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Abstract

Statistical analyses of measurements that can be described by statistical mod-
els are of essence in astronomy and in scientific inquiry in general. The
sensitivity of such analyses, modelling approaches, and the consequent pre-
dictions, is sometimes highly dependent on the exact techniques applied, and
improvements therein can result in significantly better understanding of the
observed system of interest. Particularly, optimising the sensitivity of statis-
tical techniques in detecting the faint signatures of low-mass planets orbiting
the nearby stars is, together with improvements in instrumentation, essen-
tial in estimating the properties of the population of such planets, and in
the race to detect Earth-analogs, i.e. planets that could support liquid water
and, perhaps, life on their surfaces. We review the developments in Bayesian
statistical techniques applicable to detections planets orbiting nearby stars
and astronomical data analysis problems in general. We also discuss these
techniques and demonstrate their usefulness by using various examples and
detailed descriptions of the respective mathematics involved. We demon-
strate the practical aspects of Bayesian statistical techniques by describing
several algorithms and numerical techniques, as well as theoretical construc-
tions, in the estimation of model parameters and in hypothesis testing. We
also apply these algorithms to Doppler measurements of nearby stars to show
how they can be used in practice to obtain as much information from the
noisy data as possible. Bayesian statistical techniques are powerful tools in
analysing and interpreting noisy data and should be preferred in practice
whenever computational limitations are not too restrictive.
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1. Introduction

Detections of extra-solar planets orbiting, and exoplanet systems around,
nearby stars has been a hot topic in astronomy during the last two decades.
Ever since the first discovery of such a planet in 1992 (Wolszczan & Frail,
1992), and especially, after the discovery of the first exoplanet orbiting a
Solar-type star in 1995 (Mayor & Queloz, 1995), several hundred planets
have been found orbiting a variety of different stellar targets in the Solar
neighbourhood. References to the latest developments in exoplanet searches
can be found in e.g. The Extrasolar Planets Encyclopaedia! (Schneider et al.,
2011) and Exoplanet Orbit Database? (Wright et al., 2011a). Furthermore,
due to improvements in instrumentation and observational facilities, and
rapid accumulation of data due to several ongoing surveys, the rate of such
discoveries can only be expected to increase as a function of time.

Detections of planets indirectly by observing their effects on the stel-
lar radiation is difficult and typically requires applications of sophisticated
statistical techniques in order to distinguish the planetary fingerprints from
various sources of noise, such as photon noise, stellar activity, and Earth’s
atmosphere; other types of variation mimicking Keplerian signals, such as
daily and annual constraints to the visibility of the star in the sky, stellar
activity cycles and rotation coupled with starspots and magnetic phenom-
ena; and biases, such as instrument instabilities and additional biases caused
by the fact that the statistical model used to describe the data might be
suboptimal. Furthermore, planetary occurrence rates have been shown to
increase dramatically as a function of decreasing mass (e.g. Howard et al.,
2012; Bonfils et al., 2013; Dressing & Charbonneau, 2013), which means that
a large population of planets remains at or below the current detection limits
of planet surveys and detecting such planets is not only a matter of instru-
mentation and observational facilities, but to a great extent of optimising
the detection techniques and obtaining as much information from the valu-
able measurements as possible. As such low-mass planets are also among
the most interesting ones in astrobiological terms because they could host
biospheres on their rocky surfaces (e.g. Anglada-Escudé et al., 2013; Tuomi
et al., 2013a,b; Tuomi & Anglada-Escudé, 2013), statistical techniques, to-
gether with state-of-the-art instrumentation, have a key role in the searches
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for other Earths orbiting the nearby stars.

Implementation of more efficient statistical techniques has been responsi-
ble for several recent observations of planets with the Doppler spectroscopy
method such as the detection of a potential habitable-zone super-Earth or-
biting HD 40307 (Tuomi et al., 2013a) and a diverse system of low-mass
planets around GJ 667C (Anglada-Escudé et al., 2013) in the stellar hab-
itable zone. Together with improvements in data reduction procedures and
statistical modelling (Anglada-Escudé & Butler, 2012; Baluev, 2012; Tuomi
et al., 2013b), the respective improvements in the sensitivity of exoplanet sur-
veys have come with almost non-existent cost compared to the potentially
considerable investments in instrumentation that would have been required
to produce the same results had the traditional statistical techniques been
relied on.

The greatest improvements in the statistical techniques are due to a
paradigm shift from the so-called frequentist interpretation of probabilities
to a Bayesian one. The former is based on the idea that a probability of an
event occurring in an (scientific) experiment reflects the frequency of how
often such an event happens out of all possible events that could have hap-
pened if the experiment was repeated infinitely many (or sufficiently many)
times. The corresponding statistical analysis techniques have relied on the
pioneering work of Pearson (1901) and Neyman & Pearson (1928) and have
been used, with suitable improvements and modifications, to detect a ma-
jority of planets around nearby stars. The improvements have been made
regarding the search of periodic signals and are essentially based on Fourier
analysis techniques that take advantage of studying the data in frequency
domain instead of the time domain (Lomb, 1976; Scargle, 1982; Cumming,
2004). However, a common strategy of assessing the significance of periodic
signals detected using these periodogram methods typically rely on resam-
pling techniques such as Bootstrapping (e.g. Efron, 1979) that are an attempt
of artificially creating a statistically representative sample of data sets with
statistical properties approximately equal to those of the one that has been
detected to enable estimating what were the chances of obtaining the re-
sult out of several trials. For obvious reasons, in particular, because such a
sample of data sets does not exist, and all experiments cannot be repeated
arbitrarily many times, the latter, Bayesian, interpretation of probability is
a much more practical in addition to being more solidly based on probability
theory.

In the Bayesian framework, the goal is to calculate probabilities for dif-
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ferent hypotheses give the data that was observed. This refers directly to the
law of conditional probabilities, or the Bayes’ rule. Assuming that the data
consists of random numbers drawn from some underlying (and unknown)
statistical distribution, the key feature of Bayesian techniques is to make
assumptions regarding the nature of this distribution, i.e. formulating statis-
tical models, and to calculate probabilities for different events, e.g. that the
data are drawn from a Gaussian distribution with mean u and variance of o2
or that the value of p is in the interval [a, b], given the data and the model.
Similarly, it is possible to calculate probabilities of a given hypothesis, or
statistical model, being a good description of the data with respect to other
hypotheses. This latter process is referred to as Bayesian model selection.
There is a vast literature discussing the problems, advantages, and imple-
mentation of various Bayesian methods (e.g. Green, 1995; Kass & Raftery,
1995; Spiegelhalter et al., 2002, and references therein) and such techniques
have been applied to exoplanet detections during the recent years (e.g. Ford,
2005, 2006; Feroz et al., 2011; Gregory, 2011; Loredo et al., 2012; Tuomi,
2012; Tuomi et al., 2013a,b).

In this thesis, we discuss the statistical methods that are being used
to detect planetary signals of low-mass companions to stars in the Solar
neighbourhood. However, instead of giving direct ready-to-use recipes for
analysing such data that comes in various forms, we describe the basic sta-
tistical techniques that can be used to obtain as much of the important
information from the valuable measurements as possible with logical consis-
tency and mathematical rigour. While we explain the rationales behind the
various statitical tehcniques and computational methods as simply as pos-
sible, we also attempt to express them with mathematical precision that is
sufficient for replicating the results we present in the various applications of
the methods. Should we fail to do so, the reader is encouraged to contact
the author and report such shortcomings. Throughout this thesis, with few
exceptions, we concentrate on the Doppler spectroscopy method used to de-
tect a large fraction of planet candidates (Schneider et al., 2011; Wright et
al., 2011a), although the methods we describe are mostly completely general
and can be readily applied to any detection technique, and in fact, to any
statistical data analysis problem in astronomy and beyond.

In particular, we discuss the various statistical techniques based on the
Bayes’ rule of conditional probabilities that are, in many cases, superior to
the classic frequentist techniques whose applicability is more often that not
very limited. For this reason, this thesis can also be seen as consisting of



criticism of the traditional solution methods, such as statistical hypothesis
testing methods or standard computations of point estimates and correla-
tion coefficients. This criticism is only partially intentional. Although the
frequentist solution methods do have their place in the toolbox of a profes-
sional statistician, their assumptions and the resulting restrictions have to
be understood in order to be able to use them properly. Bayesian statisti-
cal techniques are simply more general and applicable to a wider variety of
problems and are therefore preferred. They also yield results that are based
solely on the theory of conditional probabilities and are therefore, in most
cases, more trustworthy.

The methods we describe, discuss, and apply, are by no means an exhaus-
tive collection of statistical and numerical developments. They are simply a
collection of methods that we are familiar with and/or that have been applied
to astronomical problems such that it is possible to cite such applications ap-
pearing in astronomy journals. For this reason, plenty of useful methods will
be neglected but that does not mean that such methods are not applicable or
have not been applied to astronomical problems. The choice of the methods
we describe is therefore a subjective choice of the author, which is rather
convenient in the Bayesian context where subjective choices always have an
effect on the obtained results.

The outline of this thesis is as follows. While in Sections 2 and 3 we dis-
cuss the statistical challenges and ideas behind the solution methods in gen-
eral terms and present the basic principles of Bayesian statistics, we present
some simple posterior sampling algorithms and Bayesian model comparison
techniques in Sections 4 and 5, respectively. In Section 6 we discuss model
adequacy and inadequacy briefly, and apply the methods to astronomical
data in Section 7. Finally, we discuss the methods and their applications in
Section 8.

2. Measurements and inverse problems

As is the case with astronomy in general, and searches for extrasolar
planets in particular, all science is based on measurements of some kind.
Measurements are always the driving force of theoretical considerations — a
theory, model, or a hypothesis either remains the best available description of
the reality, possibly gaining additional support, or is falsified and replaced by
a better description when it is compared with other such descriptions given
some available measurements. One is then entitled to ask what is the proce-



dure of falsification, or more accurately: when is a theoretical construction or
a hypothesis falsified and when not? These questions are usually addressed
by defining a measure of goodness whose values are first obtained for sev-
eral descriptions of the measurements and then compared to one another.
Underlying these comparisons are the only two true things in science: the
measured quantities and the logical rules within the models described using
mathematical relations. And even out of these, the former are corrupted
by uncertainties of, usually, unknown type and magnitude whereas the latter
might not be the best available descriptions, which leaves room for biases and
misinterpretations. Yet, despite such difficulties, measurements and models
that have been constructed in an attempt to describing them are the starting
points of any scientific studies — perhaps apart from considerations that are
purely theoretical.

