
International Journal on Information Technologies & Security, № 2, 2015 17

RULE-BASED MONITORS AND POLICY INVARIANTS

FOR GUARANTEEING MOBILE CODE SECURITY

Sanna Mäkelä, Sami Mäkelä, Ville Leppänen

University of Turku, Department of Information Technology, Finland

e-mails: samitu@utu.fi, sajuma@utu.fi, ville.leppanen@utu.fi

Abstract: We consider ensuring the security of executed mobile code by

applying runtime monitoring. Of the many approaches for code security,

the runtime monitoring approach is perhaps the most general and flexible.

We have formerly implemented a rule-based language for describing

runtime security policies, and now we discuss the verification of those

policies. A security policy can be considered as a specification that restricts

the execution of a program in some way. These restrictions can be

connected to the program state and the execution history. In this paper,

we introduce invariant expressions for our security monitor descriptions,

and describe a methodology for proving that the monitor preserves its

invariant. Our invariant expressions describe the true meaning of security

monitor and relate the monitor state to the execution history and current

state of the monitored program. The advantage of our approach is that we

can prove specific monitors to guarantee all monitored programs to

preserve such properties that cannot in general be effectively proved or

disproved of all possible executions of any program.

Key words: software security, runtime monitoring, policy invariants

1. INTRODUCTION

In this paper, we discuss the verification of a code runtime monitoring system,

and present invariants for describing the meaning of policies and the corresponding

monitors in a rule-based language. Monitoring code is one approach for verifying

code security. This approach is particularly applicable for mobile code, because the

access to the source code is unnecessary.

We consider mobile code as any program code that is downloaded for execution

from some (untrusted) source. The execution platform can be mobile phone but here

we do not consider any specific platform. In the literature (see e.g. [12, 2, 7]), there

appears to be three kinds of approaches for mobile code security: (a) providing a

proof of security properties along with the code, (b) establishing an authority for

mailto:samitu@utu.fi
mailto:sajuma@utu.fi

International Journal on Information Technologies & Security, № 2, 2015 18

certifying the safety of mobile code, and (c) running mobile code under some runtime

monitoring system in the target platform.

Proof-carrying code (PCC) [12] and Abstraction-carrying code [2, 7] follow the

approach (a). PCC can work well in certain limited settings, but in general there are

problems with PCC, since it is impossible to prove many kind of relevant runtime

properties concerning any program. This is due to so-called Rice’s theorem [15],

related to computability of partial functions, stating that there exists no effective

method for calculating any non-trivial property. This has strong consequences when

applied to static analysis of pro- grams, e.g. to proving properties concerning

programs. For example, it is not possible to effectively either prove or disprove for

all programs using functions A() and B() that in any execution of the program there

exists one call of B() between each two calls of A(). Naturally, it is possible to

analytically prove/disprove that for some programs but not for all programs. It is

not possible to effectively try all possible executions of any given program.

Although the PCC approach suffers from consequences of Rice’s theorem, it is not

clear how severe these consequences are in practice.

In the approach (b), the downloaded mobile code comes as cryptographically

signed by some trusted authority. The properties are thus guaranteed by the signing

authority. The mobile phone industry appears to have chosen approach (b) for

providing trusted mobile code, e.g. the Symbian operating system (of smartphones,

since version 9.0) [6, 10]. However, even a signed code can include errors and

weaknesses, since the code quality is at least partially based on human

inspections. Moreover, signing is mainly a guarantee of code quality, and quality

is not really related to what a consumer might consider allowed or disallowed.

For example, when a person borrows her/his mobile phone to another person, one

might temporarily wish to deny applications to use certain resources completely

or partially (i.e. applications should be run under some temporary security policy).

When a code runtime monitoring system (c) is used, the code behaviour is

controlled by a (security) monitor that is described by some (security) policy. A

security policy can be considered as a specification that restricts the execution of a

program in some way. These restrictions can be connected to the program state and

the execution history. Methods to express security policies that can be checked

during execution are previously studied extensively. We make a short overview of

such research in the following section.

A common way for describing and checking security policies is to utilize

languages based on the idea of using an automaton for comparing steps of program

executions to the current security policy. In a policy violation, an operation can, for

instance, be rejected, or the execution can be terminated.

We follow the approach (c). We have developed a monitoring language called

MPL (Modular Policy Language) [11]. MPL descriptions express simple automata

based monitors, where security sensitive calls captured. Because our language is

International Journal on Information Technologies & Security, № 2, 2015 19

intended for real-world applications, our monitors can maintain and take conditional

actions based on memory values, which represent (attribute, value) pairs describing

the state of the MPL monitor. As a result, we use the term rule instead of state

transition in our language.

In this paper, we focus on the use of invariants for expressing the meaning of

runtime monitors. Since we have not discovered other efforts to apply invariants in

this context, we suppose being first to operate with them.

We present policy invariant and monitor invariant for rule-based languages, and

demonstrate the use of these invariants by verifying a sample security policy. We

aim to show that it is relatively easy to write invariants for proving rule-base

monitors. While policy invariants specify policies, monitor invariants specify the

implementation of policies. We define monitor invariant as a formally specified

predicate that is true before and after applying any policy rule, and sufficiently

describes the duty of a policy for being able to expose all possible policy violations.

