific time interval. These data buckets are marked as processed and are

waiting for deletion. After executing committing the deletion, the physical

table extents and data blocks have now free space within them for additional

rows. Let us also assume that the database and staging table are generated

with such specifications that the database engine can utilize this recently

freed space within the data blocks. Now insertion of a new data bucket

means that rows are inserted into these partially emptied data blocks and

empty data blocks will be reserved at the end of the table. This introduces

data skewing to the staging table and introduces growing space consumption

for the staging table as loading more data rows to the staging table will

reserve additional extents and data blocks for the table.

Jari Myllylahti

30

It is evident and also witnessed through experimenting and resolving the

problems in the setup referenced in chapter 5.1, that this setup will

ultimately over time introduce excessive data skewing. This will eventually

generate a high watermark problem with the staging table. The staging table

will then consume additional space from the database until the free space

has been consumed. This means that the database engine cannot reserve

more space for the table, and any insert operations to the staging table will

exit with an error.

Having active DWH system processing near real time data loading mechanism

cannot stand such halt. This is due to the fact that the active DWH environment by

nature handles data loads in really short intervals. Any delay in the process of loading

data from source systems generates a heavier load on DWH loading processes. It is

fair to say that another type of solution needs to be formulated to overcome and

resolve the problems on both efficiency and data skewing.

All the parts of a typical data warehousing ETL process are affected by the

fact that there is a huge amount of records read, transformed and loaded

through the system. Each of the parts is affected individually and yet

affecting on the total throughput of the system.

Several questions still remain to be answered – for which answers are never

good enough. What if there is a need to rerun a day’s batch of data? Further,

how to rerun in the case of corrupted data? How the correctness of the data

can be ensured? How do we process the data fast enough and how do we

enable it to be reported on a very frequent, near real-time, basis?

All these questions and design flaws must be answered and refined to

achieve a high performing environment for a near real-time DWH system.

4 Existing research

The existing research publications were searched using Google Scholar1.

Publications were searched in the databases with keywords (data

warehousing (DWH), staging table, partitioning) and selected by the author

based on their relevance to DWH, their handling of loading processes and

staging tables. The publications were reviewed by studying their focus areas

and comparing their conclusions and findings to the traditional DWH

methods and the proposed AcDWH methodology of the present work.

4.1 1990-1999

Widom [15] studied research problems in DWH. The author described a

general DWH architecture and technical issues arising from the architecture.

The author discussed wrapper / monitor component that monitors source

system changes and provides formatted data to DWH which also informs

the integrator component of changes in the source system data. There is a

wrapper / monitor component for each data source due to different data

models in different source systems. These components also reformat the

data to the DWH required data model. The data from the wrapper / monitor

components are consumed by the integrator component. The wrapper /

monitor components read the data directly from source systems and the

integrator component writes it to the DWH. The author discusses how the

integrator component will directly write to the DWH structures. The author

discussed alternatives with data loading or maintenance of materialized

views if a DWH would be refreshed at each query execution. The author

discussed the specific extreme case where all data from source systems

would be copied into the DWH, and DWH views would be refreshed in

entirety from the copied data. The author did not discuss further the

1 https://scholar.google.com

Jari Myllylahti

32

problems of using data from source systems versus utilizing a staging area

within the DWH itself.

4.2 2000-2009

Suresh et al. [21] patented a method and an architecture to automate the

optimization of ETL throughput within DWH systems. The inventors

proposed a pipelined and componentized approach to ETL workloads where

the pipelines are built for different atomic components, each executing

specific processing to the data. The transformation server’s components

separately decide whether to stage or stream the data to be transformed. The

pipelines are managed by the transformation server which optimizes the

system for maximum resource utilization throughput by parallelizing the

pipelines. The user is also able to define parallelism for the system by

manually defining how many pipelines the transformation server will handle

concurrently. The processing pipelines and their components reside in

memory, whereas source data originates from any of the valid source types

and the target system is a DWH. The patent describes thoroughly the

working principles of the transformation server. The transformation server

processes only data in transit through the server.

Bruckner et al. [27] studied approaches to real-time data integration for

DWHs. The study discusses an approach that applies continuous near real-

time data propagation using integration techniques. The study presented

methods available in standard Java 2 platform with a scalable ETL

environment implemented with ETLets and Enterprise Java Beans (EJB).

ETLets are small ETL components implemented with EJB that execute

specific actions, and they have standardized interfaces for the input / output

parameters. The authors discuss the business needs of near real-time DWH,

namely including continuous data integration, active decision engines and

highly available analytical and query setup. They also discuss the

differences between ODS and DWHs. ODS is an environment providing

view for current state of data across operational systems, DWH is an

environment where analytical and historical data are recorded and provided

to support business users and analysis. The authors discuss an architecture

to streamline data delivery between different layers without using

intermediate storage or staging areas. This is achieved by using ETLets and

EJB components for extracting, parsing and converting data through J2EE

connectors. In their study the authors described how their proposed system

Existing research

 33

manages the source system connection pooling and ETL processing through

containers. By using the container setup on light weight Java components

and immediate file storage beneath the authors believe the setup is feasible

for near-real time DWH environments.

Nguyen and Min [24] studied a framework of a Zero-Latency DWH

(ZLDWH) in 2003. Their article addresses two aspects of ZLDWH; firstly

the Continuous Data Integration and secondly Active Decision Engine. The

first is constructed from a message queuing system and a data integration

tool. This tool receives data from heterogenous sources using a data stream

processor and a set of change data detection modules. This part of the

system manages the active DWH requirements. The methods can include

both push or pull techniques where data are either sent to the receiver or

requested by the receiver. In addition, the Continuous Data Integration

module can be formulated to handle data either in synchronous or

asynchronous fashion, and there can be single or multiple data receivers.

This part of the solution uses also continuous data stream processing where

data is usually constantly changing, and it is not practical to operate with

large data sets multiple times. The second component Active Decision

Engine handles the rules and actions within the system. Its primary function

is the automation of different tasks by analysis rules which are created

traditionally by incremental analysis of the collected data. The Active

Decision Engine uses a rule base, an event base and an action base to handle

the automation. Users are able to create and modify different rules, events

and actions through a specific end user interface or tool. There are some

foundational problems in applying continuous data stream processing

related to time consistency. These problems are evidently introduced by the

process, which realizes when the data has been valid so that the data can be

processed with properly modelled dimension data including attributes for

validity time and data load timestamp details.

Golfarelli et al. [16] discussed the horizon of beyond DWH in terms of

looking onto what will be the next trends in business Intelligence. The

authors discussed the data freshness needs related to decision making for an

organization, while trying to execute the company’s strategy. The paper

discusses different aspects and needs for data and information, indicating

that Business Performance Management (BPM) is a potential resolution for

data freshness for decision making of an organization. The research

indicates that the data needs to be continuously made available at the right

time and in the proper format to the right decision level makers. Decisions

on lower organizational levels require more fresh data due to the decisions

Jari Myllylahti

34

need to be made faster. The above referenced BPM systems provide data

and insight in the right time, instead of real-time, facilitating fresh enough

data. In addition to the freshness of the data, the lifetime of data is relatively

short. The data are needed for the dashboard usage on current performance

metrics. This can be achieved in reactive data flows, that monitor the

processes with time critical aspects. This kind of activity is called Business

Activity Monitoring (BAM). The main components of such a construct are

Right-Time Integrator (RTI) and Dynamic Data Store (DDS). RTI is an

engine integrating data from operational databases, DWHs, Enterprice

Application Integration (EAI) systems and from real-time streams. DDS

system is storing short-term data for fast retrieval needs and mining. As data

latency is of key relevance, the article proposes abandoning the Operational

Data Store (ODS) approach utilized in the DWH and concentrating on on-

the-fly techniques. These techniques utilize BAM approach, implementing

right-time processing of the relevant data. As a conclusion, the BPM

approach and its role is seen as a method to quantify the strategy and targets

and to facilitate decentralized decision making on the operational and

tactical levels of organizations.

Karaksidis et al. [20] studied utilizing ETL queues for active DWH for

maximum freshness of the data. The authors discussed different approaches

to build an active DWH, such as data streams compared to traditional

method of loading windows during night and offline population of the

DWH. The authors divided their study around four main requirements:

maximum freshness of data, easy and swift upgrade of software at the

source systems, minimized overhead to the source system and stable

interfaces at the DWH side. The study discussed an active data staging area

(ADSA), from where the data are loaded into the DWH utilizing on-line

loaders. The authors employed a queue for each ETL activity, namely

building an ETL data flow of separate queues processing data in different

manners; e.g. the processes are different consumers of data. The system

architecture consists of a data store (DBMS, application or similar), source

flow regulator for handling the data flow from data store, intermediate

staging area (ADVA) where data are cleansed and transformed, web

services for consuming data from ADVA and populating the data into

DWH. The authors proposed alternatives for the staging area, first being on

the source side, second on the target DWH side and third one as a separate

environment. The study specifically addressed the choices concerning

staging area. According to the authors, the internal staging area structure

and its tuning are the key elements of the architecture and its performance.

As the staging area is an environment of multithreaded nature and it is using

Existing research

 35

shared coonstructs, race conditions and consistency should be handled

properly. The authors raise issues on the locking of the queues and its

implications to how fast the queues can be handled and emptied. Too fast

arrival rate of data from source systems generates instability and longer

queues. Alternatively, too fast service rate transmitting data off the queues

will create a lot of locking issues, thus arrival and service rates should be

close to each other to avoid problems. Also handling the data one tuple at a

time poses a large overhead to the system compared to an approach where

data are handled one block at a time. As a conclusion the study summarized

the findings as follows; the proposed system with isolated ETL tasks to a

specific area adds very limited additional costs to source side and the

proposed system also facilitates faster flow towards the DWH.

Simitsis et al. [10] addressed the optimization of the ETL processes. The

authors reviewed and focused their approach to logical transformations of

the workflow instead of implementation requirements on the physical side.

The study approaches the optimization problem of ETL processes through

different algorithms, and their effect on the outcome. The optimization

techniques included exhaustive and heuristic techniques to ETL workflows.

The study gives a comparison of the different approaches and their impact to

the execution efficiency. The study concentrates fully on the logical ETL

workflow and does not address any physical side design elements. The

authors disclosed that the research issue of physical optimization of ETL

workflows has been left unexplored.

Polyzotis et al. [23] researched utilizing streaming updates in an active

DWH. The authors studied particularly an active DWH research problem

where transactions are inputed through online data streams. Transactions are

added with details from a DWH table such as a dimension table, where the

transaction is added with surrogate keys looked up from dimension tables.

When using the traditional ETL lookup setup, the ETL logic reads the full

lookup table in the cache memory for the specific invoking of the ETL

process constituting from multiple rows. For streaming data sets the lookup

caching problem generates extensive overhead due to nature of the

processing a record at a time. For this problem the authors proposed to use a

configurable mesh join, which keeps a specified amount of mesh join

attributes in the memory to avoid re-reading of the lookup table. The

researched mesh join can be configured to either stay within a specific

memory limitation or to handle the incoming data stream at incoming rate.

The algorithm skips processing any results that are already in the lookup

table in the memory and propagates new results to the in-memory result

Jari Myllylahti

36

table. This result table is kept in the memory instead of looking it up from

the database for each execution of the ETL process. The construct amortizes

the cost of reading the lookup table over a set of tuples and thus provides far

better efficiency than typical ETL processing but at the same time it

consumes more memory.

Santos and Bernardino [9] proposed a continuous loading mechanism for

real-time DWH. The method adapts the DWH schema by duplicating the

DWH tables into temporary tables which are identical to the original DWH

table and added with a unique sequence identifier column. These temporary

tables are created without indices, primary keys or any constraints. To

refresh the DWH, all new data are loaded into these temporary tables with

autoincremented sequential identifiers. Any queries to the DWH will be

adjusted to query from both temporary and actual DWH tables. This method

will in time cause the slow-down of the insert and query operations. The

system can be optimized by moving all newly inserted data from the

temporary tables into the DWH tables.