However, even such theoretical considerations that are formulated using
the language of mathematics, have to be compared to measurements to assess
their explanatory qualities®. This requires the ability to quantify the rela-
tions between measurements and some variables of interest that are generally
called the model parameters. More often than not, this process is far from
simple and straightforward and requires the most advanced mathematical
constructions to lead to the desired results: the discovery and quantification
of a mathematical model describing the statistical properties of the measure-
ments. This is the process of finding a solution to an inverse problem.

Throughout the vast fields of science to which astronomy is by no means
an exception, theories, if any exist, are usually very complicated due to var-
ious complicated (non-deterministic) interactions in the system of interest
and cannot be used as such but an appropriate approximation or empirical
description needs to be found. Examples of such processes are not difficult
to find. One can consider e.g. the formation process of planetary systems
(e.g. Boss, 1997; Ida & Lin, 2010; Hansen & Murray, 2012) or estimation of
stellar habitable zones (e.g. Selsis et al., 2007; Kopparapu et al., 2013) in the
context of extra-solar planets. Furthermore, measurements are typically cor-
rupted by uncertainties, usually containing systematic components due to an
insufficient statistical modelling or simply because the measurements do not

3Comparing theoretical predictions to measurements is a fundamental requirement for
all models. If this comparison is not possible due to lack of quantifiable predictions, such
models can be considered to be “not even wrong”, as was famously expressed by Wolfgang
Pauli.
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correspond to the modelled quantities well enough. The statistical challenges
that arise from these grounds are called inverse problems. They are problems
of finding the process that produces the observed features and are present
whenever measurements are being analysed. A common forward problem
occurs when one knows the cause and wants to know the consequence. This
is usually a straightforward and easy calculation given e.g. some well-known
laws of physics. The inverse problem is then that of knowing the conse-
quence (i.e. the observed data) and being completely or partially ignorant
about the cause — to a great extent a much more complicated problem to
solve. With respect to inverse problems and solution techniques, we refer to
the introductory text of Kaipio & Somersalo (2005).

Discrete inverse problems are the most common class of statistical prob-
lems in natural sciences. The discreteness means simply that the model used
to describe the measurements is assumed to be fixed. Hence, there is a dis-
crete amount of numbers, the model parameters, instead of a continuous
spectrum of values, that describe the measured quantities. For practical rea-
sons, any statistical problem is always discrete — it is not possible to save an
infinite number of values to computer memory or any other storage media.

2.1. The relationship between measurements and models

Measurements are always indirect in the sense that a given measurement,
random variable m € T C R¥, where T is the measurement space*, cannot
be expected to be equal to the quantity of interest that we call parameter,
random variable § € Q C R, where Q is the parameter space, but these
two can be assumed to be related by a statistical model. We use this formal
notation to emphasise the fact that while measurements are typically ran-
dom variables in the real line, to represent physical reality they cannot have
arbitrarily large or small values and are therefore restricted to a subset of
the whole real line that might, occasionally, consist of only two points if the
measurements are logical in nature. In one of the simplest possible cases,
this relation is m = ¢(0) + ¢, where € is a random variable with unknown
properties and g : 2 — T is a mapping relating the measurements to the
parameters of interest. In this context, the inverse problem can be stated
as a problem of finding the function g and the parameter values # when m

4What we call a measurement space here, set Y, consists of all the possible values the
measurements could have and is therefore a small subset of the set RY, although its exact
definition depends on the interpretation of the measurements.
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has been measured in the precense of uncertainty expressed by the random
variable € whose properties are also unknown.

Because the measurements are random variables, they are drawn from
some probability distribution: the true model describing the state and evolu-
tion of the system of interest. This density is the one the modeller would like
to find by analysing the data to be able to predict the future measurements.
However, there is no way of knowing whether any given probability density
function (PDF) is this desired density or not. According to Kolmogorov
(1968), when interpreted in terms of probability densities representing differ-
ent models, the true model can never be found. This implies that for practical
purposes there is no true model. At least, there is no way of knowing, no
matter how sophisticated and accurate the models in hand are, whether one
of these models represent the true PDF and not only some approximation of
it. It is only possible to label all the tested PDFs corresponding to different
models by some probability values, indicating how close they are to the true
model with respect to one another. Hence, as stated by Box (1976): “All
models are wrong but some are useful.“ This is also the philosophy adopted
throughout this thesis while keeping in mind that the true model does not
even exist. This philosophical view is evidently correct when the measure-
ments describe a complex system whose behaviour cannot be derived from
fundamental physical principles. However, it provides useful insights to sim-
pler systems governed by physical theories, for instance, exoplanet detections.
The reason is that regardless of the nature of the measurements, they are
always corrupted by some sources of systematic errors that cannot be fully
accounted for by the model.

What is then the philosophical approach a statistician should adopt when
analysing the measurements in hand? If all the models can be labelled by
a number describing their relative goodness, the modelling problem can be
reduced to finding a collection of models with the highest relative goodnesses.
Methods for this purpose are described in Section 5. The task of the modeller
is then to select the most suitable set or class of models that are to be
compared. This task is the one where machines cannot yet beat human
intuition and imagination. And it is this task that is in a crucial role in all
the solutions to statistical problems involving analysis of measured quantities.

2.2. Philosophical aspects of Bayesian methodology

In the Bayesian framework, probabilities are interpreted as measures of
the degree of belief in an event, not as frequencies of events occurring when
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repeating the experiment sufficiently many times. The former interpretation
is therefore clearly a more general one because not all experiments can be
repeated because they correspond to phenomena that only occurred once
(e.g. formation of the Solar system and other historical events) and because
repeating an experiment requires resources that are not always available in
abundance. The immediately obvious shortcoming, although it is a short-
coming only when not understood properly, in the Bayesian framework is
that prior information makes all Bayesian data analyses subjective processes.
Bayesian statisticians update the prior information they might possess on the
properties of the system of interest with information from the measurements
and calculate the combined information, the posterior information, by using
the famous Bayes’ theorem named after the English mathematician Thomas
Bayes. It could be argued that this kind of inference is biased because of
the combination of the valuable information from the measurements with
subjective initial beliefs, or prior information. However, as we will see, this
argument cannot be justified because all science is based on such subjective
beliefs and abandoning it would leave us without any useful statistical tools.

A Bayesian statistician does not see the posterior information any differ-
ently from the prior. The new posterior can always be used as prior infor-
mation when new measurements are being analysed. After several new mea-
surements, the original subjective prior does not play a crucial role anymore
because the information from the measurements ”overwhelms“ the informa-
tion from the original prior. In fact, after a sufficient amount of measure-
ments, any Bayesian statistician with any (reasonable) prior beliefs will end
up having asymptotically the same posterior information and hence they all
agree even though they may have disagreed severely initially. Furthermore,
if the idea of a prior belief seems counterscientific, it is always possible to
define a noninformative prior, i.e. no prior information or maximum a priori
ignorance, although such definitions are necessarily subjective as well. Typ-
ically a preferred choice would be a uniform distribution that corresponds
to e.g. that the random variable § can be found in all possible® intervals of
similar length with the same probability, or equivalently, that the chances of
the variable 6 having a value in a given interval is proportional to the length
of the interval. In reality, it is actually difficult to find cases where such a

5This refers to the parameter space €2 whose choice is only one aspect of the prior
choice.
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prior density would be realistic choice given the physical interpretations of
the parameter 6. Therefore, a uniform prior density is only one subjective
belief among others and does not technically differ from other realistic priors,
except that in many cases it makes the computations relatively easy. A more
detailed justification of priors can be found e.g. in Ford & Gregory (2007)
and Tuomi & Anglada-Escudé (2013) in the context of exoplanet detections.

There are also practical differences. Unlike the frequentist approach,
Bayesian methods do not differentiate between the comparison of two and
more than two competing hypotheses or statistical models. In fact, the se-
lection between competing models or hypotheses is not different from the se-
lection between parameter values within a single model. The reason is that
all the models, and all the combinations of parameter values within these
models, can be arranged to a linear order using the corresponding Bayesian
model probabilities and parameter probability densities. This is not possible
with classical hypothesis testing methods where the goal is to test whether
a simpler null hypothesis can be rejected in favour of a more complicated
hypothesis — a method that can lead to undesired results if the alternative
hypothesis does not represent the data well either. Going one step further,
it is in fact possible to interpret the index describing the chosen model, e.g.
1 =0, ..., k, as only another free parameter — one that has only integer values.

3. Inverse solution and Bayesian inference

An inverse solution is commonly defined as the full multidimensional con-
ditional probability density of model parameter vector given the measure-
ments (e.g. Kaipio & Somersalo, 2005). This solution contains all the in-
formation available in the measurements used to calculate the solution with
respect to the selected model. It is commonly presented using a Bayesian
credibility set (BCS) and a maximum a posteriori (MAP) estimate of the
model parameter. This definition is generalised here to take into account the
model selection problem as well. Hence, the inverse solution contains the
densities of the model parameters of all the models in the a priori selected
model set accompanied by their respective model probabilities that is actu-
ally a discrete density of the index parameters ¢ describing which one of the
models is being used.

We use the term inverse solution when discussing solutions to discrete
inverse problems. The structure of the statistical model (denoted as M)
used to describe the measurements is assumed to be fixed, including the ex-
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act expression for the function g and the properties of the random variable
€. Therefore, the only unknown for a given model is the posterior density
of parameter vector §. Since this parameter vector has a limited amount of
components with dim 2 = K, the inverse problem is discrete. The validity of
the different models Mg, My, Mo, ..., is then analysed using Bayesian model
comparison methodology, that is, by calculating the Bayesian model prob-
abilities of all the models given the available measurements. The posterior
density of the model parameters given the measurements m is written simply
as a non-negative function 7(6|m) that satisfies the condition

/Qﬁ(9|m)d9 ~1. (1)

According to the Bayes’ theorem, the density 7(6|m) can be written as

[(m|6)7(6)

w(0)m) = S5 2)

where [(m|f) is the likelihood function of the measurements and m(#) is the
prior density of f containing all the information on the parameter known prior
to obtaining the measurement. Function P(m) is simply a scaling factor that
is used to scale the integral of w(6|m) over the parameter space to unity and
can be written as

P(m):/ﬂl(mW)ﬂ(ﬁ)dQ. (3)

It is also called the marginal density of m and the integral in Eq. (3) is called
the marginalisation of the parameter 6.

