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Abstract

The data collected in epidemiological or clinical studies are frequently clus-
tered. In such settings, appropriate variance adjustments must be made
in order to estimate the sufficient sample size correctly. This paper works
through the sample size calculations for clustered data. Importantly, our
explicit variance expressions also enable us to optimize the design with re-
spect to the number of clusters and number of subjects; the objective could
be either to maximize the power or to minimize the costs with given costs
on the clusters and on the individuals. In our approach, units on different
levels and treatment groups can have different costs, but the members of the
same cluster are assumed to belong to the same treatment group. Design
considerations in the health coaching project TERVA are used as motivat-
ing examples. R-functions for carrying out the presented computations are
provided.
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1. Introduction

This paper is motivated by the health coaching project (TERVA), which is
a clinical study aiming to demonstrate the impact of a health coach program
on the general mental and physical health, risk factor behavior modification
and ability to self-manage their conditions in participants with heart failure,
coronary heart disease or type 2 diabetes. Subjects are randomly allocated
to two groups, treatment or control, at a 2 : 1 ratio. By second stage random
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allocation, each subject in the treatment arm is subjected to a 12 months
intervention program supervised by a health coach, whereas the subjects in
the control arm are merely followed up for the same period of time. Because
the coaches may have different effects on the success of the intervention,
results of the subjects allocated to the same coach tend to be positively
correlated. One way to view this particular design is to see the coaches as
clusters, so that the treatment group consists of clusters of equal size, but
no clustering is present in the control group (or, in other words, the cluster
size is one). As the cost of the study depends not only on the total number
of subjects, but also on the number of coaches (clusters), it is also important
to consider design cost minimization strategies.

Analysis of clustered data has a central role in biomedical research, be-
cause the collected data often involves clustered units such as patients of the
same hospital, or siblings. For this reason, sample size and power calcula-
tions for clustered data has been an important field of research in applied
statistics until recently (Donner et al., 1981; Gangnon and Kosorok, 2004;
Heo and Leon, 2008, 2009; Hoover, 2002; Eldridge et al., 2001, 2006; Kerry
and Bland, 2001; Liu et al., 2002; Rotondi and Donner, 2009; Tu et al.,
2004). Previous work involves various type of responses, designs and models
of differing complexity (e.g. repeated measurements, cluster vs. individual
randomization, multilevel data) and even software (Bauer and Sterba, 2008;
Campbell et al., 2004; Hayes and Bennett, 1999; Lee and Thompson, 2005;
Roberts and Roberts, 2005; Rotondi and Donner, 2009).

Sample size and economical issues of cluster randomized trials have been
reviewed by Klar and Donner (2001) and Campbell et al. (2007). Economical
issues are indeed one the most fascinating issues in planning the collection of
clustered data. For instance, as excellently outlined by Flynn et al. (2002),
staff training, data collection costs, travel costs and management costs are
attributed differently to clusters and subjects within the clusters, or even
to different treatment groups. In a well planned trial those costs should be
minimized while the trial meets a chosen type I and II error rates (or size
and power). Alternatively, the trial may be given a fixed budget and the
trial should collect data efficiently, that is, with maximal power. Interest
towards this type of approach has been expressed under particular settings
(Headrick and Zumbo, 2005; Liu, 2003; McKinlay, 1994; Moerbeek, 2006;
Moerbeek and Wong, 2008; Raudenbush, 1997; Raudenbush and Liu, 2000),
but a general treatment seems to be missing from the literature.

The purpose of the present paper is three-fold. First, we outline how to
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compute sample size and power with an adjusted t-test for clustered data.
Explicit but general variance expressions are worked out. This allows for
allocation of treatments on the cluster or subject level, or even their mixtures.
Second, we demonstrate how to optimize designs either to minimize costs
or to maximize power, with respect to the number of clusters and subjects
within the clusters. In the optimization problem we assume that the members
of the same cluster also receive the same treatment. Importantly, however,
costs can be different from treatment group to another, both on the cluster
level and on the subject level. Third, we offer interested readers the option
to download R-functions for performing these calculations.

