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Abstract

Ecological specialization in resource utilization hasmas facades rang-
ing from nutritional resources via host use of parasiteshytgphagous
insects to local adaptation in different habitats. Thexefthe evolution
of specialization affects the evolution of most other sawhich makes
it one of the core issues in the theory of evolution. Hence, éWolu-
tion of specialization has gained enormous amounts of relseaterest,
starting already from Darwin’s Origin of species in 1859. sWaajor-
ity of the theoretical studies has, however, focused on thihematically
most simple case with well-mixed populations and equilibridynamics.
This thesis explores the possibilities to extend the eimbary analysis
of resource usage to spatially heterogeneous metapaputabdels and
to models with non-equilibrium dynamics. These extensermesenabled
by the recent advances in the field of adaptive dynamics, iwhilows
for a mechanistic derivation of the invasion-fitness fumttbased on the
ecological dynamics. In the evolutionary analyses, spéo@is is set
to the case with two substitutable renewable resourceshidrcase, the
most striking questions are, whether a generalist specsé to coexist
with the two specialist species, and can such trimorphixistence be
attained through natural selection starting from a monginicrpopula-
tion. This is shown possible both due to spatial heteroggaeid due to
non-equilibrium dynamics. In addition, it is shown that chia dynamics
may sometimes inflict evolutionary suicide or cyclic evauary dynam-
ics. Moreover, the relations between various ecologicehpaters and
evolutionary dynamics are investigated. Especially, tlation between
specialization and dispersal propensity turns out to betewtintuitively
non-monotonous. This observation served as inspiratidghdanalysis
of joint evolution of dispersal and specialization, whichyrprovide the
most natural explanation to the observed coexistence afiast and
generalist species.






Tiivistelma

Tassa tyossa tutkitaan ekologisten resurssierokegtikoistumista. Mate-
maattisen mallinnuksen nakokulmasta resursseiksiaamdavinnon ja
suojapaikkojen lisaksi mieltaa myos esimerkiksi &&nten isannat tai
sirpaloituneen ympariston erilaiset asuinalueet éta Tata monimuo-
toista alaa on tutkittu runsaasti, mutta keskittyen lahesnomaan mate-
maattisesti yksinkertaisimpiin malleihin, joissa elkdtyttavat vain yhta
homogeenista elinaluetta ja populaatiodynamiikan atbrakn kiintopiste.
Tassa tyossa tutkitaan jaksollisen tai kaoottisenupegtiodynamiikan
seka metapopulaatiorakenteen vaikutuksia erikoistemesoluutioon.
Evoluution mallintaminen tapahtuu tassa tydssa aéen dynamiikan
keinoin eli johtaen kelpoisuusfunktio mekanistisesti legisesta dyna-
miikasta. Tyossa keskitytaan ennen kaikkea tapaukgessa organismi
voi kayttaa kahta vaihtoehtoista resurssia, ja tugiitanilloin monomor-
fisesta populaatiosta alkava evoluutio voi johtaa trimedrsyhteiseloon,
jossa generalisti kykenee elamaan yhdessa kahdemkgtas kanssa,
vaikka kumpikin spesialisti hyodyntaa yksittais&surssia generalistia
tehokkaammin. Trimorfinen yhteiselo ei ole mahdollistaittssessa ho-
mogeenisessa elinymparistossa, jos populaatiodykamattraktori on
kiintopiste. Tassa tydssa osoitetaan, etta monosesta populaatiosta
alkava evoluutio voi johtaa trimorfiseen yhteiseloon &iljgos homogee-
nisen elinymparistdn populaatiodynamiikka on jaksbditai kaoottista,
sek silloin, jos homogeenisen elinalueen sijaan tarkastekin metapo-
pulaatiota. Lisaksi osoitetaan, etta kaoottinen pogidaynamiikka voi
joskus johtaa sykliseen evolutiiviseen dynamiikkaandag] koko popu-
laation tuhoon evolutiivisen itsemurhan kautta. Tyotgiitaan myos
ekologisen mallin eri parametrien vaikutusta erikoistseni evoluutioon.
Muuttoliikkeen vaikutus erikoistumisen evoluutioon h&an intuition
vastaisesti epamonotoniseksi, minka innoittamanargyyt@&an myos muut-
totodennakoisyyden ja erikoistumisen yhteisevoluutiojoka todetaan
kenties luontaisimmaksi selitykseksi spesialistien jaggalistien trimor-
fiselle yhteiselolle.
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1 1 INTRODUCTION

1 Introduction

Ecological specialization is one of the core issues in thdysbf evolu-
tion. Specialization, often viewed in the form of local atijon, affects
the evolutionary dynamics of any life-history trait. Thiene, specializa-
tion has been a topic for a wide range of research. AlreadwDgd 859)
used the existence of various forms of specialization acal ladaptation
as evidence when arguing that species evolve in nature e $iven, the
amount of research work focused on the different aspectseagvolution
of specialization has increased enormously.

When evolutionary biology is popularized, the term "spbreal” of-
ten refers to species with extraordinary or bizarre featueey., tremen-
dous horns or other extravagant armament. As noted by Am@dai3),
these extraordinary traits may sometimes be evolutignexilremely im-
portant by allowing the species, or clades, to obtain adslito utilize
completely new niche types. Most obvious example of thicgss was
presented by Huxley (1868, 1870) who viewed birds as glarifimo-
saurian reptiles with the extraordinary ability to fly.

However, usually in the evolutionary biology literaturiee term "spe-
cialization” is used in the situations where a species iqrinciple, ca-
pable of using two or more alternative resources, but theeetrade-off
between the abilities to use these resources (Futuyma anehdo1988;
Jaenike, 1990; Scheiner, 1993; Abrams, 2000b; Ravigné.,e2@09;
Poisot et al., 2011; Forister et al., 2012). Generalistsaliser several,
of these resources whereas specialists exclude some aégharces in
order to be more efficient in using the others. The term "resesi may
here be interpreted rather generally. It may refer to, f@negle, nutri-
tional resources such as different plants eaten by a heghidifferent
prey species captured by a predator, different hosts ofaspar different
possible habitats in a spatially heterogeneous landsedpe For field-
biologically inclined discussions concerning the consegtspecialism,
generalism and the nature and existence trade-offs, spefFey (1996,
2003), Kneitel and Chase (2004), Loxdale et al. (2011) anthideet al.
(2011).

Specialization, in this wide sense, is a part of the evoharg dy-
namics of any other life history trait. Most of all, the eviatun of spe-
cialization, in the form of local adaptation, interactswihe evolution of
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dispersal: the better an individual is adapted to its pfieyplocal con-

ditions, the higher is the risk that this individual, if desging, ends in a
habitat with less favorable conditions (Clobert et al., PO0rhe relation

between specialization and dispersal, however, is moregbkoated than
this simplification, especially in the presence of localkdiers or other
temporal variations that may harm, or even wipe out, locg@utations

(Nurmi and Parvinen, 2008, 2011).

From the point of view of conservation biology, it is impartdo un-
derstand this relation, since, on one hand, increasingdtalbagmen-
tation makes the species and their local populations moreexable to
temporal disorders (Schoener and Spiller, 1987; Root, 1888agrandi
and Gatto, 1999), and on the other hand, habitat loss anthé&atation
have an outstanding effect on the loss of biodiversity weidie (Bar-
bault and Sastrapradja, 1995; Debinski and Holt, 2000; Sdi.£2000;
Fahrig, 2003), and the degree of specialization affectsialiy both the
consequences of habitat fragmentation and the globalatxmrisk of
species (Turner, 1996; McKinney, 1997; Henle et al., 2001teS et al.,
2009; Bruckmann et al., 2010). Altogether, it is of greapartance to
understand the complex interplay between the evolutiodgmamics of
specialization and dispersal in the presence of temporati@ns in order
be able to study their evolutionary dynamics in heterogasemd frag-
mented environments. This thesis aims to explore thispragrand thus,
to provide tools for understanding the possible evolutigmasponses for
habitat degradation and fragmentation.

However, this thesis has also another, equally importdrective:
understanding the origins of biodiversity. This objecistargeted, in the
case of two alternative resources, via one specific theatefuestion: un-
der which conditions can an initially monomorphic species (a species
that comprises one type of individuals only) evolve to thearphic co-
existence of a generalist type with two specialists typelis fuestion
has recently been vividly discussed (Wilson and Yoshimiié84; Egas
et al., 2004; Abrams, 2006a,b). In this thesis, two mecmasigre being
demonstrated and analyzed that allow an initially monoriarpopula-
tion to evolve to the trimorphic coexistence of generalistd specialists.
One of the mechanisms is based on the joint evolution of digphpropen-
sity and resource specialization (Nurmi and Parvinen, 204lereas the
other builds on non-equilibrium population dynamics (Nuand Parvi-
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nen, 2013).