We aim to show that rule-based policies are not only easy to understand but also

provable. Proving is done by showing that all rules sustain the invariants. We make

a suggestion that the policy verification could be at least semi-automatic in well-

specified circumstances.

After reviewing related work in Section 2, we discuss invariant based security

policy verification in Section 3, and an example of using this methodology is given

in Section 4. The example is related to the usage of sockets (in mobile phone

context it can be related to WLAN usage). Some conclusions are drawn in Section

5.

2. RELATED RESEARCH

The standard implementation of Java contains a security manager, which

monitors the executed programs. Java’s solution is static in the sense that the

security manager’s functionality is statically embedded into a large method set of

certain library classes meaning that only the behaviour of those classes/methods can

be controlled by security manager descriptions. Recently, extending the

functionality of Java’s security manager in certain settings is considered in [16, 17].

Interestingly, the extension also deals with execution history based access control

but it does not consider invariants. The general possibilities and restrictions of

runtime monitoring in general are studied by Schneider in [13]. Sekar et al. [14]

have developed Model Carrying Code (MCC) and studied such automata based

descriptions applied e.g. to system calls in Unix.

We have previously described a modular policy language and a compiler for it in

[8, 11]. Our language enables describing rule-based security monitors, and the

descriptions are translated to AspectJ. Previously aspect-based security monitor

descriptions are studied and developed e.g. in the form of Polymer language [4], in

International Journal on Information Technologies & Security, № 2, 2015 20

the tracematch system [3] and Monitoring-Oriented Programming (MOP) [5]. Of

these systems, we choose to discuss Polymer and Tracematch, because they have

similar characters that we use in our system. Polymer is shortly described in Section

2.1 and Tracematch in Section 2.2. Besides the mentioned runtime monitoring

studied, there exist lots of other related studies.

2.1. Polymer

Polymer is described as "a language and system for enforcing centralized

security policies on untrusted Java applications" [4]. Polymer follows the idea to

separate the security policy from the main application. The separation is

implemented using aspects. The idea of Polymer is to ensure the security of a code

by modifying its behaviour at runtime. The modifying operations are based on Edit

Automata [9], and consist of sequence truncation, insertion of new actions, and

suppression of actions.

Specifying a security policy (i.e. a program monitor) in Polymer [4] requires (1)

the decision procedure how to react on security-sensitive operations (2) the security

state that can be used to sustain the information of the activity of the application

during execution, and (3) methods for updating the security state of the policy. The

decision procedure of Polymer returns one of a number of security suggestions

(e.g. raise an exception). The security state of Edit Automata represents the state

of policy automata. In Polymer policies, there can be found few parameters

describing the state of a procedure such as cancelling an action, and other parameters

describing other data values such as file names. These parameters can be considered

to construct the security state of Edit Automata.

Polymer has a formal semantics that mostly concentrates on guaranteeing type

safety. When a program is typed in the right way, its execution succeeds. The

Polymer semantics is not useful for verifying policies, since it is focused on the

features of the language. However, the semantics proves that a policy

implementation follows the given principles.

2.2. Tracematch

Aspects are actually only extra code around the observed code. They are

confined to the current action, and, therefore, cannot be used directly to observe the

history of computation. Tracematches [3] are history-based language features that

make it possible to trigger the execution of the observing code by specifying a

regular pattern of events in a computation trace. A tracematch defines a pattern and

a code block to be run when the current trace matches that pattern. The pattern

language consists of regular expressions over events. These expressions can contain

free variables.

Tracematch has a declarative semantics that can be used also for defining

policies. The semantics leads to a declarative implementation of monitors. The

International Journal on Information Technologies & Security, № 2, 2015 21

correctness of monitor implementations can be proven using operational semantics.

If a policy can be defined using regular expressions, Tracematch can be used to

monitor the policy. Other kinds of policies cannot be defined using Tracematch.

3. SECURITY VERIFICATION IN MODULAR POLICY LANGUAGE

When desired program behaviour is expressed as an invariant concerning the

remembered variable values, it is essentially straightforward to verify the policy and

its implementation. For discussing security verification in our rule-based language,

we first present types and functions for demonstrating program execution process in

Section 3.1. In Section 3.2, we shortly introduce policy invariant for specifying a

security policy. Rule-based monitors for implementing policies are discussed in

Section 3.3. A monitor invariant specifies the implementation of a policy (i.e.

monitor). It associates the history data related to the program execution to the values

of monitor variables. Monitor invariant is presented in Section 3.4. Finally, we study

proving of policies to preserve their invariants in Section 3.5. The aim of our

presentation is to demonstrate that invariants can rather easily be proved to

guarantee the secure execution of a code in the context of such rule-based policies

as MPL policies.

3.1. Program Execution

To describe our ideas, we do not have to describe all details of program

execution. It is enough to consider security related operations. These operations

are assumed to have pre- and post-conditions that describe their behaviour. The

pre- and post-conditions are defined using security related program state or

security related program history. Other operations are assumed to have no effect to

security related program state.