The paper is organized as follows. Section 2 introduces the notation and
the assumed model. Section 3 derives the limiting distributions of the test
statistic, which are then used in section 4 to derive sample size and power
formulae applicable for a variety clustered designs. Cost minimization and
power maximization are discussed in section 5. The paper ends with demon-
strations within the design of the TERVA project along with concluding
remarks.

2. Description of the model

Consider the comparison of two groups (control vs. treatment) with clus-
tered data without particular restrictions on the cluster structure yet. The
data set with n clusters will be denoted by

X = (X1, ..., Xn)

and observations within each cluster will be denoted by

Xi = (Xi1, ..., Ximi
), i = 1, ..., n

where mi is the number of observations in the ith cluster. To distinguish
between the groups, write Gij for treatment indicator taking values 0 or 1
depending on whether subject j in cluster i is in the control or treatment
group, respectively. Thus, the total number of subjects is N =

∑n

i=1mi, the
number of subjects in the treatment group is N1 =

∑n

i=1

∑mi

j=1Gij , and the
number of subjects in the control group is N0 =

∑n

i=1

∑mi

j=1(1−Gij).
Throughout the paper we use the following distributional assumptions.
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Assumption 1. (Distributional assumptions) The random variables Xij are
given by

Xij = µ+∆Gij + ǫij , i = 1, .., n; j = 1, ..., mi

where

E(ǫij) = 0, Var(ǫij) = σ2, and E(ǫν+2
ij ) < M for some ν > 0

and
Cov(ǫij , ǫij′) = ρσ2, for j 6= j′

and
ǫij and ǫi′j′ are independent for i 6= i′.

Here ρ denotes the intra-cluster correlation and σ2 denotes the variation
due to random error. Note the flexibility of the model: no normality of the
random errors is assumed, nor do we assume normality of random effects as
one would commonly do with mixed models. The assumptions are only on
the first and second moments of the univariate and bivariate distributions.
Also, the assumption that E(ǫν+2

ij ) is uniformly bounded for some ν > 0 is
needed for the asymptotics. This permits the application of the results to
follow to a variety of distributions.

3. Test statistic and limiting distribution

The interest is to test the null hypothesis H0 : ∆ = 0 vs. the alternative
hypothesis H1 : ∆ 6= 0. Write gij =

Gij

N1

− 1−Gij

N0

. The estimate of the
treatment effect, i.e difference of the means between the two groups, can
now be written as

∆̂ =

n∑

i=1

mi∑

j=1

gijXij

with E(∆̂) = ∆ and

Var(∆̂) =

n∑

i=1

mi∑

j=1

g2ijVar(Xij) +

n∑

i=1

mi∑

j=1

∑

j′ 6=j

gijgij′Cov(Xij, Xij′)

=

n∑

i=1

mi∑

j=1

g2ijσ
2 +

n∑

i=1

(
mi∑

j=1

gij

)2

ρσ2 −
n∑

i=1

mi∑

j=1

g2ijρσ
2

=
n∑

i=1

mi∑

j=1

g2ijσ
2 +

n∑

i=1



(

mi∑

j=1

gij

)2

−
mi∑

j=1

g2ij


 ρσ2.
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Here the first part of the variance demonstrates the variance not depending
on the design (cluster structure), and second part of the variance is the result
of clustering.

For the limiting distribution of ∆̂ we need the following assumption on
the design.

Assumption 2. (Design assumption I)
(i) mi ≤ m for some m.
(ii) There exists a constant λ, 0 < λ < 1 such that N1/N → λ.
(iii) There exist constants d0 and d1 such that

N
n∑

i=1

mi∑

j=1

g2ij → d0 and N
n∑

i=1



(

mi∑

j=1

gij

)2

−
mi∑

j=1

g2ij


→ d1.

Then we get the following.

Lemma 1. Under assumptions 1 and 2
√
N∆̂ →d N

(
∆, (d0 + ρd1)σ

2
)

as n → ∞.