Polyzotis et al. [25] studied meshing streaming updates that use persistent

data in an active DWH. The authors studied the drawbacks of traditional

DWH data loading on nightly basis. The study discussed a specific join of

fast source system stream originating updates (e.g. fast paced changes) to a

disk-based relation (e.g. a database table or similar). The authors proposed a

mesh-join algorithm where the algorithm keeps the lookup table on the disk

assuming the available memory is not large enough. The proposed mesh

join solution keeps a disk-based relation continuously open, performs a

cyclic scan of it continuously and maps the records against the stream

originating records. The study focused on the transformations (lookups,

joins and similar) in the ETL process.

Naeem et al. [29] studied an event-driven near real-time data integration

architecture. They presented an architecture for an event driven near real-

time ETL layer using database queues (DBQ) which is working with the

push principle. The study describes the foundational problem of continuous

extraction and transformation of data within a limited loading window. This

problem occurs especially in the management of so-called master data,

which is needed to enrichen the transactional data originating from the

source system(s). The authors gave a method how the master data can be

utilized in an efficient manner through storing it in a separate repository.

The master data and transaction data are distributed to right targets and

repositories. The transaction data is then enriched with the master data

Existing research

 37

through a message driven bean which uses the master data tables as inner

tables in a join loop providing efficient throughput. Using this method, the

master data is not needed to be refreshed for each transaction but rather as

the master data itself is changed.

Seifert [5] filed for a patent on an online table move method. The author

developed a method to move a table in an online fashion without

interruptions to applications using the database. The basic principle is to

initiate a module that records all source table operations to the target table,

to establish a copy of the existing table, and to initiate replay, swap and

cleanup modules. The method uses a staging table to record any changes in

the source table while the data is copied to the target table. The swap

module will implement the name change of the source and target tables, so

that the target table will be established as the table in use. After data has

been copied from the staging table to the target table, the cleanup module

will delete the staging and source tables. The staging table is not partitioned

but indexed for the access of the changed records. The access of the staging

table relies on the indexes, and data are processed by reading the entire

staging table without parallel processing.

Jörg and Deßloch [8] studied near real-time DWH using state of the art ETL

tools. According to their study the requirements could be fulfilled using

traditional ETL tools and by shortening the DWH loading cycles. This

would not require re-implementation of any of the transformation logic. The

study is divided into sections, discussing the refreshment anomalies,

concepts of incremental loading and properties of operational sources. The

refreshment anomalies happen when DWH system addresses the source

systems’ data and their changes during the refreshment cycle of a DWH.

Two families of algorithms, eager compensating and strobe family, were

discussed and their potential to be constructed using ETL tools. Both, the

eager compensating algorithm and the strobe family algorithms are tracking

changes in source systems while data warehouse loading is executed.

Respectively they perform specific compensations for avoiding anomalies.

The authors came to a conclusion where the current ETL tools do not

provide a means of implementation for the algorithms as such. Incremental

loading aspects were discussed in detail, giving simple examples on

different approaches. The authors considered the options of full and

incremental reloading, and the distinctive characteristics that both

approaches introduce. Operational sources and their properties were

presented, having a view for example on snapshot and logged sources.

Snapshot sources are simply operational sources that allow their material to

Jari Myllylahti

38

be dumped periodically into a file system representing a state of the

operational system at the specified extraction time. In this setup change data

can be captured using successive snapshots and by comparing states

between the different snapshots. Some operational sources implement a

change log that can be utilized to extract the changes. There are multiple

possibilities to implement change data capture, like triggers included into

transaction logic or log-based change capture recording the changes for

example to log tables. In addition, database log scraping or sniffing

implementations are discussed, in which the source system changes are

collected from the active database log files instead of recording the changes

from source databases themselves. Often the source systems contain

timestamped source data, where the changes are recorded into the source

system data itself, an example being the timestamp of the record being

created or updated. The authors conclude with showing the potential of

using low latency updates using ETL tools in a micro batch manager setup,

where the loading cycles and amount of data are strictly limited. This is to

avoid refreshment anomalies and subsequent inconsistency in DWH,

implemented with different techniques in the ETL workflow and change

data capture setup.

Chakraborty and Singh [31] studied a partition-based approach supporting

active DWH streaming updates. The authors described the same

problematics as Polyzotis et al. [23]. Based on the observations in the study,

they proposed an approach to join a data stream with a persistent relation,

e.g. a lookup or dimension table using partitioning. The dimension table is

divided into partitions, where the join relation can be limited to a limited

amount of partitions from the dimension table and potentially the amount of

partitions kept in the memory will be adjusted. Additionally, the proposed

solution also addresses the I/O bottlenecks and eliminates locking factors

which are due to writing rows into the dimension table. This is achieved by

maintaining a wait buffer which is not written to disk, but rather kept in

memory. Compared to [23], Chakraborty and Singh have added a distinctive

partitioning method on the top of the proposed mesh join setup, which

efficiently eliminates large scale reading of the dimension table and tries to

concentrate the reads and writes into hot areas within the partition range.

Vassiliadis and Simitsis [12] discussed the business needs that require near

real-time DWH and such architectures that will cater for these needs. The

authors considered also the performance bottlenecks relating to near real-

time data loading, especially arranging the data into a staging area, and

processing it into DWH or data mart structures either using bulk loading

Existing research

 39

mechanisms or inserting the data by a sequential insertion of rows.

Vassiliadis and Simitsis properly identified the drawbacks of such

mechanisms in relation to indexing and materialized views over the DWH

relations while inserting the data. The authors proposed an Extract-Load-

Transform (ELT) solution that snapshots operational system data into DWH

staging area, after which the transformations are managed within the DWH

platform. This enhances scalability and also secures integrity of data as all

data are kept within the database engine. The proposed solution is a

pipelined approach to the stages in the ELT process where a proposed Data

Processing Flow Regulator (DPFlowR) component controls the source

loading activities and decides which sources are ready for transmitting data.

This proposed component also regulates the source loading process and

balances the congestion posed by the loading pipeline against the overall

system throughput and responsiveness. In addition, a proposed Warehouse

Flow Regulator (WFlowR) component would similarly control the DWH

loading processes that are pipelined, balancing them to enhance system

throughput and responsiveness. Both these components act as load-

balancing tasks within the system. The authors discussed specific pipelining

and partitioning methods for the specific extraction, loading and

transformation processes. The discussed method proposes to divide the

processed data into smaller sets which would then be processed in parallel

and in pipelined fashion by different parts of the system.

4.3 2010-2019

Zuters [13] studied near real-time DWH problems and proposed a solution

to data loading setup by evolving of trickle & flip method into a multi-stage

trickle & flip setup. This trickle & flip method is used to remove scalability

issues in DWH for querying the data which has been updated concurrently

with the querying processes. Using trickle & flip the staging tables are in the

same format as the DWH tables. The staging tables are periodically

duplicated, and their copy will be swapped with the DWH tables. Applying

trickle & flip to real-time DWH means swapping the staging tables with the

active partitions of the DWH. This method implicates that the system needs

to have all changed data available since the last update in the real-time

portion of the DWH. In addition, the real-time data needs to be linked

pragmatically to static data, it needs to be extremely lightly indexed to

support the continuous data loads and to support fast queries. Using trickle

& flip imposes drawbacks to the real-time DWH setup. Copying staging

Jari Myllylahti

40

data into DWH active area for example every hour will implicate periodic

slowness on throughput and tweaking the update happening in longer

intervals just exaggerates the impact as the data swapping will take longer

time. Zuters proposed using an evolved multi-stage trickle & flip scenario

where the method introduces additional stages to the system. This would

resolve the issues of querying the tables while the data are loaded. In this

scenario the real-time data are divided into sub-partitions, where each sub-

partition holds less data than the full real-time portion of the DWH. The

staging table is proposed to be swapped in more frequently, and then only a

sub-partition of the data must be moved. This efficiently removes some of

the hindrances of querying and loading the same data window.

Thomsen and Pedersen [11] presented an ETL framework implemented in

python programming language. The framework presents an efficient way to

parallelize the ETL process itself and the typical tasks of such process. The

research addresses several constructs in python that will enable all parts of

the ETL process to be parallelized. This is achieved by both task parallelism

and data parallelism. The proposed method allows extraction in parallel to

other tasks in the process. Authors proposed to divide the tasks into flows

that are sequence collections of functions running in parallel. The method

enables the programmers to decide and control which parts of the ETL

process and data can be parallelized.

Kakish and Kraft [26] studied the ETL evolution for the real-time DWH.

The authors presented the fundamentals of the ETL processing in traditional

DWH environments and described the architecture of the DWH

environments. The authors discussed the problematics of capturing changed

data from the source systems and the complexity of defining extraction

processes. Kakish and Kraft described the techniques to achieve real-time

DWH through implementing a Change Data Capture (CDC) technique and

integrating such technique with ETL tooling. In CDC technique only the

source system changes made after previous extraction are extracted. So,

CDC mechanism uses only incremental extraction. This integrated approach

would minimize the needs for resources along with maximizing the

efficiency of the process. The study describes the three different generations

of ETL toolsets, which have evolved from operating system native code,

through proprietary ETL engines to latest generation of ETL tools which

have a distributed architecture. These third generation ETL tools eliminate

and reduce the need for an ETL hub between the systems and they pursue to

introduce distributed processing where the transformations are implemented

in the database management system side. This facilitates for distributed and

Existing research

 41

optimized ETL processing. The authors came to a conclusion where the

current ETL processes need to transform from periodic processing to

continuous updates. According to the authors, effectively this would require

continuous data integration. To eliminate the disadvantages and to fulfill the

requirements, authors propose to use an intermediate data processing area

(DPA) and the architecture and methods proposed in [12]. The study

concludes with weighting the different aspects of different solutions on the

actual need; not all tasks require real-time analysis capabilities.

Waas et al. [6] discussed the problematics of near real-time DWH in the

context of the latency to get the data in the DWH for queries. The data

freshness problems were discussed. A core problem of data freshness and

latency related to time consuming data transformations and cleansing for

queries was identified. The authors propose a right-time Business

Intelligence (BI) architecture where ETL is turned into ELT processing

using database platform as the loading and transformation engine. The paper

proposes loading raw data into the DWH and handling the rest of the ELT

process with database operations through materialized views. The proposed

model has three main components: staging area called landing pad (LP),

DWH tables, and materialized view stack (MVS) providing data to the

queries and reporting instead of traditional data marts or reporting tables.

The data is provided to the queries on-demand through refreshing of

materialized views. Authors also proposed to augment the architecture with

updates through streaming data from event data sources. The streaming data

process can query and combine elements from DWH for end user

dashboards for alerting.

Bani et al. [35] studied utilizing Massively Parallel Processing (MPP)

system to provide scalability for DWH. The study focused on implementing

a MPP system with Greenplum database to perform complex queries in the

DWH. The Greenplum MPP system is built with multiple parallel physical

hosts interconnected with an interconnect network layer distributing the

MPP processing. The DWH data is partitioned across the servers and each

server has its own CPU, memory and database instance. The database

queries run in parallel using all the MPP system hosts, and each host is

returning the results. Interconnect network layer enables communication

across the database instances residing on the servers, giving the system

ability to act as a single database. The MPP solution collects daily

transactional data from the source systems. The study shows that data loads

with less than 1 000 000 rows can be handled with direct load to staging

area tables, and the staging cleansing is executed by truncating the staging

Jari Myllylahti

42

table after each successful load to DWH. Larger data loads require a dual

stage data load which means creating a file dump on source system table(s)

and loading the data from these files to staging area using databases utilities.

