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Bispectrum Analysis of Surface EMG Signal to Assess Muscle Fatigue 
during Isometric Contraction 

 

 
 
Abstract: The objective of the present study was to investigate 
the possible relationship between bispectral parameters 
extracted from surface EMG (sEMG) signals and muscle force 
and fatigue. Our hypothesis was that changes in motor unit 
recruitment during muscle contraction and fatigue, affect sEMG 
distribution and the degree of complexity and irregularity in the 
muscle. Thus, four features based on higher order spectra and 
cumulants were extracted from sEMG signal, recorded from 
biceps brachii muscle of a healthy female volunteer during rest, 
sustained (fatiguing) 50% MVC, 100% MVC and recovery. 
Results obtained from weighted center of bispectrum (WCOB) 
analysis showed that the values of f1m and f2m were higher 
during rest and recovery states, while they decreased during 
MVCs. However, when fatigue occurred, these parameters 
increased slightly, again. Moreover, entropy features, namely 
NBE and NBSE decreased with contraction compared to rest 
and recovery states, indicating less complexity of time series 
during MVCs. However, the changes were not significant 
during fatigue and during changes in MVC levels from 50% to 
100%. On the other hand, test of non-Gaussianity based on 
negentropy showed the reverse pattern of WCOB, NBE and 
NBSE. In addition, contour maps of bispectrum enabled us to 
visually differentiate each trial. 
 
Keywords: Biceps brachii muscle, entropy, higher order 
statistics, surface electromyographic signal, muscle 
fatigue. 

1. Introduction 
Biomedical signals carry information about the 

physiological activities of human or animal organisms 
and their processing aims at extracting significant 
information to facilitate understanding different 
pathologies [1]. Surface electromyographic (sEMG) 
signals, which represent a train of motor unit action 
potentials (MUAPs) plus noise, can provide useful 
information about muscular function and underlying 
mechanisms of sustained fatiguing contractions [2,3,4]. 
The MAUPs vary in amplitude, duration and frequency of 
occurance, which are related to the amount of force the 
muscle may produce and thus the level of contraction 
[2,3]. However, extracting information about motor unit 
(MU) recruitment strategies during muscle contraction 

from the analysis of sEMG data is a challenging task [5]. 
Different parameters in time, frequency and higher order 
statistics domains were extracted from sEMG signals to 
examine the influence of the increase in voluntary 
contraction [3]. The most frequently used parameters 
were the mean frequency (MNF), the median frequency 
(MDF), the number of zero crossings per second (zc/s), 
the power spectrum and bispectrum shape and the 
Gaussianity and linearity test of the normalized 
bispectrum, which led to many discrepancies between 
findings. These contradictory results may originate from 
the fact that different researchers have recruited limited 
and different number of participants. In addition, various 
recording protocols and recording durations were chosen, 
which may affect the results, for example, fatigue may 
occur in large recording times [3]. Kaplanis te al. [3], 
reported that the time domain parameters (zc/s) and turns 
per second, increased significantly with force level, while 
the power spectrum MDF parameter, decreased 
dramatically in isometric voluntary contraction. 
Although, test of Gaussianity and linearity using 
bicoherence analysis did not show significant changes, 
the sEMG signals revealed a more Gaussian distribution 
with increase in force level up to 70% of maximum 
voluntary contraction (MVC). In contrast, the results of 
[4,6] showed that signals became less Gaussian and more 
linear with increasing in walking speed/force. However, 
the study group of Nazarpour [7], measured the non-
Gaussianity of sEMG signals using negentropy feature 
during elbow flexion at four different levels of 
contraction. Their results demonstrated that the 
distribution of sEMG signals was non-Gaussian during 
light contractions (below 30% of MVC) and it tended 
toward a Gaussian process at higher force levels due to 
central limit theorem. Kaplanis et al. in [8] achieved even 
more conflicting results. They reported that the EMG 
signal was highly non-Gaussian at low and high levels of 
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force which tended to Gaussian distribution at the mid 
level of MVC (i.e. 50%).  

