
                                     

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS
Sarja - ser. D osa - tom. 1253 | Medica - Odontologica | Turku 2016

Roda Seseogullari-Dirihan

EFFECT OF COLLAGEN CROSSLINKERS
ON DENTIN PROTEASE ACTIVITY



 

Supervised by

Professor Arzu Tezvergil-Mutluay, DDS, PhD
Department of Cariology and Restorative Dentistry
University of Turku
Turku, Finland

Reviewed by

Professor Timo Sorsa, DDS, PhD
Department of Oral and Maxillofacial Diseases
University of Helsinki
Helsinki, Finland

Associate Professor Ana Bedran-Russo, DDS, PhD
Department of Restorative Dentistry
University of Illionis at Chicago
Chicago, U.S.A.

Opponent

Professor Steven R. Armstrong, DDS, PhD
Department of Operative Dentistry
The University of Iowa
Iowa, U.S.A.

Cover image: Roda Seseogullari-Dirihan

The originality of this thesis has been checked in accordance with the University of Turku quality 
assurance system using the Turnitin OriginalityCheck service.

ISBN 978-951-29-6624-0 (PRINT)
ISBN 978-951-29-6625-7 (PDF)
ISSN 0355-9483 (Print)
ISSN 2343-3213 (Online)
Painosalama Oy - Turku, Finland 2016

University of Turku 

Faculty of Medicine

Institute of Dentistry
Department of Cariology and Restorative Dentistry
Finnish Doctoral Program in Oral Sciences (FINDOS-Turku)



 
3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         To Serdar 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
5 

 
TABLE OF CONTENTS 

ABSTRACT .............................................................................................................................. 7 

TIIVISTELMÄ ........................................................................................................................ 8 

LIST OF ABBREVIATIONS ................................................................................................. 9 

LIST OF ORGINAL PUBLICATIONS .............................................................................. 10 

1. INTRODUCTION.............................................................................................................. 11 

2. REVIEW OF LITERATURE ........................................................................................... 13 

2.1. THE STRUCTURE OF DENTIN COLLAGEN MATRICES ............................................................................... 13 

2.2. DEGRADATION OF RESIN-DENTIN BONDS BY HOST-DERIVED DENTINAL PROTEASES ................................... 18 

2.2.1 Matrix Metalloproteinases................................................................................................... 19 

2.2.2. Cysteine Cathepsins............................................................................................................. 21 

2.3. THE STRATEGIES FOR PREVENTION OF DEGRADATION OF DENTIN COLLAGEN MATRICES ............................. 23 

2.3.1. Remineralization ................................................................................................................. 23 

2.3.2. Ethanol Wet-Bonding Technique ........................................................................................ 24 

2.3.3. Inhibition of Enzyme Activity ............................................................................................... 24 

2.3.4. Use of Collagen Crosslinkers ............................................................................................... 29 

3. AIMS OF THE THESIS .................................................................................................... 37 

4. MATERIALS AND METHODS ...................................................................................... 38 

4.1. MATERIALS .................................................................................................................................... 38 

4.1.1. Preparation of Dentin Specimens (Studies I–IV) .................................................................. 38 

4.1.2. Preparation of Dentin Powder (Study III) ............................................................................ 39 

4.1.3. Treatment of Dentin by Various Collagen Crosslinkers (Studies I and IV) ........................... 39 

4.1.4. Treatment of Dentin by UVA-Induced Riboflavin Crosslinking (Study II) ............................ 39 

4.2. RESEARCH METHODS ...................................................................................................................... 40 

4.2.1. Measurement Loss of Dry Dentin Mass (Studies I, II, IV)..................................................... 40 

4.2.2. Evaluation of Total Endogenous Protease Activity of Dentin (Studies I, II, IV) .................... 41 

4.2.3. Measurement of Direct Inactivation Effect of Collagen Crosslinkers by Generic MMP Assay 

(Studies III, IV) ............................................................................................................................... 41 

4.2.4. Total Extractable Protein (Study III) .................................................................................... 42 

4.2.5. Multiplex Bead-Based Immunoassay (Study III) .................................................................. 43 

4.2.6. Evaluation of MMP-2 and MMP-9 Activity by Gelatin Zymography (Study III)................... 44 

4.2.7. Evaluation of Gelatinase Activity of Pretreated Dentin by In Situ Zymography (Study III) . 46 

4.2.8. TEM Analysis ....................................................................................................................... 47 

5. RESULTS ........................................................................................................................... 49 

5.1. EFFECT OF PRETREATMENT OF COLLAGEN CROSSLINKERS ON THE LOSS OF DRY DENTIN MASS (STUDIES I, II, IV)

 .......................................................................................................................................................... 49 

5.2. EVALUATION OF ENDOGENOUS PROTEASE ACTIVITY ............................................................................. 51 

5.2.1. Activity of Matrix-Bound Dentin MMPs (Studies I, II, IV) .................................................... 51 

5.2.2. Activity of Cathepsin K on Demineralized Dentin (Studies I, II, IV) ...................................... 56 

5.3. INACTIVATION OF DENTIN MMPS BY COLLAGEN CROSSLINKERS (STUDIES III, IV) ...................................... 61 

5TABLE OF CONTENTS



 
6 

 
5.4. MEASUREMENT OF TOTAL EXTRACTABLE PROTEIN (STUDY III) ............................................................... 63 

5.5. MEASUREMENT OF THE QUANTITY OF MMP-2, MMP-8 AND MMP-9 USING MULTIPLEX BEAD-BASED 

IMMUNOASSAY ..................................................................................................................................... 64 

5.6. EVALUATION OF MMP-2 AND MMP-9 USING GELATIN ZYMOGRAPHY................................................... 66 

5.7. EVALUATION OF GELATINASE ACTIVITY BY IN SITU ZYMOGRAPHY ............................................................ 68 

5.8. TEM RESULTS ................................................................................................................................ 69 

6. DISCUSSION ..................................................................................................................... 71 

6.1. EVALUATION OF THE LOSS OF DRY DENTIN MASS OVER TIME (STUDIES I, II, IV) ........................................ 71 

6.2. THE RELEASE OF TYPE I COLLAGEN FRAGMENTS BY MMPS AND CATHEPSIN K (STUDIES I, II, IV) ................. 74 

6.3. DIRECT INACTIVATION OF DENTIN MMP ACTIVITY BY COLLAGEN CROSSLINKERS (STUDIES III, IV) ............... 79 

6.4. CROSSLINKING ABILITY OF DENTIN COLLAGEN MATRICES (STUDY III) ...................................................... 81 

6.5. THE RELEASE OF MMP-2, -8 AND -9 FROM CROSSLINKED COLLAGEN MATRICES (STUDY III) ...................... 81 

6.7. LOCALIZATION OF GELATINOLYTIC ACTIVITY ON DEMINERALIZED DENTIN BY IN SITU ZYMOGRAPHY (STUDY III)

 .......................................................................................................................................................... 83 

6.8. ULTRASTRUCTURAL CHANGES IN CROSSLINKED DENTIN MATRICES OVER TIME .......................................... 84 

6.9. FUTURE DIRECTIONS AND FURTHER STUDIES ....................................................................................... 85 

7. CONCLUSION .................................................................................................................. 86 

ACKNOWLEDGEMENTS .................................................................................................. 87 

REFERENCES ....................................................................................................................... 90 

ORGINAL PUBLICATIONS ............................................................................................. 105 

 

 

 

  

6 TABLE OF CONTENTS



 
7 

 

ABSTRACT 

Roda Seseogullari-Dirihan 

Effect of Collagen Crosslinkers on Dentin Protease Activity 

University of Turku, Faculty of Medicine, Institute of Dentistry, Department of Cariology 

and Restorative Dentistry, Finnish Doctoral Program in Oral Sciences (FINDOS), Annales 

Universitatis Turkuensis, Turku, Finland, 2016. 

The enzymatic degradation of demineralized dentin matrices (DDM) is a challenge in the 

longevity of adhesive restorations. The activity of matrix metalloproteinases (MMPs) and 

cysteine cathepsins (CCs) was shown to be responsible for progressive degradation. The 

inhibition or inactivation of these enzymes is a strategy for increasing the durability of 

adhesive restorations. The aim of these studies was to evaluate the effect of various collagen 

crosslinkers on dentin protease activity and to provide detailed knowledge of the functional 

mode of collagen crosslinkers in the prevention of dentin degradation. 

Several plant-derived and synthetic collagen crosslinkers were selected, and their effect on 

MMP- and CC-mediated degradation was evaluated after short- and long-term incubation 

using direct or indirect methods. Gelatin zymography, in situ zymography, generic MMP 

activity assays, protein analysis and multiplex analysis were used to identify and quantify the 

activity in dentin. 

After short-term incubation, all collagen crosslinkers showed a significant reduction in MMP- 

and CC-mediated degradation. UVA-induced crosslinking with or without photosensitizers 

was found to be more effective in the inactivation of cathepsin K compared with the 

inactivation of MMPs. Total MMP activity, in situ zymography and protein analysis 

confirmed the reduction in MMP activity after crosslinker pretreatment of DDMs. After six-

month incubation, only some collagen crosslinkers maintained their MMP and CC 

inactivation, confirming that the effect is collagen crosslinker specific.   

The series of studies provided insight about the effect and inactivation mechanisms of 

collagen crosslinker pretreatment on prevention of proteolytic degradation of dentin matrices. 

The use of plant-derived collagen crosslinker agents could offer a good solution to increasing 

the longevity of tooth-adhesive bonding. 

Keywords: dentin, proteases, collagen crosslinkers, degradation, inactivation, matrix 

metalloproteinases, cysteine cathepsins 

7ABSTRACT



 
8 

 

TIIVISTELMÄ  

Roda Seseogullari-Dirihan  

Ristisilloittajien vaikutus dentiinin proteaasien aktiivisuuteen  

Turun Yliopisto, Lääketieteellinen tiedekunta, Hammaslääketieteen laitos, Kariologia ja 

korjaava hammashoito, Kansallinen suun terveystieteiden tohtoriohjelma-FINDOS, Annales 

Universitatis Turkuensis, Turku, Suomi, 2016.  

Hampaan väriset yhdistelmämuovipaikat ovat yleisimmin käytettyjä paikka-aineita 

korjaavassa hammashoidossa. Kliininen vaste riippuu pääasiassa paikka-aineen ja 

hammaskudoksen välisen rajapinnan laadusta, joka ei ole niin stabiili kuin sen tulisi olla. 

Merkittävin ongelma on dentiinin kollageenin hajoaminen ajan myötä. Hajoaminen johtuu 

dentiinin proteaasien, matriksin metalloproteinaasien (MMP) ja kysteiini-katepsiinien (CC), 

toiminnasta. Entsyymitoiminnan estämisellä pyritään parantamaan hammaspaikkojen 

sidoksen kestävyyttä. Tämän tutkimuksen tavoitteena oli arvioida ristisilloittajien 

soveltuvuutta dentiinin proteaasien inaktivointiin ja tuottaa tietoa ristisilloittajien toiminnasta 

dentiinin hajoamisen estämisessä. 

Tutkimukseen valittujen ristisilloittajien vaikutusta dentiinin MMP:n ja CC:n inaktivointiin 

arvioitiin suoraan ja epäsuorasti käyttäen mm. gelatiini- ja in situ-zymografiaa ja geneerisiä 

MMP-aktiivisuuden analyysitekniikoita. Ensimmäisessä tutkimuksessa osoitettiin dentiinin 

kollageenimatriksin hajoamisen vähenevän merkittävästi  ristisilloittajilla tehdyn esikäsittelyn 

jälkeen. Toinen tutkimus osoitti UVA-valon indusoiman ristisidosten inaktivoivan 

vaikutuksen olevan tehokkaampaa katepsiini K:n kuin MMP:en osalta. Kolmannessa 

tutkimuksessa vahvistettiin ristisilloittajien dentiinin MMP:n suorainaktivaatio sekä 

ristisilloittajien kyky muodostaa uusia sidoksia demineralisoidun dentiinin kollageeni- ja ei-

kollageenikomponenteissa. Näytteiden vanhennus osoitti, että pitkäaikaisvaikutus riippuu 

valitusta ristisilloittajista, sillä vain tietyt ristisilloittajat säilyttivät etsyymejä estävän 

vaiktuksensa kuuden kuuakuden ajan..  

Tutkimukset antoivat uutta tietoa ristisilloittajien kyvystä estää dentiinin kollageenimatriksin 

proteolyyttistä hajoamista. Tämä auttaa parantamaan sidostusten kestävyyttä ja kehittämään 

uusia sidostustekniikoita, mikä on tärkeää kliinisen lopputuloksen kannalta.  

Avainsanat: dentiini, proteaasi, kollageeni, hajotus, inaktivaatio, kysteiini-katepsiini, 

matriksin metalloproteinaasi. 
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1. INTRODUCTION 

Adhesion to tooth structure by resin-based adhesive materials was introduced already 60 

years ago by Buonocore, and since then, continuous advances in bonding technologies and 

materials have had a large impact on daily practice. The use of dental adhesive systems aims 

to provide retention for dental restorations without sacrificing healthy tooth structure.  

Adhesion to enamel is based on the selective dissolution of hydroxyapatite crystals by 

etching, followed by the infiltration of resin to the etch-created micro-pits and polymerization 

to create a biocomposite. The enamel-resin bonding is mainly micromechanical and very 

stable. Similarly, the mechanism of retention of resin composite restorations to dentin is 

based on the permeation of liquid resin monomers into dentin collagen matrix following the 

removal of the mineral (inorganic) phase. This process is finalized by polymerization of the 

monomer to create a collagen-reinforced biocomposite called the hybrid layer. The 

connection between polymerized adhesives and the underlying mineralized dentin occurs 

through the collagen fibrils extending from underlying mineralized matrix to the hybrid layer. 

These collagen fibrils contain bound, non-collagenous proteins such as growth factors and 

matrix proteases. These proteases are normally inactive and stable in mineralized tissue. 

However, the acid etching step of the bonding procedures removes the minerals and can 

uncover and activate these enzymes, resulting in the progressive degradation of the collagen 

fibril anchoring the restorative material to tooth structure. This leads to solubilization of 

collagen and loss of retention in the bonded restoration. Two distinct proteases – matrix 

metalloproteinase (MMPs) and cysteine cathepsins (CCs) – have been shown to be 

responsible for time-dependent enzymatic degradation of dentin collagen matrices. Therefore, 

the inhibition or inactivation of these enzymes is essential to the durability of resin-bonded 

restorations. Many strategies have been evaluated to increase the stability of the acid-etched 

matrix, including direct inhibition of these enzymes by selective inhibitors, use of inactivators 

such as plant-derived and synthetic collagen crosslinkers, or induced remineralization of 

dentin.  

Biomodification of dentin has been suggested to improve the biomechanical properties of 

dentin collagen matrices by crosslinking in order to resist enzymatic degradation. Preliminary 

studies used long application times; recent studies have shown effectiveness with short 

application. The use of collagen crosslinkers is a new approach that aims to crosslink matrix-

bound proteolytic enzymes in order to increase the durability of bonding.  
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Despite the promising initial results, the inactivating mechanisms of dentin proteases by 

collagen crosslinkers are not well understood. Thus, the study series of this thesis focused on 

the effect of collagen crosslinkers on demineralized dentin to inactivate enzymatic 

degradation of dentin collagen matrices.  
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2. REVIEW OF LITERATURE  

2.1. The Structure of Dentin Collagen Matrices 

Dentin consists of 70 mass % mineral, 20 mass % organic component and 10 mass % water 

(Berman et al., 2011). About 90% of dentin organic matrices is composed of collagen (Linde, 

1989). The other 10 mass % of dentin organic matrix is made up of non-collagenous proteins 

(mainly proteoglycans and other non-collagenous proteins) and other dentin matrix proteins, 

such as phosphoproteins and γ-carboxyglutamate-containing proteins (Butler et al., 1979), 

and phospholipids. Although the dentin matrix includes the presence of trace amounts of type 

III and V collagen, the most abundant collagen in dentin is type I, which forms a three-

dimensional network of dentin prior to the mineralization process within the maturation phase 

of tooth development (Tjaderhane et al., 2012; Orsini et al., 2012) (Figure 1). 

 

 

 

Figure 1: SEM micrograph showing the dentin collagen network after demineralization. DT: dentin 

tubules. DDM: demineralized dentin matrices. 

 

DT 
DDM 
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Dentin Collagen Structure 

In general, a single collagen molecule is a group of amino acids forming a left-handed triple-

helical chain consisting of two α1(I) chains and one α2(I) chain with 3.3 residues per turn and 

a 8.7 Å pitch of 18 amino acids per turn (Hofmann et al., 1978; Yamauchi, 2000). These 

three α chains form a supercoil around a central axis by means of glycine residues (Fraser et 

al., 1979). Glycine (Gly) is the smallest and most present amino acid which brings adjacent 

chains together to form a unique triple-helical structure (Germann and Heidemann, 1988) and 

is positioned in the center of the triple helix, whereas and the other amino acids are placed in 

the outer positions of the helix (Fraser et al., 1979; Germann and Heidemann, 1988). One 

third of the amino acids on the polypeptide chains are Gly, as in Gly-X-Y repeats. Glycine 

enhances van der Waals forces and hydrogen bonds that hold the three helical polypeptides 

together. X and Y are any amino acids that compose 35% of the non-glycine part of the 

sequence (Germann and Heidemann, 1988). Proline is most commonly placed in the X-

position and 4-hydroxyproline in the Y-position (Kramer et al., 2001; Nagase and Visse, 

2003; Brinckmann et al., 2005). The collagen molecules are intertwined around each of these 

three peptides to form a right-handed, rod-shaped triple helix with a molecular mass of 300 

kDa containing ~1000 amino acid residues (Bateman et al., 1996). These supercoiled 

polypeptide chains with a length of 300 nm, and a diameter of 1.5 nm, aggregate with their 

long axes in parallel to form fibrils of varying thickness. These chains have three domains: 

the central triple-helical region consisting of more than 300 repeated units and representing 

more than 95% of the polypeptide (Yamauchi and Shiiba, 2008), the non-helical 

aminoterminal (N-telopeptide) region and the carboxyterminal (C-telopeptide) region of the 

collagen molecule, called the N-terminal and C-terminal telopeptide regions, respectively.  

The non-helical telopeptides play an important role in forming mature collagen fibrils by 

natural covalent crosslinking between noncollagenous sequence domains. Dentin is arranged 

in small bundles (Veis, 2003). The long axes of these bundles are within the incremental 

planes that are more or less parallel to the surface of the pulp cavity (Veis, 2003). In fibrils of 

type I collagen from mineralized dentin, the gap regions are contiguous and lie perpendicular 

to the fibril axis, forming extended channels (Hodge, 1989; Katz and Li, 1973; Veis, 2003). 

The channels are filled by the mineral crystals in dentin. However, in mineralized mature 

dentin, some mineral does not fit in the gap channels, and some mineral may be deposited in 

the periodic gap spaces and related channels (intrafibrillar), in the pores between microfibrils, 
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and in the spaces between packed fibrils. The telopeptides in the gap zone are chemically 

reactive and participate in the crosslinking reactions.  

Within the fibril, the periodic gap is a linear shift of 67 nm (the D-period) between 

neighboring molecules, showing a characteristic banding pattern by negative staining through 

the fibrillar axis (Chapman, 1984; Hodge and Petruska, 1963; Veis, 2003). This D-period is a 

result of a periodic, staggered overlap arrangement of the collagen with 67 nm displacement 

and a gap of 40 nm to comprise the collagen fibrils (Bateman et al., 1996; Friess, 1998) 

through intermolecular crosslinks (Knott and Bailey, 1998). Intermolecular covalent 

crosslinks improve the mechanical properties and the stability of collagen fibrils (Eyre et al., 

1972, 2008; Lucero et al., 2006). C-terminal of the collagen interacts with N-terminal of the 

subsequent collagen molecule catalyzed by lysyl oxidase in fibrils (Rucker et al., 1978; Orgel 

et al., 2000; Lucero et al., 2006). In the formation of inter- and intramolecular crosslinks, 

lysyl oxidase is the main catalyzer of aldols or β-ketoamine molecules by the oxidative 

deamination of peptidyl lysines, which forms covalent bonds between collagen and amino 

groups of lysines or aldehydes (Mouw et al., 2014). These natural crosslinks occur between 

lysine and hydroxylysine residues in adjacent collagen peptides, forming stable covalent 

pyridinoline crosslinks. Thus, the natural pyridinoline crosslinks accumulate over time. 