The main focus of this thesis is in the understanding of tludugion
of resource usage in the case of two alternative resourakszatially
heterogeneous environments. When the population is ndtneéd,
the evolutionary analysis of any trait becomes rather custdmee. Here,
population dynamics in heterogeneous space are modeletiunyused
metapopulation models. The evolutionary analysis uslitee adaptive
dynamics approach. Below, these main tools, metapopulatmdels and
adaptive dynamics are introduced.

In order to build metapopulation models suitable for eviohgry anal-
ysis, one first has to derive a model for the dynamics of thallpopula-
tions based on individual-level processes, and then ligttfodel to the
metapopulation level by book-keeping. After the genertibauctions of
the metapopulation models and adaptive dynamics, this limgdeocess
is introduced together with a metapopulation-level praxythe invasion
fitness.

Finally, the results of the evolutionary analyses are kggtkin the
light of current conceptions of evolutionary dynamics oéaciglization.
These results concentrate on the evolution of resourdeaitdn in meta-
populations, on the joint evolution of specialization amgpérsal, and on
evolution under non-equilibrium ecological dynamics.
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2 Metapopulation models

2.1 Spatially heterogeneous models of ecological
dynamics

In traditional models of ecology, it is assumed that all theividuals un-
der consideration interact equally with each other, indépat of their
exact location. Based on this assumption, it is possiblessurae that
contact rates between individuals follow the law of masgactFor ex-
ample in the case of predator—prey relationships, the tanheh prey
is captured by the predators is often assumed to be lineesjyoptional
to the rate of encounters between the prey individuals aagtbdator
individuals. This rate, in turn, is proportional both to {hrey density and
to the density of prey-searching predators. Thus, all tieg prdividuals
encounter identical predation pressure independent oatba they in-
habit. This kind of population is often called well-mixedote that in the
predator—prey example, the number of prey-searching fedlis gener-
ally not directly proportional to the number of predatorscg the preda-
tors need time to capture, handle and digest the prey (rearlfianctional
response).

However, natural populations are usually not well-mixed] the en-
vironment, in which they live, is neither homogeneous noupiform
guality. Sometimes, for example in the case of marine ogyasj changes
in the environmental quality occur continuously. In thiseathe spatial
heterogeneity encountered by the organisms can be desdrba par-
tial differential equation, and the modeler ends up using,, @eaction-
diffusion models (Skellam, 1951; Levin, 1976; Gurtin and d@¢amy,
1977; Holmes et al., 1994; Okubo and Levin, 2001). Howevdrenv
terrestrial organisms are considered, changes in thecemagnt rarely
occur continuously. Instead, the suitable grazing anddingeareas of
any species are usually distributed to patches surroungethguitable
areas. These suitable patches are called local habitdigidaals within
a local habitat interact almost exclusively with each athad thus, form
a local population. Only rough estimates of local populatitynamics
can be presented on the basis of models that deal solely \eithmixed
populations. This is because the local populations intdradispersal,
which usually affects the local population dynamics in tlagch. Once
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this dispersal is taken into account, one ends up with metapton dy-
namics (Hanski, 1998, 1999).

The term "metapopulation” was first used by Levins (1969,0)9¥
his terminology, a metapopulation is a collection of pdistiesolated lo-
cal populations living in discrete habitat patches corerbtty dispersal.
Levins assumed that the local habitat patches are pronedabddsasters
that may occasionally wipe out the local population. Thsuits in empty
habitat patches that may again become recolonized by iramigjarriv-
ing from the other patches. In the Levins’ metapopulationletahe local
population dynamics within patches are completely omittEderefore,
a patch may only have two alternative states: either thehpatoccu-
pied or it is empty and colonizable by immigrants. Moreovee, spatial
configuration of the habitats, as well as differences betvieem, are ne-
glected in the dispersal process. Furthermore, becauseathiematical
tractability, it is assumed that there are infinitely mangalichabitats.

2.2 The Levins’ model and other patch occupancy
models

If one denotes the fraction of occupied patchesplbgnd assumes that
dispersers colonize empty patches with the rafécolonization rate”),
and that occupied patches become empty with the dgqteatastrophe
rate”), then one can write the Levins’ metapopulation madel

dp

dt
where1 — p is the fraction of empty patches (available for coloniza-
tion). It is thus assumed that the amount of dispersers tfapempty
patches is directly proportional to the fractipof occupied patches. The
Levins’ model is obviously an oversimplification, and its imaignifi-
cance is that it provides an easily accessible viewpoinhéonost im-
portant metapopulation-scale phenomenon: a species maistpeven
though all its subpopulations in local habitats are ocaealy, but not
simultaneously, destroyed by randomly occurring disasfidanski and
Gilpin, 1997).

The Levins’ model, however, often maintains its mathenatractabil-

ity even with more realistic functional forms of colonizati and catas-

cp(1 — p) — dp,
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trophe rates (Gotelli, 1991; Gotelli and Kelley, 1993; Hdrend Gyl-
lenberg, 1993) or several different patch types (Horn ana Mehur,
1971; Levin, 1974, 1976). The assumption of infinitely manyfarmly
connected patches is more essential for the mathematcahhility. |If
it is dropped, the models usually can be analyzed only viaikitions.
Nevertheless, it is relatively easy, for a field biologist,abserve habi-
tat patch connectivities, and to distinguish occupied angtg habitats.
Thus, models based on the patch occupancies and non-urdfsparsal,
such as the incidence function model by Hanski (1992, 1®94@rovide
widely used tools for field biology.

In the evolutionary analysis, however, the main drawbadkefpatch
occupancy models is that they are usually built completélgnmeno-
logically directly to the metapopulation level without citering the in-
dividual level processes at all. Therefore, these modedbleronly evo-
lutionary analysis that is completely based on group seled¢see, e.g.,
Van Valen (1971)). Natural selection, however, takes pkicthe level
of individuals such that the membership of a group may orfigcaf but
not completely determine, the fitness of an individual (&itls, 1966;
Rueffler et al., 2006). Therefore, the analysis of evolwdgrdynamics in
heterogeneous landscapes is reasonable only in struchatagopulation
models that are mechanistically underpinned on individiexa| ecolog-
ical dynamics (Geritz and Kisdi, 2012). Moreover, struetbmetapop-
ulation models offer a unified and clarified approach to tihgasions in
which multi-level selection takes place and the phenonaagical defini-
tion of fitness functions is less straightforward (Wilsom &ober, 1994).
In addition, the structured models allow also biologicatigre realistic
theoretical analysis of the ecological dynamics.

2.3 Structured metapopulation models

Structured models involve at least some level of spatiarogeneity, but
still model explicitly the local population dynamics, whicin turn, are
affected by dispersal. In a metapopulation model, eacH [mmaulation
is assumed to be well-mixed. Simplest structured modelspcige only
two habitat patches. Let andf;(z;) denote, respectively, the local popu-
lation density and the density-dependent per capita ptpualgrowth rate
in patchi, and furthermore, assume that individuals migrate fronctpat



2 METAPOPULATION MODELS 8

to patchj with ratee;; and survive migration with probability. Then,
one can write down a continuous-time two-patch metapojomahodel
as (Freedman and Waltman, 1977; Hastings, 1983; Holt, 1985)

% =fi(@1)m — e1221 + mex 2

dZUQ (1)
p = fa(wa)ws — €219 + mer21.

Note that the generalization of these models to include ag fnumber

of different patches is mathematically rather straighwimd, but the anal-

ysis of the model and the field-biological determinationrad ecological

parameters become cumbersome.