In this study, we revisit this problem using higher 
order spectra analysis methods, applied to sEMG signals 
at various muscle contraction/force stages (rest, fatiguing 
50% of MVC, 100% of MVC, recovery) for right biceps 
brachii muscle. These nonlinear features are exploited to 
enhance the diagnostic character of sEMG signals and to 
quantify the degree of non-Gaussianity as well as the 
irregularity and complexity of signals at each stage.   

2. Materials and Methods 

2.1 Subjects 
One healthy female volunteer (age 20 years, mass 61 

Kg, Body Mass Index 23.82 Kg/m2) with right hand 
dominant, participated in this study. The subject had not 
specifically trained her hand and shoulder muscles. The 
measurments were carried out in the Physiology 
Laboratory, Department of Biomedical Engineering, 
Islamic Azad University, Mashhad, Iran. 
2.2 Recording Setup 

A Surface EMG activity was measured from right 
biceps brachii muscle using PowerLab/ML8651 system. 
In addition, recording was done bipolarly using Ag/AgCl 
circular self-adhesive disposable pre-gelled surface 
electrodes2

For sEMG recording, the subject was asked to seat 
quietly on a comfortable armchair, while instructed to 
assume a standardized position with her hip and back 
against the back of the chair, her feet flat on the floor, her 
right arm fixed on the chair and the left one on her lap. 
After the adaptation period of one minute, she was asked 
to perform maximum voluntary contraction (MVC) for 
three times, using a hand dynamometer/MLT003/D

 of 15mm diameter. According to Surface 
Electromyography for the Non-Invasive Assessment of 
Muscles (SENIAM) [9], the electrodes were placed on 
the line between the medial acromion and the fossa cubit 
at 1/3 from the fossa cubit, with 20mm spacing. 
Moreover, the reference electrode was placed on the left 
wrist (Fig. 1). To keep the interelectrode resistance low, 
the electrode sites were cleaned with 70% isopropyl 
alcohol. The leads were fixed by medical tape to reduce 
motion artifacts.  

3 
connected to the PowerLab system with two minutes rest 
intervals between trials. In order to perform 50% of 
MVC, firstly, the maximum recorded MVC was chosen, 
then, 50% of MVC was calculated using LabChart 7.3 
software4

                                                 
1ADInstruments Pty Ltd. Australia. 
2Ag/AgCl, F55, Skintact, Leonhard Lang GmbH, Austria.   
3ADInstruments Pty Ltd. Australia. 
4ADInstruments Pty Ltd. Australia. 

, which was installed on the computer, lastly, 

this value fed back to the subject visually on a monitor 
positioned in front of her. Visual feedback enabled the 
subject to maintain the requested percentage of MVC as 
constant as possible till exhaustion. However, after 
exhaustion, recording was continued for another one 
minute period to assess the recovery process. The surface 
EMG signals were recorded online. A computer was 
connected to the recording system via USB cable for the 
storage and display of signal. The raw signals were 
filtered through hardware lowpass and highpass filters 
with cut-off frequencies at 500Hz and 10Hz, respectively. 
A notch filter with center frequency at 50Hz was also 
used to reduce power line noise. The signals were made 
discrete using 16-bit analogue-to-digital (A/D) converter. 
Moreover, according to the mentioned frequency band, 
the sampling frequency was chosen at 2KHz. 
Furthermore, the sampling frequency and the recording 
process (start/stop and duration of adaptation and 
recovery stages and the percentage of MVC) were 
controlled through LabChart 7.3 software.  

 

 
Fig. 1: Bipolar surface electromyographic electrode placement over the 
biceps brachii muscle. 