Unlike most collagen in the body, dentin collagen does not turn over. That is, it is seldom 

degraded and is not replaced. However, the crosslinks stabilize dentin collagen so much that 

it can withstand acid-etching by 37% phosphoric acid, a procedure that denatures dermal 

collagen (Veis and Schlueter, 1964).   

Hydroxyproline residues are critical in stabilization or orientation of molecular packing of 

triple helix. Hydroxyproline is derived from proline by post-translational hydroxylation. It 

cannot participate directly in the hydrogen bonds, but is responsible for the organization and 

stabilization of hydrogen bonds by increasing the enthalpy between two hydroxyproline 

groups. Since the amount of hydroxyproline composes 10% of collagen amino acids, it is 

used as a quantification method of collagen or its degradation (Comper, 1996). 

Similar to hydroxyproline, collagen also contains hydroxylysine, an amino acid that is formed 

by enzymatic hydroxylation of lysyl. Hydroxylysyl residues participate in the triple-helical 

formation and its stabilization by hydrogen bonds. They increase the stiffness of the α chain 

and limit the rotation. Sugar is necessary for collagen as a glycoprotein in the formation of 

the triple-helical structure, and sugar components are attached to the triple helix by 

hydroxylysine residues (Bertassoni et al., 2012; Katz and Li, 1973). 
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Hydrogen bonds also play an important role in the stabilization of the triple helix of collagen. 

The intermolecular bonds occur by hydrogen bridges from Gly residue in one polypeptide 

chain to the carboxyl oxygen of X residue in the next polypeptide chain. As a result of the 

long lateral distance between two molecules for intra- and intermolecular interactions, water 

forms hydrogen-bonded bridges to bring the collagen molecules close to each other 

(Brinckmann et al., 2005). Thus, water forms a cylinder of hydration around the triple-helical 

structure, which generates lateral separation in collagen fibrils (Fullerton and Rahal, 2007). 

In the formation of the collagen fibrillar structure, proteoglycans and crosslinking enzymes 

have key roles, and so does the interaction of collagen fibrils with one another (Mouw et al., 

2014).  

  

  Figure 2: Illustration of collagen fibrils. 
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Proteoglycans (PGs) are one of the major groups of noncollagenous proteins in dentin 

organic matrix. Proteoglycans are thought to take part in the mineralization process and the 

structural integrity of collagen fibrils (Linde and Lundgren, 1995; Linde, 1998; Embery et al., 

2001). Decorin and biglycan are the most expressed in dentin and belong to the group of 

small leucine-rich proteoglycans (Goldberg and Takagi, 1993). A basic structure of 

proteoglycan (mostly decorin and biglycan for dentin) composes a core protein, 

glycosaminoglycans (GAGs) and linkage proteins (Goldberg and Takagi, 1993). GAGs are 

long, linear, heterogeneous and negatively charged polysaccharides with repeating units 

composed of an amino sugar and uronic acid (Gandhi and Mancera, 2008) (Figure 2). 

Although chondroitin 6-sulphate, dermatan sulphate, hyaluronan and keratin sulphate have 

been reported to be present, chondroitin 4-sulphate is the most abundant GAG in dentin. 

These molecules extend perpendicularly from the core in a brush-like structure (Goldberg and 

Takagi, 1993; Orsini et al., 2012). GAGs, especially chondroitin 4-sulfate, also make a 

complex by binding cathepsin K (a papain-like enzyme), which is one of the endopeptidases 

of dentin responsible for the degradation of triple-helical collagen (Li et al., 2002). 

Chondroitin 4-sulphate is necessary for the collagenase activity of cathepsin K, which renders 

it unique among proteases. It attaches the backbone of cathepsin K on the opposite site of the 

active domain and lets the left and right clefts fold around the active site. Thus, folded 

cathepsin K can be accommodated on triple-helical collagen by shrinking cathepsin onto the 

active site (Clan, 2013).  

GAGs with core proteins comprise proteoglycans with highly hydrophilic carbohydrate side-

chains that can interact with each other. They construct hydrophilic bridges between 

microfibrils, which is important for the viscoelasticity of dentin matrices (Bella et al., 1994). 

Thus, proteoglycans may contribute to the collagen scaffold and bind water in the 

interfibrillar spaces, and promote the micromechanical properties of dentin network (Scott et 

al., 1992, 1998, 2003, 2008). These hydrophilic molecules also facilitate the penetration of 

water, which has an important role in the hydrolysis of the matrices. These hydrophilic 

molecules contribute to the hydration of collagen (Pereira et al., 2007; Bedran-Russo et al., 

2008a). Proteoglycans form an interfibrillar network at the nanoscale, which provides support 

for highly structured collagen matrices and improves the biomechanical properties of dentin 

(Bertassoni et al., 2012). Their role in the organic scaffold and in micromechanical retention 

of dental adhesives has been previously demonstrated (Bedran-Russo et al., 2008a; Pereira et 

al., 2007). Removal of GAGs from demineralized dentin surface may cause the loss of 3-
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dimensional scaffold of collagen matrices and a decrease in bond strength most likely due to 

the reduction of the hydrophilic monomer penetration (Bedran-Russo et al., 2008a; Pereira et 

al., 2007). However, a contradictory study reported a 92% increase in bond strength after 

removing proteoglycans (Mazzoni et al., 2008).  

2.2. Degradation of Resin-Dentin Bonds by Host-Derived Dentinal Proteases 

Collagen is the organic structural component of the hybrid layers created by contemporary 

dental adhesives during the bonding to dentin structure (Nakabayashi et al., 1982; Van 

Meerbeek et al., 2001, 2003). This organic structural protein is resistant to degradation by 

many proteases when protected by minerals. However, after the demineralization process, 

unprotected collagen can be degraded by collagenolytic proteases (Pashley et al., 2004 

Mazzoni et al., 2006; Tezvergil-Mutluay et al., 2013). Intact collagen can be degraded only 

by specific collagenases (Nagase et al., 2006; Nagase and Visse, 2011). Once the helical part 

of the collagen is cut by collagenases, the other proteases can have access to the other bonds, 

and the collagen peptides unwind (Chung et al., 2004). Apart from the helical part of 

collagen, proteases can also cleave its non-helical amino- and carboxylterminal telopeptides. 

Many proteases in dentin have the capability to digest these highly crosslinked long peptide 

sequences (Nagase and Visse, 2011). However, their site-specific location in the telopeptide 

shows a wide of susceptibility to various proteases (Garnero et al., 2003). 

The presence of host-derived proteases in dentin has been reported in many studies. 

(Tjäderhane et al., 1998; van Strijp et al., 2003; Tersariol et al., 2010 Sulkala et al., 2002, 

2007; Nascimento et al., 2011). An early study by Dayan et al. showed the protease activity 

in intact dentin, but it was not easy to specify its source. Martin-De Las Heras et al. (2000) 

was the first to show the protease activity (MMP-2). Host-derived proteases are secreted by 

odontoblasts and released into the extracellular matrix during tooth development. Although 

the main function of dentin proteases in mineralized dentin is not well elucidated, it is 

thought that dentinal proteases may regulate the collagen matrix organization and the 

formation of intratubular dentin (Tjäderhane et al., 2002; Hannas et al., 2007). Additionally, 

they have a regulating role in the mineralization phase in that they regulate proteoglycan 

turnover in predentin. Following the mineralization, they are entrapped in mineralized dentin 

(Tjäderhane et al., 2012). In the dentine caries process, dentinal proteases may participate in 

the degradation of organic collagen matrix (Tjäderhane et al., 2002; Hannas et al., 2007). 

Although their specific role is not clear, they contribute to dentinal erosion (Tjäderhane et al., 

2015; Buzalaf et al., 2015).  
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The role of host-derived dentin proteases in the degradation of resin-dentin bonds was first 

suggested by Pashley et al. (2004). Armstrong et al. (2004) reported a 70% loss of collagen 

fibrils in the hybrid layer after a five-year storage in water by transmission electron 

microscopy (TEM) evaluation. For the first time, the decrease in resin/dentin bond strengths 

over time was associated with the degradation of collagen fibrils, which form the main 

continuous structural component between mineralized tissue and adhesive resin. Pashley et 

al. showed the first evidence of the degradation of exposed collagen without bacterial 

contamination (Pashley et al., 2004). They reported that this process is the result of 

enzymatic degradation of unprotected collagen fibrils by dentin proteases. To date, a number 

of dentin proteases have been shown in carious and intact dentin. It has been proposed that, 

among these proteases, matrix metalloproteinases (Pashley et al., 2004; Hebling et al., 2005) 

and cysteine cathepsins (Tersariol et al., 2010; Nascimento et al., 2011) and their activities 

are responsible for the hydrolytic degradation of the collagen underlying well-polymerized 

hybrid layers (Pashley et al., 2004; Hebling et al., 2005; Santos et al., 2009; Tersariol et al., 

2010; Nascimento et al., 2011; Mazzoni et al., 2012a).  

2.2.1 Matrix Metalloproteinases 

Matrix metalloproteinases (MMPs) are a group of zinc- and calcium-dependent 

endopeptidases. They are responsible for physiological and pathological remodeling and 

degradation of extracellular matrix (ECM). In general, MMPs consist of a prodomain with a 

cysteine residue (~80 amino acids), a hemopexin domain (~200 amino acids), a catalytic 

domain containing zinc ion (~170 amino acids), and a hinge region (Visse and Nagase, 

2003). MMPs are secreted as proenzymes (proMMPs). Their activities are blocked by 

cysteine residue in the propeptide domain (Nagase, 1997; Visse and Nagase, 2003). A bridge 

between the zinc ion in the catalytic domain and the unpaired cysteine in the propeptide is 

called the ‘cysteine switch’ mechanism (Van Wart and Birkedal-Hansen, 1990). When intact, 

it renders MMPs inactive by preventing water binding to the bound zinc atom in the catalytic 

domain. The zinc ion is important due to the direct participation in the cleavage of peptide 

bonds with contribution of other metal ions (e.g., calcium) bound in proximity, which co-

catalyze the enzymatic activity. The removal of the catalytic zinc can inactivate the enzyme 

(McCall et al., 2000). The activation mechanism of these enzymes is based on the 

displacement of the cysteine switch (Van Wart and Birkedal-Hansen, 1990). MMPs are 

activated by many processes, including self-activation by other proteases, heat treatment, 

exposure to low pH, or application of certain chemical reagents (Van Wart and Birkedal-
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Hansen, 1990). Their activation in mineralized dentin is related to the low pH of acidic 

conditioners used in dental adhesives (Nishitani et al., 2006: Mazzoni et al., 2006: Tay et al., 

2006).  

According to their properties, MMPs are classified under at least six structural groups; 

collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs and other MMPs. 

MMP-1, MMP-8, MMP-13 and MMP-18 are named collagenases as a subgroup, due to their 

ability to cleave triple-helical collagens (specifically type I, II and III) at site ¾ of the N-

terminus (Nagase, 1997; Visse and Nagase, 2003). Collagenases can also digest many other 

ECM and non-ECM molecules, such as proteoglycans (Hughes et al., 1991). Beside these 

true collagenases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B) bind and digest the 

gelatin from denatured collagen fragments. Gelatinases are characterized by three repeats of 

type II fibronectin domain inserted in the catalytic domain; the repeats are responsible for 

their extremely affinity to gelatin (Nagase et al., 2006). Stromelysins (MMP-3, MMP-10 and 

MMP-11) have a collagenase-like domain. MMP-3 and MMP-10 degrade many ECM 

molecules and play a role in the activation of the precursor form (pro-form) of MMPs 

(Nagase et al., 2006). Enamelysin (MMP-20) is not classified as part of the subgroups 

mentioned above. However, it has similar structures as stromelysin, which is expressed 

during enamel formation and digests amelogenin (Nagase et al., 2006). 

In dentin, MMPs participate in physiological tooth development and remodeling of dentin 

matrices before and during mineralization (Tjäderhane and Haapasalo, 2012). Following 

dentin matrix mineralization, they remain entrapped inside the mineralized matrix. To date, 

MMP-2, MMP-9 (gelatinases A and B) (Martin-De Las Heras et al., 2000; Mazzoni et al., 

2007; Toledano et al., 2010), MMP-8 (collagenase) (Sulkala et al., 2007), MMP-3 

(stromelysin) (Boukpessi et al., 2008; Mazzoni et al., 2011) and MMP-20 (enamelysin) 

(Sulkala et al., 2002) have been identified in dentin. Although MMP-20 is expressed in 

enamel during tooth development and caries progression and can degrade amelogenin, MMP-

20 shows the weakest ECM activity among all dentinal MMPs (Sulkala et al., 2002). MMP-2 

is the most abundant protease of all dentin MMPs, followed by MMP-9. Their gelatinase 

activities have been shown in demineralized dentin. Although they are classified as 

gelatinases, MMP-2 and -9 can also degrade telopeptides of collagen (Garnero et al., 2003). 

This makes them telopeptidases. Thus, they accelerate the degradation of dentin matrices by 

collagenases. Collagenases cleave α chains of collagen preferably α2 at a specific Gly-Ile/Leu 

bond from its three-quarter- and one-quarter-length fragments on N-terminus of collagen 
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(Perumal et al., 2008). This specific location is sterically protected by the C-telopeptide of 

crosslinked collagen fibrils, making it impossible to accommodate collagenases (Perumal et 

al., 2008). However, following the digestion of C-terminal fragments by telopeptidases, true 

collagenases have accessibility to the Gly-Ile/Leu bond peptide. This occurs at a specific 

region in the collagen, most probably due to three-peptide chains of collagen molecule 

containing the same recognition sequences (Perumal et al., 2008).  

Functions of MMP can be controlled at many steps, including synthesis, inhibition and 

activation. MMPs especially MMP-8 - especially at physiological normal levels – are also 

important physiological defensive, protective players (Kuula et al., 2009; Hernadez et al., 

2011; Hernandez et al., 2012; Heikkila et al., 2002). In physiologic tissue remodeling 

processes, inhibition of MMPs is regulated by endogenous tissue inhibitors of matrix 

metalloproteinases (TIMPs) (Nagase et al., 2006). However, synthetic inhibitors have 

specific functional groups (e.g., carboxylic acid, hydroxamic acid, sulfhydryl, phosphinils) 

that can be used for the inhibition of MMPs due to their chelating mechanism to zinc ion in 

the catalytic domain of MMPs, causing their inactivation (Nagase et al., 2006). 

2.2.2. Cysteine Cathepsins 

Cysteine cathepsins (CCs) are another noteworthy group of endopeptidases responsible for 

the activation of MMPs and with a crucial role in collagen degradation. Cathepsins are group 

of papain-like cysteine proteases (Barrett et al., 2004; Turk et al., 2012). Like MMPs, they 

are generally capable of degrading ECM proteins (e.g. collagen) by participating in several 

physiological and pathological processes such as remodeling in cartilage and bone, 

inflammation, cancer, diabetes, rheumatoid arthritis and multiple sclerosis (Turk and Guncar, 

2003; Turk et al., 2012).  

Among all cysteine cathepsins, cathepsin K represents 98% of the protease activity of 

cathepsins. Cathepsin K is different from other endogenous proteases of dentin due to its 

ability to cleave helical collagen (Garnero et al., 1998; Kafienah et al., 1998) whereas other 

cathepsins only can cleave non-helical telopeptide part of collagen fibril (Brömme and 

Wilson, 2011). Cathepsin K is unique not only due to its collagenase ability but also in that it 

can cleave collagen at multiple sites, generating multiple fragments, whereas MMPs can only 

degrade collagen type I at a specific single site, generating two fragments from ¾ N-terminal 

and ¼ C-terminal. Cathepsin K can become active at pH values between 4.5 and 6.0 (Clan, 

2013) and efficiently degrades type I collagen. The specific interaction between cathepsin K 
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and cleavage region on type I collagen is not clear. But it is thought that there is enough 

space for cathepsin K to locate on N-terminus of collagen. 

Cysteine cathepsin expression by mature human odontoblasts and the presence of cathepsin 

activity in dentin were recently demonstrated (Tersariol et al., 2010; Vidal et al., 2014a). 

Although their distribution and activity in dentin are different, cysteine cathepsins have been 

shown in both intact dentin (Tersariol et al., 2010; Vidal et al., 2014a) and carious dentin 

(Nascimento et al., 2011; Vidal et al., 2014a). Tersariol et al. was the first to report the 

presence of cysteine cathepsin activity in human dentin by using RNA, isolated gene 

expression in human odontoblasts and pulp tissues, for various cysteine cathepsins including 

B, C, K, L1, L2 and O (Tersariol et al., 2010). Total cathepsin activity in carious dentin is 

about 10-fold higher (Nascimento et al., 2011) than in intact dentin (Tersariol et al., 2010). 

Additionally, their role in caries progression in dentin has been shown (Nascimento et al., 

2011). Cysteine protease activity has also been detected in human saliva (Nascimento et al., 

2011). 

Similar to MMPs, cathepsins may also be activated when exposed to a mildly acidic 

environment and are thought to contribute to the degradation of dentin-resin bonds (Pashley 

et al., 2004; Breschi et al., 2008). In acidic condition, they become active and act as 

endopeptidases, except for cathepsin B, which also has carboxypeptidase activity (Turk and 

Guncar, 2003). Vidal et al. (2014a) compared the distribution of the activity of CCs and 

MMPs in intact and caries-affected dentin. They speculated that cathepsin B has the crucial 

role in degradation by cleaving non-helical telopeptides of collagen, which hides the critical 

isoleucine-glycine peptide of triple helix from the access of true collagenases (Perumal et al., 

2008). 

       

Figure 3: Cleavage location of collagen type I by MMPs and cathepsin K. 

Work by Tezvergil-Mutluay et al. compared the degradation of demineralized dentin in the 

presence of the human recombinant cathepsins B, K, L, by analyzing telopeptide fragments 
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and the loss of dry mass (Tezvergil-Mutluay et al., 2015). This study also confirmed the 

potential effect of cathepsin K on degradation of collagen in both helical and non-helical (C 

and N terminal telopeptides) collagen (Figure 3).  

2.3. The Strategies for Prevention of Degradation of Dentin Collagen Matrices 

Recent studies focused on the prevention of the loss of resin-dentin bond strength to improve 

the lifespan of resin-bonded dental restorations. Major degradation of intact dentin collagen 

occurs by enzymatic degradation by the endogenous proteases. They are all classified as 

hydrolases. That is, they require free, unbound water to cleave collagen peptides. Since 

remineralization is a process that displaces free water with apatite crystallites, 

remineralization produces dehydration of collagen and immobilization of enzymes (Kim et 

al., 2010a). Thus, remineralization of the exposed collagen, inhibition of dentin enzymes – 

especially MMPs and cysteine cathepsins – and biomodification of dentin organic matrices 

are the main strategies against the proteolysis.  

2.3.1. Remineralization 

Dentin demineralization in adhesive procedures can lead the mechanical changes in structure 

of dentin. Following the polymerization of the hybrid layer, the resin-poor infiltrated collagen 

underlying the hybrid layer can undergo excessive cyclic compressive strain during occlusal 

loading, which causes damage to the unsupported collagen. Incomplete resin infiltration 

affects the durability of resin-dentin bonds due to the unprotected collagen fibril undergoing 

hydrolysis by dentin proteases (Tjäderhane et al., 2013). Remineralization has been suggested 

as a mechanism to preserve the degradation of the residual, unprotected collagen from 

protease attack, and also to reinforce exposed dentin collagen under occlusal loading 

(Toledano et al., 2013a, 2014).  

Biomimetic remineralization is a new approach to extend the lifespan of resin-dentin bonds. 

Mechanisms of biomimetic remineralization include ion-releasing resins, which induce 

apatite infiltration of exposed collagen fibrils in demineralized dentin. These biomimetic 

analogs can phosphorylate dentin organic matrices and remineralize the dentin within the 

hybrid layer (Kim et al., 2010a). Thus, remineralization strengthens collagen and increases 

the longevity of resin-dentin bonds (Kim et al., 2010a). Tay and Pashley (2008) introduced a 

biomimetic model with Portland cement in phosphate-containing fluid, which creates 

metastable amorphous calcium phosphate (Eanes, 2001; Weiner et al., 2005; Weiner, 2008) 

and can bind dentin collagen (Dahl et al., 1998; He et al., 2005; Gajjeraman et al., 2007).  
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This model is based on the interaction of the release of calcium hydroxide from Portland 

cement and phosphate, to produce apatite crystallites within and around collagen fibrils via an 

amorphous calcium phosphate phase. In addition, an experimental bioactive silicate-doped 

resin was introduced as an inhibitor of MMP-mediated degradation of dentin organic matrices 

to remineralize collagen fibrils and/or fossilize MMPs via apatite precipitation (Osorio et al., 

2012). Polyvinyl phosphoric acid can inhibit MMPs via a chelating mechanism (Tezvergil-

Mutluay et al., 2010); meanwhile, it also remineralizes collagen matrices as a biomimetic 

analog for dentin noncollagenous phosphoproteins. Recently, Tezvergil-Mutluay et al. (2014) 

reported that an experimental biomimetic resin containing zoledronate MMP-mediated the 

degradation of dentin collagen matrices. The study showed that the reduction in the 

degradation is a result of phosphoric acid group binding to a specific site of the collagen 

molecule, where it chelates the calcium of MMPs, thereby inhibiting them (Tezvergil-

Mutluay et al., 2014).  

