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Abstract

Optimization of quantum measurement processes has a pivotal role in carrying
out better, more accurate or less disrupting, measurements and experiments
on a quantum system. Especially, convex optimization, i.e., identifying the
extreme points of the convex sets and subsets of quantum measuring devices
plays an important part in quantum optimization since the typical figures of
merit for measuring processes are affine functionals. In this thesis, we discuss
results determining the extreme quantum devices and their relevance, e.g., in
quantum-compatibility-related questions. Especially, we see that a compatible
device pair where one device is extreme can be joined into a single apparatus
essentially in a unique way. Moreover, we show that the question whether a
pair of quantum observables can be measured jointly can often be formulated
in a weaker form when some of the observables involved are extreme.

Another major line of research treated in this thesis deals with convex anal-
ysis of special restricted quantum device sets, covariance structures or, in par-
ticular, generalized imprimitivity systems. Some results on the structure of
covariant observables and instruments are listed as well as results identifying
the extreme points of covariance structures in quantum theory. As a special
case study, not published anywhere before, we study the structure of Euclidean-
covariant localization observables for spin-0-particles. We also discuss the gen-
eral form of Weyl-covariant phase-space instruments.

Finally, certain optimality measures originating from convex geometry are
introduced for quantum devices, namely, boundariness measuring how ‘close’ to
the algebraic boundary of the device set a quantum apparatus is and the robust-
ness of incompatibility quantifying the level of incompatibility for a quantum
device pair by measuring the highest amount of noise the pair tolerates with-
out becoming compatible. Boundariness is further associated to minimum-error
discrimination of quantum devices, and robustness of incompatibility is shown
to behave monotonically under certain compatibility-non-decreasing operations.
Moreover, the value of robustness of incompatibility is given for a few special
device pairs.
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Tiivistelmä

Kvanttimittausten optimoinnilla on keskeinen rooli suoritettaessa parempia, tar-
kempia ja häiriöttömämpiä mittauksia ja kokeita kvanttisysteemeillä. Erityises-
ti konveksi optimointi eli kvanttimittausprosessien konveksien joukkojen ja os-
ajoukkojen ääripisteiden määrääminen on erityisen tärkeä osa kvanttioptimoin-
tia, sillä kvanttiprosessien optimaalisuutta mitataan tyypillisesti affiineilla funk-
tionaaleilla. Tässä väitöskirjassa keskitymme kvanttiteorian äärimittauksiin, nii-
den karakterisointiin ja merkitykseen esimerkiksi kvanttiyhteensopimattomuu-
den tutkimisessa. Erään tässä kirjasessa esitettävän tuloksen mukaan kaksi kes-
kenään yhteensopivaa mittausprosessia, joista toinen on ääripiste, voidaan suo-
rittaa yhdessä oleellisesti yksikäsitteisellä tavalla. Lisäksi näytämme, että kah-
den kvanttisuureen yhteismitattavuuden karakterisointia voidaan usein yksin-
kertaistaa, jos jokin tarkastelluista suureista on äärisuure.

Toinen tässä väitöskirjassa tarkasteltava tutkimusongelma on erityisten ra-
joitettujen kvanttisuure- ja instrumenttiosajoukkojen, niinsanottujen kovarians-
sirakenteiden tai yleistettyjen imprimitiivisysteemien konveksi analyysi. Esitte-
lemme kovarianttien suureiden ja instrumenttien rakennetta ja kovarianssiraken-
teiden ääripisteiden karakterisointia koskevia tuloksia. Tutkailemme myös spin-
0-objektin euklidikovarianttien lokalisointisuureiden rakennetta erityisenä ai-
emmin julkaisemattomana esimerkkinä kovarianssisysteemien teoriasta. Lisäksi
määräämme Weyl-kovarianttien faasiavaruusinstrumenttien yleisen muodon.

Lopuksi tarkastelemme paria tapaa hyödyntää kvanttiteorian konveksien ra-
kenteiden geometriaa mittausprosessien tutkimisessa. Ensiksi määrittelemme
tavan mitata mittausprosessin etäisyyden konveksin kvanttirakenteen reunas-
ta ja näytämme, että tämä etäisyysmitta on voimakkaasti kytköksissä kvant-
timittausten minimivirhe-erotteluun. Toiseksi tutkimme, kuinka paljon hälyä
mittausprosessipari sietää tulematta yhteensopivaksi, ja näytämme, että tämä
hälynsieto käyttäytyy monotonisesti yhteensopivuutta vähentämättömissä pro-
sesseissa. Lopuksi määritämme muutaman erityisen yhteensopimattoman mit-
tausprosessiparin hälynsiedon.
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Chapter 1

Introduction

The quantum world is wider and deeper than the world of classical physics.
The shape and geometry of the essential quantum structures exhibit peculiar
features that are absent in the classical descriptions of physical systems. An
especially hot topic in quantum theory is the study of the set of quantum states
and the exotic properties that the states possess, particularly entanglement.
Another non-classical feature of quantum structures is that quantum devices
are typically not compatible. Within classical framework, measurements can be
joined and they can be carried out without affecting the system under study.
This does not apply in quantum physics: quantum measurement devices often
cannot be combined into a single apparatus and a meaningful physical measure-
ment always affects the system, i.e., measuring an observable is not compatible
with the identity transformation of the system. Quantum incompatibility is
behind many of the well-known oddities of quantum theory: the quantum me-
chanical quantities for position and momentum are a prime example of a pair
of observables that cannot be measured jointly giving rise to the uncertainty
relations of preparation and measurement.

To better understand these properties that make quantum theory so rich
compared to the classical theories, it is of great importance to study the geome-
try of the relevant quantum structures, the sets of quantum states, observables,
state transformations, and measurements. Especially, the convex optimization
of these structures and their extreme points has an important role in finding
those devices that exhibit the non-classical quantum peculiarities in their purest
form. Another motivation for determining extreme quantum devices is that ex-
treme points naturally maximize many figures of merit that quantify, e.g., the
noiselessness, information gain, and other optimality criteria of the types of
measuring schemes in our disposal. In addition to studying the extreme devices
within the set of all devices, it is often physically motivated to study the geom-
etry of restricted convex device subsets characterized by some extra conditions.
On one hand, we might be able to carry out very particular types of measure-
ments in the lab that exhibit certain regularity properties. On the other hand,
we are often interested in very particular types of measurements and quanti-
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16 Introduction

ties, such as position, momentum, or energy measurements, which we require
to posses special features, e.g., covariance properties.

We start by introducing the basic measurement devices, or rather their math-
ematical representations, in Chapter 2. We also discuss some of the general non-
classical features of these devices, mainly the concept of incompatibility. This
chapter does not contain much novel information but is rather just an invitation
to the study of quantum structures fixing the basic notations that will be used
throughout this treatise.

The convex extreme points of the global (i.e., non-restricted) quantum the-
oretic structures are determined in Chapter 3, and the importance of these
extreme devices is further illustrated. Particularly, we discuss their relevance
in quantum compatibility related questions. One of the main findings states
roughly that a compatible device pair where one device is extreme can be joined
into a single apparatus essentially in a single way or, in other words, a joint de-
vice with an extreme component is completely characterized by the extreme
component and the remaining sub-device. Furthermore, connections between
joint measurability and another compatibility property, coexistence, are studied
in the presence of extreme observables. It is also emphasized through a couple
of examples that an extreme observable needs not be sharp (i.e., projection-
valued).

In Chapter 4, we concentrate on the structure and extreme points of the sets
of particular restricted classes of quantum devices, covariance structures. The
structure and extreme points of sets of covariant instruments and observables
is in our main focus. We concentrate on a few particular cases: observables
that are covariant with respect to an Abelian group with a value space that is a
transitive space for the group and covariant observables the value space of which
is a transitive space of their unimodular type-I symmetry group (with a compact
stability subgroup). As an example of the latter case we study Euclidean-
covariant position observables of an elementary spin-0 quantum object. We
also give a structure theorem for covariant instruments which is valid when
certain conditions on the observable marginals of such instruments are met.
Particularly, this result holds in the case when the associated observables belong
to either one of the two classes studied earlier in this chapter, but the theorem
is valid in other exemplary cases as mentioned in Section 4.3.

Finally, in Chapter 5, we approach certain properties of the quantum struc-
tures using particular measures that arise directly from the convex geometry of
these sets. We show that, in particular, a measure coined as boundariness is
associated with minimum-error discrimination of quantum devices and we set
up the robustness measure for quantum incompatibility that can be used to
quantify how incompatible a given pair of quantum devices is.



Chapter 2

Quantum theoretic
structures and their
properties

In this treatise, we restrict our study to the standard Hilbert space quantum
theory, for the basics of which we refer to [5, 7, 22, 39, 41, 54, 57, 78, 80]. Some
of the results presented can be generalized to a wider context, though. However,
to limit the technicality of this discussion we only briefly mention the possible
generalization of each result.

2.0.1 Hilbert spaces and linear operators

Throughout this review, by simply Hilbert space we mean a complex and
separable Hilbert space; it is separately noted, however, if the assumption
on separability can be lifted. For any (possibly non-separable) Hilbert space
H , we denote the inner product associated with H by 〈·|·〉H , the norm
H 3 ϕ 7→

√
〈ϕ|ϕ〉 ∈ R by ‖·‖H , the von Neumann algebra of bounded lin-

ear operators on H by L (H ), and the unit element, the identity operator, in
L (H ) by 1H ; the subscripts are usually omitted if there is no risk of confu-
sion. For two (not necessarily separable) Hilbert spaces H and K , L (H ,K )
stands for the set of bounded linear operators A : H → K . The two-sided
ideal of trace-class operators on H within L (H ) is denoted by T (H ) the
trace functional on which is denoted by T (H ) 3 T 7→ tr[T ] ∈ C. The trace
norm ‖·‖tr : T (H )→ R is defined through ‖T‖tr = tr[|T |] for any T ∈ T (H ).

Let us make some additional definitions about linear operators on Hilbert
spaces. The algebra L (H ) contains the group U (H ) of unitary operators on
H , i.e., U∗ = U−1 for all U ∈ U (H ). Let K be another Hilbert space and η ∈
H and ξ ∈ K . We occasionally encounter rank-1 operators |ξ〉〈η| : H → K
of the form |ξ〉〈η|ϕ = 〈η|ϕ〉ξ for all ϕ ∈ H . Given two von Neumann algebras
A and B, we denote their von Neumann tensor product (the σ-weak closure

17



18 Quantum theoretic structures and their properties

of their algebraic tensor product) simply by A ⊗B. Similarly, for two Hilbert
spaces H and K , H ⊗K always stands for the Hilbert tensor product.

2.0.2 Measures, Lp-spaces, and direct integrals

Throughout this thesis, whenever we say that µ is a measure on a measurable
space (Ω,Σ), where Ω is a non-empty set and Σ is a σ-algebra of subsets of
Ω, what is meant is that µ is a positive scalar measure and in most cases µ is
also σ-finite, although this is always separately mentioned. It should be pointed
out, however, that we also deal with operator measures, but it is always clearly
stated whether the measure in question is a scalar measure (which hereafter are
by default positive as stated above) or an operator measure. When the basis
set Ω is endowed with a topology, we denote the corresponding Borel σ-algebra
by B(Ω); in all the cases dealt with in this thesis the topology involved is clear
from the context and is thus not indicated in the notation.

Given a measurable space (Ω,Σ) and a measure µ on (Ω,Σ), the associated
Lp spaces, 1 ≤ p < ∞, are denoted Lp(µ), i.e., f ∈ Lp(µ) is a µ-equivalence
class of functions f ′ : Ω → C such that |f ′|p is µ-integrable. The space L∞(µ)
is defined as usual and we typically consider the L∞-spaces as von Neumann
algebras with respect to the obvious algebraic operations. The normal misuse
of notations apply, i.e., a member of an Lp-space is identified with a random
representative of the equivalence class. When we also fix a Hilbert space K ,
we define L2

K (µ) to be the Hilbert space of (equivalence classes of) functions
f : Ω→ K such that ω 7→ ‖f(ω)‖2 is µ-integrable. Also the notation L2(µ; K )
is used when the subscript would look too bulky. We also use the notations
Lp(Ω) := Lp(µ), L2

K (Ω) = L2(Ω; K ) := L2
K (µ) when the σ-algebra and the

measure are clear from the context, e.g., L2(Rn) is the space of (equivalence
classes of) Lebesgue-square-integrable functions on Rn.

The generalization of L2
K (µ) is a direct-integral Hilbert space

∫ ⊕
Ω

H (ω) dµ(ω)
which, roughly speaking, is a space of (equivalence classes of) vector fields
Ω 3 ω 7→ ϕ(ω) ∈ H (ω) which are measurable with respect to fields of gen-
erating vectors and the associated function ω 7→ ‖ϕ(ω)‖2 is µ-integrable. The

inner product for ϕ, ψ ∈
∫ ⊕

Ω
H (ω) dµ(ω) is given by

〈ϕ|ψ〉 =

∫
Ω

〈ϕ(ω)|ψ(ω)〉H (ω) dµ(ω).

We encounter these spaces in Chapters 3 and 4. A special class of linear op-
erators on a direct integral Hilbert space consists of the decomposable oper-
ators A =

∫ ⊕
Ω
A(ω) dµ(ω), where Ω 3 ω 7→ A(ω) ∈ L

(
H (ω)

)
is a weakly

µ-measurable field of operators such that (Aϕ)(ω) = A(ω)ϕ(ω) for almost all

ω ∈ Ω with respect to µ and all ϕ ∈
∫ ⊕

Ω
H (ω) dµ(ω). Such a decomposable

operator is bounded if and only if µ − ess supω∈Ω‖A(ω)‖ < ∞. For more on
details on direct-integral spaces, see [23, Part II].
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Let us finally fix some notations dealing with measure theory and functions.
Suppose that (Ω,Σ) is a measurable space and µ is a positive scalar measure
on (Ω,Σ). We generally shorten the recurrent phrase “for almost all ω ∈ Ω
with respect to µ” as “for µ-a.a. ω ∈ Ω”. For any X ∈ Σ, we denote by
χX : Ω → {1, 0} the characteristic or indicator function of X, i.e., χX(ω) = 1
if ω ∈ X and otherwise χX(ω) = 0. For scalar measures µ and ν, we denote
ν � µ when ν is absolutely continuous with respect to µ. The measure ν in
this situation can also be an operator measure instead of a scalar measure.

2.0.3 Unitary group representations

Let us fix a group G and a Hilbert space H . A unitary-operator-valued map
U : G → U (H ) which is a group homomorphism, i.e., U(gh) = U(g)U(h),
U(e) = 1H , where e is the unit of G is called a unitary representation. The
representation U is irreducible if the only closed subspaces M ⊂ H that are
invariant under U , i.e., U(g)ϕ ∈M for all g ∈ G and ϕ ∈M , are {0} and H .
Usually, we assume that G is a topological group, i.e., endowed with a topology
according to which the basic group operations G × G 3 (g, h) 7→ gh ∈ G
(multiplication) and G 3 g 7→ g−1 ∈ G (inversion) are continuous. We usually
assume that topological groups are Hausdorff. In a typical physical situation, the
group is, additionally, locally compact and second countable. Local compactness
ensures the existence of left (right) Haar measures on G, i.e., Radon measures
µ : B(G) → [0,∞] such that µ(gX) = µ(X) for all g ∈ G and X ∈ B(G) (or
µ(Xg) = µ(X) for right Haar measures). Left Haar measures can differ from
each other only up to a constant positive factor. The same applies to right
Haar measures. The group is said to be unimodular if the left and right Haar
measures coincide. The representation U is called strongly continuous when it
is continuous with respect to the topology of G and the strong or, in this case
equivalently, the weak operator topology of L (H ).

For a locally compact group G, we may define the set Ĝ of unitary equiv-
alence classes γ = [π] of irreducible unitary representations of G. Here uni-
tary equivalence of two (irreducible) representations π : G → U (H ) and
ρ : G→ U (K ) means that there is a unitary operator W : H → K such that
ρ(g)W = Wπ(g) for all g ∈ G. The set Ĝ is called as the representation dual of
G and it is equipped with the Fell topology; see [25, Chapter 7] for details. If G is
Abelian, all its irreducible representations are one-dimensional and Ĝ is a group
consisting of group homomorphisms of G into the torus T = {z ∈ C | |z| = 1}.
With this identification, it is usually denoted γ(g) = 〈g, γ〉 for all g ∈ G and
γ ∈ Ĝ. The Fell topology in this case coincides with the topology of compact
convergence which makes Ĝ into a locally compact group as well.