The situation is not different when there are two or more measurements
or sets of measurements available. For N measurements, the probability
density of 6 given these measurements m = (my, ..., my) can be written as

[(ma, . mu|@)m(0)  7(0) TIL, 1(mi]0)

7(0lm) = ) = Pm) : (4)

where the last equality is valid if the measurements are independent. There-
fore, the Bayesian inference is simply the process of combining the likelihoods
corresponding to different measurements with the prior density according to
the Bayes’ rule. This corresponds to interpreting the information in the
measurements in terms of the selected model and expressing it as a posterior
probability density of the model parameters.
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3.1. Likelihood function

The likelihood function is a probabilistic representation of the measure-
ments given the parameters. It is the probability density from which the
measurements would have been drawn if the distribution described by a sta-
tistical model with parameter # was the correct description of the data.

A very common practical choice is to model the measurements as Gaus-
sian random variables. In this case, the likelihood of measurements m =
(myq,...,my) is written simply as

1(m]6) = Umlp, 2) = @2x) F[S| S exp { — Slu—m]"S M u—m]}, (5)

where ¥ € RV*¥ is the covariance matrix of the measurement vector, y is the
modelled mean of the measurements, and |-| denotes the matrix determinant.
This likelihood can be written briefly as a multivariate Gaussian density
N (i, X). All the components of matrix ¥ and vector p are components of
the parameter vector # and therefore free parameters of the model, although
simplifying assumptions are commonly made e.g. that ¥ = ¢%I, where o is
one of the components in 6 and [ is the identity matrix.

The parameter Y (or o), and any other parameters of no direct inter-
est to the modeller, are usually referred to as nuisance parameters because
they have to be included in the statistical model but describe features not
essential for understanding the system of interest. However, parameter p is
not a nuisance parameter but consists of the quantities in the mathematical
description of the measurements that are of major interest and significance
to the modeller and whose PDFs are valuable in order to understand the
behaviour and features of the modelled system. However, the division of
parameters to such nuisance parameters and parameters of interest is com-
pletely arbitrary (subjective) and therefore we do not use such expressions
but instead refer to them both as parameters.

3.2. Prior probability densities

The prior knowledge is contained in the prior density 7(6), sometimes
called the prior model. In classical statistics there is no such thing as a
prior, but its existence is a natural consequence of conditional probabilities
in Eq. (2) and it is necessarily an integrated part of the scientific decision
making process. For instance, all statistical methods based on the likelihood
function, such as the maximum likelihood estimation, in fact assume that
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the underlying prior density is uniform in the parameter space, although this
is rarely expressed and its validity cannot be assessed generally. Similarly,
all statistical tests based on the commonly used x? statistics actually assume
a uniform prior — on top of assuming a Gaussian likelihood function with
commonly a fixed variance. This kind of a choice of fixed parameters is such
a common in statistical analyses, that we discuss it briefly before going any
further with prior choice in general.

Suppose that a model M consists of two parameters such that 0 = (w, ¢).
However, a simpler model Mg, for which ¢ = ¢, is fixed, is also used to
describe the measurements m. Therefore, it can be seen that

mlw, ¢, Mo)m(w, Mo)m(9, Mo) (6)
P(m|Mo) ’

7(0lm, Mp) =

when assuming that the priors of w and ¢ are independent such that 7 (w, ¢) =
m(w)m(¢). But in this equation, 7(¢, My) = §(¢ — ¢o), where § denotes the
Dirac delta-function, and it can be seen that the only difference between
models M and M, is that the former has a prior 7(¢) whereas the latter
has a prior 0(¢ — ¢g) for parameter ¢. Thus, models that are nested in more
general descriptions are in fact only models with different prior densities.
Therefore, comparison of a sequence of nested models is equivalent to com-
paring different prior models. This realisation has significant implications
that we will discuss further in the Section 5.

Prior densities have additional properties that need to be accounted for
in Bayesian analysis of scientific data. For instance, consider a coordinate
transformation from 6 to 6" described by using an invertible mapping f :
Q — Q' such that f~! exists. This means that ' = f(6). However, it is easy
to see that selecting e.g. 7(6) = U(a,b), where U denotes a uniform density
in an interval, leads to a transformation in the prior such that

df
0) = 7(0)| =
where || is the Jacobian of the transformation. If the mapping f is not a

linear one in which case it would correspond to a change in the unit system,
it necessarily leads to the inconvenient conclusion that if 7(6) is a uniform
distribution, 7(6’) is not and choosing uniform distributions in both coordi-
nate systems leads to analysis results that are different and whose difference
depends of the selected f. Therefore, priors are an in-built property of sta-
tistical analyses and cannot be neglected in any statistical problem. This
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example also demonstrates that the Bayesian framework of data analysis is
the only logically consistent one as the different results arising from priors
corresponding to different subjectively selected parameter systems can also
be taken into account by modifying the priors in suitable ways implied by

the Eq. (7).

3.83. Point and uncertainty estimates

Point estimates (6p) are simply vectors of the parameter space that can
be used to roughly describe the modelled system with as few numbers as pos-
sible. These vectors contain no information on the shape of the parameter
density, and should therefore be accompanied by the corresponding uncer-
tainty estimates describing the width of the density, such as standard devi-
ations or the Bayesian credibility sets, and perhaps by some other measures
of the shape of the density, such as skewness and kurtosis.

However, point estimates can be misleading in a variety of situations.
For instance, if the probability density is skewed or has long tails, the mean
is a poor estimate and is typically very different from the maximum like-
lihood (ML) or maximum a posteriori (MAP) estimates. In these cases,
the standard deviation is also a poor estimate for parameter uncertainty.
Furthermore, if the density has more than one maxima, the ML and MAP
estimates are also misleading and should not be used as such but the full
inverse solution is needed to describe the system with a sufficient accuracy.
For instance, it is easy to see that if the posterior density can be described by
using a sum of two densities such that 7(0) = A\6(68 — 6y) + (1 — NN (i, 02),
the MAP density is equal to 6y but in fact a fraction 1 — A of the posterior
density is found around 6 = p, which makes the MAP estimate a very biased
description of the density when the parameter A € [0, 1] is small. Clearly, for
A < 1 the mean estimate is 0, ~ p and thus the mean and MAP estimates
differ from one another as much as the difference between p and 6, is. But
this only demontrates that point estimates can lead to poor results when the
properties of the posterior are not described well by such simple numbers.

The Bayesian credibility set (BCS) is a subset of the parameter space that
contains all the parameter values with posterior probability higher than some
given number ¢ € RT (e.g. Kaipio & Somersalo, 2005; Tuomi & Kotiranta,
2009). The BCS is actually a hypervolume enclosing the most probable parts
of the parameter space. Formally, the BCS of a posterior density 7 (0|m) with
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parameter ¢ € [0, 1], is

Ds = {0 cQ: /0607?(0|m)d0 = 6, 7(0]m) [pene: = c}, (8)

where the set OC represents the edge of the set C'. This edge is a hypersurface
enclosing the BCS and consists of parameter values that have equal proba-
bility of ¢. The interpretation of the BCS is simple because the probability
of finding a value inside the Dy set is simply 0.

In fact, the BCS is a much more general way of estimating the model pa-
rameters when the posterior has a complicated ”landscape® in the parameter
space. For instance, D; is equivalent to the maximum a posteriori estimate if
the posterior density has a unique maximum. Moreover, choosing a sequence
01, ...,0, such that §; < ;41 for all ¢ can be used to determine the corre-
sponding Dj, for which it holds that Ds, D D, . This sequence of BCSs
can then be used as a tool to describe the properties of the posterior density
much more accurately than by using any point estimate.

3.4. Bayesian multidata inversion

Different measurements, or different sets of measurements — datasets from
different sources — cannot generally be used in the process of finding the
inverse solution on their own because they contain different amounts of in-
formation (e.g. Kaasalainen, 2011; Kaasalainen & Viikinkoski, 2012). For
instance, if a dataset has plenty of measurements but only a little informa-
tion, it should have a smaller weight coefficient than another dataset with
a few measurements but plenty of information. This is apparent because
when finding the model solution of the two datasets simultaneously, the
smaller set, regardless of higher information content, would be overwhelmed
by the larger number of measurements in the larger set. Hence, the high
amount of information in the smaller set would not be inferenced correctly
to the posterior density. There are no generally accepted rules for selecting
these weights, but some principles can be derived nevertheless. For instance,
a point estimate called the maximum compatibility estimate (Kaasalainen,
2011; Kaasalainen & Viikinkoski, 2012) takes the different information con-
tents of different datasets, or data modes, into account by weighting them
with optimal coefficients. However, there are also simpler ways of combining
several datasets.

In Eq. (4), the posterior PDF is calculated using several measurements
m; € T,7=1,...,N. Let us assume that each m; is a set of measurements
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containing N; individual measurements. Given some statistical model of the
measurements, the posterior density of measurements m; can be written as

7T(970-i‘mi> = C;1l<mi|970’i)ﬂ-<970’i>7 (9)

where (0, 0;) is the joint prior density of all the parameters and o; contains
the nuisance parameter of each of the measurements in m;. Therefore, for
Gaussian densities without covariance, 3 in Eq. (5) is 3 = 021 and I is the
identity matrix. The constant ¢; is the marginal density P(m;) in the Eq.
(3) but the integral is clearly over both 6 and ;.

In the Gaussian case, this posterior can be written explicitly as

2
207

) — .12
w(0.0m;) = ;1 (2m) 20N exp { — O 2l 6 6 1)

where || - || is the common Euclidean vector norm (the 2-norm). It is com-
monly assumed that the parameter o; is known a prior: and its value is fixed.
This is actually a special case of the above expression where the prior density
of o; is a delta function that peaks at some positive value, say oy. In this
case Eq. (10) simplifies considerably and the problem of finding the MAP
solution of parameter # becomes a minimisation problem that is commonly

defined as
Orap = argmin {[]g:(6) —myl3 + ol |[HO|[3], (11)

where o € R is the so-called Tikhonov regularisation parameter (Tikhonov
& Arsenin, 1977). Matrix H can be interpreted as representing the prior
information on the parameter  because a||H0||3 = log w(0, 0;), although the
prior cannot be always written in the matrix form of Eq. (11).