Alternatively, a two-patch model may have discrete-timaatypics
described by difference equations (Hastings, 1993; Glgtemet al., 1993).
Despite its simplicity, a two-patch model may exhibit ertiedy complex
ecological dynamics, which enables one to study the eftgfotsspersal
on the stability of the population dynamics (Hastings, 1998llenberg
et al., 1993; Ruxton et al., 1997; Kisdi, 2010). Moreovee to-patch
models offer the simplest possible framework for the anslgsource—
sink population dynamics (Pulliam, 1988; Dias, 1996; Gitlerg et al.,
1996). The term "source” refers to a habitat in which the ldgdh rate
(or fecundity in discrete-time models) on average exceledsleath rate
(probability), whereas in a sink population the death rateeds the birth
rate. Thus, a sink population may persist only by the meamswiigra-
tion from other patches. In metapopulations, abundant atimr from
high-quality patches may raise the local population dgrisilow-quality
patches such that, due to the density-dependent effeetsothl death
rate exceeds the local birth rate even though the local ptipalwould
be viable also alone, with lower local population densityvaweer. This
kind of patches were named "pseudo-sinks” by Watkinson artlleland
(1995).

Thus, a structure comprising sources and sinks or pseud#s-isi nat-
ural to metapopulations. When considering the evolutiomesburce
specialization, the source—sink structure is not the samalf individ-
uals. Patches that are of high quality to a species that isiadzed
to one resource may be low-quality patches to a speciesaized to
another resource. In addition, the differences betweechpatusually
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appear smaller when they are observed by a generalist cethpathe
differences observed by a specialist. Moreover, if pedaati chaotic
population-dynamical attractors are possible, diffefenal populations
of the same species may have qualitatively different pdmuladynamical
attractors. Simultaneously, it is also possible that, evéhin a single
patch, species with different specialization strategiesoanter qualita-
tively different population-dynamical attractors.

Moreover, dispersal is a key ingredient in spatial popafatnodels
with non-equilibrium attractors: intermediate dispergedpensity may
stabilize the local population dynamics in the patches wmatld, in the
absence of dispersal, exhibit periodic or chaotic popoitediynamics, but
more abundant dispersal may have a synchronizing effdetdd®of a sta-
bilizing one. Then again, the type of the population-dyraahattractor
affects the evolution of dispersal propensity: if all thedbpopulation
densities are at their equilibrium values, dispersal isgeld against, but
when the local population densities fluctuate, dispers# ne@ome ben-
eficial (Hastings, 1983; Parvinen, 1999), and furthermtre,dispersal
propensity may even undergo evolutionary branching whieeepbpu-
lation splits into two morphs; one dispersing abundantlgl #re other
scarcely (Doebeli and Ruxton, 1997; Parvinen, 1999).

As the evolution of specialization interacts significantligh that of
dispersal, it is necessary to understand both the effectispérsal on lo-
cal population dynamics and the consequences of sourdestsuctures
to be able to study the evolution of specialization in spigtiaeteroge-
neous environments (Ronce and Kirkpatrick, 2001; NurmiRad/inen,
2008, 2011, 2013).

When the number of local habitat patches is increased framirtthe
metapopulation model (1), the modeler has to consider ttelsief the
dispersal process, since the dispersal rates (probab)liind dispersal
survival may be different for each pair of patches. The medmsatrix
calculus may enable the mathematical analysis of such mdolesome
extent (Parvinen, 1999), but usually some mean-field apprabon is
necessary when modeling dispersal. For example, the matohg be
assumed to be equally connected by dispersal (Levin et384;1Cohen
and Levin, 1991). Some general conclusions can also be difvtiis
assumed that the habitat patches form a grid, and dispershisi grid
is distance-limited, for example, only to nearest neigbban this case,
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one ends up with coupled map lattices analyzed, e.g., by kKa(#992,
1998) and Karonen (2011). However, if one wishes to buildatialy

explicit model, where all the connections between patchesaken into
account, the only way to analyze the resulting model is wviaugations
that require careful parameter estimation (see, e.g., kiamsl Thomas
(1994), Hanski et al. (1994) and Hanski and Ovaskainen (003

The two-patch and-patch models introduced above lack one essen-
tial feature included in the Levins’ metapopulation mod#le frequent
but random catastrophes that occasionally wipe out logaliladions but
leave the patches habitable and recolonizable. If the nuwibgatches
is finite, such catastrophes are liable to drive any poparatd extinc-
tion, at least in the evolutionary time-scale. There areydwer, models
with finite number of patches, where local conditions in patcalternate
randomly, but these temporal variations are mild in the sehat local
populations are not wiped out completely, which enables/thkility of
the population in the evolutionary time-scale (McPeek armidt,H 992;
Kisdi, 2002).

Altogether, in any model intended for evolutionary anayshe as-
sumption of randomly occurring disasters destroying ernitical pop-
ulations must be accompanied with the assumption of infynieany
patches. If one, in addition, assumes global dispersalriggdhe spa-
tial arrangement of the patches, the model even become&matically
tractable (Hastings and Wolin, 1989; Hastings, 1991 ; Gylérg and Han-
ski, 1992, 1997; Gyllenberg et al., 1997). One can then asghat all
the emigrating dispersers enter a disperser pool, fromwihiey are dis-
tributed evenly to all of the patches. Let n@w, be the size per patch of
the disperser pool at time. If one now focuses on a single patch with
population density:,, at timen, one can determine the local discrete-time
dynamics as

Ty = C(n+1)(1 —e)f(x)z, + 7D,(s),

where the functiory determines the local growth and survival within the
patch. This function may vary from patch to patch. The patanser
ande determine, respectively, dispersal survival and the eatiigm prob-
ability of an individual during one time step. Furthermaf&p + 1) is a
random variable drawn from the Bernoulli distribution wghrameter.
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It determines the occurrence of the local catastrophes, i.e

1, ifthere is no local catastrophe in the focal
patch after perioa. (probability1 — ¢),

0, if alocal catastrophe occurs
after periodn (probabilityc).

Cln+1)= (2)

When there is only a finite number of different patch types,dizgnamics
of the disperser pool size can be heuristically defined as

D _ Z ( Expected number of emigran
" —~ "™\ from atypem patch attime, /'’

wherep,, is the fraction of typen patches. The actual calculation of
D,, from this equation is rather demanding. However, in metatans
with globally attracting fixed point equilibrium, one canghect this cal-
culation and solvé,, from a fixed point equation, since in the fixed point
D,, has a constant valuB and this value must be such that once a dis-
perser enters a local population, the local clan it inisatee., itself and
all of its descendants, their descendants, etc, will onaeeproduce ex-
actly one new successful disperser before the clan is gestioy the next
catastrophe in the patch..

Below in section 4, this metapopulation model is adjusteddsource—
consumer dynamics and the evolution of resource spedializaf the
consumers. Derivation of the local dynamics follows thedglines given
by Geritz and Kisdi (2004), and the calculation of invasidndss (or
more precisely a proxy for the metapopulation-level ingaditness) is
based on the method by Parvinen (2006), who adapted the opetiagion
reproduction ratio concept introduced by Gyllenberg andz2M2001)
and Metz and Gyllenberg (2001) to discrete-time metapajuianod-
els. However, before considering fithess in metapopulatitme adap-
tive dynamics framework is introduced as a general toollmwxriodel-
ing frequency- and density-dependent long-term evolutiocontinuous
traits in ecologically realistic settings.



12




13 3 ADAPTIVE DYNAMICS

3 Adaptive dynamics

3.1 Historical background

In the days of Darwin (1859), the Mendelian genetics was nidely
known, and thus, it was natural that all the evolutionarystderations
took place at the phenotypic level: the traits that are beia¢for the re-
production and survival of an individual were simply pradatto become
more common in nature. When the results of Mendel were redésed at
the beginning of the 20th century (see, e.g., Fischer ()98% perma-
nence of genetic material and the consequent discretehésseaditary
alteration first seemed to conflict with Darwin’s ideas ofdyral evolu-
tion (see, e.g., Mayr (1982)). This controversy was solvedhe rise
of population genetics conducted by Fischer (1930), Wr{@h81) and
Haldane (1932) and the resulting modern synthetic evaiatiy theory
(Dobzhansky, 1937; Huxley, 1942).

Mathematical population genetics considers evolutionwagifations
in the frequencies of different alleles or genotypes in pajans. Besides
the randomly occurring mutations and natural selectiagéHluctuations
are affected also by random genetic drift (especially inlspggoulations)
and gene flow caused by dispersal. Furthermore, the gemehitexture
of the species affects the fluctuations via, e.g., episthsiage, and re-
combination. Population-genetic models aim to model tbisagic com-
plexity in detail. A trade-off that is required to keep the aets analyz-
able, is that the species’ ecological framework must berasdtto be rel-
atively simple. Therefore, despite the increasing knogtedn genetics,
phenotypic models of evolution are still useful when punguecological
realism in evolutionary models and predictions.