Before discussing security policies and our monitoring system, we present the

applicable types and functions needed for demonstrating the execution process in an

appropriate way. Let us first examine types presented Figure 1. Here, we consider

that program state represents the current data in the memory of the program under

execution, and the next call to be executed. A call includes the object, for which the

method call is targeted, and the called method with its arguments because of object-

oriented programming. While a call event consist of the next call to be executed and

the program state before an execution step, the return event consists of the executed

call, return value, and program execution state after the step.

call = method × target object × arguments

call event = program state × call

return event = program state × call × return value

 Figure 1. Types

International Journal on Information Technologies & Security, № 2, 2015 22

In each program state, the current call event is received using the function get

call. The concerned call can be the executed using the function perform call that

takes the call event as an argument, and retrieves a return event. We can evaluate

the effects of performing a call by using the functions precondition and

postcondition. If the precondition is true just before a call is performed, the post-

condition exposes the effects of the call. Note that if a security related operation

calls other security related operations that are not separately monitored, their effect

must be included in the pre- and post-condition of the operation that calls them.

Lastly, in pre- and post-conditions, we apply the concept of history. This concept

represents the monitored matters that take place in the execution environment but are

not stored in the program state.

get call : program state → call event

perform call : call event → return event

precondition : call event × history → Boolean

postcondition : call event × (initial) history state×

 return event × history (end) state → boolean

3.2. Security Policy and Policy Invariant

When a program is executed, we may have a need to watch over its behaviour.

A security policy can be considered as a specification that restricts the execution of

a program in a desired way. These restrictions can be connected to the program state

and the execution history, and we may want to apply different policies based on e.g.

program type, authors, and users.

An invariant is a formally specified predicate that is true before and after any

operation. We present policy invariant that can be used to specify a security

policy. This function describes the meaning of a policy in terms of the state and

execution history of a program (Section 3.1). It is true before and after any executed

method call.

policy invariant : program state × history → boolean

For instance, assume that we provide an account interface to a program that

was loaded from the Internet. We want to guarantee that the balance on a certain

account is always greater or equal than zero. The number of the account is 111-

888. Here, we can specify the policy invariant by utilizing an abstract function

balance that returns the balance of the account number that is given as an argument:

policy invariant : I(s, hs) = balance(hs, ”111 − 888”) ≥ 0

An effort to break a policy invariant is the same as a policy violation. Halting

the program in such a situation guarantees that the invariant does not become

invalid.

International Journal on Information Technologies & Security, № 2, 2015 23

3.3. Rule-Based Monitors

The idea of monitoring code is to guarantee that the execution complies with the

policy specifications. It can be thought that a security monitor is developed to

enforce a policy invariant in monitored programs. It simply captures the given

security sensitive method calls (dealing with monitored system resources), and

checks the validity of each captured call before applying the call. If a call is

estimated to be not secure, execution can be e.g. halted or an exception thrown. An

underlying idea is to describe rules for defining a security monitor corresponding to

the policy. In our framework, the rules are first written by using Modular Policy

Language (MPL) descriptions [8, 11], then compiled to (AspectJ) aspects, and

executed within the code.

Security policies are implemented by specifying corresponding runtime monitors

for guarding the usage of certain specified system resources. A policy is used to

express execution restrictions for every method that deals with some monitored

system resource, e.g. the usage of socket connections. A rule-based monitor is used to

implement the policy. In practice, monitors define a set of variables and a set of

guarded rules. The purpose of each guarding rule is to guard a system resource

against illegal usage by the application.

A guarded rule names a target method call and a condition that is a Boolean

valued expression referring to the actual parameter values of the call and variable

values remembered by the program and monitor. For presenting our monitoring

algorithm, we use types and functions shown in Figure 1, and additionally specify

function’s condition and effects. Monitor state type consists of the variable values

of a monitor. The variables are required to maintain information about the matters

that are not necessarily recorded into the state of the program but are considered in

the policy. In other words, monitor state corresponds to the concept of history

discussed in Sections 3.1 and 3.2.

Before executing a guarded method call, the condition of that method call is

checked. If a call is estimated to be secure in the given circumstances, the condition

returns true. In this case, there is no policy violation), and the rule can have some

effects on the variable values of the monitor after the guarded method call is executed.

Function effects updates monitor state to be analogous to the execution history. An

effect is simply a conditional update operation regarding some set of variables (and

their remembered values). In the other case, the condition returns false, and the

execution of the whole application is prevented from continuing (as it does not

respect the policy).

condition: monitor state × call event → Boolean

effects: monitor state × return event → monitor state

International Journal on Information Technologies & Security, № 2, 2015 24

A monitoring algorithm is basically an infinite loop that receives a guarded

call, checks a condition related to it, performs the call, and implements the

effects on the monitor variables. The monitoring algorithm can be described as

follows:

program state s = initial state;

monitor state ms = initial monitor state;

while true :

 call event c = get call(s);

 if not condition(ms, c) then halt;

 return event r = perform call(c);

 ms = effects(ms, r);

 s = r.state;

Monitor descriptions in MPL contain the criterion (i.e. the class of objects, the

method) based on which the determined method calls are captured. Further, rules

contain the parts cond and effects for decision making and updating information.