Proof It is not a restriction to assume that µ = 0 and ∆ = 0. We use
Corollary 1.9.2.A in Serfling (1980). Write

Yi = n ·
mi∑

j=1

gijXij, i = 1, ..., n,

so that

∆̂ =
1

n

n∑

i=1

Yi.

The Yi’s are independent, E(Yi) = 0, and

V ar(Yi) = σ2
i = n2

[
(

mi∑

j=1

g2ij)(1− ρ)σ2 + (

mi∑

j=1

gij)
2ρσ2

]
.

Minkowski’s inequality and assumption 1 then gives

E
(
|Yi|2+ν

)
≤ n2+ν

(
mi∑

j=1

|gij|
)2+ν

M.
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As
∑

j |gij| ≤ mi/min(N0, N1),

n∑

i=1

E
(
|Yi|2+ν

)
=

(
n

min(N0, N1)

)2+ν

Nm1+ν .

As (N/n2)
∑

i σ
2
i → (d0 + ρd1)σ

2, we obtain that

∑n

i=1E (|Yi|2+ν)

(
∑n

i=1 σ
2
i )

2+ν
→ 0 as n → ∞

and the proof follows from Corollary 1.9.2.A in Serfling (1980).

Note that, under the null hypothesis H0 : ∆ = 0, the expected value
E(∆̂) = 0 and a consistent estimate of Var(∆̂) under the null hypothesis is

V̂ar(∆̂) =
n∑

i=1

(
mi∑

j=1

gij(Xij − X̄)

)2

.

where X̄ = 1
N

∑n

i=1

∑m

j=1Xij. This is because E(∆̂) = 0 and

Var(∆̂) = E(∆̂2) = E

(
n∑

i=1

mi∑

j=1

n∑

i′=1

mi′∑

j′=1

gijXijgi′j′Xi′j′

)

= E




n∑

i=1

(
mi∑

j=1

gij(Xij − µ)

)2



where µ = E(Xij). Thus

n∑

i=1

(
mi∑

j=1

gij(Xij − µ̂)

)2

is consistent to Var(∆̂) for any consistent estimate µ̂ of µ and X̄ is such an
estimate. The test statistic for testing the null hypothesis H0 : ∆ = 0 is
then the standardized treatment effect estimate

T =
∆̂√

V̂ar(∆̂)
.
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By Slutsky’s lemma, T →d N(0, 1) and T 2 →d χ
2
1 under the null hypothesis.

Consider next the limiting distribution under a sequence of alternatives
Hn : ∆ = ∆0√

N
. If X∗

ij = Xij + Gij
∆0√
N
, i = 1, ..., n; j = 1, ..., mi, and ∆̂∗ is

calculated from the X∗
ij observations, then

√
N∆̂∗ =

√
N∆̂ + ∆0,

and, using Lemma 1, the following result follows.

Theorem 1. Under assumptions 1 and 2 and under the sequence of alter-

native hypotheses Hn : ∆ = ∆0√
N
,

T 2 →d χ
2
1(δ

2) , where δ2 =
∆2

0/σ
2

d0 + ρd1
.

Remark 1. The estimate ∆̂ =
∑

i

∑
j gijXij above uses the weights gij =

Gij

N1

− 1−Gij

N0

. Note that the above results hold true for any weights gij which
are (i) positive for the treatment group and (ii) negative for the control group,
and (iii) the weights sum up to 1 for the treatment group, and (iv) sum up to
-1 for the control group. If the N × N covariance matrix of the observation
vector X , say V , were known, one could find the optimal weights using the
Lagrange multiplier technique. Let g be the N -vector of weights, and G the
N -vector of the treatment indicator. The problem is to minimize the variance
gTV g under the constraints gT1N = 0 and gTG = 1 (Lemponen et al.,
2011). If a random effects model with multivariate normality of X is used to
analyze the data, then the second row of the matrix (ZTV −1Z)−1ZTV −1X
with Z = (1N , G) gives ∆̂, and therefore the resulting (optimal) gT is the
second row of (ZTV −1Z)−1ZTV −1.