4.4 2020-

Gorhe [36] studied problems and categorized challenges and opportunities

in ETL processing for near real-time environments. The author identified

fast source data availability in DWH environment and providing required

data for decision making as the primary focus in near-real time DWH. Low

latency, minimum disruptions and high availability & scalability were

identified as the key characteristics of these near-real time DWH

environments. The author also discussed problems in the ETL processes.

Some key findings were performance impact of the DWH while loading the

data, the inability of proprietary ETL toolset to support near-real time usage

and complicated design due to the near-real time requirements. The author

identified key findings on the opportunities in near-realtime DWH, such as

data buffering to enable source data storage while previously extracted data

was under processing and using separate ETL for near-real time data.

Adnyana and Jendra Sulastra [37] studied data backup and synchronization

implementation for real-time DWH. The authors considered the resolution

of data synchronization to online transaction processing (OLTP) systems

and DWH databases while network problems occurred. They described a

functionality in the system which saves the data into a comma separated

values (CSV) file while network problems occur. The solution uses an

identity column on OLTP database tables to mark if the insertion has failed

or succeeded. After the insertion has succeeded to the OLTP database, the

system continues synchronizing the data into the DWH.

Biswas et al. [38] studied incremental loading techniques for real-time data

integration. The authors compared Graphical User Interface (GUI) -based

ETL tools in the market against custom coded tools. The study discusses

four programmable ETL tools Pygrametl, Petl, Scriptella and R_etl. The

authors described and measured the efficiency of each of the programmable

ETL tools from different viewpoints and discussed the modelling of the

ETL jobs. The authors divided their study to three parts: Change Data

Capture (CDC), dimension table processing and fact table processing. The

authors experimented with full reload against incremental load and they

Existing research

 43

came to a conclusion that incremental loading is not only faster but also

provides lighter processing requirements for the system. Conclusions

include findings that specifically coded and crafted ETL can be the most

viable option instead of GUI-based ETL tools on the market, and also that

real-time DWH needs incremental loading mechanisms which provide better

throughput and also less system resource consumption.

Cao et al. [39] presented Timon, a time-series database implementation for

efficient telemetry data processing and analytics. The authors created the

solution for timestamped event database that supports aggregation and

handles late arrivals. Timon uses TS-LSM-Tree structure that keeps recent

data within memory. The structure also contains a time partitioned tree on

disks to which the in-memory data is periodically merged to. The non-

memory implementation is usually done with such solutions as HBase [40]

or Cassandra [41]. Timon reads the events from the source systems usually

through message queue systems and attaches a sequential ascending

identifier to each record. The solution is built to support large volumes of

timestamped data. Timon is written from scratch, and the authors have

implemented also Timon Query Language (TQL) for easier application

development.

4.5 Summary of literature review

As a summary, below is a comparison of different focus areas in the prior

literature reflecting the area of this thesis. While most of the cited studies

focus on the loading process and the staging area handling only a few of

them focus on table partitioning setup and associated methods to overcome

active DWH bottlenecks [23] [31] [39]. While the table partitioning is

studied in these papers, it is not studied for the staging area handling. Table

partitioning aspects have been studied in the context of loading process or

join processing, which are elementarily valid focus areas. The present thesis

uses table partitioning in the staging area processing. Also leveraging the

partitioning technology to enable active DWH with continuous loading and

simultaneous querying of data is be studied. As a conclusion, utilizing table

partitioning in staging tables in a standard database engine has not widely

been discussed or studied. This thesis proposes a novel approach to active

DWH staging table handling in a standard database engine using table

partitioning along with the proposed data management system.

Jari Myllylahti

44

Table 1. Comparison of focus areas in prior studies.

Referenced

study

Author(s) Year Loading

process

Staging

area

Join

processing

Table

partitioning

[15] Widom 1995 X

[21] Suresh et al. 2001 X

[27] Bruckner et al. 2002 X X

[24] Nguyen and Min 2003 X

[16] Golfarelli et al. 2004 X (X)

[20] Karaksidis et al. 2005 X X

[10] Simitsis et al. 2005 X

[23] Polyzotis et al. 2007 X X

[9] Santos and Bernardino 2008 X X

[25] Polyzotis et al. 2008 X

[29] Naeem et al. 2008 X

[5] Seifert 2009 X

[8] Jörg and Deßloch 2009 X

[31] Chakraborty and Singh 2009 X X

[12] Vassiliadis and Simitsis 2009 X X

[13] Zuters 2011 X X

[11] Thomsen and Pedersen 2011 X

[26] Kakish and Kraft 2012 X X

[6] Waas et al. 2013 X X

[35] Bani et al. 2018 X X

[36] Gorhe 2020 X X

[37] Adnyana and Jendra
Sulastra

2020 X

[38] Biswas et al. 2020 X

[39] Cao et al. 2020 X X X

5 AcDWH Method

In this chapter a methodology for a rapid data warehouse (DWH) loading and

analysis platform (AcDWH) is presented. The methods presented have been granted

a European Patent (EP 1 959 359 B1) by European Patent Office on November 22nd,

2017 [I].

5.1 Overview

A high-level description of the optimized DWH loading and analysis

platform, AcDWH, is as follows:

1. Generate the AcDWH staging area and primary data warehousing

structures to enable initial loading,

2. Feed the AcDWH staging area from the source systems (data loading

module),

3. Populate the primary AcDWH structures from the staging area (delivery

module(s)),

4. Clear the staging area after transitioning the data to primary AcDWH

structures (cleaning module),

5. Establish the AcDWH indexing structures for analytical and query use.

The foundation of the AcDWH methodology is explained in detail in the

following sections. The fundamental change of the proposed approach in

contrast to the previous DWH techniques is utilizing physical data

partitioning in a manner it was not originally intended to be used.

High level modules and their relation to the staging table(s) of the AcDWH

are illustrated in Figure 4. Step 2 is performed with the loading module, step

3 with the delivery module and step 4 with the cleaning module. Step 1 is

Jari Myllylahti

46

performed manually while building the system and step 5 can be performed

by triggering indexing structures recreation as a last part of delivery module.

Each target table / structure has its own system modules. Each bucket is

represented by a single table partition.

Figure 4. AcDWH system modules and their relation to the staging table(s).

High level flow of the AcDWH load module is shown in Fig. 5:

Figure 5. High level AcDWH loading module.

Each bucket in the subject area specific staging table is created with uniform

extent and bucket sizes, meaning physical table partition size and also as

DATA MANAGEMENT SYSTEM

Loading module Delivery module Cleaning module

Staging area

Data coming from a
data source

Create new partition for
the data

Store the data in the
partition

Update bucket
metadata

AcDWH Method

 47

close to an uniform amount of rows in the bucket as possible. After the

bucket has been loaded into the AcDWH staging table partition, it will be

marked as loaded and any delivery processes can start to load data from the

staging table to DWH structures.

The AcDWH system may include multiple delivery processes and thus the

system needs to track how the different delivery processes will load data

into database structures. Multiple delivery processes can load same bucket

data for example to different subject areas (data marts, DM) for reporting.

The data bucket from staging table cannot be deleted prior to all delivery

processes have processed it. To facilitate for this the system works through

the control tables and coordinates how different delivery processes work

with the data. See Figure 6 for the workflow of the AcDWH delivery

module.

Figure 6. High level AcDWH data delivery module.

To set different priorities on the delivery processes, each AcDWH delivery

process is assigned with priority information. The priority is indicated with

a numerical value. Value 1 has highest priority, value 2 second highest and

so forth, as many priority levels as needed can be introduced. Priorities of

delivery processes are defined for the application while the system is built.

The AcDWH system can resolve prioritization by checking if higher priority

delivery processes are in the queue to be executed. This simple method

Select a bucket from
staging area by bucket_id

Open the partition with
bucket_id

Store the data in the
DWH table(s)

Update bucket deliverers
metadata in control tables

Update bucket metadata in
control tables if status = ‘LOADED’

Deliver the data rows
from the bucket

Jari Myllylahti

48

avoids executing lower priory delivery processes before the higher priority

ones. When higher priority processes are finalized, the lower priority

processes are processed. The overall AcDWH delivery process is described

below in Figure 7.

Figure 7. AcDWH Data delivery module priority determination.

After all delivery processes have moved the bucket data to AcDWH

database structures, the data buckets (e.g. staging table partitions) will be

deleted from the system to minimize the usage of the database space and the

consumption of resources. As the AcDWH staging table and its partitions

use uniform sizing on physical level, the space removals and allocations are

uniform, and the space allocation management is easy.

Starting a delivery
process

Checking priority
information

Delaying bucket
processing if necessary

Proceeding with the
delivery process

Different priorities
determined

YES

NO

Possible to proceed
with the delivery

process

NO

YES

AcDWH Method

 49

Figure 8. AcDWH Cleansing process.

Figure 8 describes the overall AcDWH process for cleansing of the

partitioned staging table from the processed buckets. The cleansing module

identifies the delivered buckets from the AcDWH control table (see chapter

5.4), and one by one drops them from the partitioned staging table (see

chapter 5.3). This is an efficient way to purge the already processed data

from the staging table.

The cleansing process can be established in a very simple manner. The

process analyzes from the control table if all the delivery processes have

loaded the bucket data from the staging table to the structures and deletes

the associated staging table partition. This will be repeated for any potential

additional staging table partition until no such partitions are found.

The cleansing process can be scheduled to be run periodically depending on

the need. Heavily loaded systems require more frequent cleansing of the

staging table and thereby the cleansing process might be scheduled to be run

for example every five minutes. In lighter loaded systems cleaning might be

scheduled to one hour’s schedules or even longer, for example once per day.

Checking the status
information of a bucket

in metadata

Is the status of the
bucket ‘DELIVERED’?

Update bucket status as
‘DELETED’

Checking the next bucket

Dropping the partition
of the bucket

YES

NO

Jari Myllylahti

50

5.2 AcDWH structural considerations

The traditional method of loading data in large nightly batches into DWH

structures introduces performance problems on simultaneous queries and

analysis. The loading of data requires typically indices to be put offline or

dropped and rebuilt or recreated after the loading of the data. This causes the

system to perform a full table scan of the tables when making queries or

analysis on the DWH structures. Querying multiple tables joined together

without indices will render the system nonresponsive and unusable.

While the indices are turned off the loading of data to the staging area is

fast. On the other hand, any query issuing a full table scan slows down the

loading of data. This is due to the database engine scans the same physical

extents of the staging area as the loading of data process. This is the reason

why the data loading is commonly processed during night on daily, weekly

or monthly intervals.

The traditional method has also another drawback. As the indices will be put

offline or dropped during the data load, the indices need to be either rebuilt

and made online or recreated. Taking into consideration that data

warehousing tables typically are large and include millions, and sometime

billions, of data rows the rebuilding or recreation of indices will be

extremely time and resource consuming. This will cause additional resource

problems and delays on getting the data ready for queries and analysis.

The proposed AcDWH method will help overcome the above problems by

partitioning the DWH tables into smaller partitions having local indices. A

local index means that the index will be partitioned according to the

partitioned table. Now loading data into a partitioned DWH table will

address only the specific partitions it needs to insert data to, and the indices

can be kept online while loading data as the partitions are separately

addressed. This is a near perfect way to manage large data warehousing

tables and it allows simultaneous data loading and querying access.

5.3 Generating the AcDWH structures

The new methodology used in AcDWH consists of the following atomic elements

on generating the structures:

AcDWH Method

 51

• Staging table structures

• Primary DWH structures

• Indexing structures

The AcDWH methodology relies heavily on the special organization of the

staging table structures. In addition, by rearranging the staging table, the

system is able to provide a widely parallelizable process for querying and

loading the DWH.

Utilizing traditional method on generating staging table structures is simple

and straight forward. The staging table(s) are generated according to the

source system specifications. The staging table has the same columns and

data types as in the source system definitions.

The AcDWH method discloses a staging table structure to manage and

handle vast amounts of data from source systems, with the ability to handle

the problematic areas of efficiency, repeatability and concurrent read/write

access to primary DWH structures.