In Chapter 4, we usually assume that the symmetry group G is locally com-
pact and second countable and of type I. The latter property means that any
primary representation of G is a direct sum of some irreducible representation.
Primarity of a representation U means that the von Neumann algebra of op-
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erators commuting with U(g) for all g ∈ G consists only of scalar multiples of
the identity operator. The reason we evoke this condition is that the strongly
continuous unitary representations U : G → U (H ) of locally compact sec-
ond countable type-I groups in separable Hilbert spaces H have a particular
structure: for any such U , there is a (standard) measure µ : B(Ĝ) → [0,∞]
on the Borel σ-algebra defined by the Fell topology and a measurable field
Ĝ 3 γ 7→ L (γ) of separable Hilbert spaces such that H is unitarily equivalent

with
∫ ⊕
Ĝ

K (γ) ⊗L (γ) dµ(γ), where K (γ) is the representation space of some
representative πγ ∈ γ and, when we identify H with this direct-integral space,
one can write (

U(g)ϕ
)
(γ) =

(
πγ(g)⊗ 1L (γ)

)
ϕ(γ)

for all g ∈ G, ϕ ∈H , and for µ-a.a. γ ∈ Ĝ.

In the case of an Abelian locally compact second countable group G which
is automatically of type I, the above decomposition result implies the SNAG-
theorem: for any strongly continuous unitary representation U : G → U (H )
of G in a separable Hilbert space H , there is a spectral measure P : B(Ĝ) →
L (H ), i.e., a map such that tr[TP(·)] is a probability measure for all positive
T ∈ T (H ) with tr[T ] = 1 and P(X)2 = P(X) for all X ∈ B(Ĝ), such that

U(g) =

∫
Ĝ

〈g, γ〉 dP(γ), g ∈ G.

Operator measures are discussed more in depth later in this chapter. Also the
Peter-Weyl theorem for compact (consequently type-I) groups follows from the
general decomposition result for type-I groups.

Whenever G is unimodular, locally compact, second countable, and Haus-
dorff and a Haar measure µG is fixed for G, the dual Ĝ possesses a unique
measure µĜ : B(Ĝ) → [0,∞] called as the Plancherel measure such that the

map (L1 ∩ L2)(µG) 3 f 7→ f̂ ∈
∫ ⊕
Ĝ

KHS(γ) dµĜ(γ),

f̂(γ) =

∫
G

f(g)πγ(g) dµG(g), γ ∈ Ĝ,

where KHS(γ) is the Hilbert space of Hilbert-Schmidt operators on the repre-
sentation space K (γ) of a representative πγ ∈ γ, extends into a unitary map

from L2(µG) onto
∫ ⊕
Ĝ

KHS(γ) dµĜ(γ). This unitary operator (defined by µG)
is called as the Fourier-Plancherel operator. The Fourier-Plancherel operator is
needed in the essential proofs of sections 4.2.1 and 4.2.2, and this is why the
symmetry group is assumed to be unimodular in Section 4.2.2. If G is Abelian,
the Plancherel measure is simply a Haar measure of the dual group Ĝ.

Many of the results of Chapter 4 can be stated using projective unitary
representations instead of ordinary unitary representations. When G is a group
and H is a Hilbert space, a unitary-operator-valued map U : G → U (H ) is
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a projective unitary representation when the map, the action, G 3 g 7→ βg ∈
Aut

(
L (H )

)
, βg(A) = U(g)AU(g)∗, is a group homomorphism from G into

the group of automorphisms on L (H ). It follows that for such a projective
representation, there is a multiplier or 2-cocycle m : G×G 7→ T, i.e., m(e, g) =
m(g, e) = 1 and m(g, h)m(gh, k) = m(g, hk)m(h, k) for all g, h, k ∈ G such
that U(gh) = m(g, h)U(g)U(h) for all g, h ∈ G. Irreducibility and strong
continuity are defined for projective representations in the same way as for
ordinary representations. Two strongly continuous projective representations
U, U ′ : G → U (H ) with the associated multipliers m and m′ are equivalent
in the sense that they determine the same action g 7→ βg if and only if there is
a measurable function a : G → T such that U ′(g) = a(g)U(g) and m′(g, h) =
a(gh)a(g)a(h)m(g, h) for all g, h ∈ G. In particular, a projective representation
is equivalent with an ordinary representation if and only if its multiplier is of
the form (g, h) 7→ a(gh)a(g)a(h) for some measurable a : G→ T. In most cases,
we may restrict to studying ordinary representations, since, given a projective
unitary representation U : G → U (H ) associated with the multiplier m, we
may define the groupG := G×T with the group law (g, s)(h, t) =

(
gh, stm(g, h)

)
for all (g, s), (h, t) ∈ G and the ordinary representation U : G → U (H ),
U(g, s) = sU(g) for all (g, s) ∈ G and view U as the subrepresentation of U .

2.1 Quantum devices

Four relevant structures in quantum theory are the sets of states, observables,
channels, and instruments. Below, we give the mathematical descriptions of
these basic devices.

2.1.1 Quantum probabilities: states and effects

The state of a physical system is the full description of the observable proper-
ties of the system. In the standard Hilbert-space quantum theory, a state is
represented by a trace-1 positive trace-class operator on the Hilbert space H
associated with the system. Hence, the set of states is

S (H ) = {ρ ∈ T (H ) | ρ ≥ 0, tr[ρ] = 1}.

The topological dual of the Banach space (with respect to the trace norm)
of trace-class operators T (H ) is L (H ). This means that any trace-norm
continuous affine map f on S (H ) has to be of the form f(ρ) = tr[ρE], ρ ∈
S (H ), for some E ∈ L (H ). Simple properties of a quantum system can
be seen as two-valued measurements or yes-no questions; either the system has
the property (yes) or not (no). The system has the property with a certain
probability depending on its state and the attribution of these probabilities to
states ρ ∈ S (H ) can be naturally required to be a continuous positive affine
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map on the state space bounded from above by 1. Hence the basic properties of
the system can be associated to the effect operators E ∈ E (H ) ⊂ L (H ), i.e.,
0 ≤ E ≤ 1H and the probability that the system is found to have this property
in a measurement is pEρ = tr[ρE].

The above discussion means that the set of states and effects form a statistical
duality 〈S (H ),E (H )〉 where the biaffine map 〈·, ·〉 : S (H )× E (H )→ [0, 1],
(ρ,E) 7→ 〈ρ,E〉 = tr[ρE], associates probabilities of detecting basic properties
when the system is in a particular state to each state-effect pair [54]. More com-
plicated quantum measurements build upon this basic duality of the quantum
theory.

2.1.2 State transformations: operations and channels

Let H and K be Hilbert spaces. For any trace-norm-bounded linear map
F : T (H )→ T (K ), one may define the dual F ∗ : L (K )→ L (H ) through
tr[F (T )B] = tr[TF ∗(B)] for any T ∈ T (H ) and B ∈ L (K ). We say that
the bounded linear map F : T (H )→ T (K ) is completely positive (CP) if the
dual F ∗ is completely positive, i.e., for any n = 1, 2, . . ., ϕ1, . . . , ϕn ∈H , and
B1, . . . , Bn ∈ L (K )

n∑
j,k=1

〈ϕj |F ∗(B∗jBk)ϕk〉 ≥ 0.

Such a completely positive map F : T (H ) → T (K ) is called an operation
if it is trace non-increasing on positive operators, i.e., tr[F (ρ)] ≤ 1 for all
ρ ∈ S (H ). Operations are needed in detailed descriptions of quantum mea-
surements, as we will see shortly.

An operation E : T (H )→ T (K ) that is trace-preserving, i.e., tr[E (ρ)] = 1
for all ρ ∈ S (H ), or equivalently unital, E ∗(1K ) = 1H , in the dual picture,
is called a channel. We denote the set of channels E : T (H ) → T (K ) by
Ch(H ,K ). Note that a channel maps a quantum state to another quantum
state. Channels are mathematical representations of transformations of quan-
tum systems. Complete positivity of such a transformation means that if we
join the input and output systems with any ancillary quantum system described
by a (finite-dimensional) Hilbert space M and trivially extend the channel
E ∈ Ch(H ,K ) into a map E : S (H ⊗M )→ S (K ⊗M ), E (ρ⊗σ) = E (ρ)⊗σ
for all ρ ∈ S (H ) and σ ∈ S (M ), the extension E is also a channel. Thus com-
plete positivity can be seen as a minimal requirement for a state transformation
to be extendable on larger systems.
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2.1.3 Quantum measurements: observables and instru-
ments

In a measurement of a quantum system, the probability of detecting an outcome
from a subset X of the entire outcome set Ω depends on the initial state of the
system being measured. From the statistical duality 〈S (H ),E (H )〉, it follows
that the part M of the measurement that assigns these measurement outcome
probability distributions pMρ to the states ρ ∈ S (H ) is a map that turns subsets

X of outcomes into effects M(X) ∈ E (H ) so that pMρ (X) = tr[ρM(X)]. This
branch of the measurement, i.e., the map M, is called as an observable. For any
ρ ∈ S (H ) and any subset X of outcomes, the number pMρ (X) is the probability
for the event that any measurement of M yields a result in X when the system
being measured is in the state ρ.

Let us express the above in a more formal manner. Let us pick a measurable
space (Ω,Σ) that models the measurement outcome set of the quantum mea-
surement, i.e., Ω is a non-empty set and Σ is a σ-algebra of subsets of Ω.The
natural mathematical description for an (Ω,Σ)-valued observable on a system
associated with the Hilbert space H is a normalized positive-operator-valued
measure (POVM) [41], i.e., a map M : Σ → E (H ) that is weakly σ-additive,
i.e., M

(
∪jXj

)
=
∑
jM(Xj) with respect to the weak operator topology for any

disjoint sequence (Xj) ⊂ Σ, for any X ∈ Σ the operator M(X) is positive, and
M(Ω) = 1H such that pMρ (X) = tr[ρM(X)] for any ρ ∈ S (H ) and X ∈ Σ.
We denote the set of (Ω,Σ)-valued observables on a system described by H
by Obs(Σ,H ) and, for simplicity, we identify the observables of Obs(Σ,H )
with the POVMs Σ → L (H ). We say that an observable P ∈ Obs(Σ,H ) is
sharp, if it is represented by a projection-valued measure (PVM), i.e., the range
ranP = {P(X) |X ∈ Σ} consists of projections or, equivalently, P(X) = P(X)2

for any X ∈ Σ.

An observable M ∈ Obs(Σ,H ) is said to be discrete, if there is a countable
set {ωj}j ⊂ Ω such that all the singletons {ωj} are Σ-measurable and M is
supported by {ωj}j or, in other words, M({ωj}j) =

∑
jM({ωj}) = 1H . For

such a discrete observable, we usually define Mj := M({ωj}) for all j.

In a measurement, the system typically transforms conditioned by registering
an outcome ω ∈ X ∈ Σ. The conditional state transformation is described by
an operation Γ(X) satisfying tr[[Γ(X)](ρ)] = pMρ (X) where M is the observable

being measured in the measurement. If the probability pMρ (X) is non-zero, the

conditional state entering the post-measurement processes is pMρ (X)−1[Γ(X)](ρ)
when the initial state is ρ.

Again, let us formalize the above discussion. Let H and K be Hilbert
spaces. Let us denote by Ins(Σ,H ,K ) the set of H → K -operation-valued
maps Γ defined on Σ that are weakly σ-additive and Γ(Ω) is a channel. From
now on, we denote [Γ(X)](ρ) = Γ(X, ρ) for any X ∈ Σ and ρ ∈ S (H ). Weak σ-
additivity here means that for any disjoint sequence (Xj)j ⊂ Σ, any ρ ∈ S (H ),
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Figure 2.1: Illustration of an instrument. The state entering the measurement
device represented by the instrument Γ is ρ. The instrument has the statis-
tics arm (the lower branch right of the instrument box in the illustration) and
the state change arm (the upper branch right of the instrument box). When a
value is detected with certainty in the set X in the statistics arm, which hap-
pens with probability p(X), the state change arm gives the conditional state
ρX = p(X)−1Γ(X, ρ). When the state changes are neglected, the statistics arm
reduces to the associated observable, and when the statistics are ignored, the
state-change arm reduces to the channel associated with Γ unconditioned by
registering an outcome.

and B ∈ L (K ), one has tr[Γ(∪jXj , ρ)B] =
∑
j tr[Γ(Xj , ρ)B]. We call elements

Γ ∈ Ins(Σ,H ,K ) as instruments. Instrument is an effective mathematical
description for a measurement process: An instrument Γ ∈ Ins(Σ,H ,K ) is a
representative of the different measuring schemes for the associated observable
MΓ ∈ Obs(Σ,H ) such that pMΓ

ρ (X) = tr[Γ(X, ρ)] for all ρ ∈ S (H ) and
X ∈ Σ. The conditional non-normalized state exiting the instrument when the
input state is ρ conditioned on an outcome being measured within the set X is
Γ(X, ρ). The relevance of these conditional states is in the possibility of defining
the bimeasures (X,Y ) 7→ tr[Γ(X, ρ)N(Y )] for events where an observable N ∈
Obs(Σ′,K ) with a possibly different value space (Ω′,Σ′) is measured after a
measurement of MΓ corresponding to Γ. The associated operator bimeasure
(X,Y ) 7→ [Γ(X)]∗

(
N(Y )

)
extends into an operator measure on the minimal

product value space (Ω× Ω′,Σ⊗ Σ′) when the measurable spaces involved are
standard Borel [58], i.e., the sequential measurement can be used to measure
an observable on (Ω× Ω′,Σ⊗ Σ′). More on quantum instruments and possible
post-measurement states can be read in [67, 68].

2.1.4 Convexity in quantum structures

All the sets S (H ), Obs(Σ,H ), Ch(H ,K ), and Ins(Σ,H ,K ) are convex in
a natural way. Especially for instruments Γ, Γ′ ∈ Ins(Σ,H ,K ) and t ∈ [0, 1],
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we may define the convex combination(
tΓ + (1− t)Γ′

)
(X, ρ) = tΓ(X, ρ) + (1− t)Γ′(X, ρ)

for all X ∈ Σ and ρ ∈ S (H ). A convex combination of quantum devices
reflects classical fuzziness: e.g., the convex combination tρ + (1 − t)σ of states
ρ and σ can be seen as a result of using a state preparator that combines two
preparation schemes, one producing ρ firing with probability t and the other
producing σ with probability 1− t.

The extreme points of the sets of quantum devices are of interest because
they do not exhibit this classical randomness, i.e., in a sense, they exhibit the
important quantum properties in the purest possible way. The extreme points
are important in optimization tasks since they extremalize affine functionals and
figures of merit. We will also find out that the extreme devices possess certain
objective optimality properties that clarify, e.g., their compatibility properties.
The extreme states are exactly the one-dimensional projections |ϕ〉〈ϕ| for unit
vectors ϕ ∈ H . Thus extreme or pure states are also called as vector states.
The sharp observables are all extreme observables, but there are others. We will
give necessary and sufficient characterizations for extremality for all the relevant
classes of quantum devices also in the presence of particular restrictions on the
devices being considered, namely covariance.

The convex sets of quantum measuring devices differ foundationally from
the corresponding structures of classical physics. Despite any quantum state
ρ ∈ S (H ) can be expressed as a convex combination ρ =

∑
j tj |ϕj〉〈ϕj |, tj ≥ 0,∑

j tj = 1, of pure states ϕj , e.g., as the combination given by the spectral
decomposition of the state operator, one cannot consider ρ as a state ensemble
{(ϕj , tj)}j where the actual state of the system is the pure state |ϕj〉〈ϕj | with
the probability tj , since each non-pure state has infinitely many decompositions
into pure states [11, 47]. This means that, unlike the set of states for a classical
physical system (the set of probability measures on the Lebesgue σ-algebra on
the phase space), the quantum state space S (H ) is not a simplex and the
ignorance interpretation of a mixed quantum state is not valid; see, especially,
[7, sections II.2.5 and II.2.6]. The same non-classical feature applies also to all
the other quantum devices.

2.2 Compatibility

Classical measurements and processes can be joined freely and implemented
without transforming the system under study. On the quantum side, however,
this no longer applies and tight restrictions on joining devices have to be intro-
duced. Moreover, any physically meaningful measurement disturbs the system.
These facts are related to the inherent feature of incompatibility within quantum
theory that is absent in classical theories. In this section the different notions
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of compatibility for the relevant quantum devices are presented.

2.2.1 Joint measurability and coexistence

Let us fix the measurable spaces (Ω,Σ) and (Ω,Σ). For simplicity, let us assume
that these value spaces are standard Borel. We say that a map β : Σ× Ω→ R
is a Markov kernel, if β(X, ·) is Σ-measurable for all X ∈ Σ and β(·, ω) is a
probability measure for all ω ∈ Ω. Let us pick an observable G ∈ Obs(Σ,H ),
and a Markov kernel β : Σ×Ω→ R. We define the observable Gβ ∈ Obs(Σ,H )
through

Gβ(X) =

∫
Ω

β(X,ω)G(dω), X ∈ Σ.