An example of a monitor for the sample policy invariant presented in Section 3.2 is

shown in Figure 2. Here, the account management takes place through Connection

object, which provides only a limited number of operations for the client. For

instance, the account number is not available through this class, and it must,

therefore, be contained in monitor variables.

variables

 accountTable: Connection → String

rules

Connection: boolean pay(double sum)

 cond this.getAccountBalance() ≥ sum ∨ ¬accountTable(this).equals(”111−888”)

 effects none

Account: Connection setCurrentConnection(String ac, String pwd)

 cond ac ≠ null ∧ pwd ≠ null

 ef f ects (this.checkP assword(ac, pwd) ∧ accountT able(result) = ac)

 ∨(¬this.checkP assword(ac, pwd) ∧ result = null)

Figure 2: An Account Balance Monitor

Implicitly all methods not specified by rules have true as their condition and they

have no effects (onto the variable values remembered by the monitor). Notice that

the conditional update operation can be used e.g. to collect information related to only

certain calls of the monitored method (for other calls the effect is ’empty’).

International Journal on Information Technologies & Security, № 2, 2015 25

AspectJ allows one to capture actual call parameters and return values, and MPL

has the same possibility. MPL references the current object of a captured call by this.

A constructor, as a target, is identified with the name new. For updating

remembered values, the calculation of a new value can be based on side-effect

free method calls to any objects known by the policy. Side-effects are not allowed,

since the monitor must not influence the state of the monitored program.

Observe that multiple rules can deal with the same guarded method call: The

actual situation must satisfy all the guards. The checking order of guards is not

important, since evaluation of truth in conditions is required to be side-effect free.

The same does not hold for effects: The effects (their possible condition and the

expression defining a value) are evaluated in the order they are defined, and a

remembered variable is given a new value before the next (if any) effect is

evaluated. Another possibility would be to evaluate all effect expressions at the

same time (before updating any variable value) and denying any two updates to deal

with the same variable.

3.4. Monitor Invariant

To express the relation between the policy invariant and the monitor variables,

we present a monitor invariant so that it associates the history data related to the

program execution (Section 3.1) to the monitor state (Section 3.3), and sufficiently

describes the duty of a monitor for being able to expose all possible policy

violations. A monitor invariant is true before and after applying any rule. Whereas

the policy invariant (Section 3.2) specifies a policy, the monitor invariant specifies

the policy implementation. In other words, a monitor invariant determines what

monitor variables actually represent. E.g. a monitor invariant could determine the

limits for values of the monitor variables, relations between these variables, and the

effect of some program events on these variables with respect to the program

execution history.

monitor invariant: history × monitor state → boolean

Meaningful monitor invariant expressions assign a meaning for the remembered

monitor variable values in terms of the program execution history. Forming such an

expression is challenging, since we must develop an appropriate function for relating

the relevant execution history concepts to the policy specification. Moreover, proving

such invariant conditions involves evaluating the effect of captured method calls on

the actual execution environment (and the execution history of the monitored

program). Thus, proving that a rule preserves an invariant condition reduces to

matching the caused effects (changes of stored variable values) with respect to the

actual effects on the actual execution environment by the guarded method call.

International Journal on Information Technologies & Security, № 2, 2015 26

As an example, we specify an invariant for the monitor shown in Figure 2. Our

invariant must comply with the policy invariant presented in Section 3.2. In

addition, it must connect monitor state to execution history (i.e. connection history).

monitor invariant :

∀ conn : connectionhistory.getAccountN umber(conn) = accountT able(conn)

 ∧ (accountT able(conn) ≠ (”111 − 888”) ∨ conn.getAccountBalance() ≥ 0)

In MPL, applying a rule has two different parts. Whereas the condition of a

rule uses the monitor values for checking if the execution of the method call in the

given situation is trying to break the invariant, the effects part updates the monitor

variables to correctly reflect the state of the actual program execution. Verifying a

policy means that based on the effects part and the target method specification, it is

checked if any resulting state would or would not comply with the invariant, and

based on the condition part, it is checked that all invariant breaking efforts are halted

but the other calls are allowed. The example presented in the Section 4 is purported

to clarify the matter.

3.5. Method of Proving

Next we discuss the method of proving policy specifications and

implementations. For proving that the monitor indeed forces the monitored

program to comply with the behaviour, it is enough to prove that the rules preserve

the invariant condition (and the monitor is correctly formed from the policy

description). The setting is identical to having the invariant as rule’s pre- and

post-conditions, and then proving that a set of conditional assignment statements

preserve the invariant condition. If the evaluated expressions (in guarding

conditions as well as in the right hand side of assignments) are side-effect free and

have a well-defined formal semantics, one is able to use a theorem prover.

For reasoning, we use types and symbols presented in Figures 1 and 3, and

functions presented in Sections 3.1, 3.2, 3.3, and 3.4. Assuming that we have some

general program monitoring algorithm (applying MPL policies), provably correct

policy enforcement can be implemented using the following phases:

P1: A policy invariant is designed to define the policy that will be enforced.

P2: A corresponding monitor is implemented.

P3: A monitor invariant is developed to relate the policy invariant and the

monitor state.

P4: Pre- and post-conditions for the operations in the monitoring algorithm are

proven correct.

For proving that invariants are valid, we must treat the pre- and post-

conditions of monitored calls as axioms used by rules, find every possible policy

state (i.e. values of variables) by applying the rules together with these axioms in

International Journal on Information Technologies & Security, № 2, 2015 27

all situations in which a method call can be executed, and, finally, check the

resulting states of the policy against the invariants.

policy invariant I;

monitor invariant I′;

program state s;

monitor state ms;

history state hs = initial history state;

history state hs′ = history end state;

call event c;

return event r;

Figure 3: Symbols for the pre- and post-conditions and the algorithm.