 
2.3 Higher Order Specrtal Analysis 

Physiological signals are nonlinear and chaotic in 
nature and uncertainty and imprecision are the inherent 
characteristics of them. Higher order statistical based 
nonlinear dynamical techniques, which are based on the 
chaos theory, have the ability to detect nonlinearity, 
deviations from Gaussianity and the phase relationships 
between harmonic components [10].  

For a stationary, discrete, zero mean random process 
x(n), the higher order spectra (HOS) or polyspectra are 
defined based on moments or cumulants of order greater 
than two. The bispectrum is a particular form of HOS, 
which is defined as the two-dimensional Fourier 
transform of the third order cumulant [11,12]: 
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The cx
3(τ1,τ2) variable reveals the third order cumulant, 

which is defined as “Equation (2)”:  

( ) { })()()(, 21213 ττττ ++= nxnxnxEc x              (2) 

Where E[.] denotes the expectation operation. By 
setting n+ τ1=m, n+ τ2=k and substituting “Equation (3)” 
in “Equation (1)” and splitting the exponent, it can be 
shown that [10]: 

( ) { })()()(, 212121 ωωωωωω += ∗XXXEB        (3) 

As is evident, we can obviously state that the 
bispectrum measures the correlation among three 
frequencies, ω1, ω2, (ω1+ω2) and estimates the phase 
coupling [13]. The frequency f (ω/2π) may be normalized 
by sampling frequency to be between 0 and 1. Moreover, 
due to symmetry properties, knowledge of bispectrum in 
the triangular region ω2≥0, ω2≥ ω1, ω1+ω2≤π is sufficient 
to describe the rest. This region is shaded in Fig. 2 and 
labelled by 1 and ensures that there is no bispectral 
aliasing [10,13]. In contrast with the power spectrum 
which is real valued, non negative and a function of one 
frequency variable, the bispectrum is a function of two 
frequencies and complex valued, as a result, it has both 
magnitude and phase.  

 

 

Fig. 2: Symmetry regions of the bispectrum and non-redundant region 
which is shaded and labeled by 1. 

 
2.3.1 Higher Order Spectral Features 

a. Weighted Center of Bispectrum (WCOB) 
Although the bispectrum plots enable us to visually 

differentiate physiological or pathological states, it is not 
practical to use these plots for automatic pattern 
recognition by computers. Thus, several features are 
extracted from the centroid, moments or entropies of the 
distributions in [10]. In this study, we used WCOB 
feature set [10,14]. If the bispectrum of the point (x,y) is 
Bxy, then the WCOB(f1m,f2m) in the bi-frequency plane is 
given by: 
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Where x and y are the frequency bin index in the non-
redundant region (Ω), defined in Fig. 2. In addition, 
WCOB is a vector with two variables f1m and f2m, which 
can be used to indicate the different stages of muscle 
contraction as well as the fatigue phenomenon [14]. 

b. Higher Order Statistical Based Entropies  
Three bispectral and cumulant based entropies were 

derived to characterize the regularity or irregularity of 
sEMG signals during rest, fatiguing 50% MVC, 100% 
MVC and recovery. These features are similar to spectral 
entropy [15]. “Equations (5-9)”, show formulae for these 
entropies:  

- Normalized Bispectral Entropy (NBE) 

i
i

i ppNBE log∑−=                         (5) 
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- Normalized Bispectral Squared Entropy (NBSE) 

n
n
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The mentioned features are calculated within the 
region (1) defined in Fig. 2, which is equivalent to Ω in 
the above equations. In addition, the normalization 
ensures that the entropy is calculated for a parameter 
which lies between 0 and 1 (as required for probability). 
As a result, entropies NBE and NBSE are also in the 
same range.  

- Negentropy 
Negentropy, J, is based on the information- theoric 

quantity of differential entropy. Negentropy is zero for a 
Gaussian process, while it is always nonnegative for other 
distributions. So, it can be used to measure non- 
Gaussianity of signals. The classical and simple method 
for approximating negentropy is based on higher order 
moments. For a zero mean and unit variance random 
variable x, J is defined as follows: 

2
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Where E[.] is the expectation operation and skew(x) 
and kurt(x) are the zero- lag third order and forth order 
cumulants, respectively [7].  