Classical population genetics usually assume that a umugesure
of fitness is directly attached to each possible trait costimm, and fur-
thermore, that this measure is independent of the traitseofdst of the
population (Wright, 1932; Lande, 1976). This means thad®n is as-
sumed to be frequency- and density-independent and theditradues of
the possible trait combinations form a so-called fithesddaape, where
evolution proceeds always uphill: a trait combination wgikien fitness
can always outcompete the combinations with lower fithessyedl as it
will be outcompeted once a trait combination with higherd#s appears.
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This results in optimization models where evolution leaxla trait com-
bination whose fitness value is a local maximum of the fitnesddcape.
With two-dimensional traits this process corresponds tditig the hill
peaks on a topographical map that describes the fitnesscimelsNote
that if the mutations are assumed to be small in effect, ¢éfawiudoes
not necessarily lead to the highest peak, but instead oalgdlrest local
maximum is achieved.

The incorrectness of the assumption of frequency-indegrecel was
realized already in the early history of population gersedis it was noted
that an allele or trait may benefit from being rare (Halda®821 Lewon-
tin, 1958; Ayala and Cambell, 1974). Most obviously, thiswaaption
fails in the case where the fitness of an individual dependpainwise
interactions between conspecifics, such that the stramgving trait)
of the opponent affects the success of an individual. Thaem fithess
value of any trait combination is not constant but dependhenrait fre-
guencies in the population. This means, that the fithesstame is not
constant, but it depends on the frequencies of the diffesgategies in
the resident population. This idea is included into the frauork of evo-
lutionary game theory introduced by Maynard Smith (1974,6,9.982).

In evolutionary game theory (Nowak and Sigmund, 2004), #&ss
sumed that the fitness of an individual is affected by theviddial’'s suc-
cess in consecutive pairwise interactions with conspeacifin each en-
counter, an individual may select from several behavioadlepns, e.g.,
escalate a conflict, display, negotiate or withdraw. Thegeems are the
traits, the evolution of which evolutionary game theory siders. An
individual may always use the same behavioral pattern. iBhialled a
pure strategy. However, an individual may also use a mixedesgjy, i.e.,
use different behavioral patterns with different probiéies. In this case,
the strategy vector of an individual determines these pgntibas. In a
specific encounter, the payoffs that the interacting irttiligls obtain (or
losses they suffer) are determined by the behavioral pat{@ure strate-
gies) used by the interacting individuals in this encounter

In the classical evolutionary game theory, it is usuallyuassd that
the fitness is determined by the average payoff obtained nsemutive
independent encounters. This means that the fithess of asdinal be-
comes linear both with respect to the strategy of the resiplepulation
and with respect to the strategy of the individual. Thisairiy results in
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some rather unrealistic features as indicated, for exaimplkbe Bishop
and Cannings (1978) theorem (see, e.g., Meszéna et all))20dore-

over, even though evolutionary game theory considers gwuéncies of
different strategies, it omits the overall population dgng his is a major
drawback, especially when considering long-term evoiuftdeino et al.,
1998).

3.2 The adaptive dynamics approach

Adaptive dynamics (Metz et al., 1992, 1996; Dieckmann and,1296;
Geritz et al., 1997, 1998) is a tool for studying the coursé&efuency-
and density-dependent evolution of continuous traita{sgies) in eco-
logical models. The first step in any application of adaptiyeamics
is the identification of traits, the evolution of which onengerested in.
These traits form the strategy of an individual, and the &ttesr possible
values is the strategy space. In the simplest case, thegrest one-di-
mensional, e.g., age at maturation, and the strategy spaoenie interval
on the real line. Below, adaptive dynamics tools are intoeduin the case
of one-dimensional strategies. The generalization toovectlued strate-
gies is rather straightforward (Dieckmann and Law, 1996iddsi and
Di Pasquale, 1996; Leimar, 2001, 2005, 2009), but the casefinite-
dimensional (function-valued) strategies requires mare ¢Dieckmann
et al., 2006; Parvinen et al., 2006, 2013). The strategigfied in this
thesis are either one- or two-dimensional.

The key idea in adaptive dynamics is to model explicitly tbelegical
dynamics and to derive the invasion fitness function medatiaaily from
the life-history of the individuals, whereas most of theesthpproaches
of evolutionary modeling are based on phenomenologicallif fitness
functions. For the derivation of the invasion fitness fumigfiit is nec-
essary that invasion fitness itself is exactly mathemayickdfined. This
definition was given by Metz et al. (1992) who stated that tivasion fit-
ness of a rare mutant with strateg§'is its long-term exponential growth
rater(s™ E£'9) in the environmen"* set by the residents. if < 0,
the mutation will sooner or later vanish from the populatidhr > 0,
the mutant strategy may still be eliminated from the popoiradiue to the
demographic stochasticity at the initial phase of the ilm@sbut it may
also increase in population density and either coexist thighresidents or
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oust some of the resident strategies.

The derivation of the invasion fitness function and the asialgf the
evolutionary dynamics are based on the following threedassump-
tions:

1. Clonal reproduction.

2. Rarely occurring mutations allowing the separation ajlegical
and evolutionary time-scales.

3. Small initial mutant frequency in a large resident popata
In addition, it is usually assumed that:

4. The mutational steps are small, i.e., a new mutant alwesembles
one of the existing residents.

5. If a mutant can invade a monomorphic resident populabahin-
vasion under reversed roles is not possible, the mutanteyilhce
the resident.

6. If a mutant can invade a monomorphic resident populabahthe
invasion under reversed roles is also possible, then thdergsand
the mutant will coexist.

Detailed discussions on the status of these assumptioga/areby Geritz
et al. (2002), Geritz (2005), Geritz and Gyllenberg (200%) &Meszéna
et al. (2005).

Whereas population genetics considers the short-ternueolof al-
lele distributions, the adaptive dynamics analysis uguallolves only a
limited number of different strategies present in the residoopulation
although the number of possible strategies may be infinites Tmita-
tion allows one, based on the known ecological dynamicslimutate the
population-dynamical attractor of the resident populatio

It is possible to formulate almost any reasonable ecolbgrazdel
of population dynamics such that it contains an environ@alenteraction
variable, say”, such that the population dynamics affect this variable, bu
once its value is known, the equations describing populatymamics are
linear (Diekmann et al., 1998, 2001, 2003, 2007). Due to Hseimption
(2.) of rarely occurring mutations, the resident populai® always on
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the population-dynamical attractor when a new mutantesgsaénters the
population. On the population-dynamical attractor, tredent sets, to-
gether with the abiotic factors, the value of the environtakinteraction
variable. Let this environment set by the resident poportebe £, This
variable, £, may be a scalar, a vector, or even an infinite-dimensional
variable. This thesis focuses on discrete-time populatiodels. In such
models, it is natural that the biotic factors affecting tingisonment£'s

are different for each time unit. The invasion fithegs™", £'), how-
ever, is not determined for any single time unit, but it islireg-term av-
erage of the exponential growth rate. Therefore, itis obwibat the vari-
able £ must be of the formi™s = (E™(1), EY2),..., E™(n),...),
where£"™S(n) is the environment that determines the growth of the mutant
population at time-unit.

According to the assumption (3.), the mutant populatiomisailly
small, and thus, its effect on the environment is negligibléerefore,
at the initial phase of invasion, its population dynamics/rha approx-
imated by a linear differential (or difference) equatiorhese the per
capita growth rate of the mutant population determines rikiasion fit-
ness of the mutant strategy (Metz et al., 1992). Let rB# denote the
mutant strategy and le{s™ ", £™) denote the invasion fitness of the mu-
tant in the environment set by the resident.

Assumption (4) is necessary when one wants to deduce thetexpe
direction of evolution based on the local properties of thesion fithess
and local fitness gradient that will be derived below derisadhe basis
of invasion fitness.