When the monitor is executing some program code, there are relevant and

irrelevant calls depending on the security policy. The relevant calls are caught by

using the function get call. Before we get a call, the invariant must hold. The

function get call does not change anything, but it returns us a call event that consists

of the current state of the program and the call that should be executed next. Naturally

the invariant must also hold after applying get call. Thus, we have a proof obligation

P O1:

{ I(s, hs) } c = get call(s); { I(c.state, hs) }

Basically this means that non-security related functions do not change the

program state in a way that has effects security. Also the unrelated calls do not

change the history state that records the security related operations.

When a security related call is caught by get call, we must check the pre- and

post-conditions related to the call. The function condition checks that the

precondition of the current call c in the current state is true, and that the invariant

still holds after the call is executed. The former requirement must be satisfied,

because otherwise the behaviour of the method is unspecified, and we do not know if

the invariant is going to be broken. The latter evaluation is done based on the post-

condition of the method call. The function condition does not change the program

state or the policy state, but if it is not true, the program execution is halted. Thus,

we have a proof obligation P O2 for each call c:

{ I(c.state, hs) ∧ I′(hs, ms) }

b = condition(ms, c);

{ b ⇒ (precondition(c, hs) ∧ (∀ hs′, r.postcondition(c, hs, r, hs′) ⇒ I(r.state, hs′))) }

When the function condition returns true, the call is executed by using the

function perform call. Generally, perform call changes the program history and the

program state as defined in the post-condition. Thus, we have a proof obligation PO3
for each c:

International Journal on Information Technologies & Security, № 2, 2015 28

{ precondition(c, hs) }

r = perform call(c);

{ ∃ hs′.postcondition(c, hs, r, hs′) }

After the method call is performed, the function ‘effects’ changes the state of the

monitor to be consistent with the history state. Thus, we have a proof obligation PO4
for each c:

{ I(r.state, hs′) ∧ I(c.state, hs) ∧ I′(hs, ms) ∧ postcondition(c, hs, r, hs′) }

ms = effects(ms, r);

{ I′(hs′, ms) }

Since ‘get call’ and ‘perform call’ can have access on the program state but not

the monitor state, their pre- and post-conditions do not refer to the monitor

invariant. On the other hand, the pre- and post-conditions of functions ‘condition’

and ‘effects’ know both of the invariants. However, if we have precisely specified

method calls, proving a policy is quite simple. We know that function ‘get call’

preserves the invariant in any case, and ‘perform call’ preserves that because of the

post-condition of ‘condition’. Therefore, we only need to check the post-conditions

of ‘condition’ and ‘effects’ in practice.

Based on the above analysis, there are proof obligations PO1 - PO4 that must

be checked for the verification of policies. The proof obligations are conditions on

the pre- and post-conditions for the parts of rules (i.e. for each condition, perform

call, and effect), and for stepping to the next call in the system. Finally, the actual

monitoring algorithm is shown in Figure 4 with a proof of correctness. If all of the

conditions are true, the monitoring algorithm works in the right way and the

invariants are not broken. The proof obligations naturally follow from the algorithm.

4. AN EXAMPLE: SPECIFICATION AND USE OF

INVARIANTS

In this section, we consider proving the correctness of the example policy

shown in Figure 5. The monitor guards a low-level system resource, socket

streams. Considering the presented policy enforcement phases P1 – P4, we need

to specify the policy invariant (P1) and the monitor invariant (P3) for the

example policy (P2). The invariant specifications are shown in Section 4.1. We

present the description of the execution environment referred by these invariants and

the specification of monitored method calls in Section 4.2. Finally, we show an

example of proving the proof obligations PO1, . . ., PO4 in Section 4.3. For PO2, .

. ., PO4, we study only the most complex rule related to the call of method

OutputStreamWriter.write (String s, int off, int len) in the context of sockets.

program state s = initial state;
monitor state ms = initial monitor state;

International Journal on Information Technologies & Security, № 2, 2015 29

while true:

{ I(s, hs) ∧ I′(hs, ms) } // The same as the loop invariant.
c = get call(s); // Get a call event.
// By definition, the invariant is not broken and the program
state // is not changed.

{ I(c.state, hs) }
if not condition(ms, c) then halt;
// If condition is true, it also implies that the precondition of the
// method call is true.

{ I(c.state, hs) ∧ precondition(c, hs)∧

(∀hs′, r.postcondition(c, hs, r, hs′) ⇒ I(r.state, hs′)) }

r = perform call(c);

{ ∃hs′.I(r.state, hs′) ∧ postcondition(c, hs, r, hs′) }
// Effect updates the monitor state so that all the needed
// information is stored.
ms = effects(ms, r);

{ I′(hs′, ms) }

// After the call has been performed, the history state is changed.

hs = hs′;
s = r.state;
// The invariant holds at the end of the loop.

{ I(s, hs) ∧ I′(hs, ms) }

Figure 4: Monitoring algorithm, with the proof of correctness.

4.1. Invariants for the sample policy in Figure 5

For the specification of invariants, we benefit a couple of sets that represent

history data. First of them contains the streams that have been opened for a socket

connection in the history state. The second one, wrap, represents the pairs of

objects about which the first one is the wrapper of the second one (in the history

state). This means that the functionality of the first object is directly or indirectly

based on that of the second object. The third set, writes, contains stream-integer

pairs in which integer represents the number of bytes that have been sent in the

history state. The last one, hasType, contains object-type pairs that are, in some

reason, wanted to be remembered in the history state.