This general result in Theorem 1 can be applied to calculate sample sizes
under various clustering designs. So far the results have been applicable for
various clustered designs, but in the following we focus on the designs used
in our motivating TERVA project example. The assumptions then are as
follows.

Assumption 3. (Design assumption II) We assume that
(i) all members of the same cluster receive the same treatment,
(ii) the cluster sizes in the treatment group are all m1, and
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(iii) the cluster sizes in in the control group are all m0.
(iv) For the asymptotic results we also assume that

N1

N
→ λ ∈ (0, 1) as n → ∞.

Table 1: Design constants in a design under Assumption 3

.

Treatment Control Σ

Number of clusters n1 n0 n
Cluster size m1 m0

Number of subjects N1 N0 N

See Table 1 for the design constants to be optimized under Assumption 3.
As the cluster sizes are constant in both groups, it is clear that the optimal
weights for the estimate ∆̂ =

∑
i

∑
j gijXij are given by gij =

Gij

N1

− 1−Gij

N0

.
This then gives our estimate, the difference of the sample means, and we
have the following result.

Corollary 1. Under assumptions 1 and 3 and under the sequence of alter-
native hypotheses Hn : ∆ = ∆0√

N
,

T 2 →d χ
2
1(δ

2) , where δ2 =
∆2

0/σ
2

1−ρ

λ
+ m1ρ

λ
+ 1−ρ

1−λ
+ m0ρ

1−λ

.

This result can be applied to calculate sample size and power, and to optimize
the design.

In practice the cluster sizes may naturally vary for different reasons. One
solution could be to use the anticipated average cluster sizes for the treatment
and control groups as an approximation. Another possibility is to use the
correction methods as suggested by Candel and Van Breukelen (2009), Kerry
and Bland (2001) and van Breukelen et al. (2007) to adjust the sample size
for variation in cluster sizes.

4. Power and sample size

In the sample size calculations we assume the cluster structure which is
displayed in Table 1. We first define a constant δ2α,β, which depends on the
type I error rate α and the on power 1− β as follows.

8



Definition 1. Let δ2α,β be defined as the constant for which

P
{
χ2
1(δ

2
α,β) > χ2

1,1−α

}
= 1− β,

where χ2
1(δ

2
α,β) has a noncentral chi-square distribution with noncentrality

parameter δ2α,β and χ2
1,1−α is the (1 − α)-quantile of a (central) chi-square

distribution.

The design in Table 1 is fixed if we fix values of N1, n1, N0 and n0. We
wish to do that in an optimal way. Based on Corollary 1, the power of the
level α test for an alternative H1 : ∆ = ∆∗ is approximately 1− β if N1, n1,
N0 and n0 are chosen so that (approximately)

δ2(N1, n1, N0, n0) =
∆2

∗/σ
2

1−ρ

N1

+ ρ

n1

+ 1−ρ

N0

+ ρ

n0

= δ2α,β , (1)

or

1− ρ

N1

+
ρ

n1

+
1− ρ

N0

+
ρ

n0

= γα,β,

where

γα,β =
∆2

∗/σ
2

δ2α,β
.

Note that the (approximate) power

P
{
χ2
1(δ

2(N1, n1, N0, n0)) > χ2
1,1−α

}

depends on the model parameters through ∆∗/σ (effect size) and ρ (intra-
cluster correlation): see Figure 1 for an illustration of this dependence. Once
∆∗/σ and δ2α,β have been fixed, there is no unique solution in (N1, n1, N0, n0)
that fulfills the condition (1). The selection of the most suitable configu-
ration may be based on practical aspects of the study conduct, or on cost
minimization strategies when each unit—treatment cluster, treatment sub-
ject, control cluster and control subject—can be assigned a cost. Given a
total amount of costs available, one may also be interested in finding a com-
bination (N1, n1, N0, n0) with the power as high as possible.
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5. Cost minimization versus power maximization

A design minimizing the costs of study C, with given power 1 − β, can
be found by Lagrange’s method. A dual problem is the maximization of the
power 1− β given the total costs C. The costs are determined by

• C1 = the cost of a subject in the treatment group (C1 > 0),

• c1 = the cost of a treatment cluster (c1 > 0),

• C0 = the cost of a subject in the control group (C0 > 0), and

• c0 = the cost of a control cluster (c0 > 0).