Assumptions (5.) and (6.) allow majority of the evolutiopanalysis
of ecological models to be built on invasion fitness (Gerttale 1998,
2002). In most ecological scenarios, these assumptiotsalirectly
from the previous assumptions when the population-dynalnaittractor
of the resident population is unique. When there are sepesalible eco-
logical attractors for the resident population dynamit® situation is
more complicated. Consider, for example, the case in whiehrési-
dent population has two alternative stable attractorsAsapd B. Then
the environment set by the resident is not unique, but it fiemdint for
each attractor. Denote now the environment set by the neisideile on
the attractor A byF® and the environment set by the resident while on
the attractor B byE®. Furthermore, assume thats™", £}&) > 0 and
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r(s™t EFS) < 0. Now, a mutant that enters while the resident is on the
attractor A starts to increase in population density. In huases, the
appearance of the mutant does not cause significant chamdke at-
tractors of the population dynamics even if the mutant otgesident
(Geritz et al., 2002). Sometimes, however, it is possibé, tue to the
appearance of the mutant, the population dynamical attrécbecomes
unstable, and the population (mutant—resident dynamiadyes to the
alternative attractor B, on which the mutant populatiomtstep diminish
and finally dies out. Therefore, the prevalent strategy efgbpulation
remains unchanged but the population-dynamical attrattanges qual-
itatively. This is the so called "resident strikes back”saeo (Doebeli,
1998; Mylius and Diekmann, 2001; Dercole et al., 2002).

A special extreme case of this scenario is the evolutionaigidse,
where the alternative resident attractor B is the trivitdagtor that cor-
responds to extinction. Under certain ecological condgjat is possible
that an invading mutant can oust the resident, even thougmdt viable
alone. In this case, it is possible that evolution drivesgpecies to ex-
tinction, i.e., evolutionary suicide occurs (Matsuda armtains, 1994a,b;
Ferriere, 2000; Rankin and Lopez-Sepulcre, 2005; Pany2@05, 2007).
In the case of a polymorphic population, it is also possibiat tonly
one morph is driven to extinction, which may even result inletron-
ary branching—extinction cycles (Kisdi et al., 2001; Dée¢c@003; Nurmi
and Parvinen, 2013). Evolutionary suicide (evolutionalf-extinction,
Darwinian extinction) is possible, since traits that arentfal to the via-
bility of the species may still be beneficial at the individlevel, which
allows them to become more common in the population (WebB3R0
This may be related, e.g., to the "tragedy of commons” (Hgril®68).

There are two different types of evolutionary suicide. Miatas that
are harmful at the population-level may cause the populatipe to be-
come extremely small such that the population is finally wipeit by
demographic stochasticity (Matsuda and Abrams, 19944d)it Il also
possible that the evolutionary suicide occurs fully detarstically (Gyl-
lenberg and Parvinen, 2001; Gyllenberg et al., 2002). Blpicscenar-
ios resulting in deterministic evolutionary suicide invelAllee-effects
(Stephens et al., 1999). However, Allee-effects are notottilg route
to deterministic evolutionary suicide, because it may labéad also by,
e.g., non-equilibrium ecological dynamics (Parvinen, 208urmi and
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Parvinen, 2013).

It is noteworthy that the condition(s™" £ < 0 implies that the
mutant is liable to become ousted from the population, wdeetbe con-
ditionr(s™t E™) > 0 only implies that the mutant population is capable
to invade the mutant population. However, at the initialgghaf an inva-
sion, the invading mutant population only comprises onea(faw) indi-
vidual(s). Therefore, a mutant, however fit it may be, caristafrom the
resident population due to demographic stochasticity.his tase how-
ever, the resident population remains unchanged. Thusresponding
mutant is liable to later again repeatedly appear in theleegipopulation
until it survives the stochastic initial phase of the ingasiand finally
invades the resident population.

3.3 The evolutionary analysis of scalar-valued strategies
In monomorphic populations

Below, itis assumed that the strategy under consideratiscalar-valued,
i.e., one-dimensional. Itis also assumed that the respigmilation is ini-
tially monomorphic, i.e., all the resident individuals kahe same strat-
egy. However, the generalization of the presented resufieliymorphic
resident populations is rather straightforward. Furtheenit is assumed
that the population-dynamical attractor of the resideratsgy is unique.
As mentioned above, this simplifies the evolutionary angjysnce then
also the environmenk™s set by the resident is uniquely determined for
each resident strategy, and thus, it is possible to basevtiiatienary
analysis solely on the invasion fitness, which can be corsities a func-
tion of two variables; strategie$™! ands™s, of which the latter one acts
through the environmental interaction varialbl&®.

Since the mutational steps are assumed to be small (assum(i)),
the expected direction of evolution in this monomorphic gagon is
given by the local fitness gradient

87,. (Smut7 EI’GS) :| (3)

D(SFGS) = |: asmut

Of special interest are the so called singular strategigs which D(s*) =
0, i.e., directional selection vanishes in the monomorplojgysation. A
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classification of all possible generic types of singulaatstgies and their
interpretation is given by Metz et al. (1996) and Geritz e(E397, 1998).
Properties of singular strategies and directions of elaiit a monomor-
phic population may be analyzed graphically by a pairwisadability
plot, or PIP, (Matsuda, 1985; van Tienderen and de Jong, ;1986
et al., 1996; Geritz et al., 1998). PIPs representing the rioast impor-
tant classes of singular strategies are illustrated inréidgu

Mutant strategy

Resident strategy

Figure 1: Examples of pairwise invadability plots and quaively differ-
ent singular strategies. In the white areas a mutant syraieyy invade
the resident population. In the gray areas the invasiontipossible.
Panel A: Evolutionarily attracting and uninvadable singular stgst
Panel B: Evolutionarily repelling and invadable singular strategy
Panel C:”Garden of Eden” evolutionarily repelling singular strgye
Panel D: Evolutionary branching point.

A pairwise invadability plot is the sign plot of the invasiditness
r(s™t E') such that the horizontal axis corresponds to the set of all po
sible resident strategies and the vertical axis to the sall pbssible mu-
tant strategies. A white point in the PIP indicates that thwasponding
mutant strategy can invade a population with the correspgnesident
strategy, i.e.r(s™ E™) > 0. Correspondingly, a black point indicates
that the mutant cannot invade, i.e(s™, E™) < 0. The curves separat-
ing white and black regions in the PIP are the fithess iscglgieen by
the trait combinations for which(s™", E™%) = 0. The main diagonal is
trivially such an isocline, since(s"s, E™%) = 0 due to the assumption (2)
that ensures that the resident is always on a populatioardigal attrac-
tor, and on a population-dynamical attractor, the popoatioes neither
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grow nor decrease in population size. The configurationebther, non-
trivial, isocline(s) determines the singular strategied their properties.
Singular strategies lie at those points where a nontrivilak$is isocline
crosses the diagonal. Even though each PIP in figure 1 haoalgin-
gular strategyd®), itis possible that the strategy space contains ardirari
many singular strategies.

Assuming that only mutants slightly different from the degit can
occur (assumption (4.)), one can confine the analysis of BHZIo a nar-
row strip along the diagonal where the mutant and resideaiesfies are
identical. For example, consider the PIP in Figure 1A. From hlack-
and-white pattern it can be seen that a resident populatitham arbi-
trary strategy such that < s* can be invaded by mutants with a slightly
larger strategy but not by mutants with a slightly smalleatstgy. The
opposite is true for a resident population with any strategys*. In this
sense, the strategy is evolutionarily attracting. Moreover, it can also
be seen that a resident population with strategy s* cannot be invaded
by any nearby mutant, and therefore it is uninvadable,ewalutionarily
stable strategy (ESS, Maynard Smith and Price (1973)).

The singular strategy in the figure 1B has the opposite ptigserlt
is evolutionarily repelling and, moreover, can be invadgaby nearby
mutant. The singular strategy in figure 1C represents sec&Barden of
Eden” configuration: It is evolutionarily stable in the senthat once the
resident population has exactly the singular strategyt is uninvadable
by any nearby mutant. However, the singular strategy is valugonar-
ily attracting, and therefore, any slightest deviation ssthe population
to evolve away from the neighborhood of the singular strategnatural
systems, such deviations are unavoidable, and thus ingeatttere is no
need to distinguish invadable and uninvadable singulategires when-
ever they are evolutionarily repelling.

The singular strategy in figure 1D is evolutionarily attragtbut in-
vadable. A singular strategy of this type is called an evoh#ry branch-
ing point. In the neighborhood of an evolutionary branchmeimt, there
exists a domain of strategies that can coexist in a protetitadrphism
in the ecological time-scale. Consider now two strateggag,x andy.
Let £* (or EY) be the environment determined by a monomorphic resi-
dent population with strategy (or y). Strategies andy can coexist in
a protected dimorphism if both(x, E¥) andr(y, E*) are positive. This
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means that if, in this coexistence, one of the two strategasdd be rare,
it would grow in population size since the environment wolokd practi-
cally, set by the competing strategy.