The expression in Eq. (11) becomes interesting if written for M datasets.
In such a case, it becomes

M
Orrar = argmin |al[HO|3 + D willgi(6) = mill3]. (12)

i=1

Now, the minimised function contains the weight coefficients w; € R* of
each of the datasets, whose values have to be adjusted according to the
information content, or the lack of it, of the datasets. However, there is no
generally accepted way of adjusting them, which is clearly an unsatisfactory
feature and poses limitations to the applicability of Eq. (12).
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This problem can be overcome if the parameter o; is not fixed. In that case
the posterior density of the parameters given all the datasets and Gaussian
measurements is

M 19:(0) —mil[3
-1 Ni/2, i\U) — Mi|l3
n(8,0lm) = ¢ 'n(6,0) H(%) PN exp { 2%ﬁ}, (13)
where 0 = (0y,...,0p). Using this posterior, the MAP estimate of the pa-
rameters, including those in vector o, can be calculated as

0 _ [1 (0, N1
(0,0)map = arg (Gmé)iéig og7(f,0) Z og (o )

Now, the weight parameters in Eq. (12) are naturally expressed as w; =
(202)7! for all 7 but there is an additional term in the equation that is
a function of o. This term can be interpreted simply as the information
entropy of the measurements.

Denoting 6 = (0, 0), Eq. (14) can be re-written as

Onsap = argmas [h(B) = 3" willgu(d) - mil3], (15)
S i

where w; = (202)~! are now free parameters of the modelled system and h is
some function of the parameters representing the prior information and the
entropy of the o parameter. This function can be called the regularisation
function but it must be remembered that it contains model parameters, and
therefore, only the prior density part of it can be selected subjectively.

We note that the MAP estimate cannot generally be written in a simple
form of Eq. (15) because it assumes a Gaussian distribution for the measure-
ment noise. However, it provides an example of the standard notation in the
literature regarding solutions to inverse problems (e.g. Kaipio & Somersalo,
2005, and references therein). Therefore, while useful in a restricted set of
statistical problems, it is not generally applicable.
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3.5. Time series

When the measurements consist of a time series, it is usually more con-
venient to write the equations for the MAP estimate by using the standard
notation of Eq. (2). In this case, there is a vector ¢ that corresponds to
the measurement m and is expected to explain the evolution of the system
of interested according to some model. Typically, the vector t is interpreted
as an explanatory variable that explains the behaviour of the measurements.
We note that the vector ¢t does not necessarily have the dimension of time but
it can be any variable, or indeed several of them, whose values are measured
together with m and are assumed to have an effect on the measurements.
However, the values of ¢ are not of direct interest and they do not therefore
need to be modelled. This is the only difference between m and t¢.

Assuming that the values of m; and ¢; for i = 1, ..., N have been measured,
the posterior density of parameters can be written as

U(m|6, 1)1(¢]6)m(6)

w(0lm,t) = P(m. )

(16)

In this equation it is convenient to assume that the likelihood [(¢|f) can be
approximated as a delta-function likelihood, i.e. that the value of ¢ can be
measured with such a high accuracy that its uncertainty can be neglected
completely. The expression in Eq. (16) then becomes equivalent to Eq. (2)
for a given t.

If the values of t cannot be assumed to be known with a sufficient accu-
racy, their likelihood functions would have to be broader than strict delta-
functions. For instance, it could be realistic to express these likelihoods by
using another model that has parameters of its own. This implies that ¢
would have to be modelled as well in order to be able to take into account all
the possible sources of uncertainty in the modelled system. But this would
simply mean that we could write (m,t) instead of m in Eq. (2), making the
situation equally simple in practice.

For instance, if ¢ represents some activity measurements of stellar origin,
such as bisector velocities in the case of radial velocity data, it cannot be
assumed that its likelihood function is close to a delta-function in practice.
In such cases, the likelihood [(t|@) has to be taken into account according to
Eq. (16).
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4. Solutions from posterior samplings

The full inverse solution is defined as the full posterior probability density
of the model parameters. This definition has several advantages over more
traditional definitions for the solutions of inverse problems, such as pure
point estimates and corresponding uncertainty estimates. But if traditional
solution methods have been used successfully in a variety of inverse problems,
why should one put effort into finding the full solutions in the first place? The
answer to this question is simple. The full density contains all the information
in the measurements given the selected model. Any point estimates, as well
as any measures of uncertainty or shape of the density, can be calculated
using this solution, which makes it a more general approach. There are
also efficient methods for approximating the posterior densities, such as the
collection of algorithms classified under the general title of Markov chain

Monte Carlo (MCMC) methods.

4.1. Metropolis-Hastings algorithm

Out of all MCMC methods, the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970) is one of the most widely used posterior sam-
pling algorithm in astronomy (e.g. Balan & Lahav, 2009; Tuomi & Kotiranta,
2009; Wright et al., 2011b). This algorithm can be used to draw statistically
representative samples from the parameter posterior density. Such samples
can then be used to estimate the joint posterior density of the model parame-
ters. The first steps are to choose an initial parameter value 6, and a proposal
density ¢(0;,0;), sometimes called a transition kernel (usually a symmetric
density with a mean equal to 6;) that is a probability density describing the
probability of a transition from 6; to ¢; in the parameter space. The second
step is to calculate the conditional probability of having the initial parameter
value given the measurements 7(6y|m) o< [(m|6y)m(6y). After this, the algo-
rithm works by repeating the following two steps for n = 1, 2, ..., ng, until the
Markov chain converges (sufficiently close) to the posterior density 7(6|m).

1. Draw a new parameter value, 0*, from ¢(6*|0,,) and calculate the cor-

responding likelihood [(m|6*).
2. If for a random number « € [0, 1] it holds that
o O m)a(6,.0%) -
T (On|m)q(60*,6,)

then set 6,,1 = 6*, otherwise set 0,1 = 0,,.
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It can be seen that the acceptance rule simplifies considerable when the
proposal density is indeed symmetric. However, the ability to calculate the
chain is not sufficient to be able to use the method. It needs to be known
how long chain is required to obtain a statistically representative sample
from the desired density 7(6|m). The question of how to select the proposal
density needs to be addressed as well. Typically it is sufficient to ensure
that the obtained chains are long enough in the sense that their statistics do
not change significantly when adding new members to the chain. Similarly,
whether the obtained samples are statistically representative of the posterior
can be verified if several chains with different initial states result in the same
posterior density.

4.2. Adaptive Metropolis algorithm

The Metropolis-Hastings algorithm can be improved by adapting the pro-
posal as a function of the Markov chain member. If a chain calculated using
some adaptive algorithm retains its ergodic properties® and thus has a sta-
tionary distribution, this algorithm can be used to modify the proposal as
more information is gathered from the posterior density. Potentially, an
adaptive algorithm will be computationally faster in applications, because
the proposal adapts closer and closer to the posterior. Also, it will provide
better mixing properties in the sense that all sections of considerable proba-
bility in the parameter space will be visited by the chain frequently enough.
After a sufficient burn-in period, such a chain will ”forget* its initial state
and make the initial selection of the proposal density and initial state 6,
irrelevant — unless this initial selection is unfortunate and the initial state is
close to a very high local maxima in the posterior density. In such a case,
the convergence of the chain might take longer than a typical duration of
an academic career and be of little practical importance. This also empha-
sises the fact that several different initial states should always be explored in
practice.

The adaptive Metropolis algorithm presented by Haario et al. (2001) re-
tains the ergodicity of the chain, despite the fact that it is no longer exactly
Markovian but only asymptotically so. This algorithm is constructed by
assuming that the proposal is a Gaussian multivariate density, which is up-
dated given the information accumulated so far. Although this assumption

6These properties are 1) that the chain is aperiodic such that #An such that Oitn = 0;
and 2) it is recurrent such that the probability of the chain returning to state 6; is zero.
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can lead to difficulties in the case of multimodality and high skewness of the
posterior, it appears to work well in several applications (e.g. Tuomi, 2012;
Tuomi et al., 2013a,b). This simple algorithm for updating the proposal den-
sity in the Metropolis-Hastings sampling can be described in the following
way.

If the covariance matrix V,, of the model parameters is known for the
chain up to the nth member, there is a recursive formula for this covariance
at the next step. This formula is

n-+1
n

Vn+1 -

Vi + 28,107, — (n+ 18,07 + 0,67 +eI],  (18)
n

where 0,, denotes the mean of n members of the chain and e is some small
number that ensures the positivity of the matrix. Parameter s is commonly
set equal to (2.38)%/K, where K is the number of parameters (Gelman et al.,
1996). Since the mean is also trivially expressed using a recursive formula,
this equation enables the updating of the covariance matrix at each step of
the chain, which makes the proposal adapt to the information gathered.

The samplings from the posterior are very efficient when the amount
of parameters in the model is low and the chains converge readily to the
posterior in the sense that statistics of several chains do not change signif-
icantly and are consistent with one another after they have become long
enough. However, these methods become increasingly inefficient in cases of
multimodal posterior density and/or when there are significant non-linear
correlations between the parameters. In such cases, generalisations of the
above methods, such as the delayed-rejection adaptive Metropolis algorithm
(Haario et al., 2006), which improves the efficiency of the sampling in case of
multimodal posterior, and reversible jump MCMC (Green, 1995) that can be
used to draw a sample from several models simultaneously, or jumping be-
tween different subsets of the parameter space, are important generalisations
of the standard Metropolis algorithm.

5. Bayes factors and model selection

When selecting between two or more competing models or hypotheses, a
way has to be found of balancing between ”good fitting“ and parsimony (e.g.
Cavanaugh, 1999; Liddle, 2007). There are several ways of achieving this
goal, but the Bayesian methods provide the most general and trustworthy
framework.
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Bayesian model selection theory can be used effectively when assessing
the relative probabilities of two or more hypotheses, or mathematical models
describing the measurements. When comparing this methodology with the
frequentist approach, it can be found to have several advantages. First of
all, the methodology is independent of the number of hypotheses or models
tested. There can be two or more (k) models that need to be tested against
measurements and the methodology is the same unlike in the frequentist
approach which is usually designed to compare only two hypotheses: the
null hypothesis and some alternative one based on the pioneering work of
e.g. Pearson (1901), Fisher (1922), and Neyman & Pearson (1928).