We further assume that oS and oSW are of type OutputStream and

OutputStreamWriter. The policy invariant determines that at most a limited

number (i.e. limit) of bytes can be written into sockets during the execution of a

program.

The policy invariant is trivial – it is based on the execution history described in

Section 4.2. The first 6 conditions in the monitor invariant are related to the

tracking information. The 7th condition is the true purpose of the policy whereas the

International Journal on Information Technologies & Security, № 2, 2015 30

8th condition sets up a connection between the execution history hs and the variable

bytes.

4.2. Description of the environment and monitored operations

In the following, we give a short description of the execution history referred

in Figure 5 and pre- and post-conditions of monitored methods in which the effect of

the methods on history (interests) is considered. A notation is needed for the

compact presentation of the operations that change the state of history.

History state consists of several fields from set F. As usual, we denote hs.f for

the value of a field f in state hs. We denote hs.f ← x for a history state that is the

hs, for setting a field, that is

hs′ = hs.f ← x ≡ ∀f ′ ∈ F.f ′ = f ⇒ hs′.f = x ∧ f ≠ f ′ ⇒ hs′.f = hs.f

policy invariant

∑numberOf Bytes(hs, oS) ≤ limit for oS∈hs.f orsocket where limit is a constant value.

monitor invariant

(¬(∃oS : oS ∈ hs.f orsocket ∧ oS ∈/ oSs)) ∧

(¬(∃oS : oS ∈/ hs.f orsocket ∧ oS ∈ oSs)) ∧

(¬(∃oSW, oS : (oSW, oS) ∈ hs.wrap ∧ oS ∈ oSs ∧oSW ∈/ oSW s)) ∧

(¬(∃oSW, oS : (oSW, oS) ∈ hs.wrap ∧ oS ∈/ oSs ∧oSW ∈ oSW s)) ∧

(0 ≤ bytes ≤ limit, where limit is the same as limit in the policy invariant) ∧

(bytes = ∑ numberOf Bytes(hs, oS) for oS∈hs.f orsocket)
variables

limit : int = 10000;

bytes : int = 0;

oSs : setof OutputStream = {};

oSW s : setof OutputStreamW riter = {};

rules

Socket : OutputStream getOutputStream()

 cond none ef f ects oSs = oSs + result;

OutputStreamW riter :

OutputStreamW riter new(OutputStream oS)

cond oS ≠ null effects if (oS ∈ oSs) oSW s = oSW s + result;

OutputStreamW riter :

void write(String s, int of f, int len)

cond (¬(this ∈ oSW s) ∨ (bytes + len > limit) ∧(s ≠ null ∧ len <= s.length() – off ∧ 0 ≤

off < s.length()))

effects if ((this ∈ oSW s) ∧ (len > 0))bytes = bytes + len;

Figure 5: A Socket Writing Monitor.

International Journal on Information Technologies & Security, № 2, 2015 31

First, the following operations are related to the history of security related

operations:
addSocketStream(hs, oS) = hs.f orSocket ← hs.f orSocket ∪ {oS}

addWrapping(hs, wrapper, wrapped) = hs.wrap ← hs.wrap ∪ {(wrapper, wrapped)}

addObject(hs, object, type) = hs.hasT ype ← hs.hasT ype ∪ {(object, type)}

numberOf Bytes(hs, stream) = max{n|(s, n) ∈ hs.writes ∧ s = stream}

write(hs, stream, num) = hs.writes ← hs.writes ∪ {(stream, num + nOf Bytes(hs, stream)}

type(hs, o) = {o|(o, t) ∈ hs.hasT ype ∧ t = type}

The first operation describes adding a new socket stream to the history. The

second adds wrapping information to the history, and the third stores objects with

their types to the history. nOfBytes returns the number of bytes written to a stream.

The write operation represents the number of bytes written to the stream in one

time. Lastly, type returns the set of objects with the given type.

Next, we present the monitored operations with their pre- and post-conditions.

Notice how the machine OutputStreamWriter defines the post-condition of write in

terms of the execution history (the precondition of write is slightly different than that

of the actual Java class):

{true}

 oS = Socket getOutputStream()

{hs = addObject(addSocketStream(hs0, oS), oS, OutputStream)}

{out ≠ null}

 oSw = new OutputStreamW riter(out)

{hs = addObject(addW rapping(hs0, oSw, oS), oS, OutputStreamW riter)}

{s ≠ null ∧ len ≤ s.length() − off ∧ 0 ≤ off < s.length()∧

 ∃oS ∈ type(hs0, OutputStream) : hs0.wraps(oSw, oS)}

 oSw.write(s, off, len)

{(len > 0 ⇒ hs = write(hs0, oS, len)) ∧ (len ≤ 0 ⇒ hs = hs0)}

4.3. Proving a rule

In this section, we give an example how to use invariants to prove our sample

policy. The invariant of this policy is valid when limit − n bytes have been sent via

socket connections, where 0 ≤ n ≤ limit. Proving of a rule is based on the method

presented in Section 3.5. Although we limit our detailed observation here only to one

rule that is essentially related to the policy, it would be easy to check the other rules

International Journal on Information Technologies & Security, № 2, 2015 32

similarly. Moreover, if we try to achieve the policy enforcement, it is easy to see that

all output stream writers for socket connections are really in oSWs, and that other

kind of connections are not in oSWs. We first catch the output stream oS for a socket

connection. oS ∈ oSs after operation Socket.getOutputStream(). Next, when we call

the constructor OutputStreamWriter(oS), wraps(oSW, oS), and oS ∈ oSs. Thus

oSW ∈ oSWs. Since (oSW ∈ oSWs ∧ wraps (oSW, oS)) ⇒ (oS ∈ oSs), In the other

cases, (oSW ∈/ oSWs) and the writing operation is never halted.