We call such a Gβ as the post-processing of G by β. One way to effectively
measure the post-processing Gβ is to measure first G and then process the output
data pGρ of G with the ‘classical channel’ presented by the Markov kernel β. For
more on post-processing in the case of a discrete value space, we refer to [62], and
for further issues, also in the case including value spaces that are not standard
Borel, one may consult [50, 51].

Post-processing defines a preorder among observables in Obs(Σ,H ) with
the fixed Hilbert space H but varying (standard Borel) value spaces (Ω,Σ).
Namely, we denote N ≤post M when there is a Markov kernel β such that
N = Mβ . The observables in the maximal equivalence classes with respect to
this preorder are called as post-processing maximal and, in the discrete-outcome
settings, these observables are those M = (Mj)j with rank-1 effects [3, 62], i.e.,
Mj = |ϕj〉〈ϕj | with some vectors ϕj ∈H for all j.

Let us fix two standard Borel spaces (Ω,Σ) and (Ω′,Σ′). We say that the
observables M ∈ Obs(Σ,H ) and N ∈ Obs(Σ′,H ) are jointly measurable if
there is a third value space (Ω,Σ) and an observable G ∈ Obs(Σ,H ) such
that M and N can be obtained from G through statistical means, i.e., there
are Markov kernels β and γ such that M = Gβ and N = Gγ . The standard
Borel property ensures that, when M and N are jointly measurable, there is an
observable G ∈ Obs(Σ⊗ Σ′,H ) such that

M(X) = G(X × Ω′), N(Y ) = G(Ω× Y ), X ∈ Σ, Y ∈ Σ′,

otherwise, we would have to deal with operator bimeasures [58, 82]. Hence,
we may take the latter simple characterization as the definition of joint mea-
surability. An observable G ∈ Obs(Σ ⊗ Σ′,H ) like that above is called as a
joint observable for M and N. Using dilation theory, it is easy to see that any
observable (with standard Borel value space) is jointly measurable with itself.

If observables are not jointly measurable, they are incompatible. Incom-
patible observables cannot be measured with a single measurement apparatus
simultaneously. Incompatibility of observables is operationally linked to steering
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of quantum states [72, 77], which goes to show that incompatibility is a similar
non-classical resource as entanglement for quantum technologies.

A typical example of an incompatible pair of observables is the position-
momentum pair (of a non-relativistic object confined to a line) where (Ω,Σ) =
(Ω′,Σ′) = (R,B(R)), H = L2(R), and M = Q and N = P = F ∗Q(·)F
where Q(X)ϕ = χXϕ for all X ∈ B(R) and ϕ ∈ L2(R), and F is the Fourier-
Plancherel operator.

It has been shown [37] that a sharp observable P ∈ Obs(Σ,H ) is compatible
with M ∈ Obs(Σ′,H ) if and only if P and M commute, i.e., P(X)M(Y ) =
M(Y )P(X) for all X ∈ Σ and Y ∈ Σ′, in which case P and M have a unique
joint observable G defined by

G(X × Y ) = P(X)M(Y ), X ∈ Σ, Y ∈ Σ′.

Also other definitions of compatibility for observables have been suggested
in addition to joint measurability. One such is coexistence [55, 56]. Given a set
E ⊂ E (H ) of effects, one can naturally ask if there is a value space (Ω,Σ) and an
observable G ∈ Obs(Σ,H ) such that E ⊂ ranG = {G(Z) |Z ∈ Σ}. Motivated
by this general question, observables M ∈ Obs(Σ,H ) and N ∈ Obs(Σ′,H ) are
defined to be coexistent if there is G ∈ Obs(Σ,H ) such that ranM ∪ ranN ⊂
ranG. An observable like G above is called as a mother observable for M and
N. It follows that when observables are jointly measurable they are coexistent,
but the converse does not hold [73]. However, if either one of the observables is
sharp, this implication can be reversed, and we will see that in the case of more
general extreme observables similar results hold.

2.2.2 Compatible observables and channels

Channels E ∈ Ch(H ,K1) and F ∈ Ch(H ,K2) are compatible if there is a
third channel G ∈ Ch(H ,K1 ⊗K2) such that

E (ρ) = trK2
[G (ρ)], F (ρ) = trK1

[G (ρ)]

for all ρ ∈ S (H ) or, equivalently

E ∗(A) = G ∗(A⊗ 1K2), F ∗(B) = G ∗(1K1 ⊗B)

for all A ∈ L (K1) and B ∈ L (K2). The compatibility of channels means thus
that there is a channel from which the compatible channels can be obtained as
reduced dynamics. The mother channel like G above is a joint channel for E
and F . If channels are not compatible, they are incompatible.

We say that an observable M ∈ Obs(Σ,H ) and a channel E ∈ Ch(H ,K )
are compatible if there is an instrument Γ ∈ Ins(Σ,H ,K ) such that

tr[ρM(X)] = tr[Γ(X, ρ)], E (ρ) = Γ(Ω, ρ)
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for all ρ ∈ S (H ) and X ∈ Σ. The first condition can also be written in the
form M(X) = Γ(X)∗(1K ). Such an instrument is called as a joint instrument
for M and E . Again, if an observable and a channel are not compatible, they are
incompatible. Compatibility of an observable and a channel means that there
is a measuring process described by a joint instrument whose measurement
statistics are given by the observable and whose unconditioned state change
is the channel. It turns out that, in order to be compatible with the identity
channel, an observable has to be trivial in the sense that M(X) = p(X)1H

for all X ∈ Σ with some probability measure p. Moreover, it is known [63]
that a sharp observable P ∈ Obs(Σ,H ) and a channel E ∈ Ch(H ,K ) are
compatible if and only if they commute, i.e., P(X)E ∗(B) = E ∗(B)P(X) for all
X ∈ Σ and B ∈ L (K ), in which case P and E have a unique joint instrument
Γ ∈ Ins(Σ,H ,K ) given by

Γ(X, ρ) = E
(
ρP(X)

)
= E

(
P(X)ρ

)
, X ∈ Σ, ρ ∈ S (H ).

Note that when the observable M ∈ Obs(Σ,H ) and the channel E ∈ Ch(H ,K )
are compatible and Γ ∈ Ins(Σ,H ,K ) is a joint channel for M and E , for any
X ∈ Σ, there is a channel FX ∈ Ch(H ,K ) such that

Γ(X, ρ) = FX

(√
M(X)ρ

√
M(X)

)
for all ρ ∈ S (H ) [68] showing that the compatible pair of a sharp observable
P and a channel E is a special case of this general result with FX = E for all
X ∈ Σ.

Joint measurability of observables and the notion of compatibility between
observables and channels are related, since they are reflections of a more general
definition of compatibility of completely positive maps, as is explained later
in Section 3.2. Note, however, that coexistence of observables is not directly
related to these compatibility properties. No general necessary and sufficient
conditions for quantum compatibility are known for device pairs where one of the
devices is not a sharp observable. Compatibility can, however be detected with
a semidefinite program [81]. Moreover, in the case of discrete measurements, the
channels compatible with a fixed discrete observable can be characterized with a
particular observable-dependent maximal observable yielding interesting results,
e.g., in understanding the interplay of information gain and perturbativeness of
a measurement [33]. One can also define a stronger incompatibility criterion,
strong incompatibility, which requires that the two quantum devices cannot be
obtained from a single device (instrument) even with intermediate modifications
of the outputs of the joint device [35]. It is immediate that for observables strong
and ordinary incompatibility are the same, but for channels situation is more
complicated.



Chapter 3

Extremality

In this chapter, we present a complete characterization for extreme quantum
devices and discuss the consequences of extremality in different problem settings
within quantum theory. Let us briefly recall what extremality means. Let V be
a real or complex vector space and K ⊂ V a convex set. An element z ∈ K is an
extreme point of K, or z ∈ extK, if from z = tx+ (1− t)y, where x, y ∈ K and
t ∈ (0, 1), it follows that x = y = z, i.e., z has no genuine convex decompositions
within K. We often use the term ‘mixing’ for forming convex combinations out
of a (finite) family of elements of a convex set. Thus extreme points cannot
be obtained by mixing several elements of the convex set and, from general
statistical physics point of view, this means that extreme measuring devices
are free from randomness caused by mixing of different measurement selections.
Theorem 4 and all theorems after that are original results whose proofs can be
found from the articles included in this thesis.

3.1 General characterization for extreme quan-
tum devices

In order to give an exhaustive characterization for extreme quantum devices,
we present the relevant devices in a unified way. The following discussion is
amenable to generalizations to accommodate for sesquilinear-form-valued maps
on C∗-modules instead of Hilbert spaces [28, 69], but we restrict generality for
the sake of brevity. We need some operator-algebraic tools: Some of the results
are applicable also for C∗-algebras such as the existence of a minimal dilation for
a CP map defined on a C∗-algebra, but for simplicity we restrict our attention
on von Neumann algebras.

Let us fix a von Neumann algebra A whose unit we denote by 1A and a
Hilbert space H . We study linear maps A → L (H ). We say that such a
linear map Φ is completely positive (CP) if for any n = 1, 2, . . ., a1, . . . , an ∈ A ,

29
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Figure 3.1: Within a convex set K of devices, a convex decomposition z =
tx+ (1− t)y reflects the fact that z can be realized by statistically mixing the
measurement procedures represented by x and y. The extreme devices, the
edge points of the contour of K in this picture, cannot be considered as such
non-trivial statistical mixtures meaning that these devices are free from added
noise caused by mixing of different processes.

and ϕ1, . . . , ϕn ∈H
n∑

j,k=1

〈ϕj |Φ(a∗jak)ϕk〉 ≥ 0.

In addition the map Φ is normal if it is continuous with respect to the ultraweak
operator topologies of A and L (H ) or, equivalently, for any increasing net
(aλ)λ ⊂ A of selfadjoint elements one has Φ

(
supλ aλ

)
= supλ Φ(aλ).

Given a CP map Φ : A → L (H ), we say that a triple (M , π, J) consisting
of a Hilbert space M , a unital *-representation π : A → L (M ) (i.e., π(1A ) =
1M ), and a linear map J : H →M is a Stinespring dilation for Φ if

Φ(a) = J∗π(a)J, a ∈ A .

The dilation (M , π, J) is called minimal if the vectors π(a)Jϕ, a ∈ A , ϕ ∈M ,
span a dense linear subspace of M . There exists a minimal Stinespring dilation
for any CP map Φ and any two minimal dilations (M1, π1, J1) and (M2, π2, J2)
for the same CP map Φ are unitarily equivalent in the sense that there is a
unitary operator U : M1 →M2 such that Uπ1(a) = π2(a)U for all a ∈ A and
J2 = UJ1 [75]. Moreover, if the map Φ is normal, so is the *-representation π
in any of the minimal Stinespring dilations of Φ [22].

We define CP(A ; H ) as the set of unital CP maps Φ : A → L (H ) and
denote the subset of normal maps within CP(A ; H ) by NCP(A ; H ). These
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sets are naturally convex and one easily sees that NCP(A ; H ) is a face of
CP(A ; H ), i.e., whenever tΦ1 + (1 − t)Φ2 ∈ NCP(A ; H ) with Φ1, Φ2 ∈
CP(A ; H ) and 0 ≤ t ≤ 1, then, in fact, Φ1, Φ2 ∈ NCP(A ; H ). The latter
property guarantees that the following extremality characterization proved in
[1, 31] also holds for NCP(A ; H ). In the following theorem, the Hilbert space
H need not be separable

Theorem 1. Let (M , π, J) be a minimal Stinespring dilation for a unital CP
map Φ ∈ CP(A ; H ). One has Φ ∈ ext CP(A ; H ) if and only if the map
π(A )′ 3 D 7→ J∗DJ ∈ L (H ) is an injection. Here π(A )′ denotes the com-
mutant of the range of π.

Using Theorem 1, one can give extremality characterizations for all quantum
devices since all quantum structures can be expressed in the form NCP(A ; H ).
For the state space S (K ), A = L (K ) and H = C. For the set Obs(Σ,H )
of observables, we may define for any σ-finite measure µ on (Ω,Σ) the restricted
convex set Obsµ of those M ∈ Obs(Σ,H ) such that pMρ � µ for all ρ ∈
S (H ) and, in the case of separable H , Obs(Σ,H ) = ∪µObsµ, where the
union runs over all σ-finite measures. One has Obsµ ' NCP

(
L∞(µ); H

)
,

where a POVM M : Σ → L (H ) is identified with the normal unital map
L∞(µ) 3 f 7→

∫
Ω
f dM ∈ L (H ). Since each of the elements in the union are

faces of Obs(Σ,H ), Theorem 1 gives a characterization for extreme observables
utilizing the minimal Năımark dilation of a POVM. Also the set Ins(Σ,H ,K )
consists of the faces

Insµ ' NCP
(
L∞(µ)⊗L (K ); H

)
,

where µ runs over the set of σ-finite measures, that exhaust the total instrument
set. Indeed, if tr[Γ(·, ρ)]� µ for all ρ ∈ S (H ) (such a σ-finite measure existing
for any instrument when H and K are separable), then we may identify Γ with
a map G ∈ NCP

(
L∞(µ)⊗L (K )

)
through

tr[ρG(f ⊗B)] =

∫
Ω

f(ω) tr[Γ(dω, ρ)B] (3.1)

for all ρ ∈ S (H ), f ∈ L∞(µ), and B ∈ L (K ). The extremality characteriza-
tion for instruments and observables is given in Section 3.1.1.

A minimal dilation of a channel E ∈ Ch(H ,K ) consists simply of a Hilbert
space M0 and an isometry J : H → K ⊗M0 such that E ∗(A) = J∗(A⊗1M0)J
for all A ∈ L (K ) and the linear span of vectors (A ⊗ 1M0

)Jϕ, A ∈ L (K ),
ϕ ∈ H , is dense in K ⊗M0. When both H and K are separable, then M0

is separable, and we may pick an orthonormal basis {ej}j of M0. With the
operators Vj : K → K ⊗M0, Vjψ = ψ ⊗ ej , ψ ∈ K , we may define the
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operators Kj = V ∗j J such that

E (ρ) =
∑
j

KjρK
∗
j , ρ ∈ S (H ),

i.e., the operators Kj are Kraus operators of E . Moreover, the Kraus operators
obtained as above from a minimal Stinespring dilation of a channel constitute
a minimal set of Kraus operators for E . Let now E ∈ Ch(H ,K ) be asso-
ciated with the minimal dilation (M0, J) and the related minimal set {Kj}j
of Kraus operators. It follows that E ∈ ext Ch(H ,K ) if and only if from
J∗(1K ⊗ D)J = 0 with D ∈ L (M0) it follows that D = 0 or, equivalently,
the set {K∗jKk}j,k is strongly independent. This result and the definition of
strong independence can be found, e.g., in [76]. Since strong independence
is a generalization of linear independence of a finite set, this result generalizes
the extremality characterization for channels between finite-dimensional systems
presented in [19].

3.1.1 Extreme observables and instruments

In this section, we fix two separable Hilbert spaces H and K and any measur-
able space (Ω,Σ); note that the measurable space does not have to be countably
generated. Let {ej}j (respectively {fm}m) be an orthonormal basis for H (re-
spectively for K ). When we consider a minimal dilation of an instrument
Γ ∈ Ins(Σ,H ,K ), it is immediate that one may assume the dilation space to
be of the form K ⊗M0 and the *-representation to be the identity map on
L (K ) tensored with a *-representation of L∞(µ) into L (M0) with a suitable
σ-finite measure µ on (Ω,Σ) arising from a spectral measure. We can, however,
say a little more. For the next result obtained in [67], whenever (Ω,Σ, µ) is a

σ-finite measure space and H⊕ =
∫ ⊕

Ω
H (ω) dµ(ω), is a direct-integral Hilbert

space, we define the *-representation L∞(µ) 3 f 7→ Mf ∈ L (H⊕) such that
(Mfη)(ω) = f(ω)η(ω) for all f ∈ L∞(µ), η ∈ H⊕, and µ-a.a. ω ∈ Ω. More-
over, for any instrument Γ ∈ Ins(Σ,H ,K ), we define the ‘dual’ instrument
Γ̃ : Σ × L (K ) → L (H ) through Γ̃(X,B) = [Γ(X)]∗(B) for all X ∈ Σ and
B ∈ L (K ): we use these notations throughout this treatise.

Theorem 2. Let Γ ∈ Ins(Σ,H ,K ) and let µ : Σ → R be a σ-finite positive
measure such that tr[Γ(·, ρ)] � µ for all ρ ∈ S (H ). There is a direct-integral

space H⊕ =
∫ ⊕

Ω
H (ω) dµ(ω) and vectors ψj,m ∈ H⊕, 1 ≤ j < dim H + 1,

1 ≤ m < dim K +1, such that, when we define the *-representation ρ : L∞(µ)⊗
L (K ) → L (K ⊗H⊕) through ρ(f ⊗ B) = B ⊗Mf for all f ∈ L∞(µ) and
B ∈ L (K ) and the isometry Y : H → K ⊗H⊕ through Y ej =

∑
m fm⊗ψj,m,

the triple (K ⊗H⊕, ρ, Y ) is a minimal Stinespring dilation for Γ.