When comparing models that are constructed to represent some measured
quantities, the Bayesian model comparison procedure can be described in
terms of few simple equations. In our notation, M;, j = 1,..., k, are models
defined as functions of their respective parameter vectors ;. Because the
probability of a model being ”more correct“ than some other model can only
be determined with respect to a measurement m, this probability can be
written as

P(Mj|m) _ kP(m|MJ)P(M]) (19)
i1 P(m|M;) P(M;)

where

P(m| M) = / e (m|6;, M) (05 M; ) do) (20)

is the marginal integral of Eq. (3) with the only exception that the de-
pendence on the selected model is written in the equation explicitly. The
probability in Eq. (19) can be written shortly as

P Im) = POM) | 30 B(mP(M0)] @1
where
B, (m) = LM (22)
0 = BlmlA,)

is the Bayes factor in favour of model M; and against model M.

Based on the arguments of Jeffreys (1961), Kass & Raftery (1995) pro-
posed interpreting the Bayes factors and the corresponding model probabil-
ities according to Table 1, although Evett (1991) suggested that the Bayes
factor should have a value of at least 1000 for decisive evidence. Basically,
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Table 1: The interpretation of Bayes factors and the corresponding model selection ac-
cording to Jeffreys (1961); Kass & Raftery (1995).

B ; Evidence in favour of the ith model
1-3 Not worth mentioning

3-20 Positive

20-150 Strong

>150  Decisive

this Jeffreys scale corresponds roughly to the usual interpretation of prob-
abilities as measures of confidence or degree of belief in whether an event
takes place or not. In this case, the event is that the measurements m have
been drawn from a probability density described using the model M;, i.e.
the corresponding statistical likelihood {(m|6;, M;) and the prior density
(0] M;).

5.1. Computation of Bayes factors from posterior samples

When calculating the value of Bayes factor, the integral in Eq. (20) has
to be evaluated. There are several ways of approximating this integral (e.g.
Newton & Raftery, 1994; Kass & Raftery, 1995; Chib, 1995; Chib & Jeli-
azkov, 2001; Clyde et al., 2007; Tuomi & Jones, 2012) and computationally
demanding direct numerical integrations are not always necessary. If the
posterior probability density of the model parameters has been sampled, i.e.
that a sample has been drawn from it using some MCMC method, simple es-
timates can be obtained by using a method called importance sampling that
is based on one of the most valuable mathematical operations: expressing an
obvious issue in a less obvious way.

The idea behind importance sampling is to choose functions g and w such
that 7(0) = w(#)g(f) and write the marginal integral as an expectation E,
with respect to the probability density g. Thus we have

By [w(0)i(m|0)] = /g(e)w(Q)l(mIQ)dﬁ = P(m), (23)

where we call function g the importance sampling function. Now, given a
sample of N members drawn from the density g, i.e. that we have 6; ~ g(0)
for all i = 1,..., N, it is possible to estimate the expectation in (23) as (e.g.
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Kass & Raftery, 1995)

o

To be able to use this estimate, the function g has to be selected appropriately
in such a way that it is possible to draw a sample from it, and that the
estimate converges to the correct value of the marginal integral rapidly and
reliably as a function of V.

It is easy to verify that choosing ¢(f) = w(0) or g(0) = 7(0|m), i.e.
choosing g equal to the prior or the posterior densities, respectively, leads to
the mean estimate (Py) and the harmonic mean estimate (Pyy,), although
these simple estimates are biased and/or have poor convergence properties
(Newton & Raftery, 1994; Kass & Raftery, 1995; Tuomi & Jones, 2012). For
instance, the most significant problem with the harmonic mean estimate is
that occasional small values in the likelihood dominate and can result in a
bias in the resulting Bayes factor. Also, the harmonic mean estimate does
not necessarily satisfy the Gaussian central limit theorem (Kass & Raftery,
1995).

In an attempt to overcome these problems, Tuomi & Jones (2012) pro-
posed a truncated posterior mixture estimate (TPM) that appears to work
reasonable well in practice (Tuomi, 2012; Tuomi et al., 2013a,b). This esti-
mate is obtained by setting each ¢(6;) = (1 — \)w(6;|m) 4+ Aw(6;—n|m), which
lead to the estimate

Mz

zpz
P =
reM = |: 1 - lpz + )\lz hPi— :|

=1

1
Di

X , 25

[Zl (1= N)lp; + )\lihpih:| (25)

1=

where we have denoted I; = [(6;|m) and p; = 7(6;) for short.

There are also more accurate (and more complicated) methods for es-
timating the marginal likelihood using the output of an MCMC algorithm
directly (e.g. Chib, 1995; Kass & Raftery, 1995; Chib & Jeliazkov, 2001).
For the Metropolis-Hastings algorithm, an estimate called the one-block
Metropolis-Hastings (OBMH) estimate for the marginal integral can be cal-
culated in the following way (Chib & Jeliazkov, 2001). The random variable
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a in the M-H algorithm (Eq. (17)) can in fact be considered a function of
the parameter vector at the two points  and ¢’. Hence, it can be written as

A s CA T ICRL)
a(f,0") = min {1, (@) (0.0 )} (26)

Denoting p(#,0") = a(0,0)q(0,0"), it follows that for any point 6* € Q

p(0,0%)m(0lm) = p(0", O)m (6" |m). (27)

Integrating both sides, it follows that the posterior density at 6*can be ex-
pressed as

. Jreq @(6,6%)g 9 9*) (0m)d6
m(0%m) = Jreq (0%, 6)q(67,6)d8
E.[a (6, 0*)q (9,9*)]
Egla(6s,0)]

where the expectations E, and E, are with respect to densities 7(#|m) and
q(6*,0), respectively. Now, these expectations can be estimated because after
the computation of the Markov chain, there is a sample from the posterior
available and it is easy to draw a sample from the proposal density to estimate
E,. Hence, using the mean estimate based on the importance sampling, an
estimate for 7(6*|m) can be calculated as

(28)

K= a(0® 0%)q(0®), 6%)

(0% |m) =
( | ) J-1 E}]:1 a(g*’g(j))

, (29)

where %) are drawn from the posterior and ) are drawn from ¢. Finally,
an estimate for the marginal integral can be written, according to the Bayes
rule and writing the equations explicitly as a function of the given model

My, as

log p(m\/\/lk) = log l(m|0;, My) + log 7 (05| My)
—log (05 |m, My). (30)

Now, if the 60f is chosen as e.g. 07 = Opamap, it is easy to calculate the
estimate P(m|My) that is an estimate for the marginal integral in Eq. (20).
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5.2. Other methods

There is also a diverse collection of other methods for estimating the
marginal integrals. These include the reversible-jump MCMC (Green, 1995)
that enables the determination of the relative probabilities of the solutions
given several models simultaneously and can be readily combined with the
Metropolis algorithm and its modifications (Green & Mira, 2001); methods
relying on thermodynamic integration (Gelman & Meng, 1998) and its ap-
plication to a so-called parallel tempering algorithm (Gregory, 2005; Ford &
Gregory, 2007), and the nested sampling method of Skilling (2006). This list
is by no means representative and there are various other techniques for such
integral estimations but we do not discuss them here in detail. However, a
class of simple estimates called information criteria, although somewhat ”less
Bayesian“, can be very useful because they are extremely simple and pro-
vide fast means of assessing the magnitudes of the marginal integrals under
certain assumptions.

5.83. Model selection based on information criteria

There are various model selection methods based on different information
criteria developed to estimate the marginal integrals under some simplifying
assumptions. The different criteria have been used successfully in several
fields but little is known of their relative performance, although several com-
parisons of different criteria have been conducted (e.g. Burnham & Ander-
son, 1998; Spiegelhalter et al., 2002; Liddle, 2007). The rationale behind
the various information criteria is to provide simple means of estimating the
marginal likelihoods without the need to directly estimate the corresponding
complicated multidinensional integrals. These criteria are therefore based
on approximations and simplifications of the underlying equations, and suit-
able choices of prior densities, which in fact makes the obtained estimates
sub-Bayesian in the sense that the information criteria cannot be used to
compare different prior models but only different likelihood models given a
fixed prior density.

5.3.1. Bayesian information criterion

The Bayesian information criterion (BIC; Schwarz, 1978), sometimes called
the Schwarz information criterion (SIC), is a way of approximating the inte-
grals in Bayes factors under some simplifying assumptions.

The integral in Eq. (20) contains the likelihood of the model parameters
and the prior density. If the likelihood function resembles a multimodal
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Gaussian density in the vicinity of its maximum likelihood value 6,7, such
that 6y, = argmaxgeq [(m;]0), the likelihood function can be approximated
as

1(m;]0) ~ 1(mi|Oar) exp | — %(9 — Oh) "V (Orin) (0= Our) | (31)

This is called the Laplace’s method of approximation. Now, assuming a
uninformative constant prior — that is, assuming at least that the prior is
approximately constant in the hypervolume of the parameter space that con-
tains the highest values of the likelihood, i.e. that m(6) = 1 — the integral in
Eq. (20) becomes

P(my;) = l(m;|0r)
X/G QeXp [— %(G—GML)TV(GML)l(H—HML) do
— U(milOrr) (27) S|V (Oar) |2 (32)

where K is the number of parameters in the parameter vector 6 (K = dim (2)
and V is the covariance matrix of the ML estimate. Now, for i.i.d. measure-
ments, the covariance matrix can be written as V(0y1) ™t = N;Vi(0prz) 78,
where V] is the covariance matrix from only one measurement and N; is the
amount of the measurements in m;, as before. Finally,

2log P(m;) =~ 2logl(m;|0r1) — K log N; + K log 2w
+log ||Vi(6arr) ") - (33)

Dropping the last two terms, because they are negligible for large NN;, yields
the traditional form for BIC as

Now, the smaller this value is, the better the model. The first term in
the BIC can be thought of as a measure of goodness of the fit — in fact, for
Gaussian likelihoods, this term is the common sum of squared residuals. The
second term is sometimes referred to as a penalising term that increases the
BIC value for more complicated models. Hence, the model with the smallest

BIC value is balanced between good fitting and simplicity, as a good model
should.
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Under these assumptions, the Bayes factors can be approximated and the
corresponding model probabilities calculated as

P(m|M;)P(M;)
fey P(m| M) P(My)
[(m|Oassy, M;)N 35 P(M;)

= — - | (35)
per Lm|Onrp e, M) N 7275 P(My,)

P(M;lm) =

However, it needs to be remembered that this approximation is only valid if
the amount of measurements is large and if the parameter PDF is close to
a Gaussian multivariate density in the vicinity of the ML estimate. If these
conditions do not hold, the Bayes factors cannot be approximated by using
the BIC values.