Figure 9. To the left, traditional staging table and to the right, the partitioned staging
table used in AcDWH using uniform partition physical size.

The novelty with the proposed AcDWH method grants a concurrent and

efficient read/write access to the staging table, while the staging table can be

simultaneously written into, read from, and cleansed from data originating

from several different source systems.

The primary idea in the implementation of the AcDWH staging tables is to

partition the staging table into physical partitions. By this method, one can

limit the write and read accesses to dedicated physical objects within the

staging table. This method is illustrated in Figure 9.

The staging table has additional two columns to source data, namely

bucket_data_type and bucket_id. Bucket_data_type, as defined in the

Staging table

Partition: 1 Partition: n Partition: Maxvalue………….

Staging table

Jari Myllylahti

52

system meta data, defines the source system from which the data arrives.

The bucket_id has an identifier for the bucket, e.g. it is a load batch

identifier.

The staging table is initially created only with one physical partition, having

the partitioning key defined as MAXVALUE. MAXVALUE is a specific

value, which does not correspond to any created actual physical values

within the bucket_id.

As the loading process gets a specified number of files or rows from source

systems, it will generate a new bucket_id. The loading system generates

and/or updates a row in bucket_information status table to manage the status

of the incoming data buckets. The loading system also generates a new

partition in the staging table having the bucket_id as the partitioning key.

The new partition is generated from the MAXVALUE partition by a split

partition command. This is illustrated in Figure 10.

This way the system will split the MAXVALUE partition into two physical

partitions; bucket_id (first load batch being number 1) and MAXVALUE. In

AcDWH the split partition command is always executed against the

MAXVALUE partition, which is empty, thus no data movement is required

and the database management system is not required to transition any rows

between the MAXVALUE and newly generated partitions.

Figure 10. Illustrating the AcDWH split partition operation where MAXVALUE partition is
split into partition 1 and partition MAXVALUE. All partitions use uniform
physical size.

The methodology described above directs all insert/update/delete database

operations into a specific physical table partition. The rows within each

Staging table

Partition: Maxvalue

split operation

Partition: 1 Partition: Maxvalue

AcDWH Method

 53

physical partition, having a specific bucket_id, will be directly accessible by

the database management system for the loading mechanism without

additional or user generated indexing for the bucket_id. In this method the

staging table is managed by physically partitioning it by bucket_id.

This method will relax the system from the requirement of indexing the

bucket_id column. By selecting rows by bucket_id from a staging table built

in this way will always direct the database engine to select the rows from

the wanted physical partition only. Such selects do not need additional

indexing, and the select operation will also be executed faster and also in

parallel by the database engine.

5.4 Parallel processing in AcDWH within a single
bucket_type and between different
bucket_types

The proposed AcDWH method gives clear advantage over the previous way

of populating the staging area and DWH tables. As each data bucket is

placed within a specific staging table and a specific physical partition of the

staging table, the system is able to insert multiple buckets at a time to the

same staging table regardless of the progress on other streams and processes

populating the same staging table. Concurrent streams of a particular bucket

type are not dependent of other types, or they don’t race for the same

resources within the database.

Using the AcDWH method, the system is able to load and query

concurrently the specific staging table with a greater number of processes

with a minimal impact on resource race and consumption. While a load

process (from source systems to staging table) is not finished with loading

the bucket into staging table partition, no other loading or delivery processes

will access the partition. After the bucket is loaded into staging table (and its

partition), loading process(es) are allowed to access the bucket.

Simultaneous reading of the bucket data (staging table partition) is allowed

and does not create race conditions. After all delivery modules reading the

bucket data from staging table partition are finished, the cleansing module is

allowed to access the bucket and remove its data and its underlying table

partition.

Jari Myllylahti

54

This is achieved through physical isolation of the underlying partitions of

the specific table. Each table partition is formed of specific physical

segments of data placed within the database engine. During the loading of

rows into the staging table, the database engine directs the insert operations

into the specific table partition, based on the partitioning key (bucket_id) of

the table. A given partition is formed of one or many physically separated

partition extents. Any insert operation having a specific bucket_id will be

directed to a specific physical extent of a partition, and that extent is

physically separated from other partitions of the table. The same will apply

for the select operations, when partition data is queried to offload the data to

actual data warehousing tables for reporting and analysis.

The partitions of the staging table are formed from physical extents which

are defined during the creation of the table and partitions. Each partition can

have a partition specific extent space. By measuring the responsiveness of

the system on different configurations, along with experience on creating

and managing the system referenced in chapter 6.1, the system can be

configured to allocate only necessary number of physical extents for a

specific partition when the partition is created. Using minimum amount of

extents for a partition the database engine does not need to allocate any time

or space for the bookkeeping of extents within a partition. This will

influence the system throughput as the system does not need to

automatically allocate additional extents as the previous extent is filled with

data. Additionally, the database system does not need to search the starting

address of the next partition extent within the tablespaces and database data

files. Tablespaces should be always created large enough to hold additional

data and the AcDWH system will monitor the space consumption and alert

the database administrators should the free space fall below a predefined

threshold, such as one day’s data space requirement.

The method of dedicating a physical extent within a partition segment for a

bucket_id is the foundational element for the achieved concurrency and

effectiveness. The system can run a high level of concurrent insertions of

bucket_ids to the staging table while at the same time the direct addressing

capability for the bucket_id is maintained.

The status of each bucket is kept up to date within a control table by

maintaining meta data for each bucket:

• status of the bucket (processing, processed, deleted)

• number of rows

• bucket_type

AcDWH Method

 55

• earliest record of the bucket

• latest record of the bucket

• start and end times of bucket load

• calculated throughput (as rows processed per second)

The table row size is depending on bucket_type, some staging tables might

have fixed row length while others might have variable row length due to

variable length data.

Figure 11 illustrates the three status tables that control the behavior of data

management system.

Figure 11. The control tables used to control the AcDWH.

The control tables include data for each loaded bucket in the system. The

main control table CTRL_BUCKET is used to record the buckets into the

system, in addition the table has metadata related to the loading process

efficiency, loaded data time span and bucket status. The second control table

CTRL_DELIVERER is used to describe the delivery processes, their types

and target structures, and their priority (as described earlier in this chapter

5). By using priorization, AcDWH system can set different priorities based

on the different needs of delivery processes. The last control table

CTRL_BUCKET_DELIVERERS is used to log the activities of each

delivery process with regards to the specific bucket, it can also be used to

execute the cleaning module when all the delivery processes have

transferred the data to the needed database structures.

As the bucket_id is the partitioning key for the staging table, the direct

access path to physical table partition is always up to date and available for

inserts and queries.

BUCKET_ID NUMBER(10) DELIVERER_ID NUMBER(4) BUCKET_ID NUMBER(10)

BUCKET_TYPE VARCHAR2(20) DELIVERER_NAME VARCHAR2(20) DELIVERER_ID NUMBER(4)

NUMBER_OF_ROWS NUMBER(6) DELIVERER_TYPE VARCHAR2(10) DELIVERER_STARTTIME DATETIME

EARLIEST_RECORD DATETIME DELIVERER_DESCRIPTION VARCHAR2(100) DELIVERER_ENDTIME DATETIME

LATEST_RECORD DATETIME PRIORITY NUMBER(2) ROWS_PER_SEC NUMBER(6)

STATUS VARCHAR2(20) DELIVERER_TARGET VARCHAR2(20)

BUCKET_STARTTIME DATETIME

BUCKET_ENDTIME DATETIME

ROWS_PER_SEC NUMBER(6)

CTRL_BUCKET CTRL_DELIVERER CTRL_BUCKET_DELIVERERS

Jari Myllylahti

56

A typical approach in DWH solutions having large data volumes is to make

all indices offline while inserting data and rebuilding the indices online after

the batch data load. Another approach is to drop the indices prior to batch

loading data and recreate the indices after the data has been loaded. These

optional methods enable the data loading to the table to be faster. They

eliminate the need of consistently updating records in the indices one by one

during the data loading.

With the bucket_id partitioned staging table there is no need to update or

uphold the bucket_id based indexing and manage it either by the process or

by the database engine, as the staging table partitioning key is always

updated and managed with the table itself by the database engine.

While investigating and evaluating these different methods (keeping staging

table bucket_id index online during data load; dropping bucket_id index

prior to data load and recreating bucket_id index after data load; and

bucket_id partitioned staging table) against each other, experience and

evidence under confidentiality obligations from real life implementations

show clear benefits of using the partitioned staging table and AcDWH. If

the staging table would not be partitioned, the system would be forced to

update the index while inserting the data into the staging table. Given the

characteristics of updating the full table index while inserting, the database

engine needs to ensure the index is properly updated during the transaction

in both cases. This will introduce a delay in the insert operation as the

database engine needs to update the indexing structure during the

transaction. The database engine would need to search for physical index

extents with available space within them or add additional physical extents

to the end of index and insert the relevant values to the index. After

inserting the rows to the staging table, the insert will be committed.

In general, a commit updates a record perpetually in a database. Within

database transaction, a commit saves the changed data permanently and

ends a transaction. It also allows other users to see the committed changes.

A rollback rolls back the changes after updating the data with changes. As

commit, a rollback also ends a transaction and other users will not see any

of the changes related to the rolled back transaction. [01]

Looking into the differences of a normal staging table and a partitioned

staging table, the key characteristic differences are how large or how many

physical extents of structures need to be updated during the insert operation.

This applies to the table structures and index structures.

AcDWH Method

 57

In the case of a normal staging table without table partitioning the index is

structured as a normal index having one or more physical extents. Then,

there are two approaches how to handle the staging area and also loading the

data to the DWH structures; i) handling a batch at a time, having no

concurrency; or ii) handling multiple batches at a time introducing

concurrency.

In the first case of handling a batch at a time and designing the system for

no concurrency, the method is straightforward:

• insert the data to the staging table

• transform and load the data from staging table to the DWH structures

• delete or truncate the staging table after a successfully committed

transformation and load transaction to the DWH structures.

If concurrency would be needed for this traditional method, the following

additional steps need to be added to the process:

• Add a loading batch identifier to the source data (e.g. a column having

the bucket_id or load_id identifier)

• Index the staging table based on the previous identifier column

• Manage the DWH structures loading process with deleting the applied

rows with the previous identifier

The concurrency-added method will introduce specific problems:

• The need for database engine managing the identifier index, addressing

the global staging table (e.g. the table must be able to keep multiple

identifiers)

• The need for database engine managing the data allocation in different

extents of the staging table.

AcDWH system with partitioned staging table as proposed with the present

work omits the following operations from the system in relation to the

staging table and to manage multiple batches of source system data:

• index dropping and recreation

• making index offline and rebuilding the index

Jari Myllylahti

58

The presented AcDWH method facilitates for automatic management of the

staging table and staging table identifier index, cleansing of the staging table

after successful transformation of the data to data warehousing structures

and deletion of the transformed data for any bucket_types.

To sum up, the key differences between traditional DWH and the presented

AcDWH method are;

• Different types of data are divided into different bucket_types within the

system

• The data for a specific bucket_type is stored in a bucket specific staging

table and tablespace

• An AcDWH specific partitioned staging table is utilized for parallel

loading and concurrency

The parallelism and concurrency between different bucket_types create

more distributed workloads. This is due to data residing in different physical

areas and data loading processes accessing separate staging tables

concurrently.

5.5 Staging table partitioning in AcDWH

In AcDWH, partitioning of the staging table eliminates the need to index the

bucket_id and all I/O operations related to searching the bucket_id index are

eliminated. This gives an efficiency boost to the operations loading into or

from the staging table. In addition, this enhances the housekeeping process,

as purging the loaded data from staging table is done through dropping the

partition. The drop partition command does not require any search of

indices or updating/recreating indices. The command is DDL and simply

removes the partition from the staging table.