We have Γ ∈ ext Ins(Σ,H ,K ) if and only if for any decomposable D =
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∫ ⊕
Ω
D(ω) dµ(ω) ∈ L (H⊕),one has

∑
m

∫
Ω

〈ψj,m(ω)|D(ω)ψk,m(ω)〉 dµ(ω) = 0

for all j, k if and only if D = 0.

From the preceding theorem, it follows that we may give a ‘pointwise Kraus
decomposition’ for Γ consisting of fields ω 7→ Aj(ω) of operatorsAj(ω) : D 7→ K
for all 1 ≤ j < dim H (ω) + 1, where D = linjej so that

〈ϕ|Γ̃(X,B)ψ〉 =

∫
X

dim H (ω)∑
j=1

〈Aj(ω)ϕ|BAj(ω)ψ〉 dµ(ω)

for all ϕ, ψ ∈ D , X ∈ Σ, and B ∈ L (K ). It also follows that the set of
structure vectors {ψj,m}j is orthonormal for all m. The number dim H (ω) is
called as the rank of the instrument Γ associated with the outcome.1

A similar result holds also for observables [46, 66, 67]:

Theorem 3. Fix M ∈ Obs(Σ,H ) and pick a σ-finite measure µ on (Ω,Σ)
such that pMρ � µ for all ρ ∈ S (H ). There is a direct-integral space H⊕ =∫ ⊕

Ω
H (ω) dµ(ω) and an orthonormal system {ψj ∈ H⊕ | 1 ≤ j < dim H + 1}

such that, when one defines the spectral measure P : Σ → L (H⊕), P(X) =
MχX for all X ∈ Σ, and the isometry J : H → H⊕ through Jej = ψj, the
triple (H⊕,P, J) is a minimal Năımark dilation for M. Furthermore, M ∈
ext Obs(Σ,H ) if and only if, for any decomposable D ∈ L (H⊕), one has∫

Ω

〈ψj(ω)|D(ω)ψk(ω)〉 dµ(ω) = 0

for all j, k if and only if D = 0.

From the preceding theorem, it follows that we may write

〈ej |M(X)ek〉 =

∫
X

〈ψj(ω)|ψk(ω)〉 dµ(ω), X ∈ Σ, 1 ≤ j, k < dim H + 1.

Again, we may define the rank (or rank function) r(ω) as the dimension of the
component space H (ω).

As already mentioned, the sharp observables are extreme but there are oth-
ers. Examples on unsharp extreme observables include the canonical time ob-
servable introduced in Section 4.2.1 in Equation (4.4) and the exemplary ob-

1Rather than talking about individual ranks associated to different outcomes, it is mathe-
matically more rigorous to define the rank as the measurable map r : Ω→ {0, 1, 2, . . .}∪{∞},
r(ω) = dim H (ω) for µ-a.a. ω ∈ Ω.
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servable discussed below. Other unsharp extreme observables are the canonical
phase [36] and the phase space observable generated by the vacuum [66].

As an example of utilizing Theorem 3, let us take a look at a particular(
[0, 1],B[0, 1]

)
-valued observable operating in an infinite-dimensional Hilbert

space H with the orthonormal basis {e0, e1, e2, . . .}. For any s ∈ [0, 1] and
n ∈ Z, we define 〈s, n〉 = ei2πsn. Our observable M ∈ Obs

(
B[0, 1],H

)
is given

by

M(X) =
∞∑

m,n=0

∫
X

〈s,m− n〉 ds
(
|e2m〉〈e2n|+ |e2m+1〉〈e2n+1|

)
, X ∈ B[0, 1].

Note that M is unsharp. Let us fix the orthonormal basis {|0〉, |1〉} in the 2-
dimensional Hilbert space C2 and define the linear map J : H → L2

C2 [0, 1]
through

(Je2m+j)(s) = 〈s,m〉|j〉, m = 0, 1, 2, . . . , j = 0, 1, 0 ≤ s ≤ 1.

Moreover, we denote by P the spectral measure on B[0, 1] operating in L2
C2 [0, 1]

defined by
(
P(X)η

)
(s) = χX(s)η(s) for all X ∈ B[0, 1], η ∈ L2

C2 [0, 1], and
a.a. s ∈ [0, 1]. It is simple to verify that (L2

C2 [0, 1],P, J) is a minimal Năımark
dilation for M. From this we see that M is of rank 2, i.e., the rank function
associated with M has the constant value 2.

We may now prove that M ∈ ext Obs(B[0, 1],H ) using the criterion given in
Theorem 3. Let D ∈ L

(
L2
C2 [0, 1]

)
be decomposable so that (Dη)(s) = D(s)η(s)

for all η ∈ L2
C2 [0, 1] and a.a. s ∈ [0, 1] where D(s) are bounded operators on C2.

Denote 〈j|D(·)|k〉 = dj,k ∈ L∞[0, 1] for j, k = 0, 1. One has

〈Je2n+j |DJe2m+k〉 =

∫ 1

0

〈s,m− n〉dj,k(s) ds = d̂j,k(m− n)

for all m, n = 0, 1, 2, . . . and j, k = 0, 1, where d̂j,k is the Fourier transform
(which, in this case, is a sequence on Z) of dj,k. It follows immediately that

J∗DJ = 0 if and only if d̂j,k = 0 for j, k = 0, 1, i.e., D = 0. Thus, M ∈
ext Obs(B[0, 1],H ).

Let us briefly discuss the structure of extreme discrete instruments. Let N ∈
{1, 2, . . .}∪{∞} and denote by InsN (H ,K ) the set of N -outcome instruments
with the input Hilbert space H and output Hilbert space K . Whenever Γ ∈
InsN (H ,K ), we denote Γ = (Γj)

N
j=1 where Γj = Γ({j}, ·). Assume that Γ ∈

InsN (H ,K ) and, for each j, the operation Γj has the minimal set {Kjn}
rj
n=1

of Kraus operators; here rj is the rank of the outcome j. It follows that Γ ∈
ext InsN (H ,K ) if and only if the set

{K∗jmKjn ∈ L (H ) | 1 ≤ m, n < rj + 1, 1 ≤ j < N + 1}
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is strongly independent.

3.1.2 Extreme observables in finite dimensions

Let us concentrate on N -outcome observables, N < ∞, operating in a Hilbert
space H , dim H =: d < ∞, the set of which is here denoted by ObsN (H ).
For each M ∈ ObsN (H ), we write M = (Mj)

N
j=1 where Mj = M({j}). In fact,

as pointed out, e.g., in [17, 18, 30], an extreme observable operating on a d-
dimensional (d <∞) Hilbert space is always supported by a subset of values of
cardinality lower than or equal to d2, and hence observables in finite dimensions
are essentially finite valued. Suppose that M ∈ ObsN (H ) and

Mj =

rj∑
n=1

|ϕjn〉〈ϕjn|, j = 1, . . . , N,

where ϕjn, n = 1, . . . , rj , are the non-normalized eigenvectors of Mj and rj is
the rank of Mj . Theorem 3 implies that M ∈ ext ObsN (H ) if and only if the
set

{|ϕjm〉〈ϕjn| |m, n = 1, . . . , rj , j = 1, . . . , N}

is linearly independent, a result found earlier also in [21, 64]. It follows that a
rank-1 observable M is extreme if and only if its effects M1, . . . , MN are linearly
independent.

Let us consider an example of a finite-outcome extreme observable in the
case where d = 4 and N = 3. We define the observable M ∈ Obs3(C4) through

Mj =
1

3

(
1 + ωj3(|1〉〈3|+ |2〉〈4|) + ωj3(|3〉〈1|+ |4〉〈2|)

)
, j = 1, 2, 3,

where ω3 = ei2π/3 and {|1〉, |2〉, |3〉, |4〉} is an orthonormal basis of C4. Using
the above extremality condition, it can be shown that M is extreme [30]. M is
neither sharp nor rank-1; in fact, all the effects Mj of M are of rank 2.

Furthermore, in [30], a way of implementing any M ∈ ObsN (H ) from a
restricted subset of observables was established. Certainly, the extreme observ-
ables determine the rest in the way implied by the Choquet theorem, but we can
say something more. Let us consider a particular kind of post-processing. We fix
positive integers M and N and a function f : {1, . . . , N} → {1, . . . , M}. Now,
pick M ∈ ObsN (H ) so that we may define the observable Mf ∈ ObsM (H )
through

Mf
k =

∑
j∈f−1(k)

Mj , k = 1, . . . , M.

We call such an observable Mf a relabeling of M with f ; Mf is obtained by
switching and possibly combining the outcomes of M. The following result from
[30] says that the rank-1 extreme observables are essentially enough to generate
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the other observables through simple classical manipulation of their outcome
statistics.

Theorem 4. Any M ∈ ObsN (H ) can be obtained by relabeling and mixing
rank-1 extreme observables from Obsd2(H ).

This result is rather intuitive since all other observables can be obtained
by classical post-processing from the rank-1 elements and the mixtures of ex-
treme observables generate the whole set of observables. Thus extreme rank-1
observables can be expected to be the most informative class of observables.

For any M ∈ ObsN (H ), we denote by rj(M) the rank of the jth atomary
effect Mj . In addition to the baseline requirement r1(M) + · · · + rN (M) ≥ d
satisfied by all observables, an extreme observable M ∈ ext ObsN (H ) must
conform at least to the two additional conditions:

(i) r1(M)2 + · · ·+ rN (M)2 ≤ d2,

(ii) whenever j 6= k, then rj(M) + rk(M) ≤ d.

Note that the condition (i) above is a direct corollary of the extremality criterion
for observables in ObsN (H ) stated in the beginning of this section; the number
of operators required to be linearly independent is r1(M)2 + · · ·+ rN (M)2. The
condition (ii) is proven in [21, Corollary 3]. However, it is yet unclear whether for
any rank combination (rj)

N
j=1 such that r1 +· · ·+rN ≥ d, r2

1 +· · ·+r2
N ≤ d2, and

rj + rk ≤ d for any j, k = 1, . . . , N , j 6= k, there exists an extreme observable
M ∈ ext ObsN (H ) such that rj = rj(M), j = 1, . . . , N . However, in [30], it
was shown that, for any N = d, . . . , d2, there exist extreme rank-1 observables
M ∈ ext ObsN (H ) with no 0-outcomes.

3.2 Extremality and compatibility

In this section we elucidate a link between extremality and compatibility prop-
erties of quantum devices. We first express the essential result obtained in [31]
in the general picture involving the generalized device sets CP(A ; H ). The
same results apply to the set NCP(A ; H ). We fix the von Neumann algebras
A and B and the Hilbert space H that does not have to be separable.

When Ψ ∈ CP(A ⊗ B; H ), we may define the margins of Ψ, Ψ(1) ∈
CP(A ; H ) and Ψ(2) ∈ CP(B; H ), through

Ψ(1)(a) = Ψ(a⊗ 1B), Ψ(2)(b) = Ψ(1A ⊗ b) (3.2)

for all a ∈ A and b ∈ B. On the other hand, when Φ1 ∈ CP(A ; H ) and
Φ2 ∈ CP(B; H ) are margins of a map Ψ ∈ CP(A ⊗B; H ), i.e., Φ1 = Ψ(1)

and Φ2 = Ψ(2), we say that Φ1 and Φ2 are compatible and Ψ is a joint map for
Φ1 and Φ2. If maps are not compatible, they are incompatible. One can show
the following [31]:
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Theorem 5. Let Φ1 ∈ CP(A ; H ) and Φ2 ∈ CP(B; H ) be compatible.

(a) If Φ1 ∈ ext CP(A ; H ) or Φ2 ∈ ext CP(B; H ), the joint map for Φ1 and
Φ2 is unique.

(b) If both Φ1 ∈ ext CP(A ; H ) and Φ2 ∈ ext CP(B; H ), the unique joint
map for Φ1 and Φ2 is extreme in CP(A ⊗B; H ).

(c) If Φ1 or Φ2 is a *-representation, then Φ1 and Φ2 have to commute
(Φ1(a)Φ2(b) = Φ2(b)Φ1(a) for all a ∈ A and b ∈ B) and the unique
joint map Ψ for Φ1 and Φ2 is given by

Ψ(a⊗ b) = Φ1(a)Φ2(b), a ∈ A , b ∈ B.

The definition of compatibility for CP maps given above generalizes the
notion of compatibility (but not coexistence of observables) for quantum devices
presented separately for different quantum structures in Section 2.2. For an
instrument Γ ∈ Ins(Σ,H ,K ) associated with the map G ∈ NCP

(
L∞(µ) ⊗

L (K ); H
)

according to (3.1), e.g., the margins are given by the conditions

tr[ρG(χX ⊗ 1K )] = tr[Γ(X, ρ)] = tr[ρMΓ(X)],

tr[ρG(1⊗B)] = tr[Γ(Ω, ρ)B] = tr[EΓ(ρ)B]

for all ρ ∈ S (H ), X ∈ Σ, and B ∈ L (K ), where MΓ ∈ Obs(Σ,H ) and
EΓ ∈ Ch(H ,K ) are the observable and channel associated with the instrument
Γ as explained in Section 2.2 and 1 is the constant function ω 7→ 1. Thus
Theorem 5 yields immediate results for quantum compatibility related questions.
Some of the corollaries are well known; e.g., the results concerning compatibility
properties of sharp observables with other quantum devices mentioned in Section
4.2.2 can be seen as corollaries of the item (c) of Theorem 5. Moreover, the basic
result stating that, if either one of the partial traces ρ1 or ρ2 of a bipartite state
ρ is pure, then ρ = ρ1 ⊗ ρ2, follows directly from this result.

The more novel insights provided by Theorem 5 include the following: If the
observables M and N are compatible and either one is extreme, then they have a
unique joint observable, and if both of them are extreme, this joint observable is
extreme as well. Similarly, if an observable M and a channel E are compatible
and either one is extreme, then their joint instrument is unique, and if both
devices are extreme, so is their joint instrument.

We may also give a corollary concerning a particular class of channels. Let us
fix the Hilbert spaces H1, H2, K1, and K2 and study channels E ∈ Ch(H1 ⊗
H2,K1 ⊗K2) between the joint systems described by H1 ⊗H2 and K1 ⊗K2.
Such a channel E is called causal or non-signalling, if there are E1 ∈ Ch(H1,K1)
and E2 ∈ Ch(H2,K2) such that

trK2 [E (ρ⊗ σ)] = E1(ρ), trK1 [E (ρ⊗ σ)] = E2(σ)
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for all ρ ∈ S (H1) and σ ∈ S (H2). The above condition can also be stated in
the dual form E ∗(A⊗1K2) = E ∗1 (A)⊗1H2 for allA ∈ L (K1) and E ∗(1K1⊗B) =
1H1 ⊗ E ∗2 (B) for all B ∈ L (K2). A particular class of causal channels consists
of the local channels E = E1⊗E2, i.e. E (ρ⊗σ) = E1(ρ)⊗E2(σ) for all ρ ∈ S (H1)
and σ ∈ S (H2), but there are much more causal channels, even outside the
convex hull of the set of local channels [2, 20, 24]. However, according to [31],
already when either E1 or E2 is extreme, then the causal channel E is local:

Theorem 6. If either of the subchannels E1 ∈ Ch(H1,K1) or E2 ∈ Ch(H2,K2)
of a causal channel E ∈ Ch(H1 ⊗H2,K1 ⊗K2) is extreme, then E = E1 ⊗ E2.

3.2.1 Extremality and coexistence

Extremality also clarifies the relations between coexistent observables. When
observables M and N are coexistent with a mother observable G, i.e., ranM ∪
ranN ⊂ ranG, there is typically no computable connection, let alone classical
connection given by post-processing, between the outcome statistics of M and N
or between the statistics of either of these and that of the mother G as shown by
a simple counter-example in [73]. When any one of the observables involved is
extreme, the statistical connection can be recovered, however, and coexistence
implies joint measurability. The following results have been proven in [29].

Theorem 7. Assume that (Ω,Σ) and (Ω′,Σ′) are standard Borel spaces and
(Ω,Σ) is any measurable space. Let M ∈ Obs(Σ,H ) and N ∈ Obs(Σ′,H ) be
coexistent with a mother observable G ∈ Obs(Σ,H ).

(a) If M (or N) is discrete and extreme, then M and N are jointly measurable.

(b) If G is extreme, then M and N are post-processings of G in the way that
there are measurable functions f : Ω → Ω and g : Ω → Ω′ such that
M = G ◦ f−1 and N = G ◦ g−1 and, consequently, M and N are jointly
measurable.