On one hand, the total costs of the study are then given by

f(N1, n1, N0, n0) = C1N1 + c1n1 + C0N0 + c0n0.

On the other hand, the power of the study depends on (N1, n1, N0, n0) through
the variance expression

g(N1, n1, N0, n0) =
1− ρ

N1

+
ρ

n1

+
1− ρ

N0

+
ρ

n0

.

Next we consider two settings: the case when the design of the study can
be freely chosen, and the case where there are practical restrictions on the
cluster sizes.

5.1. No restrictions

We are confronted with the following two dual problems:

1. Minimize f(N1, n1, N0, n0) given g(N1, n1, N0, n0) = γα,β. The La-
grange objective function with this side condition is

f(N1, n1, N0, n0)− κ(g(N1, n1, N0, n0)− γα,β).

2. Minimize g(N1, n1, N0, n0) given f(N1, n1, N0, n0) = C. The Lagrange
objective function with this side condition is

g(N1, n1, N0, n0)− κ(f(N1, n1, N0, n0)− C).
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Here κ is the Lagrange multiplier. It is straightforward to see that, in both
cases the solution is of the form

N1 = d

√
1− ρ

C1

, n1 = d

√
ρ

c1
, N0 = d

√
1− ρ

C0

, and n0 = d

√
ρ

c0
.

In the cost minimization problem d is chosen so that g(N1, n1, N0, n0) = γα,β,
and in the power maximization problem so that f(N1, n1, N0, n0) = C.

5.2. Restrictions on cluster sizes

In practice the design often cannot be chosen optimally. It is common,
for example, that hospitals in a clinical study can only be expected to recruit
a certain number of subjects on average. Another example is the TERVA
project, where the control clusters are of size 1, and each coach cannot handle
too many subjects. The optimization problem with a fixed cluster size is
constrained by another two constraints:

1. Minimize f(N1, n1, N0, n0) given g(N1, n1, N0, n0) = γα,β, N1 = n1m1

andN0 = n0m0 withm0 andm1 fixed. The Lagrange objective function
with these side conditions is

f(N1, n1, N0, n0)−κ1(g(N1, n1, N0, n0)−γα,β)−κ2(N1−n1m1)−κ3(N0−n0m0).

2. Minimize g(N1, n1, N0, n0) given f(N1, n1, N0, n0) = C, N1 = n1m1 and
N0 = n0m0 with m0 and m1 fixed. The Lagrange objective function
with these side conditions is

g(N1, n1, N0, n0)−κ1(f(N1, n1, N0, n0)−C)−κ2(N1−n1m1)−κ3(N0−n0m0).

Here κ1, κ2 and κ3 are again the Lagrange multipliers. The solution is of the
form

N1 = d

√
1− ρ

C1 − κ2

, n1 = d

√
ρ

c1 + κ2m1

,

N0 = d

√
1− ρ

C0 − κ3

, and n0 = d

√
ρ

c0 + κ3m0

.

In the cost minimization problem d is chosen so that g(N1, n1, N0, n0) = γα,β,
and in the power maximization problem so that f(N1, n1, N0, n0) = C.
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6. Health coaching project TERVA

As a motivating example, we go through the cost optimization process in
the TERVA project. The target population in the TERVA study consists of
subjects who have one or more of three beforehand defined chronic conditions.
All subjects are randomized to either a health coaching group or a control
group at a 2 : 1 ratio. Subjects at the health coaching group are assigned to a
full time health coach. The subjects within the same coach can be correlated,
and should therefore be treated as clusters. This study is an example where
the treatment itself generates clusters. Thus, clustering is present only in the
health coaching group and therefore there are no cluster costs in the control
group. However, subjects in the control group can be treated as clusters of
size one (m0 = 1).