For the staging table partitioning, the following basic elements need to be

specified:

• What is the maximum value the partition can contain (based on the

partitioning key)

• What is the initial physical extent size of the table partition

AcDWH Method

 59

• What is the additional physical extent size of any additionally needed

extent. Additional specifications may include details like what is the

tablespace the partition is defined to reside on

Figure 12. General setup of the partitioned staging table.

Figure 12 shows a general setup of the partitioned staging table structure

where there is an arbitrary number of partitions (buckets), illustrated as

partitions 1 to n. Additionally the table has a MAXVALUE partition that

contains any overflow data, that is not specified to reside in any of the

partitions 1 to n. E.g. partition 1 will hold data with bucket_id=1, partition 2

will hold data with bucket_id=2, and so forth. Overflow data would be any

data that would get into the staging table due to an error in the AcDWH

loading process. The MAXVALUE partition can be continuously monitored

for any rows to catch such error situations.

As an example, assuming n=100 a row having bucket_id=101 would be

residing in the MAXVALUE partition by definition. The MAXVALUE

partition is created to store any inserts with illegal bucket_id and thus avoid

catching an error or exception from the database engine within AcDWH

system. Any rows with bucket_id column value is greater than n (the highest

value defined) are stored in partition MAXVALUE.

Each partition is created with a specification of the maximum value it can

hold, e.g. the bucket_id. The partition will hold any rows fulfilling that

specification, examples being rows with bucket_id=3 would reside in

partition 3, rows for which bucket_id=8 reside in partition 8 and rows for

which bucket_id=n reside in partition n.

Each staging table in the setup is initially created with one partition and

partitioning key equal to MAXVALUE, see Figure 13.

Staging table

Partition: 1 Partition: n Partition: Maxvalue
………….

Jari Myllylahti

60

Figure 13. Initial construct of a partitioned staging table in AcDWH.

MAXVALUE represents a value that is always greater than the largest

possible value existing in the partitioning key, e.g. an upper bound.

MAXVALUE partition acts as the overflow partition catching any non-

defined values.

Now, initiating the load from a source system to the staging table, the

system will collect the relevant records to the first bucket, bucket_id=1, and

generate the partition 1 in the staging table. This is achieved by issuing an

alter table SQL language command:

ALTER TABLE STAGING_TABLE

SPLIT PARTITION MAXVALUE

INTO (PARTITION PARTITION_0001 VALUES (1),

 PARTITION MAXVALUE VALUES LESS THAN MAXVALUE);

The ALTER TABLE SPLIT PARTITION command adds a partition to an

partitioned table by splitting an existing partition. There is practically no

limit to the number of table partitions. By executing an ALTER TABLE

SPLIT PARTITION command, the database engine creates two new

partitions (0001 and MAXVALUE) and splits the contents (if any) of the

old MAXVALUE partition between the new partitions per the constraints

laid out in the partitioning definition; rows with bucket_id=1 to partition 1

and any rows with a larger value to partition MAXVALUE. This is

illustrated in Figure 14.

Staging table

Partition: Maxvalue

AcDWH Method

 61

Figure 14. Splitting maxvalue partition into partitions 1 and maxvalue.

The ALTER TABLE SPLIT PARTITION command can include also the

tablespace definition to specify in which tablespace the split partition will

reside. This will for example give the possibility for a database

administrator to spread the staging table physical extents across different

storage areas of the DWH system for more I/O throughput. If the tablespace

is not defined, the partition will be created in the tablespace defined for the

table.

For the use case of this data management system and the initial example

above, no indices will be generated for the partitioned staging table. Any

INSERT INTO or UPDATE command having WHERE BUCKET_ID=1

will utilize partition pruning. Pruning happens when an SQL operation on a

partitioned object is executed. The database engine will recognize the

criteria and will address only specific partition(s). This behavior enables the

database engine to access only the partitions with relevant data and ignore

rest of the partitions. Any database operation addressing a specific

bucket_id will be directed only to the partition containing that specific

bucket_id. This will isolate the operation from accessing any other partition,

limiting the amount of I/O operations and the needed physical object

accesses to the specific partition only.

Assuming the system has been running for a while, and inserted n new

bucket_ids to the partitioned table, the resulting structure is illustrated in

Figure 15.

Staging table

Partition: 1 Partition: Maxvalue

Jari Myllylahti

62

Figure 15. Structure of AcDWH staging table after inserting n buckets.

5.6 Forecasting space requirements, row amounts
and generating statistics for the business in
AcDWH

For the sake of generating added value from the AcDWH and data gathered

during the loading process there are clear areas where AcDWH can be

further developed.

The data gathered from the loading process (rows per extent, extent sizes)

can be used to generate an automated or a semi-automated system to

forecast space requirements and consumption on a specific source area (e.g.

a specific staging table). This way the database administrator can forecast

and manage the needed storage space for tablespace files for the specific

staging tables. This method will remove the potential drawbacks of the

halted loading process in case of filled tablespace files.

While AcDWH will map and log the extent sizes of the staging table

partitions and their row amounts, the system can be used to report the trend

and the prognosis of the needed space for the staging tables.

5.7 Populating the DWH structures

Populating the DWH structures from the staging table is isolated from the

previous part of the process in AcDWH, which loads data from a source

system and inserts it into the AcDWH staging table. This populating process

is the second isolated process area in AcDWH. The structure and construct

of using a partitioned staging table is the foundation for the asynchronous

Staging table

Partition: 1 Partition: n Partition: Maxvalue
………….

AcDWH Method

 63

processing of data to staging table simultaneously with processing the data

from the AcDWH staging table to DWH structures.

The processing of data from the staging table to AcDWH structures is from

process perspective as elegantly simple as loading the staging table. The

process will check from the data management system meta data tables, what

is the first bucket_id to be handled and the process will then move the rows

with found bucket_id from staging table to the AcDWH structures.

The actual processing of data to the AcDWH structures is more complex

than the previous part of the input process. This is due to the nature of the

complexity of the processing; the processing typically aggregates the data to

a specific level, processing will also generate the dimension table details as

and if new dimension details are found. Depending on the construct how

this part of process is implemented in a particular solution, there are

potentially additional elements to be managed. A specific construct is

discussed to more detail in chapter 6.1 giving insights into the index

management requirements on the referenced technical subject area DWH.

The AcDWH population process has the following process steps:

1. Identify the first bucket_id to be loaded from the staging table

2. Mark the status of bucket_id to “processing” in the bucket metadata table

3. Initialize and launch the AcDWH loading process(es)

4. Update the bucket_id status to “processed” after the AcDWH loading processes

for the bucket_id have ended

5. Repeat from step 1, if no new bucket_ids are to be processed, sleep for predefined

amount of time (such as one minute) and try again

Jari Myllylahti

64

Figure 16. Processing data from AcDWH staging table partition 1 (bucket_id=1) to
AcDWH data warehousing and/or data mart structures. Example shows only
data mart example.

A high level and simplified overview of AcDWH loading process is in

Figure 16. The AcDWH loading process is marked as f(x). The process will

read the first non-processed bucket_id from the bucket metadata table (for

the purposes of this example, bucket_id=1), mark the bucket_id as

“processing” to the bucket metadata table, and initialize the DWH load

process. When the processing is finished, the process will calculate the time

used, how many rows were processed, and how many rows per second were

processed and insert the values to the bucket metadata table.

After this, the next scheduled launch of this DWH structure loading process

will repeat the process, e.g. read the first non-processed bucket

(bucket_id=2) and process as described previously.

5.8 Clearing the AcDWH staging area

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

f(x) Fact
table

Dim 1 Dim 2

Dim 3 Dim 4

AcDWH Method

 65

The third process part of the AcDWH is independent from the previous

process parts (i.e., data loading into staging table and processing data from

staging table to DWH structures). The third process part is designed to

manage the housekeeping process with the staging table(s). AcDWH

manages the staging table’s space consumption in an efficient way with a

direct access to the specific bucket_id without additional indexing.

5.8.1 Housekeeping process for the staging tables of the
AcDWH

The housekeeping process of the AcDWH cleans up the staging table(s).

This secures minimal space consumption of the staging table(s) and

concurrent processing of the different parts of the AcDWH system. The

main intention for the housekeeping process is to eliminate the growing

space reservation of the staging table.

The housekeeping process can simply address the purgeable staging table

partitions one by one. This is achieved by selecting the lowest BUCKET_ID

from the BUCKET_STATUS table where status is ‘processed’ and altering

the staging table by dropping that specific partition.

ALTER TABLE STAGING_TABLE DROP PARTITION

PARTITION_||(SELECT MIN(BUCKET_ID) FROM

BUCKET_STATUS WHERE STATUS = ’PROCESSED’);

UPDATE TABLE BUCKET_STATUS

SET STATUS = ‘DELETED’

WHERE BUCKET_ID=(SELECT MIN(BUCKET_ID) FROM

BUCKET_STATUS WHERE STATUS = ’PROCESSED’);

COMMIT;

This method issues a data definition language (DDL) command which alters

the table structure by dropping the partition and freeing the reserved space

for the partition. The system is not able to roll back this operation as it is not

a data manipulation language (DML) command.

The speed difference on the DDL and DML operations is phenomenal.

While the DML commands generate redo logs and need to be committed,

e.g. the rows will actually be deleted, the DDL commands do not generate

redo logs and they do not touch the rows of data but rather only execute a

command to drop a table partition.

Jari Myllylahti

66

A DDL command executes typically within a few milliseconds and reserves

no additional resources from the database when compared to the DML

commands where additional resources and space are required.

5.9 The parallelism and concurrency of AcDWH

The AcDWH staging table is constructed by partitioning the staging table to

partitions. The cleaning of processed data does not generate extra overhead,

nor affect the efficiency of the DWH. Even loading intervals of the data

from source systems to the staging table remain unchanged. Similarly, the

loading of the data rows from staging table to the AcDWH structures is not

affected by the cleaning process. The cleaning process does not generate any

overhead for loading processes or cause congestion for the same resources

within the database.

Each of the staging table partitions is a separate logical and physical object.

Any database operation targeted towards a partition is directly referencing

the specific data blocks belonging to that partition. The operation does not

access any data blocks belonging to other partitions.

Let us assume staging table would have partitions with bucket_id 1,2 and 3.

The setup is illustrated in Figure 17 below.

Figure 17. AcDWH staging table having data with bucket_id 1,2 and 3.

Let us assume the following statuses for buckets:

• Bucket_id = 1, bucket_status = ‘PROCESSED’ (data loaded to

DWH)

• Bucket_id = 2, bucket_status = ‘PROCESSING’ (data loading to

DWH)

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

AcDWH Method

 67

• Bucket_id = 3, bucket_status = ‘LOADING’ (data loading to staging

table)

Assume that the processing of all three parts of the AcDWH system will be

performed in parallel. These processes run independent of each other,

concurrent, and the processes are coordinated by the bucket_status metadata

table.

The system includes three processes:

1) Staging table loading process – delivers data from source systems to

the partitioned staging table

2) DWH loading process – delivers data rows from staging table

partition to data warehousing structures

3) Cleansing process – removes staging table rows one bucket at a time

The described behavior isolates the operations from each other, in respect of

data access and race for same resources. All partitions reside in physical

extents separated from each other.

Process 1) addresses partition 3 with data rows having bucket_id = 3. The

process inserts rows from source system(s) to the specific partition 3.

Process 2) addresses staging table partition 2 with data rows having

bucket_id = 2. The process selects data rows from the specific staging table

partition 2.

Process 3) addresses staging table partition 1 with data rows having

bucket_id = 1. The process alters the staging table by dropping the partition.

The alter table drop partition command is executed in milliseconds and it

does not render rest of the table unaccessible or unusable while the alter

table command is executing.

Jari Myllylahti

68

Figure 18. Physical structure of table partition in AcDWH (extents and data blocks).