3. Results 
In order to perform analyses, the raw EMG signals 

were made zero mean. In addition, to provide uniformity, 
the signals were normalized with respect to their standard 
deviation. The bispectrum was estimated using direct 
method as defined in “Equation (3)”, by using Higher 
Order Spectral Analysis (HOSA) toolbox [16]. This 
method is similar to the periodogram and is referred to as 
higher order periodogram [10]. Similarly, it requires the 
stationarity assumption. The majority of physiological 
signals are nonstationary in nature. However, it is 
generally accepted that sEMG signals recorded during 
rest and isometric contraction, can be considered 
stationary during a period of less than two seconds. Thus 
we chose two second period of our data to compute the 
bispectrum. Then, blocks of 256 samples corresponding 
to 128ms data with respect to the mentioned sampling 
frequency with 50% overlap were used to estimate the 
bispectrum. In this way, we could produce roughly 15 
realizations to perform averaging and to satisfy the 
required smoothness and frequency resolution for our 
estimation for each trial. Hamming window was used as 
the analysis window.  

Fig. 3(a)-(f) shows the contour maps of bispectrum 
magnitude at different stages (rest, start point of 50% 
MVC, mid point of 50% MVC, end point of 50% MVC, 

100% of MVC and recovery). According to the symmetry 
property of bispectrum, its values were evaluated only in 
the non-redundant region, indicated in Fig. 2. Examining 
the graphs, we can state that during MVCs the bispectrum 
maps became smaller compared to rest state. However, 
during fatigue (end point of 50% MVC), the distribution 
spread slightly, again. Obviously, the bispectrum of 
sEMG signals had visible differences at different trials.  

Moreover, the blocks of five seconds duration of data 
were chosen for each trial (rest, 50% MVC, 100% MVC, 
recovery) and four features were extracted from them to 
evaluate muscle contraction at various stages, which are 
also valuable to determine muscle fatigue. TABLE I, 
summarises the values of the parameters calculated at 
each stage. 

Fig. 4 demonstrates the variations of f1m and f2m-
coordinates of WCOB feature at different trials. As can 
be clearly seen, these two features had a similar trend. In 
addition, they reached their maximum value at rest. 
However, these values decreased dramatically during 
MVCs and increased gently during recovery period. 
While, f1m and f2m fell in mid point of 50% MVC stage, 
they rose slightly at the end point of 50% MVC, during 
which muscle fatigue (exhaustion) occurred. 
Furthermore, increasing MVC from 50% to 100% led to 
increase in f1m and f2m. Considering the graph, we can 
also state that the f1m varied more rapidly than f2m. This 
means that f1m was more sensitive to variations in muscle 
force and fatigue. 

 

 

Fig. 3: Bispectrum contour maps of sEMG signals recorded during rest (a), start point of 50% MVC (b), mid point of 50% MVC (c), end point of 
50% MVC (d), 100% of MVC (e) and recovery (f). 

(a) (b) (c) 

(d) (e) (f) 
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TABLE I: The Values of the Parameters Analyzed During 4 Trials.  

Features 
Trial 

f1m f2m J NBE NBSE 

Rest 22.93 14.75 0.004 0.82 0.43 

50
%

 
M

V
C

 Start 
Mid 
End 

7.80 4.17 0.027 0.58 0.37 
7.34 3.60 0.026 0.59 0.38 
8.75 3.86 0.019 0.58 0.41 

100% MVC 9.11 4.67 0.016 0.62 0.40 
Recovery 14.79 6.92 0.003 0.79 0.46 

 
Fig. 5 illustrates NBE and NBSE variations during 4 

trials. As is evident, entropies decreased with contraction 
compared to rest and recovery states, indicating less 
complexity of time series during MVCs. However, the 
changes were not significant during fatigue and during 
changes in MVC levels from 50% to 100%.  