The preceding theorem generalizes the corresponding well-known results in-
volving sharp observables. The assumption on discreteness in item (a) of the
claim is, however, an additional assumption that remains to be lifted. To give
a taste how extremality can be used to recover the classical connection between
coexistent observables, let us look closer at the situation in item (b) of the above
theorem. Let (M ,P, J) be a minimal Năımark dilation of the extreme observ-
able G, i.e., M is a Hilbert space, P ∈ Obs(Σ,M ) is a PVM and J : H →M
is an isometry such that G(Z) = J∗P(Z)J for all Z ∈ Σ and vectors P(Z)Jϕ,
Z ∈ Σ, ϕ ∈ H , span a dense subspace of M . Since ranM ⊂ ranG, it follows
that there is a function Σ 3 X 7→ ZX ∈ Σ such that M(X) = G(ZX) for all
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X ∈ Σ. Pick now a disjoint sequence (Xj)j ⊂ Σ, any N ∈ N, and define

P(Z∪Nj=1Xj
)−

N∑
j=1

P(ZXj ) =: DN ∈ (ranP)′.

One has J∗DNJ = M(∪Nj=1Xj) −
∑N
j=1 M(Xj) = 0 so that DN = 0 according

to Theorem 3. Hence,
∑N
j=1 P(ZXj ) = P(Z∪Nj=1Xj

) ≤ 1M implying that the

sequence of finite sums
∑N
j=1 P(ZXj ), N = 1, 2, . . ., is increasing (since the

summands are positive) and bounded from above by the identity, and thus the

weak limit w−limN→∞
∑N
j=1 P(ZXj ) :=

∑
j P(ZXj ) bounded from above by the

identity exists. Now, writing D = P(Z∪jXj )−
∑
j P(ZXj ), a similar calculation

as above shows that D = 0 implying the σ-additivity of X 7→ P(ZX). Similarly,
P(ZΩ) = 1M and, hence, the map X 7→ P(ZX) is a PVM that has P as its
mother. If Σ′ 3 Y 7→WY ∈ Σ is such that N(Y ) = G(WY ) for all Y , it, likewise,
follows that Y 7→ P(WY ) is a PVM with the same mother P. It is immediate
that these two new PVMs are jointly measurable from which we deduce that M
and N are jointly measurable. Since the PVMs X 7→ P(ZX) and Y 7→ P(WY )
have the sharp mother P, there are functions f : Ω → Ω and g : Ω → Ω′ such
that X 7→ ZX is essentially the pre-image map f−1 : Σ → Σ and Y 7→ WY

coincides essentially with g−1 [50, Theorem 3.5] and the claim of the item (c)
follows.
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Chapter 4

Extreme covariant quantum
devices

Until now, we have concentrated on global properties of the essential quantum
structures. The reality is, however, often that we have access only to a restricted
class of devices or it is physically feasible only to study devices with particular
interesting properties. Symmetry is one such property, and in this chapter we
study the structure and extreme points of covariance structures, i.e., classes of
covariant quantum devices. The theorems of this chapter have been proven in
the articles accompanying this thesis which is why the proofs are not included
in this chapter. Note, however, that the results of Section 4.2.3 have not ap-
peared in any publication and thus they are accompanied by proofs. For basic
definitions for representations, see the short introduction given in Section 2.0.3.

In order to define covariance in quantum framework, let us fix a group G and
a Hilbert spaces H and K . We also pick a projective unitary representation
U : G → U (H ) with the associated multiplier m : G × G → T. Similarly, we
pick another projective representation V : G → U (K ). Let us assume that
G acts measurably on a measurable space (Ω,Σ), i.e., there is a map G × Ω 3
(g, ω) 7→ g · ω ∈ Ω such that the map ω 7→ g · ω is Σ-measurable for all g ∈ G
and (gh) · ω = g · (h · ω) for all g, h ∈ G and ω ∈ Ω.

We concentrate on covariant instruments and observables. We define InsVU (Σ)
as the set of those Γ ∈ Ins(Σ,H ,K ) such that

Γ
(
g ·X,U(g)ρU(g)∗

)
= V (g)Γ(X, ρ)V (g)∗

for all g ∈ G, X ∈ Σ, and ρ ∈ S (H ). Often the σ-algebra Σ is evident from
the context (e.g., the Borel σ-algebra of a topological space), in which case
we often simplify our notations and write InsVU (Σ) = InsVU (Ω). Similarly, for
observables, we denote by ObsU (Σ) or by ObsU (Ω), if the σ-algebra is evident
from the context, the set of those M ∈ Obs(Σ,H ) such that

M(g ·X) = U(g)M(X)U(g)∗, g ∈ G, X ∈ Σ.

41
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A typical example of covariant observables are the covariant phase space
observables, where H = L2(R), Ω = R2 (equipped with the Borel σ-algebra
associated with the natural topology of R2), G = R2, and the representation is
the Weyl representation W of R2, i.e.,(

W (q, p)ϕ
)
(x) = eiqp/2eipxϕ(x+ q)

for all q, p ∈ R, ϕ ∈ L2(R), and a.a. x ∈ R. Any covariant phase space
observable M ∈ ObsW (R2) has the structure

M(X) =
1

2π

∫
X

W (q, p)TW (q, p)∗ dq dp, X ∈ B(R2), (4.1)

where T is a positive trace-class operator on L2(R) of trace 1. For other examples
on covariance in quantum measurements and preliminaries for the techniques
involved in the study of covariance structures we refer to [41, 42, 43, 44, 59, 61].
Covariant observables and the extreme points of covariance structures in the
case of finite-dimensional Hilbert spaces are studied particularly in [14, 15]. For
theory related with (covariant) sesquilinear-form-valued maps on modules, see,
e.g., [28, 65, 70].

Systems of imprimitivity and the imprimitivity theorem are of paramount
importance in the study of covariance structures. Let us assume that G is a
locally compact group with a closed subgroup H ≤ G and π is an ordinary
strongly continuous representation of H on a Hilbert space Kπ. We equip
G/H (the space of left cosets) with the topology induced by that of G and the
associated Borel σ-algebra. The group G acts naturally on G/H as g · (g′H) =
gg′H for all g, g′ ∈ G and we assume that µG/H is a strongly quasi-invariant
measure on the Borel σ-algebra of G/H, i.e., the translated measures µg : X 7→
µG/H(g · X) are mutually absolutely continuous with respect to µG/H with
continuous Radon-Nikodým derivatives dµg/dµG/H =: ρg. We denote gH = g
for all g ∈ G. Let K0 be the vector space of continuous functions f : G → Kπ

such that the projected support {g | f(g) 6= 0} ⊂ G/H is relatively compact and
f(gh) = π(h)∗f(g) for all g ∈ G and h ∈ H and let us define the inner product
〈·|·〉 on K0:

〈f |f ′〉 =

∫
G/H

〈f(g)|f ′(g)〉 dµG/H(g), f, f ′ ∈ K0.

Note that the above integrand is constant as a function of g on all cosets of
G/H. We define the unitary operators Vπ(g), g ∈ G, on K0 through(

Vπ(g)f
)
(g′) =

√
ρg(g′H)f(g−1g′), g, g′ ∈ G.

Denote by Kπ the Hilbert space completion of K0 with respect to the above
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inner product. The operators Vπ(g) can be extended into unitary operators on
Kπ giving rise to a strongly continuous unitary representation Vπ : G→ U (Kπ)
which is called as the representation induced by π and the induction H → G
and it is often denoted Vπ = indGH π. One can also define the spectral measure
Pπ : B(G/H)→ L (Kπ),(

Pπ(X)f)(g) = χX(g)f(g), X ∈ B(G/H), g ∈ G.

The triple (Kπ,Pπ, Vπ) is called as the canonical system of imprimitivity associ-
ated with π and the induction H → G. Note that Pπ ∈ ObsVπ (G/H). For more
on the inducing construction and its uses, we refer to [59] and for a contempo-
rary view [25, Chapter 6]. The inducing construction can be generalized also
for projective unitary representations [60] but, for simplicity, we concentrate on
ordinary representations. Moreover, in the more detailed examples we study in
sections 4.2.1 and 4.2.2, the symmetry groups G involved are locally compact
second countable unimodular type-I Hausdorff groups, in which case the exis-
tence of truly G-invariant measures on transitive G-spaces is guaranteed which
further simplifies the inducing construction (the density functions ρg coincide
a.e. with 1).

Let us assume that G is a lcsc (locally compact and second-countable) Haus-
dorff group and Ω is a lcsc transitive G-space which is Hausdorff; this means
essentially that there is a closed subgroup H ≤ G such that Ω is homeomorphic
with G/H. Suppose that U : G → U (H ) is an ordinary strongly continuous
unitary representation. According to [13, 25] for every M ∈ ObsU (Ω), there is a
Hilbert space K0, a strongly continuous unitary representation π : H → L (K0),
and an isometry Jπ : H → Kπ such that the triple (Kπ,Pπ, Jπ) is a minimal
Năımark dilation for M and JπU(g) = Vπ(g)Jπ for all g ∈ G.

4.1 Structure of covariant quantum devices

The discussion of this section can be generalized to the context of C∗-modules
and especially Hilbert C∗-modules or von Neumann modules as discussed in
[28, 69, 70], but we suppress generality for clarity. We fix a von Neumann algebra
A and a Hilbert space H . Moreover, G is a group and U : G → U (H ) is
a projective unitary representation. We also fix a G-action (a homomorphism)
G 3 g 7→ βg ∈ Aut(A ). We say that the action β is inner if there are unitaries
u(g) ∈ A , g ∈ G, such that βg(a) = u(g)au(g)∗ for all g ∈ G; in this case, the

map g 7→ u(g) is, essentially, a projective representation. Let us define NCPβ
U

as the set of those Φ ∈ NCP(A ; H ) such that

(Φ ◦ βg)(a) = U(g)Φ(a)U(g)∗, g ∈ G, a ∈ A .

One can prove the following [28]:
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Theorem 8. Assume that Φ ∈ NCPβ
U . When (M , π, J) is a minimal Stine-

spring dilation for Φ, there is a projective unitary representation Ũ : G →
U (M ) such that JU(g) = Ũ(g)J and Ũ(g)π(a) = (π ◦βg)(a)Ũ(g) for all g ∈ G
and a ∈ A . If the action β is inner, βg(a) = u(g)au(g)∗, there is also a projec-

tive unitary representation U : G → U (M ), U(g) = π(u∗g)Ũ(g) for all g ∈ G,

such that (π ◦ u)(g)JU(g) = U(g)J and U(g)π(a) = π(a)U(g) for all g ∈ G and
a ∈ A .

We call quadruples (M , π, Ũ , J) and (M , π, U, J) of Theorem 8 as (β, U)-

covariant dilations of Φ ∈ NCPβ
U , where the latter one we call as the covariant

dilation associated with an inner action. This latter one is particularly impor-
tant in the study of covariant instruments and observables. Note that Theorem
8 in the form presented above has been proven in different forms and levels of
abstraction in multiple publications; see, e.g., [44, 74]. Especially this result for
covariant POVMs has been presented in [13] and the case of covariant observ-
ables and instruments has been dealt with in [16]. However, the original form

of this result presented in [28] is considerably more abstract. The set NCPβ
U is

convex and the following result characterizes its extreme points [28]:

Theorem 9. Let (M , π, Ũ , J) be a (β, U)-covariant dilation for Φ ∈ NCPβ
U .

One has Φ ∈ ext NCPβ
U if and only if the map Ũ(G)′ ∩ π(A )′ 3 D 7→ J∗DJ ∈

L (H ) is an injection. Again, D ′ is the commutant of the set D of operators.

The representation Ũ in the above theorem can be replaced by the represen-
tation U of Theorem 8 in the case of an inner action. Indeed, in this case the
commutants Ũ(G)′ ∩ π(A )′ and U(G)′ ∩ π(A )′ coincide.

Let now G be a lcsc Hausdorff group and Ω a lcsc Hausdorff Borel G-space
so that Ω = G/H with a closed subgroup H ≤ G. Also fix the Hilbert spaces
H and K and the ordinary strongly continuous unitary representations U :
G→ U (H ) and V : G→ U (K ). One has the following corollary for covariant
instruments [9, 28]. Note that Γ̃ stands for the dual instrument for an instrument
Γ as defined in the beginning of Section 3.1.1.

Corollary 1. Pick Γ ∈ InsVU (Ω). There is a Hilbert space K0, a strongly
continuous unitary representation π : H → U (K0), and hence the canonical
system (Kπ,Pπ, Vπ) of imprimitivity, and an isometry Y : H → K ⊗ Kπ such
that

Γ̃(X,B) = Y ∗
(
B ⊗ Pπ(X)

)
Y, X ∈ B(Ω), B ∈ L (K ),

and Y U(g) =
(
V (g)⊗ Vπ(g)

)
Y for all g ∈ G and the linear span of the vectors(

B ⊗ Pπ(X)
)
Y ϕ, B ∈ L (K ), X ∈ B(Ω), ϕ ∈ H , is a dense subspace of

K ⊗ Kπ. One has Γ ∈ ext InsVU (Ω) if and only if for any A ∈ L (Kπ), defined
by a A0 ∈ L (K0) such that (Af)(g) = A0f(g) for all f ∈ Kπ and a.a. g ∈ G
and π(h)A0 = A0π(h) for all h ∈ H, the condition Y ∗(1K ⊗ A)Y = 0 implies
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A = 0. Furthermore, Γ ∈ ext Ins
(
B(Ω),H ,K

)
if and only if the map

(ranPπ)′ 3 D 7→ Y ∗(1K ⊗D)Y ∈ L (H )

is an injection.

4.2 Structure of covariant observables

Next, we take a look at the properties and general structure of covariant ob-
servables and the characterization of the extreme points of the corresponding
covariance structures. Two example cases are studied: observables whose sym-
metry group is a lcsc Abelian Hausdorff group and whose value space is an
arbitrary transitive space for the group and observables whose symmetry group
is a lcsc Hausdorff group of type I and whose value space is a transitive space
for the group associated with a compact stability subgroup. The decomposition
results exhibited briefly in Section 2.0.3 are used extensively especially in the
study of the latter case. Also an example concentrating on Euclidean-covariant
spin-0 localization observables is studied.

4.2.1 The case of an Abelian symmetry group

In this section, we study the structure and extreme points of the set of quantum
observables that are covariant with respect to an Abelian group G the value
space of which is a transitive G-space. Thus, we fix a lcsc Abelian Hausdorff
group G with a closed subgroup H ≤ G and denote Ω = G/H. Again, we
denote gH = g. The representation dual of G consisting of the characters
G → T is denoted by Ĝ that has the closed subgroup H⊥, the annihilator of
H, i.e., 〈h, η〉 = 1 for all η ∈ H⊥ whenever h ∈ H. Note that we treat Ĝ as an
additive group in our notation, i.e., 〈g, γ + γ′〉 = 〈g, γ〉〈g, γ′〉 for all g ∈ G and
γ, γ′ ∈ Ĝ. We fix the Haar measures µG, µΩ, and µH⊥ , where the last two are
chosen so that the Fourier-Plancherel operator F : L2(µΩ)→ L2(µH⊥),

(Fϕ)(η) =

∫
Ω

〈g, η〉ϕ(g) dµΩ(g), ϕ ∈ (L1 ∩ L2)(µΩ), η ∈ H⊥,

is unitary. Also the coset space Ĝ/H⊥ is of importance, and we denote γ+H⊥ =:
γ for all γ ∈ Ĝ.

We fix a strongly continuous unitary representation U : G→ U (H ) with H
being our system Hilbert space. Because of the SNAG-theory, there is a measure
νU : B(Ĝ) → R and a measurable field γ 7→ H (γ) of Hilbert spaces such that

H =
∫ ⊕
Ĝ

H (γ) dνU (γ) and
(
U(g)ϕ

)
(γ) = 〈g, γ〉ϕ(γ) for all g ∈ G, ϕ ∈H , and

a.a. γ ∈ Ĝ. The representations appearing in the covariant Năımark dilations
of U -covariant observables are induced from representations π : H → U (K0)
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with some Hilbert space K0. Such a representation is, likewise, associated with
a Borel measure νπ on Ĝ/H⊥ ' Ĥ and a measurable field γ 7→ K (γ) such that
K0 =

∫
Ĝ/H⊥

K (γ) dνπ(γ) and
(
π(h)ξ)(γ) = 〈h, γ〉ξ(γ) for all h ∈ H, ξ ∈ K0,

and a.a. γ ∈ Ĝ/H⊥.

Any measure ν : B(Ĝ/H⊥)→ R that is finite on compact sets gives rise to
a measure ν̃ : B(Ĝ)→ R such that∫

Ĝ

f dν̃ =

∫
Ĝ/H⊥

∫
H⊥

f(γ + η) dµH⊥(η) dν(γ)

for all compactly supported continuous functions f : Ĝ→ C.