Although remineralization of dentin has promise in lessening degradation of collagen fibrils 

by proteases, improvement in mechanical properties of hybrid layers and better durability of 

resin-dentin bonds (Tay and Pashley, 2008), the effective remineralization of dentin requires 

maturation time (Tay and Pashley, 2008, 2009; Liu et al., 2011).  

2.3.2. Ethanol Wet-Bonding Technique  

Ethanol wet-bonding technique has also been suggested as a way to decrease the degradation 

of resin-dentin bonds by removing the residual water surrounding the demineralized collagen 

matrices. The technique is based on replacing residual water within the hybrid layer with 

ethanol, which facilitates the infiltration of more hydrophobic resin monomers that are more 

soluble in ethanol (Sauro et al., 2010; Sadek et al., 2010a). Thus, ethanol wet-bonding not 

only decreases water sorption and resin plasticization, but could also minimize the hydrolytic 

collagen degradation by proteases (Hosaka et al., 2009; Sadek et al., 2010b). The procedure 

requires further simplification and is not yet in clinical use.  

2.3.3. Inhibition of Enzyme Activity 

Ethylenediaminetetraacetic Acid (EDTA)  

Matrix metalloproteinases require calcium ion for their tertiary structure, and zinc ion to 

maintain enzyme activity (Nagase and Visse, 2006; Tezvergil-Mutluay et al., 2010a). Thus, 

the inhibition mechanism of MMP is mainly based on the chelation of divalent metal ions to 

prevent the degradation of collagen matrices. Ethylenediaminetetraacetic acid (EDTA) is a 
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strong metal chelator that has been used as an etchant in dentistry for creating 

micromechanical retention and for enlarging root canals during endodontic therapy 

(Hülsmann et al., 2003). Recent studies have shown that EDTA can inhibit MMPs by 

chelating the catalytic zinc ions of MMPs and by removing the calcium ions from collagen 

matrices (Carvalho et al., 2000; Thompson et al., 2012; Tjäderhane et al., 2013). However, 

their inhibitory effect on dentin MMPs is reversible due to their high water solubility 

(Carrilho et al., 2009; Tezvergil-Mutluay et al., 2013). Additionally, time-dependent erosion 

surrounding dentinal tubulus was reported after 17% EDTA application (Çalt and Serper, 

2002). Furthermore, the relatively long application time required (Pashley et al., 2011) for 

efficient etching limits their use in dentistry.  

Chlorhexidine  

Chlorhexidine (CHX) is a broad-spectrum antimicrobial mainly used for disinfection of the 

oral cavity and irrigation of periodontal pockets (Sorsa et al., 1990). Previously, CHX was 

identified as MMP-8 inhibitor (inhibitor and inhibitor of oxidative activation of MMP-8) in 

vitro (Türkoğlu et al., 2014) and in vivo (Azmak et al., 2002). The inhibitory effect of CHX 

on MMP-2, -8 and -9 was shown by Gendron et al. (1999), while recently Scaffa et al. (2012) 

showed the inhibitory effect on cathepsins B, K and L. The use of CHX to inhibit the 

degradation of unprotected collagen fibrils was first suggested by Pashley et al. (2004). This 

was followed by an in vivo study on deciduous teeth (Hebling et al., 2005) comparing the 

CHX pretreatment of dentin cavities after acid etching with a no-CHX-treatment control. The 

results showed significant degradation in the control group after 6 months of incubation, 

whereas no significant degradation was observed in the CHX group. Similarly, Carrilho et al. 

(2007) showed that dentin treated with CHX preserved tensile bond strength after 14 months 

in vivo in permanent teeth. Kim et al. evaluated the CHX binding capacity of mineralized and 

demineralized dentin. They showed that since CHX is a cationic chelating agent with strongly 

positive ion charges, binding to demineralized dentin occurs mainly through electrostatic 

interactions to carboxylic acid groups, such as glutamic and aspartic acid amino acids of 

collagen and associated non-collagenous proteins (Kim et al., 2010b), whereas binding to 

enamel is due to negative charges in trivalent phosphate in the hydroxyapatite crystalline on 

mineralized dentin (Kim et al., 2010b). Recent studies reported improvement in the durability 

of resin-dentin bonds by using CHX-incorporated adhesives (Stanislawczuk et al., 2011, 

2014; Talungchit et al., 2014). However, Sadek et al. (2010) showed that after 18 months of 

incubation, tensile bond strength of CHX-treated samples was no longer stable. Despite the 
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good initial enzymatic inhibition effect of CHX, water-soluble CHX can leach out from 

dentin due to the fluid replacement by dentin fluid-containing competing cations (Kim et al., 

2010b; Sabatini and Pashley, 2014).  

Quaternary Ammonium Compounds (QACs)  

Other antimicrobial agents, such as quaternary ammonium compounds (QACs) (Tezvergil-

Mutluay et al., 2011a), were also evaluated for their inhibitory effect. Like CHX, QACs can 

inhibit dentin proteases by a cationic mechanism. Their positive charge NH
3+

 may bind to a 

critical negative charge carboxylic acid in MMPs (Sabatini and Pashley, 2014). The 

electrostatic binding may block the active domain of the enzyme by inducing conformational 

changes. Among antibacterial QACs, 12-methacryloyloxydodecylpyridinium bromide 

(MDPB) has already been incorporated into a commercially available adhesive system 

(Imazato et al., 2007). The antibacterial properties of MDPB were considered the main 

advantage and purpose of the use. Although they contain a methacrylate group in their 

compound that can copolymerize with other adhesive monomers (Tezvergil-Mutluay et al., 

2015), its ability to stabilize the resin-dentin interface needs to be tested. An acid-etching 

agent containing QACs (1% benzalkonium chloride) has already been marketed for its 

antimicrobial properties (Kanca, 1997). Additionally, the inhibitory effect of benzalkonium 

chloride incorporated with 37% phosphoric acid on degradation of EDTA-demineralized 

collagen matrices was shown to be comparable to that of CHX (Ozcan et al., 2015). Despite 

the decrease on the collagen degradation after QAC treatments, their water-soluble nature is a 

matter of concern due to the reversible electrostatic interaction and possibility of leaching out 

from collagen matrices as CHX (Kim et al., 2010b). However, has recently benzalkonium 

methacrylate was synthesized. It seems to be more effective than BAC alone (Sabatini and 

Pashley, 2015). 

Polyvinylphosphonic Acid (PVPA) 

Polyvinylphosphonic acid is a long polymer chain with multiple phosphonate groups, 

including a methylene group in the molecule backbone, and was suggested as a potent 

inhibitor of MMPs at low concentration. Its inhibitory effect on MMPs is based on chelation 

of metal ions of MMPs (Rivas et al., 2004). Although few studies have investigated the 

ability of bisphosphonates to inhibit MMPs, a recent study indicated that the use of 

polyvinylphosphonic acid (PVPA) inhibited dentin endogenous proteases by chelating the 

zinc and calcium ions (Tezvergil-Mutluay et al., 2010b). However, PVPA binds to collagen 
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and presumably to MMPs electrostatically, similarly to CHX (Sabatini and Pashley, 2015). 

Similarly, their efficiency in long-term inhibition is questionable due to their weak bonding 

with collagen (Tezvergil-Mutluay et al., 2010b; Sabatini et al., 2014).  

Zinc and Zinc-Containing Materials 

Activation of MMPs requires zinc, which is essential for their catalytic activity. However, 

many studies indicate that in high concentrations, zinc chloride can inactivate MMPs (Osorio 

et al., 2011a and 2011b; Toledano et al., 2012a, 2012b, 2013b). Slow zinc-releasing dental 

restoratives such as zinc phosphate cements are suggested to prolong the lifespan of 

restoration by inactivating MMPs (Czarnecka, 2003). Osorio et al. (2011c) incubated 

demineralized dentin beams with 24.4 mM zinc chloride-containing media, and the study 

demonstrated that zinc inactivated MMPs more effectively than CHX. The authors explained 

that released zinc ions bind to peptides of the MMPs and constitute more stable bonds by 

modifying MMP-structure. In another study by Toledano et al. (2013b), addition of 10 wt% 

ZnO or 2 wt% ZnCl2 into the commercial adhesive improved the integrity of the hybrid layer. 

Nevertheless, incorporation of zinc in dental material may lower the mechanical properties of 

resin or lower the degree of conversion, creating weaker resin-dentin bonds. 

Alcohols 

Tezvergil-Mutluay et al. (2011) investigated various concentrations of a series of alcohols 

(methanol, ethanol, propanols, butanols, pentanols, hexanols, HEMA, the ethanol ester of 

methacrylic acid, heptanols and octanol) for their MMP inhibition potential. The authors 

proposed that alcohols can inactivate MMPs via hydrogen bonds between the catalytic zinc of 

MMPs and the oxygen atom of the hydroxyl group of the alcohol. Although the study’s 

results were promising, total inhibition was not observed in any group. Therefore, in the 

inactivation of MMPs, alcohol esters may not be stable and effective in the long term.  

Specific Inhibitors 

Many broad-spectrum synthetic protease inhibitors are already on the market. Galardin, a 

hydroxmate-based inhibitor, was developed as an anticancer drug to inhibit MMPs by 

chelating the zinc ion. The inhibitory effect on dentin MMP-2 and MMP-9 has been shown 

(Breschi et al., 2010; Almahdy et al., 2012). Breschi et al. incorporated Galardin with the 

primer of an etch-and-rinse adhesive (Breschi et al., 2010). The authors showed a decrease in 

the degradation of resin-dentin bonds after one year. However, another study showed that 
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Galardin does not reduce the degradation of resin-dentin bonds after six months (Luhrs et al., 

2013). 

De Munck et al. (2009, 2010) tested a MMP-2/9-specific inhibitor (SB-3CT) and CHX as a 

non-specific MMP inhibitor incorporated with the primers of an etch-and-rinse and a self-

etch adhesive, showing a reduction in the degradation of the resin-dentin interfaces only for 

the etch-and-rinse adhesive. 

Tetracyclines, and their analogs, have been suggested as MMP inhibitors, along with their 

antimicrobial effects, and down-regulation of MMP mRNA expression (Sulkala et al., 2001; 

Griffin et al., 2011). Metastat, a chemically modified tetracycline, showed an inhibitory 

effect on collagen degradation on carious dentin (Sulkala et al., 2001; Chaussain-Miller et al., 

2006). Tetracycline-like molecules inhibit dentin MMPs through a chelating mechanism. 

Among broad-spectrum antibiotics, studies have shown that doxycycline and minocycline 

can inhibit collagenases and gelatinases (Golub et al., 1991). Additionally, the inhibitory 

effect of doxycycline on endogenous dentin MMPs and rhMMP-2 was shown (Osorio et al., 

2011). However, the effect of tetracyclines and their analogs on the durability of the hybrid 

layer is not known. In addition, the dark stain on treated dentin during the photo-oxidation 

limits the clinical use of tetracycline-based materials. 

Similarly, E-64 is non-specific inhibitor of a wide range of cysteine cathepsins. It can bind 

covalently to the cleft of the enzyme backbone between left and right domains of cathepsins, 

where it mimics the substrate, and bind the opposite site where the substrate attaches (Turk et 

al., 1997). Although efficient inhibition of cathepsin K by E-64 in demineralized dentin was 

reported (Tezvergil-Mutluay et al., 2013), knowledge of the effect on degradation of resin-

dentin bonds is limited.  

Despite the molecular similarities between cysteine peptidases such as cathepsin L and 

cathepsin S, there is a real need for specific inhibitors for cathepsin K. The catalytic region of 

cathepsin K has left and right domains, separated by a cleft. This cleft contains a substrate-

binding site, where inhibitors can be accommodated (Turk et al., 2012). Enzyme inhibitors 

are designed to bind to the cleavage site on the enzyme by mimicking a substrate. Especially, 

due to the role of cathepsin K in osteoclastic degradation of type I collagen, specific synthetic 

inhibitors of cathepsin K were developed to irreversibly inhibit cathepsin K. Odanacatib is a 

nitrile-based inhibitor that is selective for cathepsin K. Recently, phase II and III clinical trials 
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of odanacatib have shown promise in the inhibition of cathepsin K (Perez-Castrillon et al., 

2010; Wijkmans and Gossen, 2011) in the treatment of osteoporosis. 

2.3.4. Use of Collagen Crosslinkers 

Endogenous crosslinking is a result of maturation of the tissue that occurs over time. This 

mechanism includes enzymatic crosslinking mediated by lysine–lysine covalent bonding 

between non-helical telopeptides and triple-helical fragments of collagen or/and non-

enzymatic crosslinking by oxidation and glycation (Reiser et al., 1992). 

On the other hand, crosslinking may be stimulated by using external collagen crosslinkers to 

improve the biomechanical properties of the collagen against proteolytic attack and to 

strengthen collagen structure. This exogenous crosslinking may modify the noncollagenous 

component of dentin as well as collagen scaffold (Bedran-Russo et al., 2014). 

As a term, the ‘biomodification’ of dentin collagen matrices was used by Bedran-Russo 

(2014) to explain the structural changes in the three-dimensional scaffold of collagen treated 

with an exogenous crosslinking agent. The aim of modifying dentin matrices by collagen 

crosslinking agents is to improve the biomechanical properties of the dentin against dentin 

protease attacks.  

Bedran-Russo et al. (2007, 2008b), for the first time, showed the effect of collagen 

crosslinkers on dentin collagen matrices in terms of the increased durability of the hybrid 

layer. Further studies showed that various collagen crosslinkers, such as carbodiimides, 

aldehydes, phenolic compounds and photochemicals, improve biomechanical properties of 

the collagen structure on dentin (Cheung et al., 1985; Bedran-Russo et al., 2007, 2008b; 

Hayashi et al., 2010; Cova et al., 2011; Tezvergil-Mutluay et al., 2012). Collagen can be 

modified by using methods such as chemical, physical and photochemical crosslinking 

(Snibson et al., 2010; Hayashi et al., 2010; Tezvergil-Mutluay et al., 2012).  

Aldehydes 

Aldehydes, such as formaldehyde and glutaraldehyde, are used for covalent crosslinking. 

Glutaraldehyde is commonly used for the fixation of proteins in biological samples and is 

also known as a crosslinking agent that forms covalent bonds between the amino groups of 

proteins and the aldehyde groups of glutaraldehyde. As a dialdehyde, glutaraldehyde binds 

the ɛ-amino groups of peptidyl lysine and hydroxylysine residues of collagen fibrils. 

Previously, glutaraldehyde was studied as a method to decrease the enzymatic degradation of 

collagen by collagenases (Cheung et al., 1990; Bedran-Russo et al., 2008b; Sabatini et al., 
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2013). It is also likely that it inactivates endogenous proteases by crosslinking the active site 

of the enzymes (Sabatini et al., 2014). 

Besides its crosslinking capacity, glutaraldehyde was shown to be a good MMP inhibitor. 

Sabatini et al. (2013) showed the inhibition of dentin MMPs by using a glutaraldehyde-

containing desensitizer. According to a recent report, modulus of elasticity of demineralized 

dentin beams increased following treatment with 10% of glutaraldehyde for 1 min (Scheffel 

et al., 2014).  

Although recent studies have shown that it is a good inhibitor of MMPs and crosslinking 

agent for collagen (Bedran-Russo et al., 2008b; Sabatini et al., 2013; Scheffel et al., 2014), 

the high cytotoxicity of glutaraldehyde limits its use in vivo (Sung et al., 1999). 

Carbodiimides 

Carbodiimide is known as a zero-length collagen crosslinker due to its ability to form amide 

bonds between carboxylic and amino groups on the collagen molecules without taking place 

in the linkage. Carbodiimide activates the free carboxylic acid groups of glutamic and 

aspartic acids to form an O-acylisourea intermediate that then reacts with the ɛ-amino groups 

of lysine or hydroxylysine to form an amide crosslink by eliminating isourea derivatives as 

the terminal product. The most widely used carbodiimide is 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC), which is water soluble or can be combined with  

N-hydroxysuccinimide (NHS) solution to accelerate the crosslinking reaction, and prevents 

the hydrolysis of activated carboxyl groups (Staros et al., 1986; Olde Damink et al., 1996). 

Following the treatment of collagen crosslinkers, EDC-treated dermal sheep collagen showed 

similar tensile strength compared to glutaraldehyde-treated specimens (Olde Damink et al., 

1996). Also, improvement of mechanical properties of collagen matrix and durability of 

resin-dentin bonds in dentin matrix treated with EDC was reported (Bedran-Russo et al., 

2010). Further studies introduced the inhibitory effect of EDC on dentin MMPs (Tezvergil-

Mutluay et al., 2012) as well as an increase on the long-term bond strength of dentin 

(Mazzoni et al., 2014).  

One of the advantages of EDC is much lower cytotoxicity compared to glutaraldehyde 

(Huang YP, et al., 1990; Petite et al., 1995; Scheffel et al., 2015). However, its crosslinking 

capacity is limited (Olde Damink et al., 1996). 

30 REVIEW OF LITERATURE



 
31 

 

Considering the toxicity of chemical reagents in living tissue, physical crosslinking is an 

alternative method to other procedures, including heating, drying and ultraviolet A (UVA) or 

gamma irradiation. UVA-induced crosslinking was introduced for ophthalmology to crosslink 

corneal collagen as a treatment for keratoconus (Wollensak et al., 2003; Snibson, 2010). 

UVA crosslinking improves the durability of collagen to collagenolytic degradation by 

increasing the shrinkage temperature of collagen (Hayashi et al., 2010). Short-wavelength 

UV irradiation at 254–370 nm may cause the denaturation of collagen. However, to increase 

the crosslinking capacity of UVA, a photosensitizer may be used during collagen crosslinker 

application. Riboflavin has been used as a photosensitizer during UVA irradiation on 

collagen crosslinking of cornea (Wollensak et al., 2003; Snibson, 2010). Cova et al. (2011) 

introduced the inhibitory effect of UVA/riboflavin-induced crosslinking on dentin MMPs. 

Although they showed an increase in the durability of resin-dentin interface, its mechanism of 

MMP inactivation is not well elucidated. Another study also reported that UVA and dental 

blue light are good alternatives for improving the durability of resin-dentin interfaces. 

However, UVA-induced crosslinking was more effective against enzymatic degradation than 

blue light (Fawzy et al., 2012a and 2012b). 

Another physical method is dehydrothermal treatment, which is based on removing water 

resulting from the development of increased inter-chain crosslinks between collagen fibrils 

(Yannas and Tobolsky, 1967; Weadock et al., 1983-84). Compared to chemical crosslinking, 

the volume of crosslinks produced by physical method is lower. Addition of a chemical 

treatment prior to dehydrothermal treatment may help to maintain the stability of crosslinking 

(Law et al., 1989) 

Hayashi et al. (2010) compared both dehydrothermal and UVA treatments and reported that 

samples treated with UVA or heating showed two- or three-fold increases in immediate 

flexural strength. However, after 30 days of rehydration, UVA-treated dentin collagen matrix 

increased strength 69% more effectively than the untreated specimens did, whereas the 

heated specimens reverted to their original strength. The authors concluded that UVA 

irradiation created crosslinks that remain following rehydration due to the chemical changes 

in collagen structure revealed by Raman spectroscopy (Hayashi et al., 2010). However, 

dehydrothermal treatment requires heating the collagen to around 120˚C for several hours or 

a few days, which is not clinically applicable.  
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Recently, natural and sustainable crosslinker sources have received much interest in medicine 

due to their low or lack of toxicity, and their high potency, permitting the use of relatively 

low concentrations.  