 

 
Fig. 4: Variations of f1m (circle) and f2m (square) during rest, fatiguing 
50% MVC, 100% MVC and recovery periods. 

 
Fig. 6 represents the results of negentropy, which is a 

classical method of measuring non-Gaussianity. As is 
evident, the negentropy has its minimum value during 
rest and recovery periods, meaning that the signal is more 
Gaussian. However, it increases dramatically during two 
MVC trials (50% and 100%). Considering the results 
reported in TABLE I, we can state that the Gaussianity 
increases with force level, maybe due to the recruitment 
of extra motor units. This means that the sEMG is highly 
non-Gaussian during the start point of 50% MVC. 
Moreover, the increase (decrease) of Gaussianity 
(negentropy) during this trial determines that there is a 
decrease in muscle contraction, indicating muscle fatigue. 
In another words, when fatigue occurs, the negentropy 
falls.  

4. Discussion 
The present study investigated a nonlinear analysis 

method, named HOSA to evaluate muscle force and 
fatigue. The use of nonlinear dynamical techniques was 
motivated by the reason that the physiological signals are 

nonlinear and chaotic in nature. Neglecting these 
properties and using inappropriate methods for analyzing 
such as linear and power spectral methods, may lead to 
false or misleading results. Thus, higher order statistical 
methods in time and frequency domains were used to 
investigate possible relations between variations of 
sEMG distribution as well as complexity and irregularity 
and isometric contraction levels and muscle fatigue.  

Results obtained from weighted center of bispectrum 
analysis showed that this vector is sensitive to variations 
in muscle force and fatigue. The values of f1m and f2m 
were higher during rest and recovery states, while they 
decreased during MVCs. However, when fatigue 
occurred, these parameters increased slightly, again. In 
addition, the results achieved using Gaussianity test based 
on negentropy, showed that Gaussianity decreased during 
voluntary contractions (50% and 100% of MVC) 
compared to rest and recovery trials. However, it 
increased during fatigue, indicating the decrease in 
muscle contraction and change in motor unit recruitment. 
Our results were in agreement with Hussain et al. [6] 
achievements, whose study was on sEMG signals 
recorded from right rectus femoris muscle during 8-trial 
walk. In contrast, Nazarpour study group [7] reported that 
sEMG signal indicated non-Gaussian PDF during light 
contractions (below 30% of MVC) and it tended to a 
Gaussian process at higher force levels due to central 
limit theorem. This contradiction may be due to the 
positioning of the electrodes, which was investigated by 
Kaplanis et al. [8]. They found that higher order statistical 
based analysis methods are position dependant, or may be 
due to clinical variations (anatomical, instrumentation), 
which is studied by [5]. In addition, the variations in the 
experimental conditions and recording time, specially 
fatigue phenomenon can have decisive role [3]. On the 
other hand, NBE and NBSE features showed the reverse 
pattern with that of negentropy. These features showed 
that the complexity decreased during MVCs.  

 

 
Fig. 5: Variations of NBE (circle) and NBSE (square) during rest, 
fatiguing 50% MVC, 100% MVC and recovery periods. 
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Moreover, like [7] we also used negentropy concept to 
measure the non-Gaussianity of sEMG signals. Because 
the Gaussianity test based on bicoherence index can only 
be used to reject the Gaussianity null hypothesis. It means 
that if the bispectrum index is zero, the full Gaussianity 
of the process may not be inferred, since fourth or even 
higher order cumulants and polyspectra would not be 
necessarily zero. 

In addition to quantitative features, which were a great 
step forward in facilitating automatic machine learning 
for future studies, we also introduced potential visual aids 
for the diagnosis of fatigue and the level of force, which 
are fast and easy to use.      

 

 
Fig. 6: Variations of negentropy during rest, fatiguing 50% MVC, 100% 
MVC and recovery periods. 
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