Considering each partition resides on its own physical extent(s) consisting

of data blocks as illustrated in Figure 18, the described structure directs the

database engine to access separate areas of database with each system

process (process 1-3). These processes can run concurrently without access

or congestion on the same data blocks of the data base. This simple method

enables the isolation and concurrency of all the process parts. It also

provides for asynchronous and independent execution of different process

parts using BUCKET_STATUS metadata table.

The independence between the overall process parts is the key element of

the method used in AcDWH. A separated physical structure allows the

system to remove the staging table partitions independent from other parts.

The removal of the partitions by process 3) does not require long execution

or wait time or accessing same physical objects with processes 1) and 2).

The process 3) is a simple cleaning module, removing processed partitions

from the staging table.

If we look onto the disks under the data files, there are multitude of options

how the system can be configured for parallelism. The datafiles can be

distributed throughout the physical disks. This can be manually achieved by

the system administrators, or through the disk system itself. The disks can

be configured on the disk system using any level of RAID configuration

[32]. Using a RAID configuration, the underlying disk systems can be

configured to provide additional parallelism compared to the database level

operations.

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

extent data block

Partition: 1

AcDWH Method

 69

RAID0 provides striping using the disks defined under that RAID-array, e.g.

slicing the physical data across the RAID array disks. RAID0 is however

not fault tolerant. RAID1 provides mirroring, any given disk is mirrored

with a similar disk having exact copy of the same data. This causes no

overhead when writing to the RAID1 disk setup as the same data is written

to both disks at the same time. This in change brings a reading performance

boost as data can be read from both drives at the same time. There are also

advanced RAID configurations (e.g. RAID5 or RAID6/7) that provide fault

tolerance with smaller tradeoff in redundant disk space usage. AcDWH has

been constructed on systems utilizing different RAID levels ranging from

RAID0 to RAID5.

5.10 Logging throughput in AcDWH to analyze
operation and process efficiency

The AcDWH includes a method to log the process throughput and process

details for further analysis. One use scenario for the process data is to fine

tune the size of a data bucket to achieve maximal throughput in the

environment in which system is running. While the system is running in

production, the BUCKET_STATUS metadata table holds process details

such as bucket size and rows per second, which indicates the speed by

which the staging table loading process or data warehousing structure

loading processes are executing.

This metadata can be used against source system statistical data to secure

optimal processing. The system can be modified easily by adjusting the

bucket size higher or lower while recording the throughput of the process.

The bucket size can be modified to achieve a throughput higher than what

the source systems are generating data per each day. This way the system

can analyze its operation against the incoming data and any buffering

requirements. A buffering requirement would be for example that the data

management system can handle 50% more incoming data per day than the

source systems generate. By having a buffer in the processing speed the

system can keep up with any backlog operations sometimes needed due to

connectivity or any other issues getting the data from source systems.

If this reference data is not available, the system cannot adjust its operation

and in the worst case the throughput of the system is not keeping up with the

Jari Myllylahti

70

pace of the source system(s) which generate and offload data. This would

cause a queuing effect on the data warehousing system, where more and

more incoming data is queued in the incoming interface of the system over

time due to the system not being capable of processing the incoming data in

a required pace.

5.11 Adjusting AcDWH bucket size to enhance
throughput

The data bucket size is kept in the system meta data table. The loading

processes can be adjusted by changing the data bucket size in the metadata

table, each loading process fetches the data bucket size from the system

metadata table when they execute.

When the process throughput is analyzed and potentially fine tuning is

required as described in previous chapter, the data bucket size can be altered

simply through changing this parameter in the system metadata table. The

loading processes will take the new data bucket size into use the next time

processes execute. After adjusting the bucket size the staging table default

extent size might be too small and each partition might consume two extents

going forward.

If the space consumption of the staging table starts to be too high, the

database administrator can adjust the default extent size to eliminate

unnecessary space consumption. The system can be built in a way that it

will self-adjust the data bucket size until a maximum throughput is

achieved, also automatic tuning of the extent size can be implemented

easily.

5.12 Repeatability in AcDWH

One of the key design elements of the AcDWH is repeatability.

Repeatability means the ability to process any loading batches again in case

of corrupted data on erroneous loading logic. This would mean removing

the invalid data from the DWH and loading the batch of data again through

AcDWH. The data are organized as a set of buckets which will are managed

by the system. As previously described, each bucket of data consists of an

AcDWH Method

 71

arbitrary amount of records. Due to the nature of this construct, AcDWH

system can be enhanced easily to handle repeatability.

In traditional DWH system repeatability is managed by processing a day’s

material again, if the data has been invalidated by the erroneous DWH

transformation logic or invalid source system data. In case of erroneous

logic, the transformation logic needs to be corrected, invalid data removed

from the DWH and the correct data reloaded. For example, loading one

day’s data from a source system to a DWH again would mean the following:

• Removing or updating any atomic and aggregate information which

is infected by the invalid source system data

• Loading the data identified as invalid or infected by erroneous logic

again from source system to staging table(s)

• Transforming the previously infected data again from staging

table(s) to DWH structures

Considering the nature of the physical construct of the AcDWH system,

securing the repeatability of the transformation and loading processes in

case of invalid transformation logic is extremely simple and straight

forward.

The AcDWH can be enhanced for example with two simple alternative

methods where the incoming source system data will be exported either

within the staging table loading process or the house keeping process.

In the first alternative altering the staging table loading process is simple.

The source system data can be simultaneously loaded into the staging table

and concurrently to a fixed width or delimited text file as a secondary target.

This would be an easy method to secure backups of the source system data

that can be reloaded into the DWH. This is due to each of the staging table

records has the bucket_id identifier as one attribute to of the record. Any of

these files including the data for the bucket can be handled through a

deviation reload process, where these data files can be reloaded into the

staging table. Their bucket_id is then changed to status=loaded and the

system will pick the bucket up for DWH processing from the staging table

during the next runs of the DWH loading process.

In the second alternative, the housekeeping process can be changed in a

simple way: prior to removing the staging table partition with an ALTER

Jari Myllylahti

72

TABLE DROP PARTITION command, the bucket can be exported by the

house keeping process either by writing the records to a fixed width or

delimited text file as in staging table load process. Or as an alternative by

exporting the partition data by using the database engine’s data export

utility. These table partition exports can be easily imported into the staging

table by using the database engine utilities.

Both of these options are similarly easy to implement and provide easy

reload capabilities for the AcDWH.

6 Applications of the AcDWH
framework

In the present section the concepts of the proposed AcDWH framework are

demonstrated by the means of two real-life applications for data warehousing

(DWH). Both of these have been architected to use the AcDWH method for active

DWH.

Due to the nature of the designed systems only a high-level description of

both systems is disclosed.2 A specific line of business or the real business

use scenarios are not disclosed but rather the architecture, business needs

and implementation overview are discussed.

6.1 A technical subject area DWH for a specific
company A

The AcDWH method is in use within company A. AcDWH is a platform

and data management software used to construct the DWH. The DWH

solution uses AcDWH for active DWH to enable continuous loading of the

data from source systems to construct a specific technical subject area

DWH. The solution is built to analyze technical behavior and error

situations in the company A technical systems.

A technical element record consists of predefined attributes of a technical

events. It typically includes hundreds of fields on the attributes. From a

single event at least two records are created, originating record from the

outgoing event and the destinating record from the incoming event. In

2 The examples are real-life systems, that are architected or co-architected by the author. Due

to confidentiality obligations, the subject area specific details are not disclosed in this
thesis. Examples cover Company A and company B, which represent different lines of
business and different business use scenarios.

Jari Myllylahti

74

addition to the originating and destinating records, business A has

configured their systems to provide intermittent records from the events,

providing additional details when for example either the originating or

terminating event transitions to another system segment. In addition to

normal event records, the system provides technical records from system

components. These records provide technical and statistical details from

each system component.

The company A gathers all these different records from the system

components as flat text files, using fixed width format for the data fields.

The record data files are gathered in 10 minutes intervals, and the files are

delivered to the company DWH platform. There are separate definitions and

system component files for different record data types, examples being

records for four different services.

The AcDWH groups the record data files by the record data types into

buckets of approximately 50000 records and loads the data into the AcDWH

staging tables. There is a similar staging table for each of the record data

types and the loading of data is done in parallel for the different record data

types.

The records are loaded to the AcDWH structures from the AcDWH staging

tables. All these loading processes are run in parallel and AcDWH keeps

track of the loaded buckets. The fact tables in the AcDWH structures are

partitioned by each hour, e.g. each day has 24 partitions. The records reside

in the fact table partitions based on their record timestamp. It has been

recorded that in the company the past volumes have been on the range of

100 million records loaded per day. This amounts four million records per

hour in an average. An event record has over 500 fields of data, and the

average record size is 800 bytes.

Given the details above, the daily source system data volume for the event

DWH is of the size 74,5 gigabytes. This amount of data is required to be

loaded daily from source systems, transformed to right format and relational

model within the event DWH, while, in addition, the technical subject area

DWH is simultaneously queried.

The reason for partitioning the fact tables per hour is due to managing the

indices. This specific line of business requires to have the fact table

refreshed with maximum ten minutes intervals. Any queries from the fact

table require indices being in place, otherwise any given query would issue

Applications of the AcDWH framework

 75

a full table scan of the fact table. By partitioning the fact tables per hour, the

system can isolate the loading and index updating in most cases into a single

fact table partition and in the worst case the operations will modify two fact

table partitions. The same applies for the index partitions. By partitioning

the fact table the system can manage indices being updated while the data is

loaded. If the loading window would for some reason extend too long, there

is an additional option to alter the partitions of indices offline while

inserting the data into the fact table. After the load the index partitions can

be rebuilt and made online again.

The technical subject area DWH creates technical summaries of the source

system data for the business use. The usages cover for example system

capacity planning, peak usage analysis during events and prognosis of

system inefficiencies. These analyses are delivered into planning systems to

be used as planning data for system development and capacity planning.

Figure 19. Architecture of the company A technical subject area DWH up until to staging
area in AcDWH.

Figure 19 describes the architecture of the company A technical subject area

DWH up until staging table in DWH. The figure is simplified, the system

consists of multiple components and devices.

The devices act as the central point in the system setup. All components and

devices belong to the same system, and the devices pull the records from the

System

component
Source system Target system

Flat file(s)

Flat
file(s)

Bucket
file

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

Grouping procedure

A B

C

D

Jari Myllylahti

76

components periodically; marked as process (A) in the figure. These data

files are pushed during the same process by the devices to the technical

subject area DWH, marked with (B). The DWH resides in a system segment

securely accessible by the devices.

The DWH system assigns the acquired flat files to buckets having at

minimum 50000 records in each; marked with (C). This is done by

catenating the specific files into one file. From this point onwards the data

loading, delivery and cleaning processes are handled by the AcDWH.

Compared to traditional design principles of such DWH, AcDWH removes

obstacles in near real-time loading approach in combination with the 24/7

availability for queries and reporting.

6.2 Company B data analysis platform

The AcDWH data management system is also in use within company B with

a slightly modified configuration. Like in description for company A

technical subject area DWH in chapter 6.1, the solution uses AcDWH to

deliver near-real time loading of the data from source systems to the

company B Transaction DWH (TDWH).

A source system is typically a terminal at company site. The data consists of

predefined attributes of a transaction at the site and it includes all the details

of the transaction. These include for example the transaction date and time,

products and their details as well as the summary of the transaction,

potential additional identifiers and the transaction id.

The AcDWH gathers all the transaction details from the sources using a

messaging gateway software, such as IBM MQ3. The data are pulled by an

ETL tool from IBM MQ which gathers the incoming data from sources in

10 minutes intervals.

The AcDWH data management system used by the TDWH groups the data

acquired from the MQ system to data buckets of predefined sizes (initially

20000 records). The AcDWH then loads the data into the partitioned staging

table and the data are loaded to the TDWH structures from the staging table.