Genipin, a naturally derived crosslinking agent, is an iridoid glycoside which is extracted 

from the fruit of Gardenia jasminoides L. Genipin generates crosslinks spontaneously with 

protein, collagen, gelatin, chitosan, etc. and improves the mechanical properties of collagen-

based biomaterials (Frujikawa et al., 1987; Sung et al., 1999). The crosslinking mechanism of 

genipin is mediated by reactions with free amino acid residues of collagen to form a 

nitrogenous iridoid derivative composed of an aromatic monomer by dehydration (Frujikawa 

et al., 1987; Sung et al., 1999; Sung et al., 2003; Bedran-Russo et al., 2007), which 

concludes by inter- and intramolecular crosslinking. Thus, genipin treatment in dentin 

improves its mechanical properties and enhances the biostability of collagen matrix against 

the degradation by collagenase (Bedran-Russo et al., 2007; Walter et al., 2008 Al-Ammar et 

al., 2009; Nagaoka et al., 2014). Genipin crosslinks collagen as well as glutaraldehyde but is 

1,000 times less toxic than glutaraldehyde (Sung et al., 1998, 1999, 2001; Tsai et al., 2000; 

Han et al., 2003). However, due to their dose- and time-dependent crosslinking capacity and 

discoloration of dentin, their application is limited (Nagaoka et al., 2014). 

Currently, phenolic compounds have also been studied for crosslinking of dentin collagen 

matrices. Phenolic compounds are secreted by plants as a defense against infection, insects, 

animal herbivory and predators or ultraviolet radiation. Phenolics are compounds possessing 

one or more aromatic rings with one or more hydroxyl groups. Around 8,000 different 

phenolic compounds are known with broad spectrum, from simple phenolic acids to complex 

tannins (Tsao, 2010).  

Phenols can be classified as simple or complex phenols. Simple phenols are divided into 

phenols with a single-ring aromatic compound, with one or more hydroxyl groups (-OH), 

such as salicylic acid, catechol, pyrogallol and phenolic acids, and stilbenes with 

phenylpropanoid side chains (cinnamoyl esters, caffeic acid, chlorogenic acid etc., dimers of 

esters such as curcumin) (Tsao, 2010; Quindeau et al., 2011). Although simple phenolic acid 

derivatives were shown to be candidates for crosslinking of dentin collagen matrices, Vidal et 

al. (2014b) reported that the crosslinking capacity of polyphenolic compounds was better 

because of their larger molecular structures and the binding locations on collagen fibrils.  
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Complex phenolics contain two or more aromatic/heterocyclic ring structures, and are also 

known as polyphenols. Polyphenols were are described as water-soluble plant phenolic 

compounds that contain 12 to 16 phenolic hydroxy groups on 5–7 aromatic rings (each one 

around 1,000 Da) and show molecular differences between 500 and 4,000 Da (Haslam and 

Cai, 1994). They have the ability to precipitate certain alkaloids, gelatins and peptides from 

solution (Khanbabaee and van Ree, 2013). Polyphenols are secondary metabolites of the 

plants and ubiquitous throughout the plant, including bark, wood, leaves, fruit, roots and 

seeds. Polyphenols of plant extracts have been used in plant-based medicines and in food 

production since 1500 B.C. (Khanbabaee and van Ree, 2013). 

Considering the diversity and distribution of these natural compounds, polyphenols can be 

classified differently according to their origin, biological function and chemical structure. 

Accepted classification of true polyphenols consists of three basic classes: condensed tannins, 

hydrolyzable tannins and phlorotannins (Quideau et al., 2011). 

Hydrolyzable tannins are compounds containing a central core of glucose or another polyol 

esterified with gallic acid, also called gallotannins, or with hexahydroxydiphenic acid, also 

called ellagitannins. The great variety in the structure of these compounds is due to the many 

possibilities in forming oxidative linkage. Intermolecular oxidation reactions give rise to 

many oligomeric compounds with a higher molecular weight (Dai and Mumper, 2010). 

However, hydrolyzable tannins are hydrolyzed by weak acids or weak bases to produce 

carbohydrate and phenolic acids. Condensed tannins are not susceptible to cleavage by 

hydrolysis, are larger than hydrolyzable tannins, and their large size precludes absorption. 

Condensed tannins are oligomers or polymers of flavan-3-ol linked through an interflavan 

carbon bond. They are also referred to as proanthocyanidins because they are decomposed to 

anthocyanidins through acid-catalyzed oxidation reaction upon heating in acidic alcohol 

solutions (Dai and Mumper, 2010). 

All oligomeric and polymeric proanthocyanidins such as procyanidins, prodelphinidins and 

profisetinidins are known to include condensed tannins and are generated by oligomerization 

of (epi)catechin, epigallocatechin and fisetinidol, which consist of flavon-3-ol units (Tsao 

2010; Quindeau et al., 2011). The hydrolyzable tannins are gallic and ellagicacid derivatives 

and are divided into gallotannins and ellagitannins, respectively (Tsao 2010). These 

polyphenols are result of esterification and phenolic oxidative coupling reactions to numerous 

(near 1,000) monomeric and oligomeric polyphenolic galloyl ester derivatives of sugar-type 

polyols, mainly d-glucose. They present in nature as secondary metabolites of various plants 
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such as pomegranate, bearberry etc. However, this group of polyphenols can be hydrolyzed 

by acid or enzymes. Phlorotannins are derived from red-brown algae (Quindeau et al., 2011). 

They are synthesized by oligomerizing dehydrogenative coupling of phloroglucinol. 

Additionally, complex tannins consisting of a gallotannin or an ellagitannin unit, bonded to a 

catechin unit, are bound glycosidically (Tsao, 2010). 

Among all polyphenols, proanthocyanidins are the most studied for dentin biomodification 

for the improvement of biomechanical properties of dentin collagen matrices (Han et al., 

2003; Castellan et al., 2010; Hiraishi et al., 2013; Vidal et al., 2014b and 2014c). In general, 

the mechanism between collagen and proanthocyanidins is based on the formation of 

covalent bonds resulting from the interaction between the protein amide carbonyl and the 

phenolic hydroxyl group by hydrogen bonding (Hagerman and Klucher 1986). The 

biomodification of dentin by crosslinking with grape seed extract is one of the most widely 

studied proanthocyanidin-rich compounds, which efficiently stabilizes dentin collagen 

matrices (Bedran-Russo et al., 2011; Castellan et al., 2011). Green et al. (2010) dissolved 5% 

proanthocyanidin-rich grape seed extract with a dental adhesive and reported a decrease in 

biodegradation of hybrid layers containing grape seed extract (Green et al., 2010). Aguiar et 

al. compared the effect of various proanthocyanidin sources, derived from seven different 

plants, on dentin biomodification and concluded that biomodification of dentin by plant 

extraction depends on the concentration and the proanthocyanidin mixture (Aguiar et al., 

2014). Liu and Wang (2013) showed that the treatment of 2 w/v proanthocyanidin for 30 s 

can effectively crosslink a 6 µm-thick layer of dentin after 15 s phosphoric acid 

demineralization.  

Sumac berries from Rhus coriaria have been reported as a rich source of hydrolyzable 

tannins. Sumac berry extract showed a strong antioxidant activity (Zalacain et al., 2000; 

Zalacain et al., 2003). Sumac (Rhus coriaria L.) consists of hydrolyzable gallotannins and its 

basic structural unit is polyol d-glucose, esterified by gallic acid in its hydroxyl groups, to 

give the penta-O-galloyl-β-D glucose (Armitage et al., 1961; Haslam, 1998; Niemetz et al., 

1999). Similar to proanthocyanidin-rich grape seed, penta-O-galloyl-β-D glucose (in sumac) 

also induces inter-microfibrillar crosslinks and enhances the mechanical properties of the 

dentin matrix (Vidal et al., 2014c). Vidal et al. (2014c) showed that the treatment of penta-O-

galloyl-β-D glucose increases the modulus of elasticity in dentin matrix more than treatment 

with proanthocyanidin. Although both proanthocyanidin and penta-O-galloyl-β-D glucose 

have the same number of hydroxyl groups, penta-O-galloyl-β-D glucose consists of five 
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hydroxyl groups esterified with gallic acids, which most likely provides flexibility to galloyl 

groups to interact with collagen. The interaction of proline with the galloyl group of penta-O-

galloyl-β-D glucose maximizes the available binding surface for another galloyl group-

proline by keeping the peptide extended. Additionally, penta-O-galloyl-β-D glucose may coat 

proteins and render them more hydrophobic for protein interaction and hydrogen bonds 

(Perumal et al., 2008).  

Curcumin is another phenolic compound extracted from the rhizome of the plant Curcuma 

longa L (Park et al., 2005; Saha et al., 2012). It has the ability to chelate the catalytic Zn
2+

 

ion on the catalytic domain of MMP with β-diketone zinc-binding site of curcumin (Zhang et 

al., 2012), acting in a way that is similar to the tetracycline-based MMP inhibitors (Golub et 

al., 1991, 1998). In addition to direct inhibition of metalloproteinases, the phenolic structure 

of curcumin has a role in the interactions between curcumin and collagen fibrils, resulting in 

high intermolecular crosslinks. These interactions also help to stabilize the proteins and bring 

into close proximity and improve the tensile strength of collagen (Panchatcharam et al., 

2006). However, the effect of sumac or curcumin on demineralized dentin has not been 

studied previously.            

     

 Figure 4: Possible crosslinking of collagen matrices. 
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Effect of Collagen Crosslinkers on Enzymatic Activity 

Despite the mechanical advantages collagen crosslinkers of dentin biomodification through 

crosslinking, efficient crosslinking requires relatively long application times, making it 

clinically impossible (Bedran-Russo et al., 2007, 2008b). Collagen crosslinkers can prevent 

the degradation of dentin matrix by crosslinking the triple helix of collagen fibrils. These 

stiffened collagen peptides cannot be unwound by collagenases when they bind to collagen 

(Chung et al., 2003). In addition, they may bind dentin proteases covalently in a manner 

similar to the mechanism of inhibitors, or to other components of the matrix (e.g., collagen, 

non-collagenous protein, enzyme) (Liu et al., 2011). The sources of MMPs and cathepsins in 

peripheral dentin are limited due to the lack of cellular or odontoblastic activities in 

peripheral dentin. If dentin proteases are inactivated by covalent binding in the collagen 

matrices, they discontinue any further degradation of surrounding collagen. That is, the 

degradation of collagen can be inactivated by crosslinking of proteases.  

Thus, studies have focused on dentin biomodification by crosslinkers not only for 

crosslinking of dentin collagen matrix, but also for the multi-interactivity with other dentin 

matrix components, including proteases. Tezvergil-Mutluay et al., (2012) for the first time, 

indicated that only a one-minute treatment of demineralized dentin with 0.3 M EDC could 

inactivate both soluble MMPs and matrix-bound dentin MMPs. In a further study, EDC was 

used as a pretreatment prior to self-etch adhesive application and improved the durability of 

resin-dentin bonds (Scheffel et al., 2014). Treatment with 0.5 M EDC for 60 s during 

adhesive application prevented the loss of dentin bond strength following 6 or 12 months’ 

aging (Scheffel et al., 2014). Recently, Mazzoni et al. (2014) confirmed the inactivation 

effect of dentin on dentin gelatinases. Additionally, a commercially available dentin 

desensitizer containing 5% glutaraldehyde was reported as a potential MMP inhibitor due to 

its decreasing total MMP activity up to 86% of demineralized dentin positive correlated with 

duration of the treatment (Sabatini et al., 2013). Further studies confirmed that collagen 

crosslinkers can rapidly decrease the degradation by crosslinking of collagen (Liu et al., 

2013a, 2013b, 2014) (Figure 4). 

Although many studies showed a decrease on the degradation of dentin collagen following 

the application of collagen crosslinkers, the mechanism of protease inactivation and the effect 

of collagen crosslinkers on collagen matrix are not well elucidated. Thus, the series of studies 

focused on the evaluation of collagen crosslinker in terms of the inactivation of dentin matrix 

degradation. 
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3. AIMS OF THE THESIS 

The aim of this study was to evaluate the effect of protein crosslinking agents on dentin 

MMPs and CCs on dentin organic matrices. The working hypotheses tested were that various 

collagen crosslinkers inactivate dentin MMPs and CCs, and prevent degradation of dentin 

collagen. 

The specific aims were: 

1. To evaluate the inactivation effect of collagen crosslinkers on dentin matrix-bound 

MMPs and CCs by means of quantitation of ICTP release (crosslinked 

carboxyterminal telopeptide of type I collagen) and CTX (C-terminal crosslinked 

telopeptide of type I collagen) release, respectively (Study I). 

2. To determine the effect of UVA-induced crosslinking on the degradation of 

demineralized collagen matrix (Study II). 

3. To analyze the effect of collagen crosslinker pretreatment on the endogenous MMP 

activity of demineralized dentin matrices (Study III). 

4. To determine the long-term effect of collagen crosslinker pretreatment on the 

degradation of dentin (Study IV). 
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4. MATERIALS AND METHODS 

4.1. Materials 

Intact third molars removed during normal dental treatments were used in the study series 

with patient’s informed consent and with the approval of the ethics committees of the 

Georgia Reagents University (Study I-IV) and Faculty of Medicine, University of Oulu 

(#19/2006) (study II-III). The teeth were stored at 4˚C in 0.9% NaCl supplemented with 

0.02% sodium azide to prevent bacterial growth and used within three months of extraction. 

The collagen crosslinkers used in studies I–IV are listed in Table 1. All solutions were 

prepared freshly prior to application.  

 

Table 1: Collagen crosslinkers used in the study series 

 

 

4.1.1. Preparation of Dentin Specimens (Studies I–IV) 

Specimens were sectioned from the mid-coronal dentin (with dimensions of 6 x 2 x 1 mm for 

studies I and IV and 0.4 x 3 x 6 mm for studies II and III) after removing the enamel and 

superficial dentin with a low-speed saw (Isomet, Buehler Ltd., Lake Bluff, IL, USA) under 

water-cooling. Beams were treated with 10 wt% H3PO4 for 24 h at 25ºC for complete 
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demineralization and then rinsed in distilled water at 4ºC for 1 h. The absence of residual 

minerals was confirmed using digital radiography. After demineralization, beams were placed 

into individually labelled 96-well plates and dried in a vacuum desiccator containing dry 

silica beads for 72 h.  

4.1.2. Preparation of Dentin Powder (Study III) 

Coronal dentin powder of intact third molars was prepared after removing the roots, enamel 

and pulp tissue. Dentin fragments were dipped into liquid nitrogen for 5 min and then 

pulverized using a steel mortar (Reimiller, Reggio Emilia, Italy). The powder was completely 

demineralized with 10 wt% H3PO4 for 10 minutes at 4°C, and then neutralized with 70 µl 4 N 

NaOH. Residual liquid was removed following 10 min of centrifugation. All steps in the 

preparation of the demineralized dentin powder were conducted at 4ºC to prevent 

temperature-related denaturation. Mineralized dentin powder served as a control. 

4.1.3. Treatment of Dentin by Various Collagen Crosslinkers (Studies I and IV) 

The concentrations of the collagen crosslinker agents used in Studies I–IV are listed in Table 

1. Only riboflavin and riboflavin-5-phoshate were excluded from Study IV. Demineralized 

dentin beams were rehydrated in distilled water for 10 min. After blot-drying, the specimens 

were immersed in corresponding crosslinkers in Table 1 for 1 or 5 min. Specimens treated 

with riboflavin or riboflavin-5-phosphate were exposed to Ultraviolet A (UVA, 365 nm) light 

at 7mW/cm
2
 during the pretreatment, for the activation of crosslinking.  

Following the blot-drying of the crosslinker-treated specimens, each dentin beam was placed 

into individually labeled O-ring polypropylene tubes with 1 mL complete media, and then 

incubated in a shaking-water bath (60 cycles/min) at 37ºC for designated incubation periods. 

The complete media used in the incubation contained 5 mM HEPES, 2.5 mM CaCl2·H2O, 

0.02 mM ZnCl2, and 0.3 mM NaN 3 (pH 7.2– 7.4). The control group consisted of 

demineralized dentin beams without any collagen crosslinker pretreatment.  

4.1.4. Treatment of Dentin by UVA-Induced Riboflavin Crosslinking (Study II) 

Solutions of 0.1% riboflavin and riboflavin-5-phosphate were prepared in distilled water as 

pretreatment agents and kept in lightproof test tubes to avoid any light-activation of 

riboflavin. The demineralized beams (0.4 x 3 x 6 mm) were immersed in 200 µl of the 

designated concentration of riboflavin or riboflavin-5-phosphate. An ultraviolet light (Philips, 

Hamburg, Germany) at 370 nm, with an irradiance of 3 mW/cm
2
, was used for photo-

activation at a distance of 1 cm for both surfaces of dentin beams (Wollensak et al., 2003), 
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since UVA has been reported to penetrate only 200 µm (Ashwin and McDonnell, 2010). 

Thus, each side of the specimens was exposed for 1 min or 5 min. In addition, specimens 

without riboflavin and riboflavin-5-phosphate were exposed to 1 or 5 min UVA light. 

Untreated samples served as control (CM).  

4.2. Research Methods  

The effect of collagen crosslinkers on dentin protease activity was evaluated with direct and 

indirect measurements of dentin protease activity. The changes in dry mass, or measurements 

of C-terminal telopeptide release into the media, were used as indirect quantitative measures 

of the matrix-bound protease activity. Generic MMP activity assay evaluated the direct 

inactivation effect of collagen crosslinkers on dentin MMPs. Matrix metalloproteinase-2 and 

MMP-9 activities were measured by gelatin zymography. Inactivation of gelatinase activity 

in dentin beams was observed under confocal microscopy by using in situ zymography. The 

amount of extractable dentin MMPs from collagen matrix treated with collagen crosslinkers 

was determined with a multiplex bead-based immunoassay. Alteration of dentin matrix 

ultrastructure was also evaluated using transmission electron microscopy.          

4.2.1. Measurement Loss of Dry Dentin Mass (Studies I, II, IV) 

Measurement of the loss of dry dentin mass allows estimating the amount of solubilized 

collagen matrix over time (Tezvergil-Mutluay et al., 2011). Loss of dry dentin mass was used 

as an indirect method to evaluate the degradation of demineralized dentin matrices. To 

measure the initial dry mass of completely demineralized specimens, after demineralization 

and rinsing, beams were stored in a vacuum desiccator for 72 h, after which the dry mass of 

each beam was measured using an analytical microbalance (XP6 Microbalance, Mettler 

Toledo, Hightstown, NJ, USA). After initial measurements, the beams were distributed to 

different groups so that the mean dry mass of each group was statistically similar.  

 After dry mass measurement, demineralized dentin beams were rehydrated in distilled water 

at 4ºC for 1 h before the treatment of relevant collagen crosslinkers. Since the gained weight 

of demineralized dentin beams (~0.1%) after collagen crosslinker treatment was negligible, 

initial mass of demineralized dentin beams was used as reference. After each incubation 

period, dentin specimens were rinsed free of buffer salts in distilled water at 4ºC for 24 h. The 

measurement of dry mass was repeated after each incubation period.  
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4.2.2. Evaluation of Total Endogenous Protease Activity of Dentin (Studies I, II, IV) 

To evaluate collagen breakdown, enzyme-linked immuno-sorbent assays (ELISAs) were used 

to measure enzyme-specific degradation product of collagen molecule C-terminal telopeptide 

fragments in the incubation media. CCs and MMPs can cleave the distinct type I collagen 

telopeptides. MMPs generate ICTP (Garnero et al., 1998, 2003; Osorio et al., 2011b), 

whereas cathepsin K generates CTX (Sung et al., 2003; Tersariol et al., 2010; Tezvergil-

Mutluay et al., 2013; Takahashi et al., 2013). These two telopeptide markers have been used 

to identify the enzyme family responsible for type I collagen degradation. MMP-mediated 

degradation of type I collagen was evaluated using the ELISA kits for ICTP (UniQ ICTP 

EIA, Orion Diagnostica, Finland). Cathepsin K-induced degradation of type I collagen was 

measured by using CTX (Serum Crosslaps ELISA, IDS, Denmark) release into the media. The 

tubes were placed in a water incubator set to sixty horizontal turns per minute at 37°C for the 

designated incubation periods. Following each incubation period, aliquots of the incubation 

media were collected and replaced with fresh medium for further incubation. Released type I 

collagen C-terminal telopeptide fragments (ICTP and CTX) were analyzed in 10–20µl of 

complete media (after incubation) using relevant immunoassays as mentioned above.  