One can show [12] that the covariance structure ObsU (Ω) is non-empty if
and only if there is a strongly continuous representation π : H → U (K0), where
K0 is a Hilbert space, associated with the canonical system of imprimitivity
(Kπ,Pπ, Vπ), and an isometry Jπ : H → Kπ such that JπU(g) = Vπ(g)Jπ for all
g ∈ G. When this is the case and νπ is the Borel measure on Ĝ/H⊥ associated
with π, one has νU � ν̃π. From now on, let us assume that ObsU (Ω) 6= ∅. Using
the preceding observation, we may henceforth assume that there is a fixed Borel
measure ν on Ĝ/H⊥ such that νU � ν̃, and, for simplicity, we may assume that
νU = ν̃.1

Whenever ϕ ∈H , we write

‖ϕγ‖1 =

∫
H⊥
‖ϕ(γ + η)‖ dνH⊥(η)

for ν-a.a. γ ∈ Ĝ/H⊥ whenever the integral exists. Let us denote by D the
subset of vectors ϕ ∈H such that∫

Ĝ/H⊥
‖ϕγ‖21 dν(γ).

This is a dense subspace of H [27]. Also note that D is invariant under U in
the sense that U(g)D ⊂ D for all g ∈ G. One can prove the following [12, 27]:

Theorem 10. Fix an infinite-dimensional separable Hilbert space M . For any
M ∈ ObsU (Ω) there is a decomposable isometry W =

∫ ⊕
Ĝ
W (γ) dν̃(γ) : H →

L2
M (ν̃), where W (γ) : H (γ) →M are isometries, such that defining Φ : D →

L2
M (ν) through

(Φϕ)(γ) =

∫
H⊥

W (γ + η)ϕ(γ + η) dνH⊥(η), ϕ ∈ D , γ ∈ Ĝ/H⊥,

1For otherwise, we could include the density function of νU with respect to ν̃ in the
component spaces H (γ).
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one can write

〈ϕ|M(X)ψ〉 =

∫
X

〈ΦU(g)∗ϕ|ΦU(g)∗ψ〉 dµΩ(g)

=

∫
X

∫
Ĝ/H⊥

∫
H⊥

∫
H⊥
〈g, ζ − ξ〉〈W (γ + ζ)ϕ(γ + ζ)|W (γ + ξ)ψ(γ + ξ)〉 ×

× dµH⊥(ζ) dµH⊥(ξ) dν(γ) dµΩ(g) (4.2)

for all ϕ, ψ ∈ D and X ∈ B(Ω); note that the integrands are independent of
the choice of representatives within cosets in Ω = G/H and Ĝ/H⊥. Moreover,
any M with this structure is an element in ObsU (Ω).

The covariance structure ObsU (Ω) contains sharp observables if and only
if the function γ 7→ dim H (γ) is µH⊥-essentially constant on each coset γ ∈
Ĝ/H⊥, and the M ∈ ObsU (Ω) like that above is sharp if and only if, for a.a.
γ ∈ Ĝ/H⊥ and a.a. γ1, γ2 ∈ γ, the operator W (γ2)∗W (γ1) : H (γ1) → H (γ2)
is unitary.

Note that the map Φ introduced in Theorem 10 is well defined on D . One
can show [27] that, given the decomposable isometry W : H → L2

M (ν̃) and
the associated Φ : D → L2

M (ν) of Theorem 10, the closure H ⊂ L2
M (ν) of the

image space Φ(D) is of the direct-integral form H =
∫ ⊕
Ĝ/H⊥

H(γ) dν(γ) with a

measurable field Ĝ/H⊥ 3 γ 7→ H(γ) ⊂ M of Hilbert spaces. Using this fact,
one can give the following extremality characterizations [27].

Theorem 11. Let M ∈ ObsU (Ω) be associated with the decomposable isometry
W and the linear map Φ as in Theorem 10. Also assume that the direct-integral
space H is defined as above. One has M ∈ ext ObsU (Ω) if and only if there is
no non-zero decomposable A ∈ L (H),

A =

∫ ⊕
Ĝ/H⊥

A(γ) dν(γ), A(γ) ∈ L (H(γ)), γ ∈ Ĝ/H⊥,

such that for ν-a.a. γ ∈ Ĝ/H⊥ and νH⊥-a.a. γ′ ∈ γ

W (γ′)∗A(γ)W (γ′) = 0.

Moreover, one has M ∈ ext Obs
(
B(Ω),H

)
if and only if there is no non-zero

decomposable D ∈ L
(
L2
H(µΩ)

)
, (Dη)(ω) = D(ω)η(ω), η ∈ L2

H(µΩ), ω ∈ Ω,
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such that for some measurable section s : Ω→ G (i.e., s(ω) ∈ ω for all ω ∈ Ω)

0 =

∫
Ω

〈Φ(U ◦ s)(ω)∗ϕ|D(ω)Φ(U ◦ s)(ω)∗ψ〉 dµΩ(ω)

=

∫
Ω

∫
Ĝ/H⊥

∫
H⊥

∫
H⊥
〈ζ − ξ, s(ω)〉 ×

× 〈W (γ + ζ)ϕ(γ + ζ)|D(ω)W (γ + ξ)ψ(γ + ξ)〉 ×
× dµH⊥(ξ) dµH⊥(ζ) dν(γ) dµΩ(ω)

for all ϕ, ψ ∈ D .

Using Theorems 10 and 11, one can construct extreme observables that are
not sharp. Consider, e.g., the time evolution U : R→ U

(
L2(R)

)
of a free non-

relativistic particle of mass m confined to a line given by U(t) = eitH0 , where
H0 = P 2/(2m) is the free Hamiltonian and P is the canonical momentum
operator defined through (Pϕ)(x) = −iϕ′(x) for all absolutely continuous ϕ ∈
L2(R) and a.a. x ∈ R. Because of the spectral structure of this representation,
U does not support any covariant sharp observables with value space R. Indeed,
one can define the unitary map L2(R) 3 ϕ 7→ ϕ̃ ∈ L2

C2 [0,∞) through

ϕ̃(ε) =

(
m

2ε

)1/4(
ϕ̂(
√

2mε), ϕ̂(−
√

2mε)
)
, ϕ ∈ L2(R), 0 ≤ ε <∞ (4.3)

such that
(
Ũ(t)ϕ

)
(ε) = eitεϕ̃(ε) for all t ∈ R, ϕ ∈ L2(R), and a.a. ε ∈ [0,∞).

Thus we can see that, according to Theorem 10, the spectral structure of the
time evolution does not allow covariant sharp observables, however, the covari-
ance structure ObsU (R) is non-empty.

The observables in ObsU (R) are called as time observables, and any such
observable is obtained by fixing a measurable field [0,∞) 3 ε 7→W (ε) of isome-
tries W (ε) : C2 → M , where M is a fixed infinite-dimensional Hilbert space
and constructing the operator Φ as in Theorem 10. Note that, in this case, the
stability subgroup H is trivial. Picking two orthonormal vectors ζ0, ζ1 ∈ M
and fixing W (ε)|n〉 = ζn for n = 0, 1 and all ε ∈ [0,∞), where {|0〉, |1〉} is the
natural basis of C2 in which the vector ϕ(ε) is given in (4.3), one arrives at the
canonical time observable τ given by

〈ϕ|τ(X)ψ〉 =
1

2πm

∫
X

∫ ∞
0

∫ ∞
0

e
it

2m (p2
2−p

2
1)
(
ϕ̂(p1)ψ̂(p2) + ϕ̂(−p1)ψ̂(−p2)

)
×

× √
p1p2 dp2 dp1 dt (4.4)

for all X ∈ B(R) and all ϕ and ψ in the Schwartz space of rapidly decreasing
functions. It is immediate that τ ∈ ext ObsU (R) but τ is an extreme point of
the whole set Obs

(
B(R), L2(R)

)
of R-valued observables as well [27]. Compare
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this result with the earlier finding stating that the canonical phase observable
is extreme [36].

4.2.2 The case of a compact stability subgroup

This section deals with instruments and observables whose value space Ω is a
transitive G-space for a symmetry group G such that the stability subgroup
of G for each point in Ω is compact. It is yet unclear whether this technical
assumption on compactness of the stability subgroup can be removed.

For the duration of this section, we fix a separable Hilbert space H and a
unimodular lcsc type-I group G which is Hausdorff. Let H ≤ G be a compact
subgroup and denote the space G/H of left H-cosets by Ω which we endow with
the Borel σ-algebra B(Ω) generated by the topology induced by G. We also pick
Haar measures µG and µH for G and H, respectively, and assume, for simplicity,
that µH is normalized, i.e., µH(H) = 1. We also choose the G-invariant Borel
measure µΩ on Ω such that for each f ∈ L1(µG),∫

G

f dµG =

∫
Ω

∫
H

f(gh) dµH(h) dµΩ(g).

We denote the Plancherel measure on B(Ĝ) defined by µG by µĜ. Let us

pick a representative πγ for each γ ∈ Ĝ with the representation space K (γ).
Denote 1K (γ) =: 1(γ). We denote the antilinear dual space of K (γ) by K (γ)∗

and set up a bijection K (γ) 3 ζ 7→ ζ∗ ∈ K (γ)∗ where ζ∗(ξ) = 〈ζ|ξ〉 for all
γ ∈ Ĝ and ζ, ξ ∈ K (γ). Note that the space K (γ)∗ ⊗K (γ) can be identified
with the Hilbert space of Hilbert-Schmidt operators on K (γ). Let us define

measurable vector fields γ 7→ ej(γ), j = 1, 2, . . ., where {ej(γ)}dim K (γ)
j=1 is an

orthonormal basis for K (γ) whenever n(γ) := dim K (γ) > 0 and ej(γ) = 0
whenever j > n(γ).

Let us fix a strongly continuous unitary representation U : G → U (H ).
The type-I property of G insures that there is a Borel measure µU on Ĝ and
a measurable field γ 7→ L (γ) of Hilbert spaces such that H =

∫ ⊕
Ĝ

K (γ) ⊗
L (γ) dµU (γ) and for all g ∈ G, ϕ ∈H , and µU -a.a. γ ∈ Ĝ(

U(g)ϕ
)
(γ) =

(
πγ(g)⊗ 1L (γ)

)
ϕ(γ).

It turns out that if the covariance structure ObsU (Ω) is non-empty, one has
µU � µĜ. This is exactly our assumption and, from now on, we simply assume
that µU = µĜ. The following structure result for U -covariant observables with
values in Ω giving a generalization for the results obtained in [8, 45] is proved
in [28].

Theorem 12. There is a dense subspace D ⊂ H that is U -invariant in the
sense that U(g)D ⊂ D for all g ∈ G such that for each M ∈ ObsU (Ω) there is a
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separable Hilbert space H, a linear map Φ : D → H whose image Φ(D) is total
in H, and a strongly continuous unitary representation ρ : H → U (H) such
that ΦU(h) = ρ(h)Φ for all h ∈ H and

〈ϕ|M(X)ψ〉 =

∫
X

〈ΦU(g)∗ϕ|ΦU(g)∗ψ〉 dµΩ(g) (4.5)

for all ϕ, ψ ∈ D and X ∈ B(Ω). The map Φ has the following structure: there
are measurable fields γ 7→ Φj(γ), j = 1, 2, . . ., of operators Φj(γ) : L (γ) → H
such that ∑

j

Φj(γ)∗Φj(γ) = 1L (γ) (4.6)

for a.a. γ ∈ Ĝ and, defining for a.a. γ ∈ Ĝ the operator Φ(γ) =
∑
j ej(γ)∗ ⊗

Φj(γ),

Φϕ =

∫
Ĝ

Φ(γ)ϕ(γ) dµĜ(γ), ϕ ∈ D .

For a covariant observable M like that above, one has M ∈ ext ObsU (Ω) if and
only if for an operator A ∈ L (H) the conditions ρ(h)A = Aρ(h) for all h ∈ H
and ∑

j

Φj(γ)∗AΦj(γ) = 0

for a.a. γ ∈ Ĝ imply A = 0.

Let the observable M ∈ ObsU (Ω) and the representation ρ : H → U (H) be
as in the theorem above. The decomposition obtained for M above implies that
the canonical system of imprimitivity (Kρ,Pρ, Vρ) together with an isometry
J : H → Kρ constitutes a minimal Năımark dilation for M. The isometry J is
defined through (Jϕ)(g) = ΦU(g)∗ϕ for all ϕ ∈ D .

4.2.3 Example: Euclidean-covariant observables of a spin-
0 object

Let us concentrate on a more detailed example on the results exhibited in The-
orem 12. Consider an elementary spin-0 object whose relevant Hilbert space
is L2(R3). Denote by E the semidirect product group R3sSO(3), where the
normal subgroup {0} × SO(3) ' SO(3) operates on R3 in the natural way, i.e.,
the group law is given by

(x, R)(y, S) = (x +Ry, RS), (x, R), (y, S) ∈ E .

The group E is the Euclidean group of rigid motions in a three-dimensional
Euclidean space.
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We study the Euclidean covariant observables of our spin-0 object with the
value space R3; such observables could be considered as approximate localization
observables. In the case of half-integer spin, one should consider the covering
group of E , instead. However, in our simple spin-0 case, the relevant symmetry
action for our object is provided by the representation U : E → U

(
L2(R3)

)
,(

U(a, R)ϕ
)
(x) = ϕ

(
RT (x− a)

)
for all (a, R) ∈ E , ϕ ∈ L2(R3), and a.a. x ∈ R3, and the covariance structure
under study is ObsU (R3), i.e., the value space is the coset space R3 ' E /

(
{0}×

SO(3)
)
.

The character group of the subgroup R3 is denoted by P3 and, as usual, we
identify P3 ' R3. We denote the unit ball in P3 by S2 where the group SO(3)
operates transitively. The SO(3)-space S2 possesses the invariant measure that
in spherical coordinates (ϕ, ϑ) reads sinϑ dϕdϑ; the associated L2-space on S2

we denote simply as L2(S2). We denote elements in S2 (unit vectors) as p̂. We
may define the irreducible unitary representations πr, r > 0, of E in L2(S2),
e.g., using the Mackey machine [25] through(

πr(a, R)η
)
(p̂) = e−ira·p̂η(RT p̂)

for all (a, R) ∈ E , η ∈ L2(S2), and a.a. p̂ ∈ S2. Define the unitary map
L2(R3) 3 ϕ 7→ ϕ̃ ∈ L2

(
[0,∞), r2 dr;L2(S2)

)
, where for a.a. r > 0 the vector

ϕ̃(r) is the function p̂ 7→ ϕ̂(rp̂) where, in turn, ϕ̂ is the Fourier-Plancherel
transform for ϕ ∈ L2(R3), i.e., whenever ϕ ∈ (L1 ∩ L2)(R3),

ϕ̂(p) = (2π)−3/2

∫
R3

e−ip·xϕ(x) dx

for a.a. p ∈ P3. It is simple to check that( ˜U(a, R)ϕ
)
(r) = πr(a, R)ϕ̃(r)

for all (a, R) ∈ E , ϕ ∈ L2(R3), and a.a. r > 0, i.e., we have decomposed the
representation U into its irreducible components. Note that the multiplicity
spaces L (r) are now one-dimensional.

Fix an infinite-dimensional Hilbert space M and the orthonormal basis for
L2(S2) consisting of the spherical harmonic functions Ylm, l = 0, 1, 2, . . ., m =
−l, . . . , l,

Ylm(ϕ, ϑ) = (−1)m

√
2l + 1

4π

(1− |m|)!
(1 + |m|)!

P
|m|
l (cosϑ)eimϕ,

given in the spherical coordinates, 0 ≤ ϕ < 2π, 0 ≤ ϑ ≤ π, where Pnl : [−1, 1]→
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R, l = 0, 1, 2, . . ., n = −l, . . . , l, are the associated Legendre polynomials given
by

Pnl (t) = (−1)l+n
(l + n)!

(l −m)!
(1− t2)−n/22ll!

dl−m

dtl−m
(
(1− t2)l

)
.

Define the projections

Pl =
l∑

m=−l

|Ylm〉〈Ylm|

for all l = 0, 1, 2, . . .. Also define for each r > 0 the representation Dr : R3 →
L
(
L2(S2)

)
,
(
Dr(a)η

)
(p̂) = e−ira·p̂η(p̂) and denote by Cc(R3) the subspace of

continuous and compactly supported members of L2(R3). We are now ready to
characterize all covariant observables M ∈ ObsU (R3) using the template given
in Theorem 12.

Theorem 13. For each M ∈ ObsU (R3) there are measurable fields ξl : (0,∞)→
M , l = 0, 1, 2, . . ., such that for a.a. r > 0

∞∑
l=0

(2l + 1)‖ξl(r)‖2 = 1 (4.7)

and

〈ϕ|M(X)ψ〉 =
1

2π2

∫
X

∫ ∞
0

∫ ∞
0

∞∑
l=0

〈ξl(r1)|ξl(r2)〉 ×

× 〈Dr1(a)∗ϕ̃(r1)|PlDr2(a)∗ψ̃(r2)〉r2
1r

2
2 dr1 dr2 da (4.8)

for all ϕ, ψ ∈ Cc(R3) and X ∈ B(R3).