The existence of strategy pairs capable for such protectexistence
can be identified from pairwise invadability plots by switaip the roles
of the mutant and resident strategy (mirroring with resped¢he diago-
nal) and placing the resulting PIP on top of each other withdhginal
PIP. Altogether, close to the branching point, the popotatiecomes di-
morphic. When the population is dimorphic in the neighbodhof an
evolutionary branching point, it can be invaded only by mtgghat are
further away from the branching point. Thus, the populagmeoun-
ters divergent selection and, on each successive invab®twyo resident
strategies become, at least initially, more and more disfiom each
other (Metz et al., 1996; Geritz et al., 1997, 1998, 2004).

Whenever evolutionary branching is considered, the bassarap-
tion (1) of clonal reproduction becomes crucial. Kisdi aneri@& (1999)
have shown that clonal adaptive dynamics can for large egtexdict the
course of evolution in monomorphic diploid sexually reproishg pop-
ulations as well. In the case of branching points, however, donal
adaptive dynamics predicts that the strategy of a mononogipula-
tion evolves towards the neighborhood of the branchingtpeirere dis-
ruptive selection promotes ecological diversification.e™ame is true
also for monomorphic sexually reproducing populations.at\appens
under the influence of such disruptive selection, dependhemenet-
ical architecture and the mating system of the species kbiaan and
Doebeli, 1999; Geritz and Kisdi, 2000; van Doorn and Weigs#001).
In clonally reproducing populations, diversification $plihe population
to two distinct lineages that encounter divergent evofytighich makes
their strategies to evolve further away from each other.iptodd popu-
lations, however, this split is prevented by the averagiifeceof sexual
reproduction, unless some form of assortative mating eg(see, e.g.,
van Doorn and Dieckmann (2006); van Doorn et al. (2009); R2089);
Kisdi and Priklopil (2011)). Altogether, the mere existeraf an evolu-
tionary branching point does not lead to ecological speriaBranching
points can only indicate ecological circumstances that praynote di-
versification which may, if mating barriers evolve, resalspeciation.

Besides the properties introduced in Figure 1, the isoctm&igu-
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rations in pairwise invadability plots may differ qualitaly in the abil-
ity of the singular strategy to invade other strategiessmaighborhood.
However, this property is of interest only in the case of aol@ionar-
ily attracting ESS, and even then the interest is minor,esthts property
only determines the way the ESS is approached. If the ESShwade
neighborhood strategies, it is possible, that the pomriagnds up exactly
to the ESS in a discrete step. In the opposite case, populedio only
approach the ESS as a limit process that may be restricteldebmini-
mum size of possible mutations, which is usually assumedist i the
adaptive dynamics analysis.

If the mutations were infinitesimally small, evolutionanedysis based
on dynamical systems theory would be possible using thertealequa-
tion of adaptive dynamics (Dieckmann and Law, 1996; Chamaget al.,
2001, 2006, 2008; Durinx et al., 2008). Thus, the existeridbe min-
imum size of possible mutations together with mutationatisasticity
separates adaptive dynamics approach from standart dyabsystems
theory and enables, e.g., the analysis of evolutionarydhiag, which in-
creases the dimensionality of the evolving system and retbie outside
the scope of the dynamical systems theory as such.

When selection is both frequency- and density-dependeaintad-
ability and the evolutionary attractivity of a singularategy are indepen-
dent of each other, whereas in optimization models (fithesddcapes)
and game-theoretical models they are contingent on eaehn @iteszéna
et al., 2001; Dieckmann and Metz, 2006). This, together withgame-
theoretical history of adaptive dynamics, has caused sa@mation and
inconsistency in the terminology used by different authof$he term
ESS (evolutionarily stable strategy) (Maynard Smith anite?r1973),
that refers to strategies that cannot be invaded by any nasaiditegy, is
nowadays well established, even though the establishetpbnetation is
rather misleading from the point of view of the traditionlaébry of dy-
namical systems, where an equilibrium point in a state-spastable if
the state of the system converges to this point whenevenita state is
close enough to this point (Devaney, 1989; Verhulst, 198&wever in
adaptive dynamics, evolution starting from a neighborhafah ESS that
is not evolutionarily attracting will direct away from theSB. In Figure
1, both cases A and C illustrate evolutionarily stable (uadable) strate-
gies even though only the singular strategy illustratedangb A would
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be stable in the terminology of dynamical systems. Moreogeolu-
tionarily attracting strategies are also called convergestable strategies
(Christiansen, 1991). Furthermore, Eshel and coworkerthgsterm con-
tinuously stable strategy (CSS) for a convergence stab& (EShel and
Motro, 1981; Eshel, 1983; Eshel et al., 1997).

The pairwise invadability plots (figure 1) allow the grapianalysis
of the global evolutionary attractivity and global invadayp of singu-
lar strategies. However, due to assumption 4 of small nanatisteps,
even local evolutionary attractivity and invadability atgficient for evo-
lutionary analysis. The local properties of the singulaategies may be
analyzed also algebraically based on the values of the dexder partial
derivatives of the functiom(s™ E') (Geritz et al., 1998). Let now*
be a singular strategy, i.e.,

a,',. (Smut7 EI’GS)

D(s") = [ et = 0.

:| gMut_— gres— g

If s* is a local fithess maximum in the environment set by the gjyatg
ie.,
82 mut Eres
Fr(s™, B <0,
(aSmUt>2 gMut_ gres— gx

thens* is a locally uninvadable strategy (compare to Figure 1AmiSi
larly, if this second order partial derivative is negatitreens* is a fitness
minimum in the environment set by the strategyrhus, it can be invaded
by any nearby strategy, which means that it is a branchingt gpoompare
to Figure 1D). Monomorphic evolution to such fithess mininsuspos-
sible since, under frequency-dependent selection, eaitierd strategy
s'®s determines different environmenht®s where fithess landscape expe-
rienced by a mutant with strategf", i.e, r(s™ E") considered as a
function of the mutant strategy™, determines which mutants may in-
vade the resident population. However, once a mutant irsvadd re-
places the resident, it determines a new, different, fittees$scape. Fig-
ure 2 illustrates the way this process may lead either tocaljditness
maximum or to a (local) fitness minimum.

In monomorphic populations, the expected direction of @tioh is
given by the sign of the local fitness gradidnts) (see equation 3). For
singular strategies* , the fithess gradiend(s*) = 0. Furthermore, the
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Evolution to an evolutionary stable strategy (ESS)

Evolution to a branching point

NN

— Evolutionary steps —

Figure 2: In each panel, the invasion fitnegs™" E™S) (vertical axis)

is plotted with respect to the mutant stratedy" (horizontal axis) in the
environment set by a monomorphic resident population vii¢ghstrategy
s"%indicated by the vertical dashed line. In each panel, nedtuéonary

step will be towards right, i.e., the resident stratef§yis replaced with
a mutant strategy™! such thats™ > 5", until, in the rightmost panel,
a singular strategy is reached. On the upper row, this simgitategy is
a local fitness maximum, i.e., an ESS, and on the lower rowsitigular

strategy is a local fitness minimum, i.e., a branching point.
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sign of the fitness gradient in the neighborhoodsbfcan be deduced
from D’(s*). Thus, the singular strategy is evolutionarily attractiifg
D'(s*) < 0, and repelling ifD'(s*) > 0. Furthermore, the value of
D'(s*) can be calculated as

I 827,(Smut7 Eres) 82T(Smut7 Eres)
D (S ) - [ (88”“”)2 o (8Sres)2

:| gMut_— gres— g

Moreover, if
|:827,.(Smut’ EFES)

(asres)2 :| gMut— gres— gx

Is positive, thens* can invade neighborhood strategies. If any of these
expressions vanishes, the properties of the singulaegiest must be de-
duced from higher order partial derivatives (based on Tasdwies ex-
pression of the invasion fitness function).

3.4 Evolutionary analysis of scalar-valued strategies in
polymorphic populations

So far, only monomorphic populations have been considéerbd.adap-
tive dynamics approach, however, applies to di- or polyrargop-
ulations as well. The algebraic tools provided by adaptiyeadhnics
are applicable, given that it is possible to find the attnactothe eco-
logical dynamics, be it an equilibrium or a periodic orbitve® when
the population-dynamical attractor cannot be found algiebtly, adap-
tive dynamics tools may still enable evolutionary analysia stable
population-dynamical attractor exists, it can often benfbiby iterating
the ecological population dynamics sufficiently long. Otioe attractor
has been found with numerical methods, the theoretical olstprovided
by adaptive dynamics apply for evolutionary analysis.