The Lagrange objective function to minimize the costs with fixed power
1− β simplifies in this case to

C1N1 + c1n1 + c0n0 − κ1

(
1− ρ

N1

+
ρ

n1

+
1

n0

− γα,β

)
− κ3(N0 − n0)

and the solution for maximizing power with fixed total costs C is given by
the objective function

1− ρ

N1

+
ρ

n1

+
1

n0

− κ1 (C1N1 + c1n1 + c0n0 − C)− κ3(N0 − n0).

In both cases the solution is

N1 = d

√
1− ρ

C1

, n1 = d

√
ρ

c1
, and n0 = d

√
1

c0 + κ3

,

where d is chosen so that

1− ρ

N1

+
ρ

n1

+
1

n0

= γα,β (the first case)

or so that
C1N1 + c1n1 + c0n0 = C (the second case).

Set, for example, costs in euro (say) to C1 = 200, c1 = 30 000, C0 = 0 and
c0 = 50 , α = 0.05, 1 − β = 0.8, effect size ∆∗/σ = 0.2, and intra-cluster
correlation ρ = 0.05. Coaches are very expensive compared to subjects, and
control subjects are cheaper than subjects under the coaching program. By
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Table 2: Costs (in Euros) and power when α = 0.05, effect size ∆∗/σ = 0.2, and intra-
cluster correlation ρ = 0.05.

N n1 m1 n0 m0 Costs Power

2 518 16 54 1 654 1 735 500 0.821
2 517 16 54 1 653 1 735 450 0.821
2 502 16 53 1 654 1 732 300 0.819
2 501 16 53 1 653 1 732 250 0.819

2 464 15 54 1 654 1 694 700 0.799
2 463 15 54 1 653 1 694 650 0.799
2 449 15 53 1 654 1 691 700 0.797
2 448 15 53 1 653 1 691 650 0.797

using the formulas above, the solution for minimum costs (696 658) for the
study can be achieved by taking 15.09 treatment clusters, 53.39 subjects per
treatment cluster and 1653.48 controls. Total sample size would be 2459.28.

Table 2 gives eight possible designs (nearest integer solutions) around
the cost minimum, and the researcher can choose his/her favorite. If we
would have chosen to apply the 1 : 1 ratio by using for example 20 treatment
clusters of size 38 and 760 controls, we would need only a total of 1 520
subjects to achieve power of 0.801. However, this design would have been
much more expensive: it would cost 790 000 due to the high cost of treatment
clusters. With the same amount of money we could achieve the power of
0.846 by implementing the power maximization strategy resulting in total
sample size of 2 894 (n1 = 17, m1 = 54, n0 = 1876). Compared to a design
where treatment and control subjects are allocated at 1:1 ratio, the optimal
allocation ratio either saves money, or gives more power.

Cost as a function of n1 and m1 is also illustrated in Figure 2.

7. Concluding remarks

This paper develops the necessary asymptotic theory for sample size and
power calculations for clustered data. Explicit variance formulae allow for
cost minimization (with a fixed power) and power maximization (with a given
budget). Ready-to-use R functions for statistical software R (R Development
Core Team, 2009) are available at
http://www.uta.fi/∼kari.tokola/optimize/
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for researchers interested in carrying out the design optimization. The opti-
mizing functions return a table with alternative applicable designs close to
the optimum.

Sometimes it could be of interest to estimate the sample size for nonpara-
metric tests. The calculations for nonparametric tests on clustered data can
be constructed by following the outlines provided in section 3 but by replac-
ing the original observations with score, such as sign or rank. The score has
impact on the noncentrality parameter. The sample size calculations for mul-
tivariate outcomes and/or other cluster setups could be developed as well.
More detailed examination of these issues is reserved for future research.
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Figure 1: Power as a function of ∆∗/σ and ρ. Design parameters are fixed at n1 = 10,
m1 = 100, n0 = 500, m0 = 1 to mimic the TERVA cluster design. The α-level is 0.05.
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Figure 2: Costs (in thousands) as a function of n1 and m1. The number of controls n0

is changing behind to guarantee a constant power of 0.8. Other parameters are set at
∆∗/σ = 0.2, ρ = 0.05, α = 0.05 and m0 = 1. The minimum is marked with the cross.
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