3 https://www.ibm.com/products/mq

Applications of the AcDWH framework

 77

All these loading processes are run in parallel and AcDWH keeps track of

the loaded buckets. The fact table partitions in the TDWH structures include

data for each day, e.g. each year has 365 or 366 partitions. The data reside in

the fact table partitions based on their record timestamps.

The reason for partitioning the fact tables per day is due to managing the

indices. The company B business requirements are not as time critical as in

the case of company A business described in chapter 6.1. Queries from the

fact table greatly benefit from partitioning of the fact tables because its use

speeds up the queries essentially. By partitioning the fact tables per day, the

system can isolate the loading and index updating in most cases into a single

fact table partition. The same applies for index partitions. By partitioning

the fact table to one day partitions, the system can manage the index

partitions being altered offline while inserting the data into the fact table.

After data load the index partitions can be rebuilt and made online again.

The TDWH of company B creates also technical summaries of the source

system data for the business use. These include for example terminal usage

and transaction volume, which can help company B to identify rush hours at

the site and plan resources accordingly. These analyses are delivered into

resource planning systems to be used as planning data for inventory refresh

and employee capacity planning.

Figure 20. Architecture of the company B TDWH up until staging table in AcDWH.

Aggregator

System (MQ)
Terminal Target system

Staging table

Partition: 1 Partition: 2 Partition: 3 Partition: Maxvalue

A B

C

Jari Myllylahti

78

Like in the technical subject area DWH of company A, the same basic

methodology applies for company B TDWH. The data is gathered from the

devices (terminals at the company site) by the aggregator system but now

via the message queue server; marked as (A) in Figure 20. The aggregator

system then offers the records through its message queue interface to the

data analysis platform (B). Different from the company A case, the data

analysis platform itself consumes and requests data from the aggregator

system having a message queue server offering the data. The buckets are

now formed within the data analysis platform and written onto the AcDWH

staging table in 20000 record buckets. When the records are consumed from

the message queue and confirmed written to the staging table partition

bucket by AcDWH, the message queue client marks the records in the queue

as read. The records will eventually get purged from the message queue

server itself after new records have been inserted onto the queue.

7 Extensions to the patented AcDWH
framework

Two examples of extensions to the AcDWH are presented in this chapter.

The first extension deals with the automated data distribution functionality.

This extension can enhance the throughput of data loading into partitioned

tables. The second extension enhances the AcDWH with an online backup

and restore functionality supporting the near real-time operations. The two

extensions are examples how the AcDWH can be, due to its constructs,

easily extended for additional features and functionalities further enhancing

the system.

7.1 Data distribution

This method extends the functionality of the AcDWH system by leveraging

the meta data stored within the process and using it to enhance the

parallelism & concurrency of a partitioned DWH table to which data are

loaded. This method requires the DWH table to be partitioned with hash

partitioning.

Hash partitioning is a table partitioning technique where a hash key is used

to distribute rows to the table partitions [3]. Hash partitioning can be used in

settings where range partitioning isn’t naturally usable or appropriate. By

using hash partitioning, a row is placed into a partition based on the result of

a hash algorithm against the partitioning key. Using the hash partitioning

approach, data can be automatically distributed across the table partitions by

the database engine. Hash partitioned tables also support partition-wise

joins, parallel index access, and the use of parallel data manipulation

language (DML).

When using the hash partitioning, the database engine calculates a hash

value for the partitioning key column and distributes the records randomly

Jari Myllylahti

80

across the partitions based on the hash value of the partitioning key. This

method can be used to enhance throughput by distributing data to more

partitions automatically by the database engine. The data redistribution

happens automatically by the database engine when a partition is added to a

hash partitioned table. When queries address the partitioning key column,

the database engine addresses the right partition by the hash value.

For illustration and example;

• a data warehouse (DWH) table is hash partitioned into five partitions

• there is a pre-defined limitation on table loading time per bucket

• data management system loads data into this hash partitioned table

• data management system records the efficiency of aforementioned

data loads into the system meta data tables

Using this scenario, the AcDWH can identify a situation where data loading

into a hash partitioned table will consume too much time. Long loading

times may result from the large number of rows in a partition which mirrors

in more time consuming index updates performed online. In this situation

the data management system can automatically issue a rearrangement of

table partitions by adding additional partitions to the table. The database

engine will automatically redistribute the data between partitions in the hash

partitioned table. This happens by applying a new hash algorithm to the

rows and the database engine relocates the rows into right partitions by the

new hash values. This operation is done online and does not require any of

the system elements halting the data loading or queries addressed to the

table.

For the efficiency reasons, the threshold value for the maximum data

loading time per bucket must be defined reasonably low to accommodate for

the extra time consumption of the re-distribution of data and online index

re-arrangement.

7.2 Near real-time backup and/or restore
schematics

The data in near real-time environments is typically changing repeatedly and

all the time. This poses large problems for the backup and restore operations

of the said near real-time environments. Either the systems need to be

periodically in read-only mode or the storage and disk systems need to be

Extensions to the patented AcDWH framework

 81

duplicated or mirrored to enable a snapshot of such systems to be taken for

backup purposes. Backing up the snapshots will take long time, thus the

only viable option in such near real-time loading system is to detach the

mirrored disks and take a backup from them.

Restoring the snapshots from detached mirrored disks requires rebuilding

the database control files to bring the restored database back online. Neither

of the options described are feasible for backing up and restoring near real-

time environments.

A simple extension to the AcDWH will provide a method to establish an

automated data backup system for DWH tables partitioned by time. The

meta data tables of the AcDWH can be added with information on the

loaded data. Bucket meta data can be added with information what is the

earliest transaction time stamp loaded into the target DWH table. By using

this information, the AcDWH can identify which DWH table partitions have

been fully populated.

The system can be augmented with a process which will identify these

DWH table partitions and execute data offloading into either a fixed width

or delimited flat file. Alternatively, the data may be offloaded through a

database export utility targeting export of single partition at a time.

In case of corrupted data in the database, any of the exported partitions can

be dropped and recreated along with their local indices, and the partition

data is easy to load from the partition export. This way the partition indices

can be kept online during the loading.

This extension to the data management system would be particularly

effective in the company A technical subject area DWH case study

described in chapter 6.1.

8 Results & Discussion

The proposed AcDWH framework with partitioned staging tables and

metadata steered loading system is enhancement over the prior studies in the

field for data warehousing (DWH). Prior studies and literature review show

that the focus on previous work has been mostly on loading process, join

processing and staging area handling. On the other hand, the partitioning of

tables has devoted less interest. The prior studies and literature have focused

on an industry standard way of handling the staging area with flat files,

temporary or in-memory tables, whereas the present study and the proposed

AcDWH system use standard database table partitioning functionality in

combination with metadata driven loading system.

AcDWH presented in chapter 5 uses a pipelined approach that relies on

table partitioning on three main processes: staging table load, DWH load

and staging table cleansing.

The AcDWH specific components can be implemented as database

procedures and/or external scripts or coding that are executed as pre-source,

mid-process or post-target actions within standard ETL tools.

The proposed AcDWH system has the following abilities:

i. it efficiently handles loading parallelism even with standard ETL tools

avoiding excessive hand-coded solutions,

ii. eliminates the problems of ever-growing high watermark problem in

industry standard non-partitioned staging tables while it uses parallel

bucket loading and cleansing processes into the staging table,

iii. enhances the system’s throughput while handling parallel insertions,

queries and removals of buckets on the staging table,

iv. avoids large extent self-coded systems by utilizing standard

functionality in an innovative way, and

Results & Discussion

 83

v. leaves door open for additional enhancement opportunities, such as data

distribution extension and near real-time backup and restore setup of the

source data described in chapter 7.

AcDWH with partitioned staging table(s) and metadata steered loading

system indicates enhancement over the prior studies and solutions in the

field.

The purpose of this study was to identify if a partitioned staging table along

with parallelized loading processes would enhance a DWH system’s

throughput and manageability. This chapter includes discussion of findings

related to the previous studies and literature on data loading, staging area

handling, ETL processes and table partitioning in a DWH. The chapter

includes also discussion of the limitations of the study, areas for future

research, and a brief summary.

The key contribution on this study is the enhancement on a DWH system’s

throughput of data processing pipelines by using the patented AcDWH

method two-fold approach: first using a partitioned staging table and

secondly parallelizing the DWH loading processes using the staging table as

a target or source. This study implicates that utilizing a partitioned staging

table enhances DWH loading processes on multiple areas.

The AcDWH method is suitable for the near real-time DWH systems, where

the latency of loading data into DWH is of most importance to enable the

system to provide as fresh data as possible for the business users. The

method proposed in this study enhances the staging area handling

considerably with near real-time DWH systems.

The previous studies as outlined in the chapter 4 have discussed areas close

to the research question focus area, but none of the previous studies have

explicitly studied the usage of partitioned staging table in DWH systems.

While Vassiliadis and Simitsis [12] proposed a logical level approach

similar to the AcDWH presented in this study, their implementation and

study is concentrating only on the logical aspects of the solution. Also, their

study does not show how the parallelization of different processes can be

enhanced together with the system’s throughput if a specifically crafted

staging table along with the metadata steered loading system would be in

place. In addition to the previous, the proposed AcDWH data management

Jari Myllylahti

84

system indicates advantages on the housekeeping routines of the staging

area that further enhance the capabilities of the system.

This study has its limitations since implementation has been tested only

using Oracle and IBM database technologies. Other database vendors have

not been tested for the implementation and therefore the results on other

database vendors are unknown.

9 Conclusions

The key findings of this study are that the use of a traditional staging table is

not sufficient for near real-time data warehouse systems or that these

systems can be considerably enhanced. Using normal table as a staging table

will introduce a) space allocation problems, b) scattered data within the

staging table, c) performance problems on staging table handling and d) and

process complexity while trying to maintain the performance of the system.

The focus of this study was to discuss different staging and data loading

process approaches and to also identify if a partitioned staging table along

with parallelized loading processes would enhance a DWH system’s

throughput and manageability. The literature review identified that previous

studies had approached the performance and data freshness problems

through the process and system setup aspects while none of the previous

studies had studied the staging table constructs to a detailed level.

Materialized views were discussed in previous studies, along with using

different source types such as flat files, external source database tables,

message queues and data streams. Previous studies discussed also join

processing and data processing.

One of the architectural design aspects behind the data management system

is to manage the incoming data flow requirements in conjunction of the

cleansing process for efficient staging table handling. In traditional DWH

the process manages data loading from source systems throughout the whole

process to DWH and reporting structures. The process cannot be optimized

and tuned without modifying the processing logic or without adding

resources to the system, such as more CPUs, more disk drives on storage

system or more network interfaces.

We studied if the partitioned staging table in combination with parallelized

loading processes to and from the staging table can help to enhance active

DWH systems. This study identified that the process for a near real-time

DWH can be materially enhanced and simplified by using partitioned

staging table constructs, parallelized loading processes utilizing the

partitioned staging table and a metadata driven data loading process, such as

the AcDWH. The hypothesis and implementation of the method was tested

Jari Myllylahti

86

through experimental implementation of the two real life systems presented

in Chapter 6.

We have tested the AcDWH with two leading technology vendors (Oracle

Enterprise Edition and IBM DB2). It should be noted that not all database

technology suppliers potentially can provide the specific table partitioning

technology that has been used and therefore are not suitable to be used with

the AcDWH method.

Future research potential lays with different implementation techniques and

options with additional database technology suppliers along with leveraging

the same constructs further inside the DWH system to assess if enhancement

of data loading and processing can be achieved utilizing same setup.

Additionally, the future extensions of data distribution and near real-time

backup and restore schematics as described in chapter 7 would potentially

be a good focus for future research.