Furthermore, the adaptive dynamics approach allows efti@eolu-
tionary simulations since the ecological model for the gapon dynam-
ics is specified, and thus, resource-consuming indivithasked simula-
tions can be replaced with simulations that are built on teetion of
the ecological dynamics of a polymorphic population togetith in-
frequent insertions of new mutants, and removals of stregeipat have
become rare enough to be considered extinct. In this tredkibese tools
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are being used: algebraic analysis, nhumerical analysissandlations
based on iteration of ecological dynamics with rare rangooakcurring
mutations.

3.5 Joint evolution of several traits (vector-valued
strategies)

One of the main topics of this thesis is to show that the joiotgion of

specialization and dispersal propensity may allow anatimonomor-
phic population to become trimorphic such that a generalistph co-
exists with two specialist morphs. Studying the joint ewoln of two

traits means that one has to consider vector-valued tiagtisnar (2001,
2005, 2009) has shown that, in this case, different mutatieariance—
covariance structures and fitness interactions may ctyeiiéct the evo-
lutionary dynamics.

In the case of one-dimensional traits and small mutatidreset/olu-
tionary dynamics are rather simple: if the fithess gradie(t®®) is posi-
tive, only mutants with higher trait value may invade thadest strategy
s, and the evolutionary path is qualitatively similar for agquence of
successive mutations. In the case of two co-evolving tréiese are usu-
ally at least two qualitatively different types of mutantsit may invade
the resident strategy.

Consider, for example, the joint evolution of dispersalgaasity and
specialization. Then, in the absence of pleiotropy, thedezd popula-
tion may be invaded either by mutants that differ only in thepdrsal
propensity or by the mutants that differ only in the spezétion strategy.
Even in this non-pleiotropic case the order of stochastitatimn events
may significantly affect the outcomes of evolution, and thel@ionary
dynamics are not, even qualitatively, independent of th&atran process
(Nurmi and Parvinen, 2011).

If pleiotropic mutations affecting simultaneously botte tHispersal
propensity and specialization are possible, the set of mgategies
capable of invading the resident is notably larger. Furtitee, there
may be fithess interactions such that the sign of the invaf#ioess of
a pleiotropic mutant cannot be deduced from the invasioad#as of the
non-pleiotropic mutants. For example in the case of joiot@von of dis-
persal propensity and specialization, biological inantmight let one to
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expect that a mutant that is simultaneously both more sliesiband less
dispersive might be able to invade a resident strategy shatinvadable
against both strategies that differ only in the specialwastrategy and
strategies that differ only in the dispersal propensity.

In this thesis, as well as in the analysis committed by NurmdiRarvi-
nen (2011) pleiotropic mutations are assumed to be implessibince
even non-pleiotropic mutations are sufficient to enableemution to
the trimorphic coexistence of specialists and generalisis not neces-
sary to add in the full complexity of pleiotropic mutationgee though
they may sometimes enable the emergence of additionaMeicsilly.
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4 Mechanistic derivation of ecological models
for the adaptive dynamics of resource use

The agenda of this section is to show how to derive metaptpaolenod-
els that are suitable for the evolutionary analysis of resusage. As
mentioned above, this process has to start from the indavigwel; here
the starting point is a continuous-time resource-consumaeltel with two
alternative resources. Geritz and Kisdi (2004) have shdwaha simple
argument of time-scale separation allows one to derive ftosimodel a
discrete-time model for the consumer population. Once therete-time
consumer population dynamics have been specified in a sirgdlenixed
population, lifting this model to the metapopulation leigjust a ques-
tion of book-keeping, as has been shown by, e.g., Gyllendteaf (1997)
and Parvinen (2006).

The model derivation is followed by the derivation of theasion
fitness function in these models. In order to calculate ilovaftness in
metapopulations, it is necessary to understand the célmulaf invasion
fitness for well-mixed populations. Therefore, both of tladcalations
will be presented here.

4.1 Discrete-time model for local population dynamics

The derivation of a discrete-time model for the well-mixexpplation is
based on the guidelines given by Geritz and Kisdi (2004) irfldpproach
applies to species that hatch at the beginning of seasoneagsarces
from the environment to produce new eggs that also encourgesality
during the breeding season. At the end of the breeding seaaf the
adults die and only a fraction of the eggs survives to thevalhg season.
The other eggs are lost. For simplicity, it is also assumatlttiere is no
within-season mortality among the adults.

In the modeling technique of Geritz and Kisdi (2004), theadstof
the continuous-time resource-dynamics determine thedffbe discrete-
time consumer-dynamics. Below, the model derivation is@néed in the
case of general resource-growth functions and a monomocpinsumer
population (all the consumers are identical). Later, thelehs general-
ized to the case of several consumer types, and specificroesgtowth



4 MECHANISTIC MODEL DERIVATION 30

functions are introduced in order to derive some well-knolgcrete-time
population models.

First, let the variables € N andt € [0, 1] denote two different mea-
sures of time such that the discrete variabldetermines the number of
year (or breeding season) whereas the continuous variatdeermines
time within that season. Let nowt (¢) be the availability of the resource
i attimet during season, and leto;G;(A;) be the density-dependent per
capita growth rate of the resourgevhereG; is assumed to be a decreas-
ing function.

Then the within-season continuous-time resource dynamitise ab-
sence of consumers, are

(%)
P 1) = G (AD (1) AD (1) @

Assume now, that the resources are used by a monomorphigroens
population with population density, during the breeding seasan The
consumer population size, is constant since it is assumed that the con-
sumers do not encounter within-season mortality, but tHiegeaish at
the end of the breeding season. Assume further that consumerthe
resourcei according to the law of mass-action with the rateand the
consumed resources are converted to new eggs with efficiendyow,
let the density of the eggs of the consumer at tinaeiring seasom be
U,(t) and assume that, during breeding season, the already deipos
eggs are destroyed with rafeThe eggs are identical, independent of the
resource usage of the consumer who produced the egg.

With these assumptions, it is possible to formulate the inigeason
dynamics for a monomorphic consumer population as

3

(2)
A1) = G (AD () AD (1) — 5AD (1),

dt (5)

dg;n (t) = (7151A£Ll)(t) + 725214;2) (ﬂ) Tn — 5Un(t)7

wheree is a small dimensionless scalar that allows one to assurhthiha
resource dynamics are fast enough (compared to consumdyegmics)
in order to assume that the resource densities are alwayw atable
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quasi-equilibrium value set by the current consumer pdjuladensity

x,. This value,
Eg) = max {O, Gt (%ﬁn) } , (6)

can be interpreted as the availability of the resourderring seasom.
For some resource-growth functions, high consumer density result

in negative values or[};1 Bix. ). In these cases, the resource availabil-

«

ity diminishes (rapidly) until the resource has become detepy absent
(exhausted), which means that this resource cannot be asedd pro-

duction. Once aresource is exhausted, devoted specialifitang solely

this resource, cannot produce any eggs, and thus peristihta/arinter.

If both resources are exhausted simultaneously, none ofdhsumers
can produce any eggs, which means that once the adult corsdraet

the end of the season, the entire population has perishesdexitausted
resource recovers at the beginning of the next breedingseagen that
the consumer population has diminished sufficiently.

Now, the egg density obeys the linear differential equation

au, ~ -
7 (t) = (7151145}) + 7252A;2)) T, — U, (¢). (7)
It is easy to find the solution of this equation:
1—e? ~ ~
Un(1) = — (%51145}) + vzﬁzA;”) T

Now, assuming further that fractian of these eggs survives to next
season and hatches successfully, one can calculate

Tnt+1 = O'ZUn(l)

Itis now possible to simplify the notation by defining a newngmund
parameter
A = 21— exp(-0).
With this notation, one can write down the discrete-time eiddr the
consumer population as

2
Tpt+1 = Z )\ixnﬁiAg)‘ (8)
i=1
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Next, consider the case of several consumers that are ¢déakcept
for the resource consumption rageésLet ; denote the consumer type and
let 1) be the typej consumer population density during the breeding
seasom. Assume also that the typeconsumers use the resouricac-
cording to the law of mass action with rag. Furthermore, assume that
the other parameters in the resource—consumer model (B)dapendent
of the consumer type. Then the resource dynamics for ty@source
become

S (0= aG AV O)AVO ~ AV Y B

As above, it is possible to solve the quasi-equilibrium uese density

o(m)
ﬁg) = max {0, Gt (M> } . (9)

Q;

Once this value is known, the differential equation deteing the egg
dynamics is the same as above (equation 7) and one obtainscaaye
discrete-time model with two resources for several congame

2
vl =D MG AY . (10)
i=1

In this equation\; is a resource-specific parameter, ahddepends on
the consumer strategies but not on the consumer populaties § hus at
the level of ecological dynamics, they are constant pararseTherefore,
if the resource availabilitied!) and A'? are known, the ecological dy-
namics (equation 10) are linear. Thus at time unithe environment set
by competing residents is determined by the resource aidikes, i.e.,

res, . A\S) 11
E™(n) = i@ ) (11)

n

If one now defines the fecundity function of typeonsumers with strat-
egys’ as

f(Sj, EreS(n)) = ()\161]';{53) + )\2/82j1/4\,$L2)>, (12)
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then the population model (10) can be written in the form
vl = (57, ()2, (13)

In order to illuminate the differences between generadiats special-
ists, the resources are, in this thesis, assumed to be é&mqii@th in
nutritional values and in renewal rates, but possibly déife in availabil-
ities, i.e.,a; = as = a, A\ = Ay = A, but K; can be different from
KQ.