Proof. Since the multiplicities of the irreducible components of U are all 1, we
can give the maps Φ(r) : L2(S2)→M , r > 0, of Theorem 12 in the form

Φ(r)η =
∞∑
l=0

l∑
m=−l

〈Ylm|η〉ζlm(r) (4.9)

for all r > 0 and η ∈ L2(S2), where ζlm : [0,∞) → M are measurable vec-
tor fields. Let us define K(r1, r2) = Φ(r1)∗Φ(r2) for r1, r2 > 0, so that the
invariance condition of Theorem 12 translates as

K(r1, r2)πr2(0, R) = πr1(0, R)K(r1, r2), r1, r2 > 0, R ∈ SO(3). (4.10)

Define the representation L : SO(3) → U
(
L2(S2)

)
through

(
L(R)η

)
(p̂) =

η(RT p̂) for all R ∈ SO(3), η ∈ L2(S2) and a.a. p̂ ∈ S2. It follows immediately
that the condition (4.10) is equivalent to K(r1, r2) being L-invariant. Since
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L =
⊕∞

l=0 ρl where ρl : SO(3) → L
(
PlL

2(S2)
)

are the (odd-dimensional)
irreducible representations of SO(3), it follows that

K(r1, r2) =
∞∑
l=0

αl(r1, r2)Pl, r1, r2 > 0, (4.11)

where αl(r1, r2) are complex numbers.

Comparing (4.9) with (4.11), one finds that ζjk(r1) ⊥ ζlm(r2) whenever
j 6= l or k 6= m and 〈ζlm(r1)|ζlm(r2)〉 does not depend on m = −l, . . . , l.
Defining ξl(r) := ζll(r), it is easy to check that the condition (4.6) equals (4.7),
since the operators Φlm(r) on the trivial multiplicity spaces are of the form
1 7→ ζlm(r) = ξl(r). The equation

〈ϕ|M(X)ψ〉 =

∫
X

∫ ∞
0

∫ ∞
0

〈πr1(a,13)∗ϕ̃(r1)|K(r1, r2)πr2(a,13)∗ψ̃(r2)〉 ×

× r2
1r

2
2 dr1 dr2 da

for all ϕ, ψ ∈ Cc(R3) and X ∈ B(R3) now implies (4.8).

We did not deal with extremality within ObsU (R3) in the preceding theorem
since determining the representation ρ of the subgroup {0} × SO(3) ' SO(3)
such that ΦU(0, R) = ρ(R)Φ is a bit tricky. However, let us briefly study a fam-
ily of Euclidean covariant observables that are extreme points of this covariance
structure. For each l = 0, 1, 2, . . . define Ml ∈ ObsU (R3) determined in (4.8)
with a single non-zero constant vector field ξl(r) = ξ such that ‖ξ‖ = (2l+1)−1/2,
i.e.,

〈ϕ|Ml(X)ψ〉 =
1

2π2(2l + 1)

∫
X

∫ ∞
0

∫ ∞
0

〈Dr1(a)∗ϕ̃(r1)|PlDr2(a)ψ̃(r2)〉 ×

× r2
1r

2
2 dr1 dr2 da

for all ϕ, ψ ∈ Cc(R3) and X ∈ B(R3).

Let ρl, l = 0, 1, 2, . . ., be the irreducible representations of SO(3) and Wl :
C2l+1 → L2(S2) isometries such that WlW

∗
l = Pl and Wlρl(R) = L(R)Wl for

all R ∈ SO(3) where L : SO(3)→ L
(
L2(S2)

)
is the representation introduced

in the proof of Theorem 13. For each ρl, the triplet (Kl,Pl, Vl) is the canonical
imprimitivity system where Vl = indE

SO(3)ρl. We express the space Kl as the

L2-space of functions f : R3 → C2l+1 where(
Vl(a, R)f

)
(x) = ρl(R)f

(
RT (x− a)

)
for all (a, R) ∈ E , f ∈ Kl, and a.a. x ∈ R3 and Pl(X)f = χXf for all X ∈ B(R3)
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and f ∈ Kl. Moreover, let us define the isometries Jl : L2(R3)→ Kl through

(Jlϕ)(x) =
(
2π2(2l + 1)

)−1/2
∫ ∞

0

Wlπr(x,13)ϕ̃(r)r2 dr

for all ϕ ∈ Cc(R3) and a.a. x ∈ R3.

It is immediate that (Kl,Pl, Vl, Jl) is a minimal covariant dilation for Ml.
Any A ∈ L (Kl) that commutes with both Pl and Vl is of the form a1Kl with
a ∈ C (the condition on commuting with Vl enables the use of Schur’s lemma),
and thus it follows that for such an operator A one has J∗l AJl = 0 if and
only if A = 0 implying, according to Theorem 9, that Ml ∈ ext ObsU (R3)
for all l. Direct calculation shows that M0 is the sharp observable given by
M0(X)ϕ = χXϕ for all X ∈ B(R3) and ϕ ∈ L2(R3).

4.3 Structure of covariant instruments

We assume that G is a lcsc Hausdorff group, H ≤ G is a closed subgroup, and
H and K are separable Hilbert spaces. Furthermore, let U : G→ U (H ) and
V : G→ U (K ) be strongly continuous unitary representations (not projective,
for simplicity). Denote Ω = G/H. We make the following extra assumptions
for the remainder of this chapter.

Requirements. We require that there be a dense subspace D ⊂ H which is
invariant under U such that each covariant observable M ∈ ObsU (Ω) allows a
Kolmogorov decomposition like that in Equations (4.2) and (4.5), i.e., fixing a
quasi-G-invariant Borel measure µΩ on Ω, there be a linear map Φ : D → H
with a Hilbert space H intertwining U |H with a unitary representation π : H →
U (H) such that

〈ϕ|M(X)ψ〉 =

∫
X

〈ΦU(g)∗ϕ|ΦU(g)∗ψ〉 dµΩ(g)

for all ϕ, ψ ∈ D and X ∈ B(Ω).

These requirements are, naturally, met in the case where G is Abelian or G
is of type I and unimodular and H is compact. Similar conditions also hold for
the case of non-unimodular symmetry groups with square-integrable U studied,
e.g., in [52].

We can prove the following structure theorem for covariant instruments Γ ∈
InsVU (Ω) [28]:

Theorem 14. Let us retain the assumptions and definitions made above. For
each Γ ∈ InsVU (Ω), there are linear operators Kj : D → K , j = 1, 2, 3, . . .. such
that

∑
j〈Kjϕ|V (h)∗BV (h)Kjψ〉 =

∑
j〈KjU(h)ϕ|BKjU(h)ψ〉 for all ϕ, ψ ∈ D ,
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h ∈ H, and B ∈ L (K ),∫
Ω

∑
j

〈KjU(g)∗ϕ|KjU(g)∗ϕ〉 dµΩ(g) = ‖ϕ‖2 (4.12)

for all ϕ ∈ D and

〈ϕ|Γ̃(X,B)ψ〉 =

∫
X

∑
j

〈V (g)KjU(g)∗ϕ|BV (g)KjU(g)∗ψ〉 dµΩ(g) (4.13)

for all ϕ, ψ ∈ D , X ∈ B(Ω), and B ∈ L (K ).

A particular exemplary case, where the theorem above can be simplified is
an instance where the representation U is square integrable in the sense that
there is a finite constant d > 0 such that for all unit vectors ϕ, ψ ∈H∫

G

|〈ϕ|U(g)ψ〉|2 dµG(g) = d.

In this case, the operators Kj associated to Γ ∈ InsVU (Ω) according to Theorem
14 are, in fact, Hilbert-Schmidt operators and the normalization condition (4.12)
can be written in the form

∑
j tr[K∗jKj ] = 1/d [53], [28]. Denoting the positive

trace-1 operator d
∑
j K
∗
jKj on H by T , one can write for the observable margin

M associated with Γ

〈ϕ|M(X)ψ〉 =
1

d

∫
X

〈U(g)∗ϕ|TU(g)∗ψ〉 dµΩ(g)

for all ϕ, ψ ∈H and X ∈ B(Ω).
Note that carrying out the standard extension procedure R2 → R2×T =: G

for the Abelian group R2 resulting in the Schrödinger group and lifting the
projective Weyl-representation W introduced as an example in the beginning of
this chapter into an ordinary square-integrable (d = 2π) unitary representation
W : G → U

(
L2(R)

)
we are now able to give an exhaustive description for

the R2 = G/({(0, 0)} × T)-valued observables and instruments in ObsW (R2)
and InsWW (R2), respectively. Indeed, for any M ∈ ObsW (R2), there is a trace-
1 positive operator T on L2(R) such that Equation (4.1) holds, and for any
instrument Γ ∈ InsWW (R2) having M as its margin, there is a decomposition
T = 2π

∑
j K
∗
jKj with Hilbert-Schmidt operators Kj on L2(R) such that

Γ̃(X,B) =

∫
X

∑
j

W (q, p)K∗jW (q, p)∗BW (q, p)KjW (q, p)∗ dq dp

for all X ∈ B(R2) and B ∈ L
(
L2(R)

)
. In this particular case we do not have

to require any covariance property for the operators Kj with respect to the
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subgroup H = {(0, 0)} × T since the restriction W |H only has values in the
centre of L

(
L2(R)

)
.



Chapter 5

Convex-geometric measures

The convex geometry of the quantum structures can be directly used to define
measures for discriminating quantum devices from others. In this chapter, we
introduce two such classes of measures: the boundariness and robustness mea-
sures. The first one is used to quantify how close a device is to the boundary
of the structure and we show that this measure is associated with quantum dis-
crimination related tasks. The latter one measures the distance of a device to
the boundary of a subset of devices within the same structure, and they can be
used to discriminate devices from the given subset. We apply these robustness
measures to quantifying how incompatible a given pair of quantum devices is.

5.1 Boundariness and robustness measures

Let us fix a real (or complex) vector space V where K and let F to be the
minimal affine subspace containing K. Let us define a preorder ≤C in K by
defining x ≤C y for x, y ∈ K if there is t ∈ (0, 1] and z ∈ K such that
y = tx+ (1− t)z, i.e., x appears in a convex decomposition of y with non-zero
weight. The singletons consisting of the extreme points of K (if such exist)
are the minimal elements according to this order. The maximal equivalence
class of K is the (algebraic) interior intK of K and all the rest constitutes the
(algebraic) boundary ∂K of K. Hence, for y ∈ K, one has y ∈ ∂K if and only
if there is x ∈ K such that x 6≤C y.

The number ty(x) ∈ [0, 1] for all x, y ∈ K was defined originally in [32] as
the supremum

ty(x) = sup{t ∈ [0, 1) | (1− t)−1(y − tx) ∈ K}.

Thus ty(x) is the supremum of the possible weights of x in a convex decom-
position of y. It is elementary to show that this supremum is obtained at a
boundary point

(
1 − ty(x)

)(
y − ty(x)x

)
∈ ∂K whenever x 6= y and K is a

convex and compact subset of a locally convex vector space V . We call the
function ty : K → [0, 1] as the weight function associated with y. One finds out

57
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Figure 5.1: The element y ∈ K is expressed as an optimal decomposition where
x ∈ extK is the point fractionally furthest away from y and z is the boundary
point of K that is the closest of all boundary points to y.

that the inverse x 7→ 1/ty(x) is a convex function and, additionally, whenever
V is finite-dimensional, the weight function is continuous on K [32].

Let y ∈ Z and denote
b(y) = inf

x∈K
ty(x).

We call the function b : K → [0, 1/2] as the boundariness and from the properties
of the weight function mentioned above it follows that, whenever V is finite-
dimensional and K is compact and convex, for any y ∈ K, there is an extreme
point x ∈ extK such that b(y) = ty(x), and thus further, there exists a boundary
point z ∈ ∂K such that y = b(y)x+

(
1− b(y)

)
z [32]. The boundariness b(y) is a

measure of the distance of y to the boundary ∂K and, in the case of a compact
K, b(y) = 0 if and only if y ∈ ∂K.

Let p : V → R be a seminorm with the property that there is a finite constant
a ≥ 0 such that p(x) ≤ a for all x ∈ K. It follows that for any x, y ∈ K one
has [32]

p(x− y) ≤ 2a
(
1− b(y)

)
. (5.1)

Let now K be a base for a pointed generating cone C for V .1 In these settings,

1Recall that C ⊂ V is a cone when it is convex and αv ∈ C for all α ≥ 0 and v ∈ C. The
cone is pointed when C ∩ (−C) = {0} and generating if C − C = V . A convex set K ⊂ C is
a base for the cone C if for any v ∈ C there are unique α ≥ 0 and x ∈ K such that v = αx.
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Figure 5.2: Consider, as is illustrated, points x ∈ L and y, y′ ∈ L0 situated so
that y′ is fractionally further away from x than y is in the sense that, when we
consider the boundary points z and z′ found where the line segment connecting
x to y and, respectively, to y′ meets the boundary of L0, x has a higher weight
in z′ than in z, i.e., w(x|y) = w′ > w = w(x|y′). It follows, as can be seen in the
illustration, that these further-away points are located towards the boundary
of the ‘other end’ of L0 seen from x and, hence, it is here where the relative
robustness function approaches wL(x).

one can define the base norm ‖·‖K : V → R through

‖v‖K = inf
λ, µ≥0

{λ+ µ | v = λx− µy, x, y ∈ K}.

It follows that ‖x‖K ≤ 1 for all x ∈ K so that from Equation (5.1) it follows
that b(y) ≤ 1− 1

2‖x− y‖K for all x, y ∈ K. It can, in fact, be shown [71] that
this bound is tight, so that

b(y) = 1− 1

2
sup
x∈K
‖x− y‖K , y ∈ K. (5.2)

Let us move on to study another type of measures arising from convex struc-
tures. Let now L0 ⊂ V be a convex set with the minimal affine subspace F . We
denote the relative complement F \ L0 by L. We want to define a measure of
how distant a point x ∈ F is from L0. To this end, let us denote

wL(x|y) = sup{w ∈ [0, 1] |wx+ (1− w)y ∈ L0}

for all x, y ∈ F where sup ∅ is defined to be 0. We call wL(x|y) as the relative
L-robustness of x relative to y. It can be shown that, for fixed y and x, the
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Figure 5.3: The absolute (K,L)-robustness of a point x ∈ K \L0 (i.e., x is in the
outer layer of the highlighted area in the illustration) is obtained by considering
the points y of K being fractionally as far away from x as possible in sense
clarified in Figure 5.2. However, now we do not require y to be in L0. Clearly,
the optimizing y is on the boundary of K.

function 1/wL(·|y) is convex and 1/
(
1− wL(x|·)

)
is concave [26].

Furthermore, one may set up the function wL : F → [0, 1],

wL(x) = sup
y∈L0

wL(x|y), x ∈ F.

If K ⊂ F is a convex set such that L0 ⊂ K, one can also define the function
wKL : F → [0, 1],

wKL (x) = sup
y∈K

wL(x|y), x ∈ F.

We call the measure wL (respectively wKL ) as the (absolute) L-robustness (re-
spectively (absolute) (K,L)-robustness). They both measure the distance of
points x ∈ F to L0 in the sense that, whenever V is a locally convex vector
space, these measures acquire the value 1 if and only if x is in the closure of L0.
One can think of wL(x) as the least amount of noise from L0 that has to be
added to x in order to make it indiscernible from L0 or as the greatest amount
of noise from L0 that x tolerates without being immersed in L0. The same can
be said about wKL (x) with the exception that we allow for noise from the whole
of the larger set K. The L-robustness is geometrically (and often physically)
better motivated but the (K,L)-robustness is typically easier to calculate. Both
1/wL(·) and 1/wKL (·) are convex functions [26].

One can, additionally, define the associated convex robustness measures
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RL = 1/wL(·) − 1 and RKL = 1/wKL (·) − 1 that acquire the value 0 if and
only if their argument is in the closure of L0. This is the form in which the ro-
bustness measures (robustness of entanglement) have typically been introduced
in literature.

5.2 Boundariness and quantum discrimination

For the duration of this section, we fix the separable Hilbert spaces H and
K and an integer N > 0. We study the boundary and boundariness measure
associated with the convex quantum structures of states S (H ), N -outcome
observables ObsN (H ), and channels Ch(H ,K ). The value space of the ob-
servables in ObsN (H ) is the finite set {1, . . . , N} equipped with its power set
for the σ-algebra. We denote elements M ∈ ObsN (H ) as ordered N -tuples
(Mj)

N
j=1 such that Mj = M({j}).