Next, we give an example how to prove the rule guarding the method

OutputStreamWriter.write(String s, int off, int len).

We use the following shorthand notations.

ms = monitor state

ms.bytes = limit − n

args = (s, of f, len)

cmd = (OutputStreamWriter.write, this, args)

PO1: get call(state)

{ I(st, hs) }

 c = get call(st) = (state, cmd)

{ I(c.state, hs) }

The invariant holds, because the function get call does not execute any methods

that could break the invariant. It is presumed that the precondition is true.

PO3: perform call(call event)

{ precondition(c, hs) }

 r = perform call(c);

{ ∃ hs′.postcondition(c, hs, r, hs′) }

The invariant holds, since the pre-condition and post-condition are checked by

the condition before the method call is performed. It is presumed that the method

complies with its specification. The function perform call may change the program

state and the execution history.

P O2: condition(monitor state, call event):

{ I(c.state, hs) ∧ I′(hs, ms) }

 b = condition(ms, c);

{b ⇒ (precondition(c, hs) ∧ (∀hs′, r.postcondition(c, hs, r, hs′) ⇒ I(r.state, hs′)))}

condition :

(this ∈/ ms.oSW s ∨ ms.bytes + c.args.len ≤ limit)

International Journal on Information Technologies & Security, № 2, 2015 33

∧ c.args.s ≠ null

∧ c.args.len ≤ c.args.s.length() − c.args.off

∧ 0 ≤ c.args.off < c.args.s.length())

We need to consider the following cases:

1. this ∈ ms.oSW s ∧ limit ≥ ms.bytes + c.args.len

2. this ∈/ ms.oSWs

3. Otherwise, condition returns false and the program is halted in every case.

Notice that from the monitor invariant, it follows that this ∈ ms.oSW s ⇔ oS ∈

hs.forsocket.

The precondition of the method is given below. The condition needs to verify

that the precondition is satisfied, because otherwise the behaviour of the method is

unspecified. For cases 1) and 2) we have as the method precondition:

{c.args.s ≠ null ∧ c.args.len ≤ c.args.s.length()

−c.args.off ∧ 0 ≤ c.args.off < c.args.s.length()∧

∃ oS ∈ type(hs, OutputStream) : hs.wraps(this, oS)}

The postcondition of the method is

{(c.args.len > 0 ⇒ hs = write(hs, oS, c.args.len)) ∧ (c.args.len ≤ 0 ⇒ hs′ = hs)}

We need to verify that the invariant is satisfied with this post-condition.

1. When c.args.len ≥ 0, the history is changed only for oS and

for oS∈hs.forsocket ∑numberOf Bytes(hs, oS) = ms.bytes

thus we get

for oS∈hs’.forsocket ∑ numberOf Bytes(hs’ , oS) = ms.bytes + c.args.len

which was checked to be less or equal than limit. Otherwise hs′ = hs (no bytes

written).

2. When oS ∈/ hs.f orsocket,

for oS∈hs’.forsocket ∑numberOf Bytes(hs’, oS) = ms.bytes.

The invariants hold, since the function condition does not change anything. If

performing the guarded method call could not break the invariant, the function

returns true. In the other case, it returns false, which causes halting the execution of

the program.

P O4: effects(monitor state, return event):

{I(r.state,hs′) ∧ I(c.state, hs) ∧ I′(hs, ms) ∧ postcondition(c, hs, r, hs′)}

// that is the precondition holds

International Journal on Information Technologies & Security, № 2, 2015 34

ms′ = effects(ms, r);

{ I′(hs′, ms′) }

effects :

if ((this ∈ ms.oSW s) ∧ (c.args.len > 0))ms.bytes = ms.bytes + c.args.len;

1. If c.args.len < 0, then ms′ = ms as in case 2).

ms′.bytes = ms.bytes + len

= ∑ numberOfBytes(hs, oS) + c.args.len

= ∑ numberOfBytes(hs’, oS).

The last equality holds because of the post-condition.

2. Because oS ∈/ hs.f orsocket, ms′ = ms,

ms′.bytes = ms.bytes

= ∑ numberOfBytes(hs, oS) + c.args.len

= ∑ numberOfBytes(hs’, oS).

In both of the cases, the monitor invariant holds. The function ‘effects’ updates

only the monitor variables to be consistent with the policy related history data. The

policy invariant trivially holds.

In this section, we have proved that a rule preserves the policy invariant and the

monitor invariant. When we know that all rules preserve the invariant, we can say

that the monitor enforces the policy. However, since we know that all output stream

writers for socket connections are really in oSWs and that other kind of connections

are not in oSWs, we can easily conclude that our rules preserve the invariants.