4.2.3. Measurement of Direct Inactivation Effect of Collagen Crosslinkers by Generic 

MMP Assay (Studies III, IV) 

A generic MMP Assay kit (Sensolyte, Fremont, CA, USA) was used for the detection of total 

matrix-bound MMP activity in controls vs. crosslinked experimental specimens. The 

technique is used to detect the total activity of a variety of MMPs, including MMP-1, 2, 3, 7, 

8, 9, 12, 13 and 14, and provides direct information about the efficiency of MMPs’ activation 

or inactivation. A thiopeptolide is used as a chromogenic substrate, which releases a 

sulfhydyl group when it is cleaved by the MMPs. The rate of MMP activity is detected with a 

color-developing thiol-reactive agent (Ellman’s Reagent). The end product of Ellman’s 

regent, 2-nitro-5-thiobenzoic acid (TNB), is readable using a spectrophotometer around 412 

nm (Riddles et al., 1983; Riener et al., 2002). The experiment can detect as low as nanogram 

levels of active MMPs on dentin (Tezvergil et al., 2010, 2012; Thompson et al., 2012). 

To evaluate the baseline activity of matrix-bound MMPs, demineralized dentin beams of 

control or experimental groups (0.4 x 3 x 6 mm) were incubated with 100 µl chromogenic 

substrates and 100 µl assay buffer of the kit in 96-well plate for 60 min at 25°C. Following 

the incubation, the activities of the dentin specimens were measured by spectrometer at 412 

nm and saved as the baseline measurements of individual MMP activity of dentin beams 

41MATERIALS AND METHODS



 
42 

 

(Synergy HT, BioTek Instruments, VT, USA). Beams were rinsed free of MMP substrate in 

distilled water and then dentin beams were treated with 300 µl of the corresponding 

crosslinkers (Table 1) for 1 min (Study III) or 5 min (Studies III and IV), and then rinsed in 

distilled water for 5 min. Untreated demineralized dentin beams served as control. After 60 

min incubation, the total MMP activity of experimental groups was re-tested using the 

generic assay as described above. The generic MMP activity of the groups was expressed as a 

percentage of the untreated baseline level of each specimen to determine the relative 

inhibition or activation of the specimens (Figure 5). This assay was repeated in Study IV, to 

assess the activity levels of the collagen crosslinker-treated dentin beams incubated in 

complete media for 6 mos. 

4.2.4. Total Extractable Protein (Study III) 

Bradford protein assay is the most common method, introduced first by Bradford (1976), and 

has been in use since then to measure the protein content of cell fractions and protein 

concentrations for gel electrophoresis (Bradford, 1976). The Bradford assay is a fast 

colorimetric method and measures the proportional binding of the Coomassie blue dye to 

proteins. When the Coomassie dye binds the protein, its red form is converted to a blue form 

of the dye. The reaction occurs between the tertiary structure of the protein and the non-polar 

region of the dye by ionic interactions. The assay has an optimum absorption spectrum at 595 

nm (Compton et al., 1985). There is a positive linear correlation between the absorbance 

reading and the amount of the proteins in the sample within the range of the assay (~5–25 

µg/mL). To quantitate the amount of protein in the extracts, a series of standards is used to 

construct a linear profile plot of protein concentration against the absorbance. Different 

proteins can be used as standards. However, Bovine Serum Albumin (BSA) is the most 

commonly used protein for this purpose. BSA was used to construct our standard curve 

(Kruger NJ, 1994). 

Extracted dentin proteins obtained from treated or untreated demineralized dentin were used 

for the quantification of extractable protein level. After pretreatment with corresponding 

crosslinkers for 1 min or 5 min, specimens were rinsed in 1mL water per beam for 10 min 

and placed in individually-labeled tubes with 0.5 mL extraction buffer (50 mM Tris-HCl, pH 

6, containing 5 mM CaCl2, 100 mM NaCl, 0.1% Triton X-100, 0.1% non-ionic detergent P-

40, 0.1 mM ZnCl2 and 0.02% NaN3) for 72 h at 4°C. Untreated beams were used as control.  
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Extracted proteins from each beam were tested using a commercial kit based on the Bradford 

method (Bio-Rad, Hercules, CA, USA). In the assay procedure, 1 unit protein assay solution 

was diluted in 3 units of protein extracts obtained from incubated dentin beams, and this was 

repeated for all specimens. One mL of the solution was tested after 5 min to allow for color 

development. The absorbance was measured in polypropylene cuvettes using a UV 

spectrometer (Shimadzu Scientific Instruments, Columbia, MD, USA) at 595 nm.  

A standard curve was obtained using series of 1–50 µg/mL of bovine serum albumin (BSA) 

standards. Absorbance readings of BSA were used for plotting its concentration per standard. 

The calculation of protein amounts was done according to the standard curve.  

 

Figure 5: Schematic view of the methods for Sections 4.2.3, 4.2.4 and 4.2.5.  

4.2.5. Multiplex Bead-Based Immunoassay (Study III) 

Multiplex bead-based assays (Bio-Plex
TM

, System 200, Bio-Rad, Austin, TX, USA) provide 

the information on multiple various biologicals (proteins and peptides, enzymes or nucleic 

acids) in a single sample volume, whereas uniplex enzyme immunoassays such as ELISA can 

detect only a single analyte. The assays contain color-coded polystyrene or magnetic 

microparticles coated with antibodies that recognize the specific analyte. The specimen is 

mixed with analyte-specific beads in well plate. Analytes captured by the beads are 

subsequently incubated in a cocktail of biotinylated detection antibodies specific to each 

analyte, and a streptavidin-phycoerythrin conjugate. In this work, color-coded microparticles 

containing a multiplex system were used. The kit contains two different dyes incorporated at 
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two different proportions. The dyes can be excited by laser at a single wavelength to provide 

a distinct spectral signature for each of up to 100 bead types or “regions”. The system allows 

multiplexing of 100 different analytes from a low volume such as 25µL. 

To determine the extractable MMPs from demineralized collagen matrix before and after 

collagen crosslinker treatment, demineralized dentin beams (5 beams/group) were prepared. 

Following the measurement of dry mass, the beams were dipped into distilled water for 

rehydration, and then blot-dried for pretreatment. The crosslinker solutions (Table 1) were 

used as pretreatment for 1 or 5 min. Residual crosslinker solution in treated specimens was 

removed by rinsing with 200 µl of distilled water three times for 10 min. Pretreated beams 

were incubated in individual, labelled polypropylene tubes containing 0.5 mL extraction 

buffer for 72 h at 4°C with orbital shaker. Groups without any treatment were used as 

controls. 

Following the incubation, aliquots of media were used for measuring the quantity of selected 

MMPs by means of a fluorescent microsphere immunoassay (Human MMP-MAP multiplex 

kit, R&D Systems, Inc., Minneapolis, MN, USA). The aliquots of dentin beams were taken 

from the wells in replicate with an MMP bead cocktail provided by the kit according to the 

manufacturer’s instructions, and incubated for 2 h at 25ºC room temperature. 

Following incubation, residual substances were removed by rinsing. The biotinylated 

antibodies for MMP-2, -8 and -9 were added to the wells. Following further incubation for 1 

h at 25ºC, the rinsing step was repeated to remove unbound biotinylated antibody. Samples 

were incubated with streptavidin-phycoerythrin conjugate (streptavidin PE) for 0.5 h at RT. 

Final rinsing was done with the addition of 100 µl of washing buffer to each well, to suspend 

the microparticles. The total amount of MMP -2, -8 and -9 was measured by operating a 

multiplex analyst device and supported software (Milliplex Analyst, Millipore Co., Billerica, 

MA, USA). Each MMP concentration was calculated using the mean of fluorescence 

intensity, set at 100 microspheres. The kit standards with known concentration were fitted 

with a 5-point fitting curve. The concentrations of specimens were calculated by using the 

software. 

4.2.6. Evaluation of MMP-2 and MMP-9 Activity by Gelatin Zymography (Study III) 

Gelatin zymography is a simple electrophoretic technique to evaluate enzymatic activity in 

various biological samples, such as cultured cells, tissue sections or body fluids. The method 

can be conducted either in situ or by separating the enzymes through gel electrophoresis. 
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Gelatin zymography is particularly useful in separating and determining MMP-2 and MMP-9 

activities, which are the most potent gelatin-degrading enzymes in dentin matrices (Toth and 

Fridman, 2001). Gelatin zymography is based on the separation of enzymes in protein 

mixture by electrophoresis according to their molecular weight in polyacrylamide gel 

containing sodium dodecyl sulfate as well as gelatin as a substrate, which is degraded by the 

proteases resolved during the incubation period. After separation, each enzyme is allowed to 

degrade gelatin. The enzyme activity is observed by staining the non-degraded area. Gelatin 

zymography can provide information about the type of gelatinases and the relative amount of 

the active enzyme and the form of the enzyme (pro- or active etc.) within a certain range the 

band intensity (Leber and Balkwill 1997). 

Gelatinase activity of dentin extracts was evaluated following the method of Mazzoni et al. 

(2007). Demineralized dentin powder (100 mg/group) was prepared as described above. 

Demineralized dentin powder was treated with 200 µl of collagen crosslinkers (Table 1) for 1 

or 5 min. To remove excess collagen crosslinker, treated dentin powder was centrifuged for 

20 min at 12000 rpm, the supernatant was discarded, and the pellets were rinsed twice with 

200 mL of distilled water with repeated centrifugation. Demineralized dentin powder and 

mineralized dentin powder without any treatment (i.e., controls) were used as positive and 

negative controls, respectively. Powder groups were incubated in 1.8 mL of extraction buffer 

for 24h at 4°C under constant stirring, and then sonicated (Bransonic 1510-MT, Branson 

Ultrasonics, Danbury, CT, USA) for 20 min prior to 20 min centrifugation (12,000 rpm at 

4°C). Aliquots of specimens were concentrated with centrifugal concentrator tubes (10,000 

Da cut-off, Vivaspin, Goettingen, Germany) for 30 min at 20ºC (10,000 rpm) down to a 

volume of 100 µL. Total protein concentration of samples was measured by means of the 

Bradford assay. For each group, 60 µg of protein was used. As a gelatinase substrate, MDPF-

labeled gelatin was prepared in accordance with the method of O’Grady et al. (1984). Gelatin 

zymography was performed with 10% sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) 

gel containing 1 mg/mL gelatin under non-reducing conditions. Protein extracts were diluted 

in Laemmli sample buffer at a 4:1 ratio prior to loading on the SDS-PAGE gel. To determine 

the molecular weight of the proteins, an SDS-PAGE molecular weight standard mixture of 

ten recombinant proteins (Dual Color Standards, Bio-Rad) was loaded into one well per gel. 

Following electrophoresis, the gels were rinsed in 2.5% Triton X-100 for 30 min twice and 

incubated in zymography buffer (50 mmol/L Tris-HCl, 5 mM CaCl2, 1 mM ZnCl2, 150 mM 

NaCl, pH 7.4) for 48 h at 37°C. Enzyme activity in the gels was detected under long-
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wavelength UV light (Gel Doc XR System, Bio-Rad) by measuring how much gelatin was 

removed from the gels as degradation of gelatin by gelatinases.  

4.2.7. Evaluation of Gelatinase Activity of Pretreated Dentin by In Situ Zymography 

(Study III) 

Although gelatin zymography detects the identity of active and pro-form of gelatinolytic 

enzymes, it cannot provide information about where enzymes are located or whether they are 

active or not. In situ zymography not only enables the localization of the enzyme, but also 

shows the distribution of its activity. In situ zymography was described by Galis et al. (1994) 

to analyze the gelatinolytic activity in tissue sections. The technique does not require any 

specific antibody, and similar to gelatin zymography, is based on a fluorescence substrate, 

which can be utilized in both tissue sections and cell culture (Galis et al., 1995). Then, the 

technique was modified by using dye-quenched (DQ)-gelatin to detect localization of 

gelatinolytic activity on tissue sections. Gelatin is labeled with fluorescein isothiocyanate 

(FITC), which can be visualized as fluorescence produced at sites of gelatinolytic activity 

after cleavage of DQ-gelatin (Goodall et al., 2001; Curry et al., 2001; Lee et al., 2004). The 

location and intensity of fluorescence is the indicator of the rate of digestion by gelatinases. 

The distribution of gelatinolysis in the hybrid layer by using in situ zymography was 

described for the first time by Mazzoni et al. (2012a).  

In Study III, 0.5 mm-thick sections were obtained horizontally from the middle dentin. 

Dentin disks were fixed to a microscope slide with cyanoacrylate glue and then were ground 

with 600-grit wet silicon-carbide paper. Specimens were etched for 10 s with 10% H3PO4, 

and rinsed for 20 s with distilled water prior. Following blot-drying with absorbent paper, 

demineralized dentin disks were treated with 50 µl of the corresponding crosslinkers (Table 

1) for 1 or 5 min and blot-dried (n=3). Untreated mineralized and demineralized dentin 

served as controls. 

A self-quenched fluorescein-conjugated gelatin (E-12055, Molecular Probes, Eugene, OR, 

USA) from a stock solution of DQ-gelatin (DQ-gelatin, E12055; Molecular Probes, Eugene, 

OR, USA) and an anti-fading agent (Mounting Medium with Dapi H-1200, Vectashield, 

Vector Laboratories LTD, Cambridgeshire, UK) were diluted 1:1:8 in the dilution buffer 

(NaCl 150 mM, CaCl2 5 mM, Tris-HCl 50 mM, pH 8.0). The fluorescent-gelatin solution was 

used as a substrate. Each dentin disk was wetted with the solution, and then covered with a 

coverslip. After specimens were incubated in a light-proof humidity chamber for 48 h at 

37°C, their gelatinase activities were observed using a multi-photon confocal microscope, at 
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488 nm and 530 nm for excitation and emission wavelengths, respectively (Zeiss, LSM 780, 

Carl Zeiss, Oberkochen, Germany). Optical 85 μm-thick sections were acquired from 

different focal planes, and the stacked images were analyzed, quantified and processed with 

ZEN 2010 software (Carl Zeiss, Jena, Germany). To evaluate the inactivation of gelatinases 

in dentin overtime, specimens were detected from three different locations on dentin disks 

before and after 48 h of incubation. 

4.2.8. TEM Analysis  

Transmission electron microscopy (TEM) is a microscopy technique that is capable of 

imaging with higher resolution than light microscopes. TEM is based on transmission of a 

high-energy electron beam through an ultra-thin sample to image and analyze the 

microstructure of materials with up to atomic-scale resolution. An image is formed as a result 

of the interactions of the electrons transmitted through the specimen. The image can be 

recorded on a fluorescent screen, film or digital camera. TEMs are the most powerful 

microscopes and produce high-resolution (at a maximum potential magnification) two-

dimensional images, allowing for high-quality, detailed images of surface features, shape, 

size and structure (Pelliniemi, 2015). Considering the basic structure of collagen fibril in 

nanoscale, TEM is a convenient method for microscopic inspection of the alteration on 

organic dentin scaffold. 

To determine degradation of three-dimensional structure of dentin collagen matrix by means 

of a transmission electron microscope (TEM, JEM 1200EX microscope, Jeol, Japan), the 

TEM protocol was used in accordance with Tay et al. (1999). After six months’ incubation, 

five demineralized dentin beams from each group were randomly selected. Specimens were 

treated with 2.5 mass % glutaraldehyde for initial fixation and then treated with 1% OsO4. 

Subsequently, specimens were serially dehydrated using a series of ethanol solutions with 

ascending concentrations (50–100%) and immersed in propylene oxide as the transitional 

medium. After dentin beams were embedded in epoxy resin, and polymerized, 70 nm-thick 

cross-sections were obtained using an ultramicrotome (n=5– 10). Final staining was prepared 

with the treatment of methanolic 2% uranyl acetate for 1 min and aqueous lead citrate for 5 

min. Degradation of the samples from 6 samples per group was observed by using a TEM at 

110 kV. 
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4.3. Statistical Analyses 

All the results are subjected to the statistical analysis using SPSS (SPSS Inc., Armonk, NY, 

USA). In studies I, II and IV, the percent loss of dry mass, the rate of release of ICTP (ng 

telopeptide/mg dry dentin/unit time) and CTX (pg telopeptide/mg dry dentin/unit time) from 

all groups were first evaluated for normal distribution (Kolmogorov–Smirnov test) and 

homoscedasticity (modified Levine test). When the normality and equality variance 

assumptions of the data were valid, the data were analyzed using repeated measures of 

ANOVA. Post-hoc multiple comparisons were performed with Tukey’s test. Statistical 

significance was preset at α = 0.05. When the distribution was not normal, the data were 

analyzed with Kruskal–Wallis test, followed by Dunn's multiple comparisons test, 

respectively. 

In Study III, all data were subjected to Kolmogorov–Smirnov test for normality and modified 

Levine test for homoscedasticity. Since these data were valid, they were analyzed using two-

way ANOVA and Tukey’s tests (p = 0.05) to evaluate the interaction between duration and 

type of treatment for the percentage of total MMP inactivation in the various treatment 

groups. The amount of extracted total protein in groups was subjected to two-way ANOVA 

and Tukey’s post-hoc test. Measurement of extracted MMP-2, -8 and -9 concentrations from 

demineralized dentin samples was done via two-way ANOVA and Tukey’s post-hoc test 

(p<0.05).  
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5. RESULTS 

5.1. Effect of Pretreatment of Collagen Crosslinkers on the Loss of Dry Dentin Mass 

(Studies I, II, IV) 

Studies I, II and IV evaluated the loss of dry mass of demineralized dentin matrices to 

measure the degradation of dentin after collagen crosslinker pretreatment. In Study I, the 

result of the loss of dry mass showed that use of collagen crosslinkers as pretreatment agent 

significantly decreased degradation during the incubation for 3, 7 and 14 days, compared to 

untreated groups (p<0.5) (Figure 6). However, decrease of dry mass loss for demineralized 

dentin was not significant for all collagen crosslinker-treated groups for long-term incubation 

in Study IV (Figure 7).  

Among the crosslinkers, the 200 µM curcumin-treated group showed the lowest loss of dry 

mass 0.9±0.5% at 3 days and 6.9±1.9% loss at 14 days, compared to the control loss of 

8.4±0.8% at 3 days and 32±6% loss at 14 days (Study I, Figure 6). After 6 mos incubation, 

the group treated with 200 µM curcumin maintained the highest decrease in the loss of dry 

mass with 16.1%±5.7, compared to 42.8%±4.1 of the untreated control (p<0.05). The loss of 

dry mass for groups treated with both 20 µM and 200 µM curcumin was significantly lower 

after 6 mos incubation, compared to others (Figure 7). 

 

Figure 6: The loss of dry dentin mass for groups treated with collagen crosslinkers during 3-, 7- and 

14-day incubation. An untreated group served as the control (n=10). Groups shown with different 

letters are statistically significant (p<0.05). Abbreviations correspond to: glutaraldehyde (GA), grape 

seed extract (GS), sumac (S), curcumin (CR), riboflavin/UV (R), riboflavin-5-phosphate/UV (RP) and 

no-pretreatment control (CM). Seseogullari-Dirihan et al. 2015 (Substudy I), with permission. 
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Similarly, 1% and 5% grape seed and 10% sumac extract showed significant inactivation 

with 17±0.8%, 13±1.8%, 15.6±1.2% loss of dry mass, respectively, after 14-day incubation 

(Figure 6). During long-term incubation up to 6 months in Study IV, the group treated with 

5% grape seed maintained the inactivation to a significant degree, whereas the loss of dry 

mass of 1% grape seed and 10% sumac significantly increased 37.8±1.6% and 36.8±5.4%, 

respectively (Figure 7). After 6 mos incubation, especially the groups treated with 5% of 

grape seed and 5% glutaraldehyde and 200 µM curcumin showed better inactivation on the 

degradation of demineralized dentin compared to lower concentrations (Figure 7). 

 

 

Figure 7: The long-term loss of dry mass for groups pretreated with natural crosslinkers. Untreated 

demineralized dentin beams served as control (CM). Bars show mean values (n=10); brackets indicate 

standard deviations. Groups shown with different letters are significantly different for treatment 

(p<0.05). Abbreviations correspond to: glutaraldehyde (GA), grape seed extract (GS), sumac (S), 

curcumin (CR), and no-pretreatment control (CM) (Substudy IV).  