It is easy to show in the finite-dimensional case that the boundary ∂S (H ) of
the set of states consists of those state operators that have 0 as their eigenvalue.
The direct generalization of this holds also in the infinite-dimensional case [32]: if
dim H =∞, then S (H ) = ∂S (H ), which is quite remarkable. Moreover, the
boundariness b(ρ) for a state ρ coincides with the minimum of the spectrum sp ρ
of ρ [32]. Similar results were also proven in [32] to hold for the set ObsN (H )
of observables: an observable M ∈ ObsN (H ) is on the boundary ∂ObsN (H )
if and only if 0 ∈ spMj for some j and b(M) = minj min spMj .

The structure of the set of channels is more complicated. Again, if dim K =
∞, one has Ch(H ,K ) = ∂Ch(H ,K ) [32]. Let us assume that dim H , dim K <
∞, dim H = d, and fix an orthonormal basis {|n〉}dn=1 for H . For any channel
E ∈ Ch(H ,K ), define the Choi-Jamio lkowski operator

JE = d−1
d∑

j,k=1

E (|j〉〈k|)⊗ |j〉〈k| ∈ L (K ⊗H ).

It turns out that E ∈ ∂Ch(H ,K ) if and only if 0 ∈ sp JE and b(E ) ≥
dmin spJE [32].

The boundariness measure has a natural connection to quantum discrimina-
tion related questions. In a discrimination task, we are given a quantum device
which is either one of the known devices Φ and Ψ (which are states, observables,
or channels) and we have to determine which one it is by a measurement. Such
a task cannot typically be carried out without a risk of failure and the minimum
probability perror(Φ,Ψ) of failure is [40]

perror(Φ,Ψ) =
1

2

(
1− 1

2
‖Φ−Ψ‖

)
where the norm is the base norm defined by the set of devices considered as
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a basis of a generating cone for the ambient vector space [48]. Because of the
result given in Equation (5.2), we may say the following:

Theorem 15. For any quantum device Φ of any of the sets S (H ), ObsN (H ),
and Ch(H ,K ) with finite-dimensional H and K , there is another device Ψ
(of the same type) that is an extreme point of the set of devices such that Φ is
best discriminable from Ψ in the sense

perror(Φ,Ψ) = min
Ψ′

perror(Φ,Ψ
′) =

1

2
b(Φ).

This means, especially, that the devices on the boundary are best discrim-
inable from all the rest of the devices of the same type. This result was proven to
hold for the sets of states and observables in [32]. The result in all its generality
has been proven in [71]. Given a device Φ, the extreme device Ψ that is the best
discriminable from Φ with respect to the error probability can be restricted to a
particular subset: In the case of observables, the best discriminable observable
can be chosen to be sharp [32]. Moreover, in the case of channels with identical
input and output spaces, the best discriminable channel can be chosen amongst
the unitary channels [71]. In [71], a method for calculating the boundariness
of a channel E ∈ Ch(H ,H ) with a finite-dimensional H , dim H = d, was
given: If E is not a boundary point of Ch(H ,H ), then the Choi-Jamio lkowski
operator JE is invertible, and one can show that the boundariness for such a
channel is given by

b(E ) =
d

maxU∈U (H )〈ψU |J−1
E ψU 〉

,

where the maximization runs over all unitary operators U on H and ψU =
d−1/2

∑d
j=1(U⊗1H )|jj〉. When U is the unitary operator giving the maximum

in the above formula, the unitary channel U : ρ 7→ UρU∗ is a channel that is
the best discriminable from E in the sense that E = b(E )U +

(
1− b(E )

)
F with

some (boundary) channel F .

5.3 Robustness of incompatibility

We turn our attention again to compatibility questions. We use the robustness
measures introduced in the beginning of this chapter to set up a measure of
incompatibility of a pair of quantum devices generalizing the ideas presented
in [6, 10, 38]; earlier, similar measures have been used to measure quantum
entanglement for states [79]. The results of this section are from [26].

Let us pick the sets Q1 and Q2 of quantum devices, namely, Q1 is either
Obs(Σ,H ) or Ch(H ,K1) and Q2 is either Obs(Σ′,H ) or Ch(H ,K2) with
separable Hilbert spaces H , K1, and K2 and standard Borel spaces (Ω,Σ) and
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(Ω′,Σ′). Let us define the naturally convex set K = Q1 × Q2 containing the
convex subset L0 of pairs (Φ,Ψ) ∈ K such that Φ and Ψ are compatible. Denote
by L the relative complement F \ L0 where F is the minimal affine subspace
of the ambient space containing K. This affine subspace is, in fact, minimal
also for L0. For simplicity, we denote the robustness measures wL =: w and
wKL =: W , and we call both of them as robustness of incompatibility. Hence,
w(Φ,Ψ) (respectively W (Φ,Ψ)) is the maximum amount of noise from the set
of compatible pairs (respectively from the entire set of all device pairs) the pair
(Φ,Ψ) of devices tolerates before being rendered compatible.

It can be shown that, for any device pair (Φ,Ψ), one has w(Φ,Ψ) ≥ 1/2 and
similarly for W . When the (input) Hilbert space of the devices is d-dimensional,
d <∞, we have an even tighter bound: w(Φ,Ψ) ≥ (d+2)/

(
2(d+1)

)
. The same

bound applies also for the measure W .

We say that a channel C is a post-processing of a channel E if there is a
third channel A such that C = A ◦ E . This definition for post-processing
is analogous with the post-processing order for observables. In general, if a
quantum device Φ is a post-processing of another device Φ0 and a device Ψ is
a post-processing of a device Ψ0, we denote (Φ,Ψ) ≤ (Φ0,Ψ0). The measures
W and w behave monotonously with respect to this preorder of device pairs,
namely, if (Φ,Ψ) ≤ (Φ0,Ψ0) then w(Φ,Ψ) ≥ w(Φ0,Ψ0) and similarly for W .
This means that post-processing makes pairs of devices ‘more compatible’. This
is natural since post-processing is a zero-resource operation with respect to
incompatibility, i.e., when a pair (Φ0,Ψ0) is compatible and (Φ,Ψ) ≤ (Φ0,Ψ0),
then (Φ,Ψ) is compatible as well.

This observation tells us, especially, that the least compatible observable
pairs are found among the post-processing maximal (i.e., rank-1) observables.
Let us consider an example of a pair of rank-1 observables: Now H is a d-
dimensional, d < ∞, Hilbert space with a fixed orthonormal basis {ϕn}dn=1.
We fix another basis {ψm}dm=1, where ψm = Fϕm with the Fourier-operator
F ∈ L (H ),

Fϕn =
1√
d

d∑
m=1

〈m,n〉ϕm, n = 1, . . . , d,

where 〈m,n〉 = ei2πmn/d. We fix the sharp finite-dimensional Weyl pair (Q,P)
where Q and P are sharp rank-1 d-outcome observables on H given by

Qn = |ϕn〉〈ϕn|, Pm = |ψm〉〈ψm|, n, m = 1, . . . , d.

One can prove the following:

Theorem 16. The robustness of incompatibility for the sharp Weyl pair (Q,P)
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is

W (Q,P) =
1

2

(
1 +

1√
d

)
.

It is, however, not clear whether this value is actually the minimum value
for the robustness measure, i.e., whether the pair (Q,P) is the least compatible
pair of observables in H .

On the channel side, the least compatible pairs of channels are those in
the post-processing equivalence class of the pair (id, id) defined by the identity
channel id : S (H )→ S (H ), ρ 7→ ρ. This class of incompatible channel pairs
contain, especially, any pair (U ,V ) of unitary channels U , V ∈ Ch(H ,H ),
i.e., there are unitary operators U, V ∈ L (H ) such that U (ρ) = UρU∗ and
V (ρ) = V ρV ∗ for all ρ ∈ S (H ). Generally, this equivalence class consists
of pairs of channels W ∈ Ch(H ,K ) with varying K (however, dim K ≥
dim H ) that are decodable in the sense that there is a channel B ∈ Ch(K ,H )
such that B ◦W = id; the exhaustive characterization of this equivalence class
(albeit in a considerably more general context) when the input and output spaces
are finite dimensional can be found in [49]. The decodable channels are also
called as invertible or correctable. All pairs (U ,V ) consisting of such channels
minimize both w and W among the channel pairs with the input Hilbert space
H . Moreover, one can calculate this minimum value:

Theorem 17. Let H and K be finite-dimensional, dim H =: d, and U , V ∈
Ch(H ,K ) be decodable. One has

W (U ,V ) =
1

2

(
1 +

1

d

)
.

The least compatible observable-channel pairs are amongst the set of pairs
consisting of a rank-1 observable and a decodable channel. With a fixed observ-
able M ∈ Obs(Σ,H ), one has

min
K

min
E∈Ch(H ,K )

w(M,E ) = w(M, id)

and similarly for W , implying that the channel that is least compatible with M
is the identity channel. The same minimum is reached at any decodable channel
with input H . This is yet another manifestation of the fact that any measure-
ment of a physically relevant observable disturbs the system since joining an
observable with the identity channel demands the maximum amount of added
noise. We have the following special result:

Theorem 18. Let dim H =: d < ∞ and dim K < ∞ and M ∈ Obsd(H )
be a sharp rank-1 observable and U ∈ Ch(H ,K ) a decodable channel. The
robustness of incompatibility for the pair (M,U ) is

W (M,U ) =
1

2

(
1 +

1√
d

)
.
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Again, it is yet unclear whether the observable-channel pair introduced in
the preceding theorem is the most incompatible observable-channel pair, i.e.,
whether the value obtained for the robustness measure is the minimal one. A
possible way to give one of the optimal decompositions

A =
1

2

(
1 +

1√
d

)
M +

1

2

(
1− 1√

d

)
B,

A =
1

2

(
1 +

1√
d

)
U +

1

2

(
1− 1√

d

)
B

in the situation of Theorem 18, where (A,A ) is the compatible observable-
channel pair ‘closest’ to (M,U ) and (B,B) is the observable-channel pair the
‘furthest away’ from (M,U ), is such that the joint instrument Γ ∈ Insd(H ,K )
for (A,A ) is given by Γj = U ◦ Γ0

j for all j where Γ0 ∈ Insd(H ,H ) is defined
by

Γ0
j (ρ) =

√
d

2(
√
d+ 1)

( 1√
d
1H + Mj

)
ρ
( 1√

d
1H + Mj

)
for all j = 1, . . . , d and ρ ∈ S (H ) so that, defining the trivial observable T ∈
Obsd(H ), Tj = d−1

1H for all j, and the Lüders channel EM ∈ Ch(H ,H ),
EM(ρ) =

∑
jMjρMj for all ρ ∈ S (H ), one can write

A =

√
d+ 2

2(
√
d+ 1)

M +

√
d

2(
√
d+ 1)

T, A =

√
d+ 2

2(
√
d+ 1)

U +

√
d

2(
√
d+ 1)

U ◦ EM.

Moreover, for the other pair (B,B) in this optimal decomposition,

B = − 1

d− 1
M +

d

d− 1
T, B = − 1

d− 1
U +

d

d− 1
U ◦ EM.
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Chapter 6

Summary

In this thesis, the main results obtained in the research articles written by
the PhD student Erkka Haapasalo together with his supervisors and other col-
leagues are exhibited. These results primarily deal with the convex structures
of quantum measurement devices and their convex analysis. In Chapter 2, we
have introduced the relevant convex structures of quantum theory and have dis-
cussed the incompatibility properties of quantum measurement devices. After
determining the extreme points of these structures in Chapter 3, we saw in The-
orem 5 that a compatible device pair where one of the devices is extreme can
be joined in a single apparatus essentially in a unique way. We also discussed
the interplay of coexistence of quantum observables and extremality.

It has now been established that an extreme margin guarantees the unique-
ness of a joint quantum measurement device but the question remains what
are the necessary conditions for uniqueness of the joint map. We know that
extremality of a margin is not necessary as pointed out in [31]. This problem
is part of the study of the rich post-processing preorder structure of the set of
measurement devices. We have also shown that a pair of coexistent observables
where one of the observables is extreme and discrete is, in fact, jointly measur-
able. The assumption on discreteness seems superfluous and it remains to be
seen if this requirement can be removed.

One major research topic in E.H.’s PhD studies has been the convex analy-
sis of covariance structures of quantum theory, particularly the sets of covariant
observables and instruments, and the structure of covariant apparati. These
issues have been discussed in Chapter 4. In Theorem 9, we identified the ex-
treme points of generalized covariance structures after which we concentrated
on a couple of examples on covariance structures of observables. In theorems
10 and 11 we characterized the covariance structure of observables with a lcsc
Abelian symmetry group whose value space is a transitive space for the group
and the extreme points of this covariance structure. We also introduced an-
other unsharp extreme observable, the canonical time observable. The extreme
points of the covariance structure of observables with a lcsc unimodular type-I
symmetry group whose value space is associated with a compact stability sub-
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group of the symmetry group were identified. We also studied the structure of
Euclidean-covariant localization observables of elementary spin-0 objects. Fi-
nally, Theorem 14 determined the structure of a particular class of covariant
instruments. This result applies to instruments whose associated observable
margins satisfy certain requirements that are met especially in the cases stud-
ied earlier in Chapter 4.

There are many open questions left in the field of quantum covariance struc-
tures. We have discussed the case of covariant observables and instruments
whose value space is a transitive space for the symmetry group, which was as-
sumed to be lcsc unimodular and of type I, associated with a compact stability
subgroup. The assumption on compactness of the stability subgroup makes the
study of covariance structures convenient because there is a simple connection
to the case where the value space is the symmetry group itself, as made clear
in [28]. Removing this assumption is left for future study. We have only dis-
cussed the case of transitive value spaces, but generalizing our results to the
non-transitive case in the spirit of [14, 15] is an interesting research topic. The
structure of covariant channels is not studied in depth in this thesis, but this is
of course a well-motivated line of study. The basics for the study of covariant
channels is laid in Theorem 8, but in the channel case the problem is that the
isometry J of the minimal Stinespring dilation of a covariant channel intertwines
the representation on the output Hilbert space to the tensor product of the rep-
resentation on the input Hilbert space and an a priori unknown representation
on the ancillary system within the dilation. The structure of such intertwiners
is an open problem.

In Chapter 5, two types of measures for quantum devices and device pairs
defined purely by convex geometry were introduced: boundariness and robust-
ness of incompatibility. Boundariness is associated with optimal discrimination
and the minimum-error probability of quantum discrimination tasks as shown
by Theorem 15. Robustness of incompatibility was shown to be a well defined
measure of incompatibility for quantum device pairs behaving monotonically
under certain compatibility non-decreasing operations. Moreover, the robust-
ness of incompatibility was determined for three types of device pairs: a pair of
Fourier-coupled rank-1 sharp observables, a pair of decodable (particularly for
unitary) channels, and a pair consisting of a sharp rank-1 observable and a de-
codable channel. The latter case illuminates the question on how accurately we
may measure a von Neumann observable and simultaneously disturb the system
as little as possible.

All the examples listed above where the robustness measure was calculated
exhibit certain symmetries that make the calculations easier. A general method
for calculating the robustness of incompatibility is still missing however. All the
examples studied also involved only finite-dimensional Hilbert spaces. One in-
teresting incompatible observable pair on an infinite-dimensional Hilbert space
is the canonical position-momentum pair on L2(R). Now we settle for conjec-
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turing that this pair has the lowest possible value 1/2 for boundariness, meaning
that this pair would be an example of a least compatible observable pair with
respect to the robustness measure. Such a result would be in line with earlier
results obtained, e.g., in [38].
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[56] P. Lahti and S. Pulmannová, Coexistent observables and effects in quantum
mechanics, Rep. Math. Phys. 39, 339-351 (1997)

[57] P. Lahti and K. Ylinen, Johdatus kvanttimekaniikkaan (Suomen
fyysikkoseuran julkaisuja 2, Gummerus, 1989)

[58] P. Lahti and K. Ylinen, Dilations of positive operator measures and bimea-
sures related to quantum mechanics, Math. Slovaca 54, 169-189 (2004)

[59] G.W. Mackey, Induced representations of locally compact groups I, Ann.
Math. 55, 101-139 (1952)



BIBLIOGRAPHY 75

[60] G.W. Mackey, Unitary representations of group extensions. I, Acta Math.
99, 265-311 (1958)

[61] G.W. Mackey, Unitary Group Representations in Physics, Probability, and
Number Theory (Addison-Wesley, Reading, Massachusetts, 1978, 1989)

[62] H. Martens and W.M. de Muynck, Nonideal quantum measurements,
Found. Phys. 20, 255-281 (1990)

[63] M. Ozawa, Quantum measuring processes of continuous observables, J.
Math. Phys. 25, 79-87 (1984)

[64] K.R. Parthasarathy, Extremal decision rules in quantum hypothesis testing,
Inf. Dim. Anal. 2, 557-568 (1999)

[65] K.R. Parthasarathy, K. Schmidt, Positive Definite Kernels, Continuous
Tensor Products, and Central Limit Theorems of Probability Theory, Lecture
Notes in Mathematics 272 (Springer-Verlag, Berlin, 1972)
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