We note that if the prior does not have an uninformative density, an in-
formation criterion similar to the BIC can still be obtained. In that case, the
ML estimate of the parameters can be simply replaced by the corresponding
MAP estimate without any loss of generality.

5.8.2. The Akaike information criterion

The Akaike information criterion (AIC; Akaike, 1974; Hurvich & Tsai,
1989) is a model selection criterion based on the Kullback-Leibler divergence.
The Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951), sometimes
called the relative entropy, Dir{g||f}, is defined for continuous probability
density functions f and ¢ as

Dicr{fllg} = - floggde. (36)

0eQ

This expression is commonly interpreted as consisting of the PDF f that
is being compared to some ’true’ density g that actually produces the mea-
surements. However, KLL divergence is not symmetric. Generally, for PDFs
fand g, Dxr{fllg} # Dxr{gl||f}. Moreover, the K-L divergence does not
satisfy the triangle inequality, which means that it is not a metric and cannot
therefore be thought of as a measure in the strict meaning of the word”.

The K-L divergence between a candidate model with likelihood func-
tion [(f|m) and an the underlying ”true“ model with likelihood function

"The fact that it is not a measure is the reason it is called a ”divergence“, which implies
a way of estimating how different two densities are but not measuring this difference.

32



[(m]@') leads to the AIC that states that the model for which the quan-
tity 2logl(m|0y) — 2K has the greatest value should be referred to as the
model with the greatest amount of support by the data (Akaike, 1974). As
increasing the likelihood function clearly increases this quantity, increasing
the number of parameters (K') decreases it providing the Occam’s razor to
the AIC. From the Bayesian perspective, this criterion is very naive as differ-
ent priors cannot used when applying it and becasue it is only valid when the
amount of measurements is much greater than the amount of free parameters
in the model. A formal derivation of the AIC can be found in e.g. Burnham
& Anderson (1998) and a general derivation of the AIC and its small-sample
approximation (Hurvich & Tsai, 1989) can be found in (Cavanaugh, 1997).

The AIC and BIC are discussed in the astronomical context in e.g. Liddle
(2007).

5.3.3. Other information criteria

Several other information criteria, based on different assumptions, have
been introduced (see e.g. Bozdogan, 1989; Spiegelhalter et al., 2002; Kon-
ishi & Kitagawa, 2008). Among these are the Kullback information cri-
terion (KIC; Cavanaugh, 1999) and its modification for small sample size
(KICc; Hafidi & Mkhadri, 2006), the Takeuchi information criterion (TIC;
Takeuchi, 1976), and the deviance information criterion (DIC; Spiegelhalter
et al., 2002). However, the relative performance of these criteria is not gen-
erally known and therefore, they should be used with care in applications.
If it is possible to calculate the Bayes factors directly, it should always be
preferred over the various criteria.

5.4. Prior probabilities

In Eq. (19), there are prior probabilities of the different models denoted
as P(M,;) for i = 1,...,k. These probabilities represent the prior beliefs,
or probabilities, of how well the different models were expected to describe
the data before it was obtained. It is a rather common practice to set these
probabilities equal for all 7, but such a choice is only one subjective (discrete)
distribution for parameter i. In fact, it would be very unusual if all the
models were indeed expected to describe the data equaly well a priori in
practice because the collections of models M; is not chosen randomly out of
the set of all possible models, but the models that are being compared have
their interpretations as reference or baseline models, including a possible
"null hypothesis®, alternative models providing descriptions of one or some
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phenomena whose existence is under investigation, and even models that
might not have clear physical interpretations or models that describe some
very speculative theoretical aspects whose validity is considered to be rather
low a priori®. We do not discuss these prior probabilities here in detail
because they depend heavily on the exact application and the corresponding
interpretations of the models and their parameters.

As an example, we consider a problem of selecting between models that
explain the data as arising from a superposition of j Keplerian signals, as
is commonly the case when e.g. searching for planets by using the radial
velocity or transit photometry data. It can readily be argued that when
comparing models with j = k and j = k + 1, the latter should have a lower
prior probability because if there are k planets orbiting a given star, there are
less dynamically stable orbits left in the system for the £+ 1th planet (Tuomi,
2012). However, one could equally well argue that when k low-mass planets
have been detected in a given exoplanetary system, it is more probable a
priori that there are more planets that have not yet been detected because
low-mass planets are commonlly found in systems with high multiplicity (e.g.
Tuomi, 2012; Anglada-Escudé et al., 2013; Tuomi et al., 2013a). Therefore,

it is clear that such model probabilities are completely subjective choices.

6. Is the model good enough?

When comparing different models in the Bayesian context, it is only pos-
sible to determine which model out of the selected collection of models repre-
sents the data the best in terms of having the greatest posterior probability
as described in Eq. (19). In fact, such model comparison results could be
obtained even in the case that none of the models in this a priori selected
collection of candidate models describes the data very well. This problem
has been pointed out recently in Tuomi et al. (2011) and it has significant
implications to model comparison problems.

For instance, regardless of how good a given candidate model M is, i.e.
how high its posterior probability is, it is always possible that given a different

8Hence the common proverb: extraordinary claims require extraordinary evidence;
which refers to the fact that when the prior probability of a given hypothesis is very
low, it is necessary to obtain considerable amounts of evidence in favour of it in terms of
Bayesian evidences to overcome the a priori low probability and to give the hypothesis a
high posterior probability.
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collection of candidate models, this model M would have been among the
most poorly performing models. In other words, Bayesian model comparison
results are only valid with respect to the other (subjectively selected) models
and they do not have any general interpretation because a general measure
for model goodness does not exist in the Bayesian context. Thus, it is the
responsibility of the statistician to make sure that the set of candidate models
contains at least few models that are realistic and represent the data well in
practice.

Following Tuomi et al. (2011), we assume that a model M has been con-
structed such that it describes measurements m; and m; with a likelihood
function {(m;, m;|6). We also assume that there is another model M’ that de-
scribes the two measurements with the likelihood function I(m;, m;(60;,0;) =
[(m;|6;)l(m;]6,), i.e. that the measurement m; is described by the parameter
¢; and m; by parameter ¢; and that the two measurements and parameters
are independent. As was demonstrated by Tuomi et al. (2011), there can be
other parameters as well, but they do not affect the results and we do not
discuss that possibility for simplicity.

With these assumptions, it can be seen that the marginal integral in Eq.
(20) given model M’ can be written as

P(mi, m;| M)
= / l(mi,m]"ei,ej,M/>7T<¢9i,¢9j|M/)d(9i,9]')
QxQ

k=i j &
where the last equality follows from the fact that the models M and M’ are
identical given only one measurement. Given the Eq. (37), and using the
common comparison of the two models, it can be seen that if

® P(mi| M) P(m;|M) (33)

P(m;,m;|M) < 1

holds for some small threshold probability s, it can be concluded that the
measurements m; and m; cannot be modelled with the same parameter ¢,
but different parameters (corresponding to the model M’) should be used
instead. Therefore, we say that a model M is an inadequate description of
two data sets if it holds that

P(m;,m;)

Plomy) P(my) ~ " (39)

B(mi, m]’> =
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where we have dropped the model from the notation and define r = s(1—s)™*
(Tuomi et al., 2011). This condition, called the Bayesian model inadequacy
criterion (BMIC), can be generalised for several measurements as
P(mla sy mN)
B(my,...,my) = ——=———— <. (40)
[L; P(mi)

The BMIC in Egs. (39) and (40) has an interesting interpretation in terms
of the K-L information discussed in the context of the Akaike information
criterion in Section 5.3.2. We define the information loss, or the information
lost when moving from the posterior density back to the prior, in the K-L
sense as

Dgp{m(0)||m(0lm)} = / 0) log H(ﬁ?l)dﬁ. (41)

However, writing this information loss for several measurements m;,i =
1,..., N, leads to

DicpA{m(O)]|7(6]ma, ..., mn)} = Z Dicr{m(0)]|m(6]ma)}
+log B(my, ..., mn), (42)

where the Bayes factor B is the same one shown in Eq. (40). This means
that the BMIC is related to the information content of the measurements in
a fundamental way. It is easy to verify that if B(my,...,m,,) < 1 holds, Eq.
(42) implies immediately that

Dy {m(O)|[m(0)my, ..., mn)} = ZDKL{W@)IIW(@\W)}, (43)

i.e. that the combined set of measurements contains more information than
the sum of the individual ones in terms of K-L information loss (Tuomi et
al., 2011). However, such simple conclusions cannot be derived by using
information gain, i.e. the K-L divergence Dy {m(0|m)||7(6)}, although an
expression that is equivalent to that in Eq. (43) can be obtained (Tuomi et
al., 2011).