 

Riboflavin and riboflavin 5’-phosphate inactivated the loss of dry mass during 3-, 7- and 14-

day incubation. However, they showed the highest loss of dry mass among collagen 

crosslinker-treated groups. Although there was a positive correlation between the 

concentration of riboflavin solution and the decrease in degradation of the dentin collagen 

matrix, both concentration of riboflavin (0.1% and 0.5%) showed similar inactivation during 

3-, 7- and 14-day incubation (p>0.05).  
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Study II tested the effect of UV treatment duration in the presence or absence of the 0.1% 

riboflavin and 0.1% riboflavin phosphate treatment (Figure 8). For 1-day incubation, 

experimental groups showed no significant difference between groups or when compared to 

the untreated controls. However, all of the experimental groups had the inactivation of 

degradation with the dry mass loss range between 7.7±0.4% and 10.1±1.2% at 7-day 

incubation, compared to the untreated control of 13.2±2.3% (p<0.05). Interestingly, no 

significant difference was found among UV-induced crosslinking groups in the presence or 

absence of riboflavin and riboflavin phosphate (p>0.5) or duration of treatment (1 min or 5 

min) in terms of the loss of dry mass. 

 

 

Figure 8: The mean loss of dry mass in the groups was shown as a percentage following the photo-

oxidative crosslinking. Bars and brackets indicate mean values and standard deviations (n=10). The 

groups showed no significant difference for 1-day (1-D). Statistical significance for 7-day (7-D) was 

shown with different letters (A, B) (p<0.05). Abbreviations correspond to: riboflavin/UV (R), 

riboflavin-5-phosphate/UV (RP), ultraviolet A alone (UV) and no-pretreatment control (CM). 

Seseogullari-Dirihan et al. 2015 (Substudy II), with permission. 

 

5.2. Evaluation of Endogenous Protease Activity  

5.2.1. Activity of Matrix-Bound Dentin MMPs (Studies I, II, IV) 

The release of ICTP telopeptide for all collagen crosslinker-treated groups was shown in 

Figure 9. The experimental groups treated with 1% or 5% glutaraldehyde and grape seed, 

10% sumac or 200 µM curcumin showed significantly lower ICTP release for 3 days. At 7 
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days’ incubation, groups treated with collagen crosslinkers released between 0.6±0.1 and 

28.1±3.7 ng/mg dentin of ICTP telopeptide, whereas the amount of ICTP release of untreated 

control was 32±1.3 ng/mg dry dentin (Figure 9A). 

The release of ICTP telopeptide from crosslinker-treated groups generally increased 

significantly at 7 days’ incubation (p<0.05); only the groups treated with 1% and 5% 

glutaraldehyde (GA5) showed the same trend for the release of ICTP telopeptide at 3 days, 7 

days and 14 days. However, the release of ICTP for all treated groups was significantly lower 

compared to the untreated control at 14 days as well as at 3 days (p<0.05). 

In the groups treated with 0.1% or 0.5% riboflavin or 0.1% riboflavin phosphate, no 

significant decrease was found in the amount of ICTP release during 3 days, 7 days and 14 

days of incubation, except at 7-day incubation for riboflavin-phosphate (Figure 9A). 

When the amount of ICTP release was calculated as ng/mg dentin per day, all groups 

decreased the amount of ICTP release per day at 14 days, compared to the ICTP release at 3 

days incubation. 20 µM and 200 µM curcumin-treated groups showed the highest decrease 

(around 6 times) of ICTP release per day at 14 days, compared to 1 day, and the group treated 

with 5% glutaraldehyde released the lowest ICTP (0.06±0.01ng/mg dentin per day) at 14 

days. Although the untreated control group also decreased 2 times the release of ICTP at 7 

days compared to 3 days incubation, the control group showed the highest ICTP release per 

day for 7 days’ incubation, whereas riboflavin 5’-phosphate released the highest amount of 

ICTP per day at 14 days of all the experimental groups. 
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Figure 9: (A) The amount of ICTP release (ng telopeptide/mg dry dentin) is shown for each 

incubation period separately. Untreated control served as control (CM). Different letters show 

statistical significance (p<0.05). Seseogullari-Dirihan et al. 2015 (Substudy I), with permission. (B) 

The amount of ICTP release (pg telopeptide/mg dry dentin) per day for each incubation. 

Abbreviations correspond to: glutaraldehyde (GA), grape seed extract (GS), sumac (S), curcumin 

(CR), riboflavin/UV (R), riboflavin-5-phosphate/UV (RP) and no-pretreatment control (CM). 
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Dentin collagen matrices treated with natural collagen crosslinkers were tested for long-term 

inactivation of degradation in Study IV. The amount of total ICTP release from groups 

treated with collagen crosslinker decreased significantly during 1-, 3- and 6-mo incubation 

(Figure 10). However, 5% glutaraldehyde showed the highest MMP inactivation with regard 

to the amount of released ICTP fragments. The mean ICTP release of first 1 mo incubation 

was interestingly higher, up to 70-fold, especially for untreated control, compared to further 

incubation for all experimental groups.  

During 1 mo incubation, the amount of released ICTP fragments for groups treated with 

collagen crosslinkers was significantly lower, from 1.8±0.5 to 47.9±9.9 ng/mg dentin, 

compared to the untreated group, 72.8±7.6 ng per mg dentin. 

At further 3-mo and 6-mo incubation, groups treated with collagen crosslinkers maintained 

the inactivation of MMPs regarding ICTP release from demineralized dentin beams.  

 

 

 

Figure 10: The amount of ICTP (ng telopeptide/mg dry dentin) from collagen crosslinker-treated 

dentin beams. Bars show mean values (n=10); brackets indicate ± SD. Statistical significance was 

shown with abcde letters at 1 mo incubation, AB letters at 3 mos incubation, XY letters at 6 mos 

incubation, and qprst letters for cumulative mean value of ICTP release. Abbreviations correspond to: 

glutaraldehyde (GA), grape seed extract (GS), sumac (S), curcumin (CR), and no-pretreatment control 

(CM). Modified from Substudy IV. 
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In Study II, experimental groups treated with UVA-induced crosslinking showed 

significantly lower ICTP release (Figure 11A) compared to the untreated control (p<0.05). 

When the ICTP release of experimental groups treated with UVA with/without riboflavin or 

riboflavin 5’-phosphate were compared, addition of the riboflavin or riboflavin 5’-phosphate 

to the treatment of UVA did not decrease the degradation significantly (p>0.05) for 1 day 

compared to the UVA alone. However, at the following 7-day incubation, the use of 

photosensitizers with UVA decreased the mean ICTP release compared to the untreated 

control and groups treated UVA alone. The mean ICTP release was 15.6±1.1 ng/mg dry 

dentin for untreated control at 7 days (p<0.05), which was significantly higher than groups 

treated with UVA with/without photosensitizer.  

 

Figure 11: (A) The mean of ICTP (ng telopeptide/mg dentin) release from demineralized dentin after 

photo-oxidative crosslinking. Untreated dentin beams served as control (n=10). Statistical significance 

was shown with different letters. Statistical significance was shown with ab letters at 1-day 

incubation, ABC letters at 7 days’ incubation, and XYZ letters for cumulative mean value of ICTP 

release. Abbreviations correspond to: riboflavin/UV (R), riboflavin-5-phosphate/UV (RP), ultraviolet 

A alone (UV) and no-pretreatment control (CM). Modified from Seseogullari-Dirihan et al. 2015 

(Substudy II), with permission. 

 

The amount of ICTP release per day significantly decreased at 7 days of incubation compared 

to ICTP release at 1-day incubation (Figure 11B). Photosensitizer-treated groups released up 

to 70 times less ICTP per day at 7 days’ incubation compared to 1-day incubation, whereas 

the amount of ICTP release decreased only 6 times for control, and 9 and 11 times for groups 

treated with UV alone for 1 min and 5 min, respectively. 
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Figure 11 (B) The amount of ICTP release (pg telopeptide/mg dry dentin) per day for each 

incubation. Abbreviations correspond to: riboflavin/UV (R), riboflavin-5-phosphate/UV (RP), 

ultraviolet A alone (UV) and no-pretreatment control (CM). 

5.2.2. Activity of Cathepsin K on Demineralized Dentin (Studies I, II, IV) 

The degradation of collagen matrices by cathepsin K was significantly higher for untreated 

control in terms of the release of CTX telopeptide at 3-, 7- and 14-day incubation, compared 

to  all collagen crosslinker-treated groups (p<0.05) (Figure 12A). 

Similar to the amount of ICTP release, the groups treated with glutaraldehyde, grape seed, 

sumac and curcumin reduced the release of CTX fragments compared to the untreated 

controls (Figure 12A) during incubation periods. Unlike the result of the inactivation by 

MMPs regarding the release of ICTP fragments, treatment with 0.1 and 0.5% riboflavin or 

0.1% riboflavin 5’-phosphate significantly (p<0.05) inactivated cathepsin K. However, the 

amount of CTX release was lower at 3 days’ incubation compared to 7 days’ incubation for 

all crosslinker-treated groups. 

The amount of CTX release per day is shown in Figure 12B. The 5% grape seed extract-

treated group showed the lowest amount of CTX release, the release decreasing up to 19 

times at 14 days, compared to 1 day. However, the groups treated with glutaraldehyde, grape 

seed extract and curcumin showed a constantly lowered degradation rate per day during 3, 7 

and 14 days of incubation. Except for riboflavin 5’-phosphate, the untreated group showed 

the highest amount of CTX release, 169 pg/mg dentin per day at 3 days, 676.2 pg/mg dentin 

per day at 7 days, and 33.3 pg/mg dentin per day at 14 days among the experimental groups. 
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Figure 12: (A) The amount of CTX release (pg telopeptide/mg dry dentin) is shown as mean ± SD for 

each incubation separately (n=10). Untreated control served as control (CM). Statistical significance 

was shown with abcdef letters for each incubation, and ABC letters for cumulative mean value of 

CTX release (p<0.05). Modified from Seseogullari-Dirihan et al. 2015 (Substudy I), with permission. 

(B) The amount of CTX release (pg telopeptide/mg dry dentin) per day for each incubation. 

Abbreviations correspond to: glutaraldehyde (GA), grape seed extract (GS), sumac (S), curcumin 

(CR), riboflavin/UV (R), riboflavin-5-phosphate/UV (RP) and no-pretreatment control (CM). 
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In Study IV, the amount of CTX release for experimental groups is shown in Figure 14. 

After 6 mos incubation, demineralized dentin beams treated with collagen crosslinkers 

reduced significantly the amount of total CTX release as a result of cathepsin K activity 

(p<0.05). The mean of released CTX fragment of collagen crosslinker-treated groups 

significantly decreased (p<0.05) after 1 mo of incubation (Figure 13). While the CTX release 

of all groups increased up to 60-fold at 3 mos compared to the release at 1 mo incubation. All 

experimental groups decreased the amount of CTX release during 6 mos compared to the 

release of CTX at 3 mos.  

Untreated control samples released significantly higher amounts of CTX at 1 mo incubation. 

Groups treated with 5% of grape seed and glutaraldehyde showed the lowest degradation 

amount with 32.1±7.1 and 102.8±22.7, respectively, compared to all crosslinker-treated 

groups. Specimens treated with 5% of grape seed extract and 200 µM of curcumin were 

significantly effective at inactivation of cathepsin K during 3 mos incubation. Likewise, the 

amount of cumulative CTX release for the group treated with 200 µM of curcumin was the 

lowest among the experimental groups. 

 

 

Figure 13: The mean CTX release from long-term specimens (n=10). Different letters indicate 

statistical significances. Statistical significance was shown with abcde letters at 1 mo incubation, 

ABCD letters at 3 mos incubation, XY letters at 6 mos incubation, and qprs letters for cumulative 

mean value of CTX release. Abbreviations correspond to: glutaraldehyde (GA), grape seed extract 

(GS), sumac (S), curcumin (CR), and no-pretreatment control (CM). Modified from Seseogullari-

Dirihan et al. 2015 (Substudy I), with permission. 
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UVA-induced crosslinking with or without photosensitizer in Study II reduced significantly 

the degradation of CTX fragment by cathepsin K regardless of the treatment duration of UVA 

during 1 day and 7 days of incubation (Figure 14A-B). The treatment of photosensitizer with 

UVA reduced significantly the release of CTX, especially at 1-day incubation; the groups 

treated with 0.1% riboflavin 5’-phosphate with UVA for 1 or 5 min (RP1 and RP5) showed 

the least CTX release of 1.1±0.9 and 3.4±0.6 ng/mg dentin, respectively, in all experimental 

groups (p<0.05).  

Additionally, treatment of 0.1% riboflavin with UVA (R1 and R5) for 1 or 5 min also 

reduced the CTX release to 169.7±63.8 and 306.7±74.3 pg CTX/mg dentin at 1 day, 

respectively, compared to groups treated with UVA-alone (UV1 and UV5) for 1 or 5 min. 

However, groups treated with UVA light for 1 or 5 min showed significantly lower CTX 

release (p<0.05) to 250±75 and 260±75 pg CTX/mg dentin at 1 day, respectively (Figure 14) 

whereas the untreated control released 393±85.9 pg CTX/mg dentin (p<0.05).  

Although the mean CTX release was not significantly different for groups treated with 

riboflavin and for riboflavin 5’-phosphate at 7 days’ incubation, the groups treated with 

riboflavin 5’-phosphate for 1 or 5 min showed a significant increase of up to 12 times in the 

release of CTX fragments during incubation (Figure 14A), unlike the groups treated UVA 

with riboflavin (R1, R5). 

The amount of CTX release for experimental groups is shown as pg CTX/mg dentin per day 

in Figure 14B. Although untreated control group showed the highest decrease after 1-day 

incubation, it released 118.2±23.6 pg CTX/mg dentin per day for control at 7 days, the 

highest CTX release among all groups. Although there was significant difference between 

treatments, both 1 min and 5 min treatment duration showed similar degradation rate per day 

for 1 day and 7 days of incubation (Figure 14B). 
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Figure 14: (A) The mean value of CTX release (pg CTX/mg dentin). Statistical significance was 

shown with abcd letters at 1-day incubation, ABCD letters at 7 days incubation and QXVYZ letters 

for cumulative mean value of CTX release. Modified from Seseogullari-Dirihan et al. 2015 (Substudy 

II), with permission. (B) The amount of CTX release (pg telopeptide/mg dry dentin) per day for each 

incubation. Abbreviations correspond to: riboflavin/UV (R), riboflavin-5-phosphate/UV (RP), 

ultraviolet A alone (UV) and no-pretreatment control (CM). 
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5.3. Inactivation of Dentin MMPs by Collagen Crosslinkers (Studies III, IV) 

After treatment with collagen crosslinkers, all treated groups showed significantly less total 

MMP activity compared to the baseline measurement (Figure 15A). However, the untreated 

control group showed an 84.1±15.8% (p<0.05) increase in the total MMP activity compared 

to baseline levels. Among experimental groups treated with collagen crosslinkers for 1 min, 

5% grape seed extract reduced the total MMP activity by 64% compared to its baseline, and 

its total inactivation was 177% of the control group (since control group was 83%). Dentin 

treated with 1% grape seed extract showed 67% inactivation with reference to the baseline 

measurement. The highest inactivation of total MMP activity was to 181% of control group 

for 5 min (control group was 84%). 

Treatment with 1% glutaraldehyde for 1 min showed the lowest inactivation among 

experimental groups: only 21% compared to the baseline, and 78% compared to the group 

without collagen crosslinker treatment (p<0.05). 

 

 

 

 

Figure 15A: The total activity of dentin MMPs after collagen crosslinker treatment for 1 min or 5 

min. The mean of total MMP activity as the % change compared to baseline level. Statistical 

significant is shown with different lowercase letters for 1-min treatment, and uppercase letter for 5 

min treatment (p<0.05). Groups without collagen crosslinker treatment served as controls. 

Abbreviations correspond to: glutaraldehyde (GA), grape seed extract (GS), sumac (S), curcumin 

(CR), riboflavin/UV (R), riboflavin-5-phosphate/UV (RP) and no-pretreatment control (CM). 

Seseogullari-Dirihan et al. 2016 (Substudy III), with permission. 
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The relative MMP activity of experimental groups was evaluated after 6 mos incubation 

(Study IV). MMP activity of demineralized dentin decreased significantly after 6 mos 

incubation compared to their MMP activity measured after the treatment (p<0.05). However, 

MMP activity for collagen crosslinker treated specimens was significantly less compared to 

the control (p<0.05). After 6 mos incubation, the untreated control group was 40±4.8% 

higher compared to its baseline MMP activity (Figure 15B), at 84.1±15.8% following the 

crosslinking treatment. The 5% grape seed-treated group showed the highest inactivation at 

88.6±5.5% following 102±6.4% of the 5% glutaraldehyde-treated group. No significant 

difference was found for different collagen crosslinkers (p>0.05), with the exception of 

groups treated with 1% glutaraldehyde and 10% sumac extract (p<0.05), which showed the 

lowest inactivation after 6 mos incubation. However, 1% glutaraldehyde and 10% sumac 

showed significantly decreased total MMP activity on demineralized beams compared to the 

untreated control.  

 

  

  

Figure 15B: The total MMP activity of dentin treated with collagen crosslinker for 5 min after 6 mos 

incubation. The mean percentage of total MMP activity was compared to baseline level. Statistical 

significant is shown with different letters for 5 min treatment (p<0.05). Untreated group served as 

controls. Abbreviations correspond to: glutaraldehyde (GA), grape seed extract (GS), sumac (S), 

curcumin (CR), and no-pretreatment control (CM). Seseogullari-Dirihan et al. 2016 (Substudy III), 

with permission. 
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5.4. Measurement of Total Extractable Protein (Study III) 

The amount of total protein extracted from demineralized dentin was significantly lower 

(p<0.05) in groups treated with collagen crosslinkers for 5 min compared to untreated control 

(Figure 16). However there was no statistical difference between the samples treated with 

collagen crosslinkers for 5 min (p>0.05). Although samples treated with collagen crosslinkers 

for 1 min showed variety in the released protein range from 18.6±3.5pg/mg dentin to 

32.1±8.8pg/mg dentin during 72 h of extraction, all treated groups showed less protein 

release compared to the control (Figure 16). Additionally, the amount of protein release was 

significantly lower for groups treated with 5% glutaraldehyde, 1% grape seed extract, 0.1% 

and 0.5% of riboflavin, 20 µM curcumin and 10% sumac berry extract, compared to their 

controls (p<0.05).   

 

Figure 16: The mean of protein extracted from various collagen crosslinker-treated demineralized 

dentin beams (n=5). Statistical significance is shown with different lowercase letters for 1-min 

treatment, and uppercase letter for 5-min treatment (p<0.05). Groups without crosslinker treatment 

served as controls. Abbreviations correspond to: glutaraldehyde (GA), grape seed extract (GS), sumac 

(S), curcumin (CR), riboflavin/UV (R), riboflavin-5-phosphate/UV (RP) and no-pretreatment control 

(CM). Seseogullari-Dirihan et al. 2016 (Substudy III), with permission. 
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5.5. Measurement of the Quantity of MMP-2, MMP-8 and MMP-9 Using Multiplex 

Bead-Based Immunoassay  

The amount of MMP-2, MMP-8 and MMP-9 extracted from the groups treated with 

crosslinkers for 1 min and 5 min was less than in control groups (Figure 17A-C). Among the 

quantity of extracted MMPs, MMP-2 showed the highest extraction level from demineralized 

dentin. Extracted MMP-2 from demineralized dentin was 25 times higher for the control 

group compared to the level of MMP-9 for control group (Figure 17A and 17C). After both 1 

min and 5 min crosslinking, the groups treated with collagen crosslinkers also showed 

significantly less extractable MMP-2 (Figure 17A, p<0.05). 

The amount of extracted MMP-8 from demineralized dentin decreased significantly after 1 

min or 5 min treatment of collagen crosslinkers (p<0.05). Although the amount of extracted 

MMP-8 from groups was slightly lower, it was not significantly different compared to 

untreated controls (p>0.05) after 1 min incubation. However, all treatment groups showed a 

significant decrease in the level of extractable MMP-8, ranging from 40% to 60% after 5 min 

treatment of collagen crosslinkers compared to the control (Figure 17B, p<0.05). 
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Figure 17: The concentrations of MMP-2 (A), MMP-8 (B) and MMP-9 (C) extracted from dentin 

were shown after demineralized dentin treated with crosslinkers for 1 min or 5 min. Statistical 

significance is shown with different letters. Abbreviations correspond to: glutaraldehyde (GA), grape 

seed extract (GS), sumac (S), curcumin (CR), riboflavin/UV (R), riboflavin-5-phosphate/UV (RP) and 

no-pretreatment control (CM). Seseogullari-Dirihan et al. 2016 (Substudy III), with permission. 