5. CONCLUSIONS

We have demonstrated using invariants for proving security policies and made an

effort to show that invariant based proving with rule-based monitoring languages is

relatively easy. We have presented the policy invariant for the policy specification

and the monitor invariant for the policy implementation. Both of these invariants are

formally specified. The policy invariant is a predicate that expresses the meaning of a

policy in terms of the state and execution history of a program. It is true before

and after any executed method call. The monitor invariant is a predicate that

associates the history data related to the program execution to the monitor

variables, and is true before and after applying any policy rule.

Since the policy related execution history is stored in the monitor variables,

the policy and monitor invariants can be used when proving that the monitor is

really enforcing the policy. A four phase policy enforcement method was given and

analysed. As a practical case, we showed how the presented proof obligations PO1
– PO4 can be verified in practice.

International Journal on Information Technologies & Security, № 2, 2015 35

One possible area of future work is using theorem provers to prove correctness

of monitors. To accomplish this, the security related procedures and the policy and

monitor invariants have to be specified formally in a language that is understood

by some theorem prover. Then the proof obligations can be verified by the prover.

This can be used as a lightweight approach for proving certain kind of security

properties of programs.

REFERENCES

[1] Abrial, J.-R. The B-Book, Assigning Programs to Meanings. Cambridge

University Press, 1996.

[2] Albert, E. et al. Abstraction-Carrying Code: a Model for Mobile Code Safety.

New Generation Computing, vol. 26, pp.171-204, Springer, 2008.

[3] Allan, C. et al. Adding Trace Matching with Free Variables to AspectJ. In

Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2005, pp.345-

364, October 2005.

[4] Bauer, L. et al. Run-Time Enforcement of Nonsafety Policies. In ACM

Transactions on Information and Systems Security, 12(3), Article 19, January 2009.

ACM Press.

[5] O’Nell Meredith, P . et a l . An overview of the MOP runtime verification

framework. Int J Softw Tools Technol Transfer (2012) 14:249–289.

[6] Heath, C. Symbian OS Platform Security: Software Development Using the

Symbian OS Security Architecture. Wiley, 2006.

[7] Hermenegildo, M. et al. Abstraction Carrying Code and Resource-Awareness.

In PPDP ’05: Proceedings of the 7th ACM SIGPLAN international conference on

Principles and practice of declarative programming, pages 1–11, New York, NY,

USA, 2005. ACM Press.

[8] Karlstedt, T. et al. Embedding Rule-Based Security Monitors into Java

Programs. In Proceedings of IEEE 32nd Annual International Computer Software &

Applications Conference, COMPSAC’08, pages 20–27, 2008.

[9] Ligatti, J. et al. Edit Automata: Enforcement Mechanisms for Run-time Security

Policies. Int. Journal of Information Security, 4(1–2):2–16, 2005.

[10] Leavitt, N. Mobile phones: the next frontier for hackers?, Computer, 38:4,

20-23, IEEE, 2005.

International Journal on Information Technologies & Security, № 2, 2015 36

[11] Leppänen, V., J-M. Mäkelä, Security Monitors for Java Programs with MPL,

International Journal on Information Technologies and Security 4 (1), pp. 35-50,

2012.

[12] Necula, G.C. Proof-carrying code. In Conference Record of POPL ’97: The

24th ACM SIGPLAN- SIGACT Symposium on Principles of Programming

Languages, pages 106–119, 1997.

[13] Schneider, F.B. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,

3(1):30–50, 2000.

[14] Sekar, R. et al. Model-Carrying Code (MCC): a new paradigm for mobile-

code security. In Proceedings of the 2001 Workshop on New Security

Paradigms, NSPW’01, pages 23–30, New York, NY, USA, 2001. ACM Press.

[15] Rice, H.G. Classes of Recursively Enumerable Sets and Their Decision

Problems. Trans. Amer. Math. Soc., vol. 74, pages 358–366, 1953.

[16] Martinelli F., P. Mori. Enhancing Java Security with History Based Access

Control. In Foundations of Security Analysis and Design (FOSAD 2006/2007),

LNCS 4677, Springer Verlag, pages 135–159, 2007.

[17] Ion, I. et al. Extending the Java Virtual Machine to Enforce Fine-Grained

Security Policies in Mobile Devices. In Proceedings of 23rd Annual Computer

Security Applications Conference (ACSAC 2007), IEEE Computer Society, pages

233–242, 2007.

Information about the authors:

Sanna Mäkelä (formely Tuohimaa) – She is a PhD student of University of Turku,

Department of Information Technology. Her research interests have focused on software

security and architectures.

Sami Mäkelä – Mäkelä is currently finishing his PhD studies. His PhD thesis work has

focused on software metrics and correctness issues. He has also participated into security

assessment work related to Finnish electronic voting system.

Ville Leppänen – PhD, works current as a software engineering professor in the

University of Turku, Finland. He has over 100 scientific publications. His research

interests are related broadly to software engineering ranging from software security and

quality to engineering methodologies and practices and from tools to programming

language, parallelism and algorithmic design topics. In the security domain he has led a

(Finnish) Ministry of Defense funded research project on software diversification

techniques, and is currently site leader of large Cyber Trust project.

Manuscript received on 15 April 2015