7. The inverse problem of exoplanet detection

Because of the curious nature of human beings, the question of whether
there are planetary systems, and in particular habitable planets enabling the
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existence of life elsewhere in the universe, has been asked by several great
thinkers throughout history. However, trials of answering this question have
remained speculative and sophisticated guesses until a few years ago. Ever
since the discovery of the first extrasolar planet (Wolszczan & Frail, 1992)
and the discovery of the first such planet orbiting a Solar-type star (Mayor
& Queloz, 1995), depending on the exact detection criteria, several hundred
planetary companion candidates to nearby stars have been found (see e.g.
Schneider et al., 2011; Wright et al., 2011a). This has partially enabled sci-
entific answers to the above question — a question that has been disturbingly
difficult to answer in the past, and remains so even today. We can now con-
fidently state that planets and planetary systems are very common in our
galaxy and therefore likely elsewhere in the universe as well. Furthermore,
based on the first examples of systems with several super-Earths, it can be
said confidently even based on radial velocity surveys that planets of terres-
trial size are abundant in the Solar neighbourhood and thus likely elsewhere
as well (e.g. Mayor et al., 2009a,b; Bonfils et al., 2013; Anglada-Escudé et
al., 2013; Tuomi et al., 2013a,b). This conclusion is reinforced when looking
at the population of transiting planets in the Kepler field (e.g. Howard et al.,
2012; Dressing & Charbonneau, 2013; Morton & Swift, 2013). However, we
still do not know how commonly planetary systems are similar to ours and
— despite some very recent promising results (Bonfils et al., 2013; Dressing
& Charbonneau, 2013; Kopparapu et al., 2013; Tuomi et al., 2013c) — how
commonly Earth-like planets are orbiting their host-stars within the limits
of the local habitable zones, which could enable the existence of liquid water,
and possibly life, on their surfaces.

A majority of the low-mass companions of stars discovered to date remain
only planetary candidates because the radial velocity (RV) technique, used
to detect most of them, can only be used to estimate the product of mass and
the sine of orbital inclination, yielding the minimum mass for the candidate.
Even though unlikely, as a consequence, the RV observations cannot rule out
the possibility that some of these companion candidates are in fact brown
dwarfs or low mass companion stars with inclinations close to zero. This
turned out to be the case with one of the candidates, HD 33636 b (Bean et
al., 2007), and is likely to be the case for other candidates as well based on
pure statistical estimations. Fortunately, on average, the minimum masses
are only slightly lower than the expected values of the masses — that is, if the
inclinations of the planetary orbits are randomly oriented in space — and they
cannot be much greater than the minimum masses in systems of two or more
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planets with closely-spaced orbits because that would result in instabilities
and, consequently, orbital configurations that are not physically viable in
long term.

Other techniques capable of detecting extra-solar planets exist as well.
Photometric transit observations have been used successfully to detect several
planetary companions — not merely candidates but quite confidently real
planets — orbiting their host stars on close-in orbits (e.g. Howard et al., 2012;
Dressing & Charbonneau, 2013, and references therein). Also, gravitational
microlensing has been successful in a few lucky instances (e.g. Gaudi et al.,
2008; Dong et al., 2009); direct imaging has yielded the first pictures of
extrasolar planets (e.g. Kalas et al., 2008; Lagrange et al., 2008; Marois et al.,
2008); and the first astrometric detections, after decades of failure (e.g. van
de Kamp, 1969), have been made successfully recently (Pravdo & Shaklan,
2009) by targeting a very low mass star in the Solar neighbourhood — although
the discovery of (Pravdo & Shaklan, 2009) has been subsequently disputed
by Anglada-Escudé et al. (2010) and Bean et al. (2010).

7.1. What is a positive detection?

As always when dealing with measurements, it needs to be defined objec-
tively when the value of the desired quantity has been detected meaningfully
as opposed to having uncertainties that do not enable any conclusions either
way. When detecting extrasolar planets, this question is reduced to: when
is the signal of a planetary companion conclusive and the companion can be
said to have been detected? On Bayesian grounds, this question is equivalent
to: when is P(Mj1|m) > aP(Mj|m), or when is the Bayesian probability
of a k + 1 planet model (M, 1) greater than a corresponding probability
of a model with &k planetary companions (M) given some confidence limit
defined by parameter o?

This approach is different from the common criterion of positive detec-
tions by periodogram-based analyses, where the detection is considered pos-
itive if one of the periodogram peaks is higher than some false alarm proba-
bility (FAP)? (e.g. Cumming, 2004). However, this approach can yield false
negative results if there are severe gaps in the data or if the observational
baseline is longer than the orbital period. Furthermore, it can result in

9 Authors using such methods do not typically discuss the possibility that there are
several peaks that exceed a given FAP because periodogram analyses apply for one signal
at the time.
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detections of false positives when the underlying assumptions, such as Gaus-
sianity and independence of the measurements, are not satisfied (Mayor et
al., 2009b; Vogt et al., 2010; Gregory, 2011; Tuomi, 2011; Vogt et al., 2012).
The situation is even worse when there are several signals with amplitudes
comparable to the noise levels. In such cases, it is possible that none of the
signals get detected confidently with periodograms. False positives are also
possible if some alias of a periodic signal is mistakenly considered to be the
real signal (e.g. Udry et al., 2007; Mayor et al., 2009b). However, it is still
possible to find the inverse solution, the orbital parameters and minimum
masses, in these cases using some global solution method, such as MCMC
(e.g. Ford, 2005, 2006; Tuomi & Kotiranta, 2009; Tuomi, 2012; Tuomi et al.,
2013a). Even though this could mean that the estimates of the probability
densities of the orbital parameters are broad, at least some confidence limits
would be available and the detection could be considered trustworthy.
Additional criteria have to be satisfied as well. According to Tuomi
(2012), a signal can only be said to have been detected if its amplitude
is statistically distinguishable from zero with some chosen confidence level
and if the period can be well-constrained from above and below. The am-
plitude has to be constrained from below because otherwise it would remain
consistent with zero implying that the signal is not statistically significant.
Furthermore, the period has to be constrained from above and below because
otherwise it would not be possible to call the signal periodic. Together with
the probabilistic detection threshold (e.g. Ford & Gregory, 2007; Feroz et
al., 2011; Tuomi, 2012), these additional criteria have been applied recently
to radial velocity planet searches (e.g. Tuomi, 2012; Tuomi et al., 2013a,b;
Tuomi & Anglada-Escudé, 2013; Anglada-Escudé et al., 2013). They are also
applicable to astrometric and transit photometry data without modification.

7.2. Bayesian inference of different measurements

With different measurements available, it is possible to extract more in-
formation from the observed system by combining these measurements than
when they are used separately. This fact was demonstrated for RV and astro-
metric exoplanet observations of a planetary companion in a circular orbit by
Eisner & Kulkarni (2002) and is directly implied if the model used to analyse
the measurements does not satisfy the BMIC (Tuomi et al., 2011). In Tuomi
et al. (2009), it was shown that the observational baselines of astrometry
and RV measurements can be as short as 25% of the orbital period of the
companion for a positive detection, whereas they cannot generally be much
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shorter than the orbital period if the measurements are used separately in
the analysis.

In the case of RV and astrometric data, the Bayesian inference means
simply the updating of the prior density by the likelihood functions of data
from both sources. Hence, the posterior can be written as

[(mry|0)l(ma]0)(6)
P(mRv, mA)

m(0|mgry, ma) = (44)
where it has been assumed that the RV and astrometric measurements are
independent.

The advantages of the Bayesian inference of these two sources of infor-
mation with respect to using the sources separately are essentially caused by
correlations between the inertial reference frame parameters and the orbital
parameters (Eisner & Kulkarni, 2001a,b, 2002; Tuomi et al., 2009). In the
inference these correlations cancel one another to some extent resulting in
better constraints for the orbital parameters. This in turn makes it possi-
ble to have shorter observational baselines than assumed conventionally —
usually it is assumed that these baselines have to exceed the orbital period.
According to the results presented in Tuomi et al. (2009), this assumption is
not exactly true when accurate RV and astrometric measurements are both
available.

Because the generalisation of Eq. (44) to more than two sources of
measurements is obvious, we do not write it explicitly here. However, if
a nearby system for which astrometric and RV measurements are available
has a favourable inclination such that planetary transits can be observed
photometrically, this transit data can be naturally combined with the other
data sources using Bayesian inference. Furthermore, as obtaining the plan-
etary properties such as mass, semi-major axis, and radius, depends on the
observed or estimated stellar properties, any information on these properties
could be incorporated in the Bayesian inference in a natural way — after all,
stellar mass and radius, together with effective temperature and luminosity
that are needed in estimating the location of the habitable zone in the system
(Selsis et al., 2007; Kopparapu et al., 2013), are simply common parameters
whose estimation can be performed in a fully Bayesian manner.

7.8. Astrometric “snapshots”

There are potentially even more dramatic advantages in the inference of
RV and astrometric measurements. Astrometric snapshots are defined as
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astrometric measurements with an observational baseline Ty < P, where P
is the orbital period of a planet orbiting the target star. Clearly, with these
kinds of astrometric observations available, it would be next to impossible to
make a positive detection of a planetary companion with the orbital period
of P. The planetary signal would resemble a linear trend in the data, with
possibly little curvature, and the stellar wobble caused by the companion
would be confused with the inertial reference frame parameters. However, if
the observational baseline of RV measurements is at least Try ~ P, it can
be shown that T ~ 1—10P is sufficient for the detection of the true mass of
the planetary companion (Tuomi et al., 2009) given reasonable assumptions
on the nature of the observational precision.

In Tuomi et al. (2009), it was also shown that in the case of the Jupiter
twin HD 154345 b (Wright et al., 2008) that has an orbital period of 9.1 years,
with high precision astrometric observations available, given a sufficient pre-
cision, Ty ~ 0.8 years is sufficient for the determination of the true mass
of the companion — a demonstration of the usefulness of Bayesian inference
of RV and astrometric data in a snapshot scenario. The Bayesian inference
of RV and astrometry remains to be tested with real data but in princi-
ple these advantages are available when appropriate data sets from future
space-telescopes become available.

7.4. Dynamical information

Dynamical analyses can be used as an additional source of information if
there are more than one planetary companions (or brown dwarfs; or if the
target is a stellar binary or has even higher multiplicity) orbiting a given
target star. Since close encounters necessarily make the system prone to
instability, a too low orbital spacing can be shown to be unstable and the
densities of the orbital parameters and the planetary masses can be con-
strained more accurately by eliminating unstable subspaces of the parameter
space. This procedure was attempted in the case of HD 11506 (Tuomi &
Kotiranta, 2009) but all the parameter values drawn from the posterior den-
sity of the two-planet model were found to be stable. The procedure was
more successful when analysing the velocity data of HD 40307 (Tuomi et al.,
2013a), but in that case only the highest eccentricities were excluded from
the solution because they corresponded to orbital configurations that were
not dynamically viable in the long-term.