65RESULTS



 
66 

 

5.6. Evaluation of MMP-2 and MMP-9 Using Gelatin Zymography  

The experimental groups showed similar inactivations of MMP-2, -8 and -9 in the 

demineralized dentin after treatment with collagen crosslinker for 1 min or 5 min when 

compared to the untreated control. The gelatinolytic activity of the crosslinker-treated groups 

was lower density of the bands where MMP-2 pro- and active forms were at 72 kDa and 66 

kDa, respectively and MMP-9 had a molecular mass of around 92-86 kDa (Figure 18). All 

pretreated groups exhibited faint bands for MMP-9 after 1 min or 5 min of treatment 

compared to untreated demineralized control. However, the lowest MMP-9 activity was 

observed in groups treated with grape seed extract, sumac, riboflavin and riboflavin-

5’phosphate. Demineralized dentin exhibited a densiometrically more active form compared 

to mineralized dentin powder in terms of the pro- and active form of MMP-2 (72 kDa and 66 

kDa). The variance between the treatment groups did not permit statistical analysis (Figure 

19). 

 

Figure 18: MMP-2 pro- and active form (72 kDa and 66 kDa, respectively) and MMP-9 (92-86 kDa) 

are shown in zymograms for groups after treatment with collagen crosslinkers for 1 min (A) or 5 min 

(B). Untreated mineralized and demineralized dentin served as controls. Abbreviations correspond to: 

glutaraldehyde (GA), grape seed extract (GS), sumac (S), curcumin (CR), riboflavin/UV (R), 

riboflavin-5-phosphate/UV (RP) and no-pretreatment control (CM). Seseogullari-Dirihan et al. 2016 

(Substudy III), with permission. 
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Figure 19: The density of MMP-2 pro- and active form (72 kDa and 66 kDa, respectively) and MMP-

9 (92-86 kDa) are shown in graphs for MMP-2 (A) and MMP-9 (B). Untreated mineralized and 

demineralized dentin served as controls. Abbreviations correspond to: glutaraldehyde (GA), grape 

seed extract (GS), sumac (S), curcumin (CR), riboflavin/UV (R), riboflavin-5-phosphate/UV (RP) and 

no-pretreatment control (CM). Seseogullari-Dirihan et al. 2016 (Substudy III), with permission. 
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5.7. Evaluation of Gelatinase Activity by In Situ Zymography 

Comparison of gelatinase activity of experimental groups was evaluated using in situ 

zymography according to Mazzoni et al. (2012a). Experimental groups were treated with 

corresponding crosslinkers for 1 or 5 min, except for mineralized and demineralized controls. 

Then, specimens were observed under confocal microscopy before and after 48 h incubation.  

The localization of gelatinase was mostly in dentinal tubules and at the superficial surface of 

the dentin (Figure 20). The highest gelatinase activity was observed on untreated 

demineralized dentin (Figure 20B, DEM) after 48h incubation. All crosslinker-treated groups 

showed the same or less gelatinolytic activity after incubation compared to the initial 

observation of experimental groups and mineralized dentin in terms of the intensity of green 

fluorescence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: In situ zymograms show the gelatinolytic activity of the groups. A: Following treatment 

with collagen crosslinker (0–3 h) and B: Following 48 h incubation at 37° C. Quenched fluorescein-

labelled gelatin was used to detect gelatinase activity, which appears as green fluorescence as a result 

of gelatin digestion. Abbreviations correspond to: glutaraldehyde (GA), grape seed extract (GS), 

sumac (S), curcumin (CR), riboflavin/UV (R), riboflavin-5-phosphate/UV (RP) and no-pretreatment 

control (CM). Seseogullari-Dirihan et al. 2016 (Substudy III), with permission. 
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5.8. TEM Results 

Regarding TEM micrographs (Figure 21), dentin organic matrices showed that the highly 

integrated collagen fibrils accumulated each other (Figure 21A) following the 

demineralization of dentin. However, the dentin organic network lost the intensity of collagen 

fibrils after 6 mos incubation (Figure 21B). Also crosslinker-treated groups showed partial 

degradation and disintegration of collagen matrices after 6 mos incubation. However, the 

pretreatment of collagen crosslinkers reduced the degradation of collagen matrix compared to 

negative control (Figure 21B vs. 21C-D-E-F). Among the crosslinker-treated groups, samples 

pretreated with 200µM curcumin (Figure 21D) maintained the collagen scaffold as well as 

the positive control group treated with 5% glutaraldehyde in terms of the distribution and 

intensity of the mature, preserved collagen fibrils. However, the disintegration of collagen 

fibrils and disruption of their association with each other by bundling showed the variation 

for pretreated groups. The group treated with 5% grape seed extract showed higher intensity 

and aggregation of collagen fibrils even after 6 mos incubation, compared to all other 

experimental groups. Even though 200µM curcumin showed the least degradation in terms of 

loss of mass and amount of CTX release (generated by cathepsin K), the crosslinking 

capacity of grape seed may play a role in the protection of collagen matrices, whereas 

curcumin exerts very low conformational changes on collagen structure but is more effective 

at stabilizing the proteins and chelating the metal ions.  
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Figure 21: TEM micrographs show the dentin collagen matrix of the specimens after 6 mos 

incubation. (A) Demineralized collagen matrix prior to incubation. (B) Untreated control after 6 mos 

incubation. (C) Demineralized dentin treated with 5% glutaraldehyde (GA5) highly resistant to 

degradation during the 6 mos incubation. (D) Demineralized collagen matrix treated with 200µM of 

curcumin (CR200) showed a similar microfibrillar pattern compared to the positive control (GA5). 

(E) 5% grape seed-treated samples showed the presence of sparse collagen fibrils with very wide 

interfibrillar spaces, and microfibrillar strands were degraded and disappeared. (F) 10% sumac berry 

extract-treated dentin almost showed similar but less protected fibrils compared to 5 % grape seed 

extract. 
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6. DISCUSSION 

The present series of studies aimed to investigate the effect of various collagen crosslinkers 

on dentin protease activity. Thus, selected collagen crosslinkers were tested to determine their 

effect on the loss of dry mass of demineralized dentin, the release of type I collagen 

fragments degraded by dentin MMPs and CCs, assessment of total MMP inactivation, 

localization of the gelatinase activity on demineralized dentin, and the release of MMPs 

following the treatment with collagen crosslinkers. Additionally, the sustainability of 

inactivation and the effect of treatment period (duration) on the degradation of collagen 

matrices were examined. 

6.1. Evaluation of the Loss of Dry Dentin Mass over Time (Studies I, II, IV) 

Measurement of the dry mass loss of completely demineralized dentin over time is a simple 

and sensitive analytical method to quantify the degraded collagen matrices by enzymatic 

degradation (Carrilho et al., 2009; Tezvergil-Mutluay et al., 2011a). During studies I, II and 

IV, demineralized dentin beams were dehydrated in the desiccator after each incubation 

period as well as following the demineralization. It is known that degradation temperature of 

dehydrated demineralized dentin is higher than hydrated demineralized dentin (Armstrong et 

al., 2006). Drying demineralized dentin decreased the degradation rates, since dehydration 

stabilizes the collagen peptides by increasing interpeptide hydrogen bonds and minimizes the 

spaces between collagen fibrils (Armstrong et al., 2006). Thus, the loss of dry mass in 

studies I, II and IV was measured in dry conditions to evaluate the degradation amount and 

to minimize the possible degradation in between the incubation periods.  

In studies I and IV, the loss of dentin mass in groups treated with collagen crosslinkers was 

evaluated after short- and long-term incubation periods and compared to the baseline level. 

Sabatini et al. (2013) showed that dentin beams treated with 5% glutaraldehyde showed 

inactivation of total MMPs and a decrease in the loss of dry mass. Additionally, there was 

improvement in the biomechanical properties of the dentin. Glutaraldehyde is a bifunctional 

aldehyde that can react with the ε-amino groups of lysine on collagen, and forms 

intramolecular or intermolecular crosslinking. Low concentrations of glutaraldehyde have the 

ability to create intramolecular crosslinking, while high concentrations (≥0.5%) form 

intermolecular crosslinking due to the polymerization of glutaraldehyde (Hagerman and 

Butler, 1981; Cheung et al., 1985). However, the use of high concentrations may not be 

suitable for clinical use due to potential toxicity (Scheffel et al., 2015). Thus, glutaraldehyde-
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treated groups served as positive controls for Study I and Study IV.  

Both concentrations of curcumin pretreatment decrease the loss of dentin dry mass by 

inactivating the degradation similar or more than 5% glutaraldehyde. Although curcumin is a 

simple phenolic compound which contains a single-aromatic ring, its capacity of chelating 

Zn
+
 ions on metalloproteins and possible interaction of curcumin with the intermolecular 

crosslinking dentin collagen or/and proteases may explain the decrease in the loss of 

demineralized dentin mass. The complexity of polyphenolic compounds increases the 

possibility of interaction of the molecule with collagen. The pretreatment of 5% grape seed 

extract followed the curcumin and showed a similar decrease to the loss of dry mass of 5% 

glutaraldehyde (Figure 6 and 7). The inactivation of collagen degradation on demineralized 

dentin by grape seed pretreatment can be attributed its proanthocyanidin-rich compounds 

which can help to form covalent bonds, and thus stabilize the collagen fibrils (Green et al., 

2010; Bedran-Russo et al., 2011; Castellan et al., 2011; Liu and Wang, 2013; Aguiar et al., 

2014).  

10 w/v% sumac berry extract is another collagen crosslinker containing polyphenolic 

compounds used in Study I and Study IV. 10% sumac berry extracts containing 

hydrolyzable gallotannin also decreased the degradation of demineralized dentin matrices in 

terms of loss of dry mass compared to untreated control during 3-, 7- and 14-day incubation. 

It contains penta-O-galloyl-β-D glucose, which may form inter-microfibrillar crosslinks and 

enhances the biomechanical properties of collagen (Vidal et al., 2014c). However, 

inactivation of degradation decreased during further 6 months of incubation using 10% sumac 

berry extract (Figure 6 vs. 7). Obviously, penta-O-galloyl-β-D glucose is an excellent short-

term collagen-stabilizing agent (Tedder et al., 2008). The interaction of proline with galloyl 

group of penta-O-galloyl-β-D can be responsible for the prevention of hydrolytic degradation 

of collagen matrices (Perumal et al., 2008).  

Study IV tested the reversibility of the inactivation effects of selected plant-derived 

crosslinkers on dentin collagen matrices for up to 6 months of storage. Study IV showed that 

the plant-derived crosslinkers significantly reduced the loss of dry mass up to 60% compared 

to the untreated group, whereas 5% glutaraldehyde decreased the loss of dry mass by 40% 

after six months. The results of Study IV also indicated that the inactivation ability of plant-

derived crosslinkers on degradation of dentin collagen matrices is slightly dose dependent, 

since 1% glutaraldehyde and 1% grape seed were less effective on the inactivation of 
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degradation than were their 5% concentrations, although they decreased the loss of dry mass 

compared to the untreated control (Figure 7). However, both 20 µM and 200 µM curcumin 

significantly inactivated the dentin degradation after six months, in contrast to its initial 

inactivation effect, which was certainly dose dependent.  

In Study I, treatment with 0.1% and 0.5% riboflavin and 1% riboflavin 5′-phosphate showed 

significantly lower loss of dry mass compared to untreated control. However, their 

inactivation was not as effective as other pretreatment groups after 3-, 7- and 14-day 

incubation cumulatively (Figure 6). UV-induced crosslinking of demineralized dentin was 

reported to be an effective method of improving the biomechanical properties of dentin by 

increasing the number of intermolecular crosslinks in collagen. Cova et al. (2011) also 

reported the inhibition of demineralized dentin following riboflavin/UVA treatment. 

However, the penetration of UVA irradiation is limited to around 200 µm (Ashwin and 

McDonnell et al., 2010) – not enough to penetrate through the 1 mm-thick demineralized 

dentin beams used in Study I. While the crosslinking occurred on the surface of 

demineralized dentin beams, the degradation of deep collagen matrices maintained as 

untreated control did. This result of Study I was revealed to assess the effect of UVA-

induced crosslinking separately by using a demineralized dentin model with a certain 

thickness to allow the UVA irradiation to reach the deepest demineralized collagen matrices. 

Thus, in Study II, the UVA-induced crosslinking of dentin matrices was evaluated with 400 

µm-thick collagen beams by treating both the top and bottom sides of dentin beams, 

considering the UVA irradiation can penetrate into the deepest demineralized dentin. Study 

II confirmed the previous findings, since UVA-crosslinking with or without riboflavin 

inactivated the degradation of collagen matrices (Figure 8). According to the results of Study 

II, loss of dry mass was not significantly different for treated and untreated groups, 

considering the results of the first day of incubation. However, the mass loss of treated 

demineralized dentin was significantly lower compared to untreated control after further 

incubation. This might be due to decrease in the solubilization of collagen fragments from 

dentin as a result of enzymatic inactivation. The release of collagen may occur via two 

different pathways during incubation. The solubilized collagen telopeptides can leach out 

slowly from dentin if the cleaved telopeptides remain tethered to insoluble collagen via 

pyridinium crosslinks; more rapid solubilization of telopeptides may follow telopeptidase 

activity on the outside of collagen fibrils where there is less molecular sieving.  
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Figure 22: The schematic view of crosslinkers on collagen fibril 

6.2. The Release of Type I Collagen Fragments by MMPs and Cathepsin K (Studies I, 

II, IV) 

The measurement of the loss of dry mass is an indirect method of estimating the amount of 

solubilized collagen fragments resulting from the hydrolysis of dentin organic matrices over 

time, but it does not explain the source. However, it is known that the amount of degradation 

of dentin matrices is correlated with the amount of the generation of specific collagen 

fragments cleaved by MMP and cysteine cathepsins (Garnero et al., 2003).  

Garnero et al. (2003) showed that cathepsin K and MMPs cleave the different regions of type 

I collagen. Two fragments on the C-telopeptide of type I collagen have been described as 

being related with different enzymes. ICTP (crosslinked carboxyterminal telopeptide of type I 

collagen) epitope is a larger conformational epitope (molecular mass 10-20 kDa), and is 

generated by MMPs (Eriksen et al., 2004). CTX (C-terminal crosslinked telopeptide of type I 

collagen) consists of a linear eight-amino-acid sequence and is cleaved by cathepsin K (Sassi 

et al., 2000; Garnero et al., 2003) and has a molecular mass of <3 kDa (Rosenquist et al., 

1998). Toroian et al. (2007) and Takahashi et al. (2013) described the size-exclusion 

characteristics of type I collagen, explaining that molecules smaller than 6 × 10
3
 Da can 

release out of collagen matrices, whereas molecules over 48 × 10
3
 Da cannot. However, size-

exclusion characteristics of crosslinked collagen may be even lower than those of non-

crosslinked matrices. This may also contribute to the lower amount of CTX release relative to 

ICTP fragments from partially crosslinked dentin collagen during incubation. 

74 DISCUSSION



 
75 

 

In this series of studies, ICTP and CTX fragment release were analyzed in order to evaluate 

the role of collagen crosslinkers on inactivation of MMPs and cathepsin K separately. In 

general, MMPs are active at neutral pH, whereas the optimum pH for cathepsin K is 5.5 

(Kometani et al., 2010). Although thyroglobulin was reported to be degraded at pH 7.4 by 

cathepsin K (Jordan et al., 2009), in neutral pH cathepsin K activity is around 10–11% of its 

optimized pH. The thesis study series was performed at the pH of 7.4 during incubation. 

When the amounts of release of ICTP and CTX by portion were compared, the amount of 

MMP-mediated ICTP was 10-fold higher than the amount of CTX released by cathepsin K. 

Presumably, had the incubation been done at pH 5.5, cathepsin K would have released ten 

times more CTX than the MMPs would have released ICTP. 

In Study I, all crosslinker-treated groups showed a reduction in MMP-mediated ICTP release 

during incubation compared to the untreated control, except for riboflavin/UV treatment. 

However, both polyphenols and riboflavin/UV blocked the release of CTX, whereas they 

could not inactivate the release of ICTP permanently. 

Our findings in studies I and IV indicated that treatment with 5% glutaraldehyde 

pretreatment reduced the release of ICTP and CTX fragments during the incubation period 

(3+7+14 days for Study I, and 1, 3, 6 months for Study IV). Similar to the results for loss of 

dry mass, the amount of ICTP and CTX releases also confirmed that 5% glutaraldehyde is a 

good inactivator for both MMPs and cathepsin K. In spite of the significant decrease of 

degradation, crosslinker-treated and untreated demineralized dentin maintained the release of 

ICTP and CTX as well as the loss of dry mass after overall incubation (3+7+14 days for 

Study I, and 1, 3, 6 months for Study IV) in Study I and Study IV. This may be explained by 

the tight, crosslinked structure of collagen matrices. This results in the immobility of large 

molecules from diffusing out of crosslinked demineralized dentin (Takahashi et al., 2013). 

Although 5% glutaraldehyde pretreatment showed the lowest amount of ICTP release, all 

crosslinker groups inactivated MMP activity significantly during the six months of incubation 

in Study IV. The non-enzymatic crosslinks induced by plant-derived crosslinkers may hide 

the specific cleavage sites for dentin proteases, resulting in a reduction of degradation (Vidal 

et al., 2014b). Our results confirmed that endogenous proteases of dentin matrices were 

inactivated using phenolic compounds (grape seed extract, sumac extract, curcumin) during 6 

months of incubation.  

Many previous reports showed a good crosslinking capacity of polyphenols for collagen, and 

its affirmative effect on the durability of the hybrid layer was reported by Bedran-Russo et al. 
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(2007, 2008). The mechanism of action of grape seed extract involves improvement of the 

biomechanical properties of exposed dentin collagen matrices (Bedran-Russo et al., 2014). 

However, the treatment of dentin by polyphenols did not show the same response for ICTP 

and CTX release. In Study I, groups treated with 1% and 5% grape seed extract decreased 

the amount of CTX and ICTP release significantly, whereas ICTP release (as a result of 

MMP-mediated degradation) was dose dependent. Grape seed extract interacts with proline-

rich protein of collagen by creating covalent bonds (Aguiar et al., 2014), ionic bonds (Vidal 

et al., 2014b) and hydrogen and hydrophobic bonds (Han et al., 2003). These multiple bonds 

alter the microfibrillar structure and strengthen collagen fibrils via inter- and intramolecular 

crosslinking. Likewise, the results of Study I and Study IV clearly confirmed the protective 

effect of grape seed extract on dentin collagen matrices for up to six months. Relatively low 

concentrations (i.e., 1% and 5%) of grape seed significantly decreased the amount of CTX 

telopeptide release. These results were similar to the use of the same concentration of 

glutaraldehyde during the six-month incubation. In terms of preventing the release of ICTP 

and CTX, 10% sumac berry extract was less effective at inactivating dentin MMPs and 

cathepsin K, compared to the groups treated with 1% and 5% grape seed extract. However, 

the amount of total telopeptide fragments (ICTP+CTX) released during six months by sumac 

was significantly less compared to untreated control.  

The treatment of 5% glutaraldehyde was used as a positive control in Study IV for evaluating 

the long-term inactivation of dentin proteases by collagen crosslinkers as well. In Study IV, 

the group treated with 200 µM of curcumin reduced the release of CTX during six months’ 

incubation, three times more than the positive control (5% glutaraldehyde). This result may 

be due to the polyphenolic curcumin, which interacts more extensively with collagen than 

other collagen crosslinkers, resulting in physiochemical modification of collagen structure. 

Panchatcharam et al. (2006) indicated that curcumin-collagen interaction increases the 

content of proline and hydroxyproline on collagen due to high intermolecular crosslinks 

following curcumin treatment. Fully protonated curcumin may interact electrostatically with 

negative charges on collagen.  

Moreover, 200 µM curcumin decreased the release of ICTP significantly, similar to what it 

did to CTX release. The inhibitory effect of curcumin on MMPs has been studied by others 

(Panchatcharam et al., 2006; Zhang et al., 2012). In addition to its effect on downregulation 

of MMP expression, curcumin has the ability to inactivate MMPs by chelating or replacing to 
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zinc atom in catalytic domain on the enzyme (Zhang et al., 2012), which is critical for MMP 

function. 