List of References

[1] Building The Data Warehouse. Third edition; WH Inmon; John Wiley & Sons; 2005;

http://www.r-5.org/files/books/computers/databases/warehouses/W_H_Inmon-

Building_the_Data_Warehouse-EN.pdf

[2] Description of the database normalization basics; Microsoft.com docs; 2020;

https://support.microsoft.com/en-us/help/283878/description-of-the-database-normalization-

basics

[3] A review on partitioning techniques in database; International Journal of Computer Science

and Mobile Computing, Vol. 3, Issue. 5, May 2014, pg.342 – 347; 2014;

https://www.researchgate.net/publication/264546464_A_Review_on_Partitioning_Techniqu

es_in_Database

[4] The data warehouse toolkit: The definitive guide to dimensional modeling, third edition; R

Kimball & M Ross; John Wiley & Sons, Inc.; 2013;

https://books.google.fi/books?hl=en&lr=&id=4rFXzk8wAB8C&oi=fnd&pg=PT18&dq=the

+data+warehouse+toolkit

[5] Online table move; J Seifert; US Patent application US2009/0319581A1 - Google patents;

2009; http://patentimages.storage.googleapis.com/pdfs/US20090319581.pdf

[6] On-Demand ELT Architecture for Right-Time BI: Extending the Vision; F Waas, R Wrembel,

T Freudenreich, M Thiele, C Koncilia & P Furtado; International Journal of Data Warehousing

and Mining; 2013; https://www.igi-global.com/article/content/78285

[7] Data warehousing technologies for large-scale and right-time data; X Liu; PhD Thesis,

Aalborg University; 2012;

https://orbit.dtu.dk/files/110670162/Data_Warehousing_Technologies.pdf

[8] Near Real-time Data Warehousing Using State-of-the- art ETL Tools; T Jörg & S Dessloch;

International Workshop on Business Intelligence for the Real-Time Enterprise; 2009;

https://link.springer.com/chapter/10.1007/978-3-642-14559-9_7

[9] Real-time Data Warehouse Loading Methodology; RJ Santos & J Bernardino; IDEAS '08:

Proceedings of the 2008 international symposium on Database engineering & applications;

2008; https://dl.acm.org/doi/abs/10.1145/1451940.1451949

[10] Optimizing ETL Processes in Data Warehouses; A Simitsis, P Vassiliadis & T Sellis; 21st

International Conference on data engineering; April 2005;

https://ieeexplore.ieee.org/abstract/document/1410172

[11] Easy and Effective Parallel Programmable ETL; C Thomsen & TB Pedersen; DOLAP '11:

Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP;

October 2011; https://doi.org/10.1145/2064676.2064684

[12] Near Real Time ETL; New Trends in Data Warehousing and Data Analysis, pages 1–31; 2009;

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.367.5574&rep=rep1&type=pdf

[13] Near Real-time Data Warehousing with Multi-stage Trickle & Flip; J Zuters; International

Conference on Business Informatics Research; 2011;

https://www.lu.lv/fileadmin/user_upload/lu_portal/projekti/datorzinatnes_pielietojumi/publik

acijas/8_atsk/Zuters_BIR.pdf

Jari Myllylahti

88

[14] An overview of data warehousing and OLAP technology; S Chaudhuri, U Dayal; ACM

Sigmod record, 1997; https://dl.acm.org/doi/abs/10.1145/248603.248616

[15] Research problems in data warehousing; J Widom; CIKM ’95: Proceedings of the fourth

international conference on Information and knowledge management, December 1995; pages

25-30; https://dl.acm.org/doi/pdf/10.1145/221270.221319

[16] Beyond data warehousing: what’s next in business intelligence?; M Golfarelli, S Rizzi, I Cella;

DOLAP '04: Proceedings of the 7th ACM international workshop on Data warehousing and

OLAP; November 2004 Pages 1–6; https://doi.org/10.1145/1031763.1031765 (Cited by 513)

[17] A comparison of data warehousing methodologies; A Sen, A P Sinha; Communications of the

ACM; March 2005; https://doi.org/10.1145/1047671.1047673

[18] Data integration in data warehouse; D Calvanese, G De Giacomo, M Lenzerini, D Nardi and R

Rosati; International Journal of Cooperative Information Systems, Vol. 10, No. 03; pages 237-

271; 2001; https://doi.org/10.1142/S0218843001000345

[19] Real time data warehousing; J J Jonas; US Patent 8,452,787; Google Patents; 2013;

https://patents.google.com/patent/US8452787B2/en

[20] ETL queues for active data warehousing; A Karasidikis, P Vassiliadis & E Pitoura; IQIS '05:

Proceedings of the 2nd international workshop on Information quality in information systems;

June 2005; pages 28–39; https://doi.org/10.1145/1077501.1077509

[21] Method and architecture for automated optimization of ETL throughput in data warehousing

applications; S Suresh, J P Gautam, G Pancha, FJ DeRose & M Sankaran; 2001; US Patent

6,208,990; https://patents.google.com/patent/US6208990B1/en

[22] Current practices in data warehousing; R Hackathorn; Bolder Technology, Inc.; November

2002;

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.539.8508&rep=rep1&type=pdf

[23] Supporting streaming updates in an active data warehouse; Neoklis Polyzotis ; Spiros

Skiadopoulos ; Panos Vassiliadis ; Alkis Simitsis ; Nils-Erik Frantzell; IEEE 23rd

International conference on data engineering; 2007;

https://ieeexplore.ieee.org/abstract/document/4221696/

[24] Zero-Latency Data Warehousing for Heterogeneous Data Sources and Continuous Data

Streams; TM Nguyen & AM Tjoa; iiWAS'2003 - The Fifth International Conference on

Information Integrationand Web-based Applications Services; September 2003;

https://www.researchgate.net/publication/221237759_Zero-

Latency_Data_Warehousing_for_Heterogeneous_Data_Sources_and_Continuous_Data_Stre

ams

[25] Meshing Streaming Updates with Persistent Data in an Active Data Warehouse; N Polyzotis,

S Skiadopoulos, P Vassiliadis, A Simitsis & N-E Frantzell; IEEE Transactions on knowledge

and data engineering, Volume 20, Issue 7; 2008;

https://ieeexplore.ieee.org/abstract/document/4441713/

[26] ETL Evolution for Real-Time Data Warehousing; K Kakish & TA Kraft; 2012 Proceedings of

the Conference on Information Systems Applied Research; November 2012;

https://www.researchgate.net/publication/280837435_ETL_Evolution_for_Real-

Time_Data_Warehousing

[27] Striving towards Near Real-Time Data Integration for Data Warehouses; RM Bruckner, B List

& J Schiefer; International Conference on Data Warehousing and Knowledge Discovery 2002,

pages 317-326; 2002; https://link.springer.com/chapter/10.1007/3-540-46145-0_31

[28] X_Hybridjoin for near-real-time data warehousing; MA Naeem, G Dobbie & G Webber;

British national conference on databases. Advances on databases pages 33-47; 2011;

https://link.springer.com/chapter/10.1007/978-3-642-24577-0_5

[29] An Event-Based Near Real-Time Data Integration Architecture; MA Naeem, G Dobbie & G

Webber; 12th Enterprise Distributed Object Computing Conference Workshops; 2008;

https://ieeexplore.ieee.org/abstract/document/4815048/

 89

[30] Active data warehousing: a new breed of decision support; J Probst; Proceedings. 13th

International Workshop on Database and Expert Systems Applications; 2002;

https://ieeexplore.ieee.org/abstract/document/1045990/

[31] A Partition-based Approach to Support Streaming Updates over Persistent Data in an Active

Data Warehouse; A Chakraborty & A Singh; International symposium on parallel and

distributed processing; 2009; https://ieeexplore.ieee.org/abstract/document/5161064/

[32] Introduction to redundant arrays of inexpensive disks (RAID); DA Patterson, P Chen, G

Gibson, RH Katz; COMPCON Spring 89; 1989 - computer.org

[33] Fundamentals of Data Warehouses; Jarke, M., Lenzerini, M., Vassiliou, Y.: Panos Vassiliadis;

Springer Verlag, 2nd, rev. and extended ed., XIV (2003)

[34] Comparative study of indexing techniques in DBMS; Gupta, M. & Badal, D.;

https://www.researchgate.net/publication/333844844_Comparative_study_of_indexing_tech

niques_in_DBMS

[35] Implementation of database massively parallel processing system to build scalability on

process data warehouse; Bani, Fajar Ciputra Daeng, et al.; Procedia Computer Science, 2018,

135:68-79.; https://www.sciencedirect.com/science/article/pii/S1877050918314376

[36] ETL in Near-Real Time Environment: Challenges and Opportunities; Gorhe, Swapnil; no.

April, 2020.; https://www.researchgate.net/profile/Swapnil-

Gorhe/publication/340938742_ETL_in_Near-real-

time_Environment_A_Review_of_Challenges_and_Possible_Solutions/links/5fbe17d89285

1c933f5812cd/ETL-in-Near-real-time-Environment-A-Review-of-Challenges-and-Possible-

Solutions.pdf

[37] Implementation of Data Backup and Synchronization Based on Identity Column Real Time

Data Warehouse; Adnyana, I. Gede; Endra Sulastra, I. M. D.; Lontar Komputer: Jurnal Ilmiah

Teknologi Informasi, 2020, 11.1: 9.;

https://pdfs.semanticscholar.org/d300/befa2333fdfe6de66afb23152827fa17d450.pdf
[38] Efficient incremental loading in ETL processing for real-time data integration; Biswas, Neepa;

Sarkar, Anamitra; Mondal, Kartick Chandra; Innovations in Systems and Software

Engineering, 2020, 16.1: 53-61.; https://link.springer.com/article/10.1007/s11334-019-
00344-4

[39] Timon: A timestamped event database for efficient telemetry data processing and analytics;

CAO, Wei, et al.; Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data. 2020. p. 739-753.;

https://dl.acm.org/doi/abs/10.1145/3318464.3386136

[40] Apache. Hbase. https://hbase.apache.org/, 2008.

[41] Apache. Cassandra. http://cassandra.apache.org/, 2008.

Original Publications

I

Myllylahti, J, (2017)

European patent specification EP 1 959 359 B1.

European Patent Office Bulletin 2017/47

	Table of Contents
	Acknowledgements
	Abbreviations
	List of Original Publications
	1 Introduction
	2 Data Warehousing
	2.1 Background
	2.2 Structure of the traditional DWH method
	2.3 Indexing techniques for DWH

	3 Challenges in DWH
	3.1 General problems on traditional DWH methods
	3.2 The high watermark problem on traditional DWH staging tables
	3.3 The choking effect on near realtime DWH environments
	3.4 Deleting data from or truncating the staging table

	4 Existing research
	4.1 1990-1999
	4.2 2000-2009
	4.3 2010-2019
	4.4 2020-
	4.5 Summary of literature review

	5 AcDWH Method
	5.1 Overview
	5.2 AcDWH structural considerations
	5.3 Generating the AcDWH structures
	5.4 Parallel processing in AcDWH within a single bucket_type and between different bucket_types
	5.5 Staging table partitioning in AcDWH
	5.6 Forecasting space requirements, row amounts and generating statistics for the business in AcDWH
	5.7 Populating the DWH structures
	5.8 Clearing the AcDWH staging area
	5.8.1 Housekeeping process for the staging tables of the AcDWH

	5.9 The parallelism and concurrency of AcDWH
	5.10 Logging throughput in AcDWH to analyze operation and process efficiency
	5.11 Adjusting AcDWH bucket size to enhance throughput
	5.12 Repeatability in AcDWH

	6 Applications of the AcDWH framework
	6.1 A technical subject area DWH for a specific company A
	6.2 Company B data analysis platform

	7 Extensions to the patented AcDWH framework
	7.1 Data distribution
	7.2 Near real-time backup and/or restore schematics

	8 Results & Discussion
	9 Conclusions
	List of References
	Original Publications