Since the RV method can only be used to obtain a lower limit for the plan-
etary masses, their planetary nature remains uncertain unless upper limits
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can be set for the masses as well. Fortunately, if there are several planetary
candidates orbiting a star, it is possible to derive an upper-estimate for the
planetary masses and to confirm their planetary nature. This is possible
because if the inclination of the system approaches zero, the masses of the
planetary companions that produce the observed RV signal approach infinity.
Therefore, at some inclination in between, the system becomes unstable due
to the gravitational interactions of the massive companions, and this limit-
ing inclination can be used to calculate an upper limit for the corresponding
masses.

Adding dynamical constraints will thus help tightening the BCS of the
orbital parameters. Denoting the dynamical information as S, the Bayesian
inference in Eq. (44) can then be written as

[(m|0)1(S|0)(0)
P(m,S) ’

w(0m,S) = (45)
where it has been assumed that the measurements m and the dynamical
information are independent, although this is not necessarily the case as it
would be impossible to obtain measurements corresponding to unstable or-
bital configurations, unless the observed planetary system was in a chaotic
state distinguished by e.g. close-encounters that would result in bodies es-
caping the system or collitions between them. Therefore, Bayesian inference
is a powerful tool for combining the information in several sources of data,
whether this data consists of measurements or dynamical analyses, or in fact,
any kind of additional information from any available source.

In Tuomi (2012), a simple analytical approximation of Lagrange stability
(e.g. Barnes & Greenberg, 2006) was used to estimate the stability of a given
parameter vector. Although this criterion does not take into account orbital
resonances and is only valid for two planets at the time, it can still be used
to define the “dynamical likelihood” I(S]0) in Eq. (45). According to this
criterion, two planets with masses of u; and sy as fractions of the total mass
of the system (M) are on stable orbits if it holds that

3\ 4/3
a) ’
where av = g + po, v = /1 — €2, 6 = y/aa/aq, €; is the eccentricity, and q;
is the semimajor axis.

If, for instance, we set the likelihood such that [(S]f) = ¢ when the
criterion in Eq. (46) holds and zero otherwise, it is possible to use this

a? (Ml - %) (11 + pay28)? > 1+ M1M2< (46)
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criterion to rule out likely unstable orbital solutions from the BCS. Clearly,
it is possible to consider the product of [(S|0)7 () as a prior instead of only
7(0), but this is simply a matter of taste and does not affect the conclusions
in any way.

7.5. Modelling low-amplitude signals in RV data

Finally, we describe briefly the currently used modelling strategies in anal-
yses of radial velocities of nearby stars. Because prior densities are discussed
extensively in Ford & Gregory (2007), Tuomi (2012), Tuomi & Anglada-
Escudé (2013), and Anglada-Escudé et al. (2013), we do not discuss them
here. Instead, we discuss the choice of likelihood models that has been a
subject of significant improvements during the past year.

We start from the observation of Baluev (2012) and Tuomi et al. (2013b)
that radial velocity noise is neither white nor Gaussian in general. Therefore,
instead of applying a simple white noise model with a Gaussian distribution
that leads to least-squares minimisations, we consider other options. For
instance, Baluev (2012) and Tuomi et al. (2013b) observed that high-precision
RV noise contains correlations that can give rise to red noise. The approach
of Tuomi et al. (2013b), as well as that of Tuomi et al. (2013a), was to
use moving average (MA) models to take these correlations into account.
Generalising this approach by following the considerations of Scargle (1981)
and Tuomi et al. (2013b), we write the general RV model as

q p
mig = felt) + 0+t + e+ Y wimii+ Y by, (47)

J=1 Jj=1

where f;, is a function describing the superposition of k planetary signals';
parameters ; are the reference velocities of each telescope-instrument com-
bination denoted by using the subindex [; 7 represents the possible linear
acceleration in the data set due to a stellar or substellar companion on a
long-period orbit, or caused by secular or perspective acceleration if it has
not been removed from the data; ¢;; is a random variable describing the
excess white noise that is usually represented as consisting of two parts as
€1 = € + €, where the former is referred to as instrument noise and the

10We note that this description can be fully Newtonian or post-Newtonian, and it can
also take into account planet-planet interactions.
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latter as the “stellar jitter” or noise caused by the stellar surface; w; are
autoregressive (AR) components of the model and ¢; are the corresponding
moving average components. Generally, this model is an ARMA(p,q) model
(see e.g. Tuomi et al., 2013b).

We note that while the model defined in Eq. (47) is certainly more gen-
eral than the commonly used model that assumes that the measurements are
independent and identically distributed according to the Gaussian distribu-
tion, it is not by any means perfect in the sense that unevenly spaced data
cannot necessarily be described very accurately by using such ARMA models
because the time-difference of the subsequent measurements is not constant.
This problem can be overcome by using exponential smoothing such that
¢; x exp(—6t/T), where dt is the time-difference of two measurements and
7 is the time-scale of this smoothing function (Baluev, 2012; Tuomi et al.,
2013b). However, it is not certain whether the correlations have only one
time-scale instead of several; whether the ARMA process is a suitable de-
scription of RV data at all; and how should the white noise component ¢;;
be selected in practice, because even though such a white noise component
might indeed exist, it is not certain whether the common Gaussian density
is a sufficiently accurate description in all cases.

Together with the problems of assessing the numbers of planetary com-
panions in the data (k) and the numbers of ARMA components (p and q)
needed in the analyses, finding the best statistical model for radial velocity
data is a complicated statistical problem in practice. Problems in finding
suitable likelihood models might be one of the reasons behind the contro-
versy in the number of planet orbiting GJ 581 (Bonfils et al., 2005; Udry et
al., 2007; Mayor et al., 2009b; Vogt et al., 2010, 2012; Tuomi, 2011; Baluev,
2012). As it is currently uncertain whether the number of planets orbiting
GJ 581 is three or six or something in between, this problem can only be
solved by refining the modelling strategies and by combining all the existing
data from HARPS (Mayor et al., 2009b), HIRES (Vogt et al., 2010) and other
spectrographs in the Bayesian manner to obtain trustworthy results. This
only demonstrates that it is crucial to improve the statistical descriptions
of the data and to apply the best possible statistical techniques when using
them in practice.
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8. Conclusions and discussion

Discrete inverse problems arise whenever measurements are made and
statistical tools are used to extract information from them. Clearly, inverse
problems are then everywhere — the only differences between them arise from
the detailed aspects of the measurements: what kind of a system they de-
scribe and what is the primary interest of the researcher. If several sources of
information are available, such as different kinds of measurements describing
different features of the same system, the information in these measurements
can be combined by using Bayesian inference of the different measurements.
This procedure is called the problem of finding the solution to the multidata
inverse problem.

When finding this solution, it is essential to have a model that describes
the measurements of all the available sources in a consistent manner. There-
fore, finding a suitable model is of essence when solving multidata inverse
problems.

For this reason, the problem of finding the full inverse solution reduces to
two problems that need to be solved to reach a solution. The first one is that
of finding the most suitable model. By “most suitable” we mean that the
model has to have the highest posterior probability out of the a priori selected
set of models expected to work (reasonably) well. If there is a large number
of measurements available for this task, and if the assumptions within are
not too limiting, the simple information criteria discussed in Section 5.3 can
be used for this purpose. If not, the probability densities of the parameters
of all the model in the set can be used to calculate the relative probabilities
of the models given the measurements (Section 5). The second problem is
the problem of finding the full solution given the selected model, although in
practice this solution is already available if the probability densities of the
model parameters have been sampled using MCMC when finding the best
model.

It is necessary to model the measurements as realistically as possible. For
instance, all the unknowns, including the nuisance parameters, have to be
treated as free parameters of the model. This ensures that the uncertainty in
these nuisance parameters is correctly transferred to the uncertainties of the
other parameters via possible correlations in their PDFs. Conversely, if some
parameters are fixed, i.e. given delta-function priors, the estimates of the
other parameters can be severely biased because the possible correlations
between the PDFs of these parameters are not being taken into account
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properly.

The Bayesian methods have recently — within the last decades — started
to gain increasing amounts of popularity in astronomy for several important
reasons. First, the increased computational capabilities have made it pos-
sible to use e.g. MCMC method that require large amounts of computer
memory in high-dimensional problems. Second, the availability of efficient
algorithms, such as the Metropolis-Hastings (Metropolis et al., 1953; Hast-
ings, 1970) and the adaptive Metropolis algorithm (Haario et al., 2001), have
made it possible to calculate the chains in an efficient manner. Third, nowa-
days measurements of great scientific value are commonly difficult to make,
increasing the requirements for financial resources. This means that the
analysis of the valuable measurements has to be as efficient as possible, and
the Bayesian methods provide the required power and generality for these
purposes.

With powerful statistical methods available, astronomers can focus on
the most important problem left — the problem of choosing the set of models
to be compared. This task is by far the most challenging in the chain of
analyses leading to the inverse solution, because it cannot be automatised and
solved by computers!!. It requires to a great extent good scientific intuition,
fundamental knowledge of the system of interest, and the ability to identify
a priori the most important features in the system. If the selected model
set or model class is poor, the solution will be limited to the poor solutions
enabled by the models. On the other hand, if the selected class is good
enough, it will be possible to draw significant conclusions about the system
after the analyses because, at least, features that cannot exist in the system
can be ruled out when their posterior probabilities turn out to be negligible.
However, this problem of selecting a suitable class of models is not necessarily
hard to solve. For instance, when detecting exoplanets with the RV method,
the model class consists of models with & Keplerian signals in the RV data
(Tuomi & Kotiranta, 2009; Tuomi, 2011, 2012), and possibly diferent noise
descriptions (Tuomi et al., 2013b). In such reasonably simple systems, there
are not many options available and the model set can be safely assumed to
be well selected.

Finally, with a full solution to an inverse problem available, the parame-

1At least this is the case without considerable innovations in machine learning and
artificial intelligence.
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ter posterior densities can be used to predict the behaviour of the modelled
system. The most trustworthy way of calculating these predictions is to
generate a sample by drawing values from the parameter density and by cal-
culating the corresponding sample of a density of the predicted quantity. In
this manner, the full solutions can be used most efficiently in practice, and it
can be made sure that the information in the measurements is inferenced di-
rectly to the prediction densities. This has enabled the detection of the most
populated planetary system known to date (Tuomi, 2012) together with the
detections of the first candidate habitable planets in the Solar neighbourhood
(Tuomi et al., 2013a,b).
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