Although the inactivation of MMPs by riboflavin/UVA crosslinking of demineralized dentin 

was shown previously using gelatin zymography (Cova et al., 2011), riboflavin/UVA-treated 

groups in Study I of the current work showed the lowest cathepsin K inactivation in all 

experimental groups. Moreover, the ICTP releases derived from MMP activity were similar 

for the untreated group. This may be due to the inability of UVA light to penetrate more than 

200 µm beneath dentin surface (Ashwin and McDonnell, 2010). Since the thickness of the 

demineralized dentin beams used in Study I were 1 mm, it is possible that UV treatment was 

effective only at the UVA irradiated to the top and bottom surfaces, but did not penetrate 

deep enough throughout the beam thickness to crosslink collagen matrices efficiently. If 

UVA-riboflavin crosslinking agents inactivate MMPs and cathepsin K, the telopeptides 

already released in collagen peptides may continue to slowly diffuse from collagen fibrils 

into the medium, but there will be no further cleavage and further release of the ICTP and 

CTX telopeptides. In the latter case, the amount of release of telopeptides at 1 day and 7 days 

should be similar. 

In Study II, photo-oxidative crosslinking was tested for its ability to inactivate cathepsin K 

and MMPs functional activity. Study II showed that enzymatic degradation of C telopeptide 

of type I collagen by MMPs and cathepsin K decreased over time in demineralized dentin, 

since the amount of CTX release from untreated demineralized dentin for 1 day was only two 

times higher compared to the release for 7 days, whereas the amount of ICTP release from 

untreated dentin beams was similar for both 1 day and 7 days of incubation (p>005). This 

might be due to differences between the molecular sizes of ICTP and CTX epitopes. The 

molecular weight of ICTP epitope is 10249 Da (Eriksen et al., 2004), whereas CTX is 

<3000 Da (Rosenquist et al., 1998). Thus, the outward amount of diffuse of ICTP from 

dentin matrices might be slower compared to CTX.  

Although UVA irradiation alone did not significantly reduce the degradation of collagen 

generated by MMPs considering to the amount of ICTP release at 1 day of incubation, the 

reduction of ICTP release was significant in the 7-day incubation groups in Study II 

(compare Figure 11). When riboflavin or riboflavin 5′-phosphate were added to the treatment, 

the amount of total ICTP release fell significantly compared to untreated control and UV 

alone for both 1 min and 5 min of treatment (p < 0.05) during 7 days’ incubation, whereas it 

was not significantly different for the first 1-day incubation (p>0.05).  
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Hayashi et al. (2010) reported that UVA irradiation at 356 nm with 3200 mW/cm
2
 improved 

the biomechanical properties of dentin collagen by increasing the crosslinks. Although the 

flexural strength of dentin increased after 5–15 min of UVA treatment, the longer exposure 

time of >15 min most likely resulted in collagen denaturation (Hayashi et al., 2010). In Study 

II, UVA irradiation alone for 1 min and 5 min significantly decreased the degradation by 

cathepsin K activity regarding the amount of CTX release, but did not totally inactivate the 

enzyme, since the degradation generated by cathepsin K showed a similar trend with the 

untreated control group between different incubation periods. However, whereas Hayashi et 

al. (2010) used 3200 mW/cm
2
 of UVA irradiation, it was 3 mW/cm

2
 in Study II. UVA 

irradiation was combined with riboflavin and its bioactive form as photosensitizers to 

optimize the crosslinking reaction. Riboflavin with UVA at 370 nm can generate a triplet 

state and bring out single oxygen, which forms covalent bonds between collagen amino 

groups by reacting with several molecules, inducing chemical covalent bonds (Hayashi et al., 

2010; Zhang et al., 2011). The use of 0.1% riboflavin with UVA treatment significantly 

reduced the amount of CTX release during 1 day and 7 days of incubation compared to 

treatment with UV alone for 1 min and 5 min. Moreover, the CTX release in UVA-induced 

riboflavin-treated group during day 1 was similar to the CTX release for the further 7 days of 

incubation (p>0.05). Riboflavin 5′-phosphate, bioactive form of riboflavin, was also tested as 

a photosensitizer for UVA-induced crosslinking. After the treatment of UVA-induced 

riboflavin 5′-phosphate for 1 min or 5 min, the release of CTX from demineralized dentin 

was significantly lower compared to all experimental groups during 1-day incubation 

(p<0.05). However, groups treated with riboflavin 5′-phosphate+UVA continued to release 

CTX during further 7 days of incubation, as well as groups treated with UVA-induced 

riboflavin (p>0.05). These results show that the use of photosensitizers with UVA inactivated 

overall cathepsin K activity by inducing the covalent crosslinks via UVA light. Zhang et al. 

(2011) reported crosslinking between collagen and proteoglycans by riboflavin/UVA. This 

might help to stabilize proteoglycan complexes, which have role in cathepsin K activity. 

However, to our knowledge, the interaction of cathepsin K and proteoglycans after 

riboflavin/UVA treatment has not been studied. It can be concluded that UVA-induced 

crosslinking with or without photosensitizer is more effective at inactivation of cathepsin K 

compared to its inactivation of MMPs. However, photo-oxidative crosslinking increased the 

resistance of dentin collagen to cathepsin K and MMPs.  
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6.3. Direct Inactivation of Dentin MMP Activity by Collagen Crosslinkers (Studies III, 

IV)  

The generic MMP assay used in Study III is based on the Ellman assay, which provides a 

colorimetric measurement of the shift of Ellman’s reagent (DTNB) to yellow-colored 2-thio-

5-nitronbenzoicacid (TNB). A thiopeptolide, a chromogenic substrate of the assay, is cleaved 

by the MMP catalytic domain, which releases a sulfhydryl group. After the sulfhydryl group 

reacts with DTNB, Ellman’s reagent is reduced by free thiols via an exchange reaction of a 

mixed disulfide and a yellow-colored 2-thio-5-nitrobenzoicacid (TNB). In the generic assay 

protocol, MMP activity is quantified by using certain concentrations of corresponding 

rhMMP. However, generic MMP assay used in studies III and IV was modified in 

accordance with Thompson et al. (2012). Instead of rhMMP, demineralized dentin beams 

were used as MMP source. This method allows for fast screening of MMP activity in 

demineralized dentin, which is more reliable for a clinical model (Thompson et al., 2012). In 

the study design, a demineralized dentin beam’s baseline activity was measured, and these 

measurements were used as individual references for each dentin beam before collagen 

crosslinker treatment. Additionally, untreated dentin beams were tested as control groups. 

Thus, the relative activity of dentin MMPs was evaluated according to the initial activity of 

each beam. The generic MMP assay was repeated for the specimens incubated for 6 mos in 

Study IV to evaluate the changes on MMP activity following long-term incubation. 

Untreated control specimens maintained the MMP activity by increasing to 84% during the 

experiment. However, collagen crosslinkers decreased MMP activity in demineralized dentin 

beams by up to 70% (Figure 15A). Both 1 min and 5 min crosslinker treatments were 

successful in lowering the enzymatic activity of dentin matrices. The groups treated with 1% 

or 5% grape seed extract or 10% sumac berry extract showed the highest total MMP 

inactivation among the experimental groups. There is a direct relation between the molecular 

weight of polyphenols and their ability to induce non-enzymatic dentin collagen matrix 

crosslinks (Aguiar et al., 2014). It was assumed that the multiple hydroxyl groups in these 

large polyols produced mainly noncovalent hydrogen bonds (Bedran-Russo et al., 2014), not 

only on collagen but also on proteolytic enzymes. Interactions between collagen and 

polyphenols have been extensively studied. Bedran-Russo et al. (2011) reported changes in 

the composition of dentin collagen by crosslinking and its biomechanical properties, 

following the polyphenol application. They reported that polyphenol-treated groups showed a 

higher denaturation temperature, decrease on degradability of the matrix and improvement in 
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the stability of tensile properties compared to untreated controls, all of which can be 

explained by the multiple interactions of polyphenols with the organic matrix (Bedran-Russo 

et al., 2011). The mechanism of collagen crosslinking is based on the formation of hydrogen 

bonds between hydroxyl residues of polyphenol and free carbonyl oxygens in collagen (Tu 

and Lollar, 1950; Pankhurst, 1958; Hagerman et al., 1981). The presence of hydrogen bonds 

plays an important role in the stabilization of collagen with other hydrophobic and covalent 

bonds. On the other hand, previous studies have also shown the direct interaction between 

polyphenolic compounds and gelatinases (Dell'Agli et al., 2005). Oligomeric polyphenols can 

down-regulate the gelatinase expression in addition to directly inactivating it. Garbisa et al. 

(2011) reported that the inhibitory mechanism of these compounds is not due to the chelation 

of zinc in gelatinases, but to polyphenols binding to gelatinases that become enzymatically 

inactive. In a further study, Strek et al. (2007) reported that this interaction between 

polyphenols and proline dimers of gelatinases was similar to collagen-polyphenol interaction.  

Groups treated with 0.1% or 0.5% of riboflavin/UVA and 0.1% riboflavin 5’-phosphate/UVA 

effectively inactivated dentin MMP activity up to 55% (Figure 15). The inactivation effect of 

photo-oxidative crosslinking on dentin was previously shown by Cova et al. (2011). 

Additionally, treatment of demineralized dentin by 0.1% riboflavin/UVA improved 

microtensile bond strength at 0, 6 and 12 months (Cova et al., 2011). They showed that 0.1% 

riboflavin activated with UVA light for 2 min inactivated MMP-9. The inactivation of total 

MMPs in demineralized dentin by riboflavin/UVA in Study III can be attributed to not only 

the crosslinking of collagen, but also the direct crosslinking of MMPs, causing their 

inactivation.   

The other concern was the sustainability of the inactivation of dentin MMPs. Thus, MMP 

activities of crosslinker-treated dentin beams were evaluated after 6 mos incubation in 

complete media. Untreated control maintained only 40% of its baseline MMP activity, which 

means it lost 43.8% of its MMP activity after 6 mos incubation. This explained the decrease 

in ICTP release on demineralized dentin beams at 6 mos in Study IV. Although there was a 

decrease in total MMP activity in all groups except the 10% sumac-treated group, all 

crosslinker-treated groups maintained their MMP inactivation compared to beginning 

inactivation of MMPs. The 10% sumac group showed the highest decrease in MMP 

inactivation among crosslinker-treated groups; however, its MMP inactivation was 54% 

compared to the control. Although sumac berry extract showed the highest inactivation in the 

beginning, it contains hydrolysable gallotannins and can degrade over time, and lose its 
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activity. The groups treated with 1% and 5% grape seed extract and 20µM and 200µM 

curcumin showed similar inactivation to the positive control (5% glutaraldehyde)-treated 

group, even after 6 mos. This confirmed the interaction between phenolic compounds and 

dentin organic matrices, which include crosslinking of collagen, non-collagenous protein and 

enzyme.  

6.4. Crosslinking Ability of Dentin Collagen Matrices (Study III) 

Total protein assay is a well-known protein analysis. Bradford assay is a nonspecific assay 

commonly used for the determination of total protein level in serum. To evaluate the total 

degradation of dentin organic matrices, the extraction buffer was tested for total protein in 

Study III. The amount of total released protein from demineralized dentin powder to the 

extraction buffer was used to determine the degradation of total collagen matrices. It was 

thought that specimens treated with collagen crosslinkers would show less release, since 

crosslinking of dentin matrices (collagen or/and proteases) would not allow the release of 

peptides throughout demineralized dentin into the extraction buffer.   

Study III tested the feasibility of using collagen crosslinkers within short treatment times 

such as 1 min or 5 min for crosslinking of dentin collagen matrices by means of total protein 

assay (Figure 11). The total extracted protein content of demineralized dentin decreased 

significantly after the crosslinker treatment for 1 min or 5 min. Pretreatment of collagen 

crosslinkers for 5 min decreased 70–80% of protein release from demineralized collagen 

matrices, whereas pretreatment for 1 min ranged from 25% to 50% compared to controls 

(Figure 11). It is likely that crosslinking dentin matrices would increase molecular sieving 

and lead to reductions in the size of molecules that are sterically excluded from entering or 

leaving dentin matrices (Toroian et al., 2003; Takahashi et al., 2013). Most likely, 

crosslinking of dentin collagen matrices changed the conformational assembly of the collagen 

fibrils and restricted diffusion pathways. Thus, the solubilized collagen and/or non-

collagenous protein fractions may not all leach out from crosslinked, demineralized dentin. 

This model might also immobilize matrix-bound MMPs. The amount of released protein 

from untreated demineralized dentin is related to release-solubilized matrix components as 

well as enzymatic degradation by matrix-bound proteases.  

6.5. The Release of MMP-2, -8 and -9 from Crosslinked Collagen Matrices (Study III) 

The concentrations of dentin MMPs in extracts of demineralized dentin before and after 

collagen crosslinker treatment indicated that the amount of extractable MMP-2, -8 and -9 
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decreased after collagen crosslinker treatment, depending on exposure time and the type of 

collagen crosslinkers. The amount of extractable MMP-2 and MMP-9 were reduced 

significantly after 1 and 5 min of collagen crosslinker treatment, compared to untreated 

controls (Figure 17). The significant decrease in the release of total protein and extractable 

MMPs from crosslinker-treated dentin is most likely due to the crosslinking of collagen as 

well as the crosslinking of MMPs, and crosslinking of MMPs to collagen. These results 

firmly confirmed other findings of Study III on total MMP activity and the extractable 

protein of demineralized dentin.  

However, the amount of extractable MMP-8 did not show the same trend for experimental 

groups. Even though 1 min applications of collagen crosslinkers seem to be sufficient to 

crosslink gelatinases, it was not enough to crosslink MMP-8 (Figure 18B). This is most 

likely due to the presence of proline trimers on fibronectin type-II-like domains of MMP-2 

and -9, which are absent on MMP-8 (Nagase et al., 2006). 

6.6. Detection of MMP Inactivation Using Gelatin Zymography (Study III) 

Gelatin zymography is a simple and inexpensive method to measure the activity of several 

proteases with same substrate and can be detected in the same gel (Kleiner and Stetler-

Stevenson, 1994). Its high sensitivity to detect proteolytic activity in samples with levels of 

pg of MMPs render it favorable in comparison to ELISA (Kleiner and Stetler-Stevenson, 

1994; Leber and Balkwill 1997). Mazzoni et al. (2007) employed gelatin zymography for the 

first time, to determine the gelatinase activity of dentin MMPs using extracted molar teeth. 

The activation of dentin MMPs following the demineralization of dentin using acidic 

monomers has been known (Mazzoni et al., 2006; Nishitani et al., 2006a; Mazzoni et al., 

2012b). Mazzoni et al. (2013) reported for the first time the active and pro-forms of MMP-2 

and -9 on demineralized dentin following the application of both self-etch and etch-and-rinse 

adhesives by using gelatin zymography. In Study III, the inactivation of dentin MMPs by 

collagen crosslinkers was detected using gelatin zymography. Study III also confirmed 

previous findings, which showed the activation of MMP-2 and -9 after dentin 

demineralization by using acids regarding the results of mineralized and demineralized dentin 

groups. The detected active forms of MMP-2 and -9 (66 and 86 kDa, respectively) and pro-

forms (72 and 92 kDa, respectively) in groups treated with collagen crosslinkers were lower, 

compared to untreated demineralized dentin. The result of gelatin zymography confirmed the 

inactivation effect of collagen crosslinkers on dentin proteases (Figure 18). Although the 

mechanism of inactivation of dentin MMPs by collagen crosslinkers is not clear, it is most 
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likely not only the crosslinking of dentin collagen matrices, but also crosslinking of dentin 

proteases. The results of Study III concluded that the pretreatment of demineralized dentin 

by collagen crosslinkers decreased the detectable active form of MMP-2 and -9 on 

demineralized dentin matrices. Although this method is not suitable for quantitative 

measurement, it is informative in terms of the relative amount of gelatinases for both active- 

and pro-forms. 

6.7. Localization of Gelatinolytic Activity on Demineralized Dentin by In situ 

Zymography (Study III) 

Although gelatin zymography is a powerful technique for showing the location and presence 

of hydrolytic enzymes, which is based on the degradation of substrate; it does not determine 

potential enzymatic activities. The technique was introduced by Galis et al. (1994) to localize 

the gelatinolytic activity in human atherosclerotic plaques and was adapted to hard tissue 

sections such as dentin and bone by Porto et al. (2009). Mazzoni et al. (2012a), for the first 

time, indicated the localization of gelatinolytic activity in the hybrid layer by using in situ 

zymography after adhesive application. In Study III, in situ zymography was used to identify 

the distribution of enzymatic activity on demineralized dentin with and without collagen 

crosslinker treatment (Figure 19A-B). The gelatinase activity was localized mostly inside the 

walls of dentinal tubules, but was also seen intertubular dentin. This study also evaluated the 

differences in gelatinase activity between mineralized and demineralized dentin. As 

previously shown, the activity of MMPs in mineralized dentin was very weak, since they 

were immobilized by apatite crystallites in the mineral phase, and consequently, the 

fluorescein-labelled gelatin substrate had no access to the enzyme active site. Demineralized 

dentin treated with selected collagen crosslinkers showed less gelatinase activity compared to 

both mineralized and demineralized controls for both 1 min and 5 min treatment. Longer 

exposures to collagen crosslinkers (i.e., 5 min) inactivated MMPs more sufficiently during 48 

h incubation with the substrate. However, the gelatinase activity on the untreated 

demineralized dentin increased over time. Indeed, in situ zymography revealed that using 

collagen crosslinkers as a pretreatment for 1 min could decrease the MMP activity especially 

gelatinases such as MMP-2 and -9 (Figure 20B). 
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Figure 23: The interactions between collagen crosslinkers and components of dentin organic matrix 

6.8. Ultrastructural Changes in Crosslinked Dentin Matrices over Time  

TEM micrographs of demineralized dentin confirmed that collagen crosslinker-treated dentin 

resisted enzymatic degradation and preserved intact collagen structure even after six months 

of incubation in a zinc-calcium-containing media which is ideal for MMP activity (Figure 

21). The crosslinking ability of these polyphenol-rich plant extracts, which may vary with the 

position and orientation of collagen fibrils, is limited (Bedran-Russo et al., 2014; Vidal et al., 

2014b). Variation between the experimental groups treated with plant-derived collagen 

crosslinkers might be due to the differences in molecular weight of polyphenolic compounds, 

the complexity of their interactions and their position, and the orientation of hydroxyl groups 

in these plant extracts (Bedran-Russo et al., 2104; Vidal et al., 2014b). When 

proanthocyanidin-rich grape seed extract and dentin interaction result in the highly 

crosslinking of collagen matrices, curcumin showed less dense intact collagen fibrils in 

demineralized dentin matrix. Most likely, the metal ion-chelating capacity of curcumin was 

much more effective at stabilizing the collagen matrix rather than its low crosslinking 

properties. Despite its high polyphenolic content, 54% sumac is a hydrolyzable gallotannin 

that can degrade and lose the phenolic rings in the presence of water. However, it shows high 

molecular interaction with protein during exposure. 
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6.9. Future Directions and Further Studies 

These studies show the feasibility of using collagen crosslinkers on exposed dentin to prevent 

the degradation of collagen matrices by enzymatic degradation after demineralization. 

Despite the advantage of these compounds, such as their non-toxic properties, their 

disadvantages include changing the color of dentin, ranging from yellow to brown, and the 

difficulties in controlling the reaction. While ongoing studies have searched for alternative 

ways to protect dentin collagen matrices from degradation clinically, the results of this thesis 

suggest that collagen crosslinkers can inactivate the collagen degradation by dentin proteases. 

Thus, the use of collagen crosslinkers may help collagen matrices to resist the degradation. 

The incorporation of these compounds into current adhesive systems may protect 

demineralized collagen matrix in the tooth-biomaterial interfaces. 
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7. CONCLUSION 

Based on the studies included in this thesis, the following conclusions were drawn: 

1. Selected collagen crosslinkers are effective at decreasing the activity of MMPs and 

cathepsin K on dentin.  

2. The results of this study indicate that the photo-oxidative crosslinking using 

riboflavin as a photosensitizer for UVA light was effective at decreasing the 

activity of endogenous proteases in dentin matrices. Although the inactivation 

mechanism of photo-oxidative crosslinking on demineralized dentin is not clear, its 

application is an effective and rapid technique for inactivating degradation of 

dentin collagen matrices. UVA-induced crosslinking with or without 

photosensitizer is more effective on cathepsin K than for MMPs.  

3. The use of plant-derived collagen crosslinkers prevents the degradation of dentin 

organic matrix by inactivating dentin endogenous enzymes and likely by chelating 

and/or masking the active sites of endogenous matrix proteases bound to collagen 

fibrils.  

4. The results of the long-term study provide evidence that the crosslinking of 

collagen matrix is stable for at least 6 months for some selected collagen 

crosslinkers. The inactivation effect of collagen crosslinkers is permanent for 

cathepsin K, whereas it is dose dependent for MMPs. 
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