This mechanistically underpinned population model isighsly dif-
ferent forms (based on different resource growth funciowsdely uti-
lized and analyzed in the articles 2, 3 and 4, in which it isegally as-
sumed, that the resource growth rate has been scaled such thal.
However, in article 1 a different modeling approach is asstiin order
to create a model which is equivalent to the models of habgatializa-
tion and habitat selection, but which underpins the difiees between
habitats by varying resource availabilities.

Below, three different resource-growth functions and tiree differ-
ent resulting discrete-time consumer population mod&sraroduced.

The Beverton—Holt model

Let now the resources to have chemostat dynamics such thattdrnal
within-season growth rate of the resource populatiequalsa and car-
rying capacity of the resource equd{s. Then the resource dynamics in
the absence of consumers (equation 4) are

dAY
di

. . Al
(1) = aG(AP (1) AP (1) = a (1 - K(t)) SN
This equation can be equally interpreted such that there@atant in-
flux of the resource to the system with rateand the resources decay
exponentially with rate-. In this case (see equation 6),

1 1

G&@:(Z—?J and  G;'(z) =

1

- .
5T

The inverse functioidy; ! is always positive, which means that the quasi-
equilibrium resource density in the case of several conssif@guation
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9) can be written as

(67

40 =

and the between-season consumer dynamics (equation 10y w4 1,
obey the difference equation

, (15)

SRy T BV (Y. S
1+> Ky By 1+>., Ky B
(16)

which, in the case of one resource and one consumer, is ttmutaBev-
erton and Holt (1957) model

NOKz,
Tpl = 55—
14 8K,
The discrete-time logistic model

Assume that the resources have logistic dynamics in thenabs# con-
sumers (see equation 4), i.e.,

dAy AP D 4G
o (1) =a (1 - ) AV () = oG (AD (1)) AD (1),

which means that (see equation 6)

Gi(A) = (1 — %) and G;'(z) = Ki(1—2),

of which the latter one is negative for large values:of
Then, the quasi-equilibrium resource densities (equ&jare

. 1
AW — K, |[1-= ACON N 17
; max{o, ( a;ﬁ ] (17)

This means that, if the consumer population becomes ovarye| a re-
source may be exhausted. An exhausted resource cannotdé&ube
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production of new eggs. If both of the resources are exhdustaul-
taneously, the consumer population cannot produce any, engisthus
perishes over the winter. Once exhausted, the resourcdgtimpuis as-
sumed to recover immediately at the beginning of the follm\season.
Altogether, one now obtains a version of the truncated disetime
logistic model (May, 1976) for the consumer population fwit= 1):

n+1 = )\le ﬁlj max {O, <1 - Zﬁlmx%m)> }
+ /\Kgxq(lj)ﬁgj max {0, (1 - Zﬁgmxém)) } .

The Ricker model

(18)

Assume that the resource dynamics (equation 4) are, in tbenab of
consumers, given by the Gompertz (1825) equation

dAW K, . . .
" aln [ — ) AD @) = oG, (AD (1) AD
- =oakn (A,&P(t)) () = aGi(AD(1) AD(1),

which means that
Gi(A) =Ln (&> and G;'(z) = K;exp(—x).

As in the case with the Beverton—Holt model (equation 16, itiverse
function is again always positive, and the quasi-equilibrresource den-
sities (equation 9) can be written as

Es) = Kjexp ( 2om ﬁlmxn > .

Thus, one obtains the famous Ricker (1954) model that, isdlse of two
resources and several consumer types (ardl), has the form

AKlﬁlg exp <— Z ﬁlm:dm)
+)\K2ﬁzj exp <— Z ﬁzml‘%m)> .

(19)
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4.2 Trade-off between the resource consumption rates

In the population models derived above, the resource uddgpea; con-
sumers is determined by two consumption ratgés:and 3,;. It is char-
acteristic to the above models that the dynamics of the ressunteract
only via shared consumers and, above all, consumers ihtarhcvia re-
source availabilities: the more there are consumers ar@amaithe more
efficiently they use resources, the lower are the quasiibgum values
AY of the resource densities, and the more efficient the consunaee
to be in using these resources in order to maintain viabitgreover in
these population models, increasing usage rates of themesodo not
involve any additional costs, such as increasing exposuggdadation.
Thus, if resource consumption ratgs; and 3,; were to evolve freely
without any limitation, these rates would most likely enctar evolution
towards ever increasing values. Therefore, there is aroabvieed for ex-
ternally determined limits for these rates, which is typfoaall kinds of
specialization evolution, whereas for example, the evatubf dispersal
(as well as that of reproduction timing) takes place in thiamee of in-
herent costs and benefits of dispersal: dispersal is negdesong-term
survival of the species, but overly abundant dispersalesauanecessary
risks and consumes resources.

Usually in evolution of specialization literature, as wedl in this the-
sis, it is assumed that the growth of the resource consumpétes is
limited by a trade-off curve. Below this curve, mutationsregasing both
of the consumption rates are possible, which means thdteiavolution-
ary process, the trade-off curve is reached rapidly. Thusvoitutionary
analysis, one can focus solely on the evolution along troetdf curve.
(See figure 3B for examples of trade-off curves). On this epttve better
an individual is in utilizing one resource, the worse it isuitilizing the
other, and any mutation increasing the consumption rateefresource
must cause a decrease in the consumption rate of the other.

Assume now that the resource consumption rates are detsirbin
the strategy € [0, 1] of an individual. Assume also that the resource
consumption is symmetric in the sense that there existsaifums such
that, for typej individuals with strategy, one can determing,; = (s)
andf,; = (1 — s). In other words, strategyindividuals use resource 1
with rate3(s) and resource 2 with raté(1 — s) (according to the law of



37 4.2 TRADE-OFF

mass-action). In algebraic analysis, the following assionp are made:

1. Functiong is strictly increasing, i.e., the more specialized an indi-
vidual is on a specific resource, the more efficiently theviilial
can use this resource.

2. If nothing is invested to the use of a certain resourcehingtis
obtained from this resource, i.€(0) = 0.

Since in population-dynamical equations, the functiboccurs al-
ways as a product with resource carrying capacities, fixuiegnaximum
value of 3 is just a matter of scaling these parameters appropriaety,
one can without loss of generality assufi@) = 1. Now, the case = 0
corresponds to a devoted specialist using only reso2ireed the case
s = 1 to a devoted specialist using only resouiiceThe cases = 0.5
corresponds to an unbiased generalist.

In numerical explorations, it is necessary to fix the funcaildorm of
the resource consumption function (the trade-off curve}hése cases, it
is assumed that

1 — e

B(s) = 1__76_9 0+ 0. (20)

This formula is not defined fat = 0, but sincdimy_,, 5(s) = s itis nat-
ural to defined(s) = s when# = 0. This trade-off function in illustrated
in Figure 3.

The trade-off parametérdetermines whether the resource consump-
tion function 5 is convex ¢ < 0), concave { > 0), or linear ¢ = 0).
In the case of concave resource consumption function, gwiree con-
sumption function increases deceleratingly. This cas@isetimes re-
ferred as the case of weak trade-off since a generalist Ganegsurces
more efficiently than a linear combination of the two spasis] i.e.,

, B0 +50)

Analogously, in the case of convex resource consumptiontiom, the
resource consumption function increases acceleratingly,

SLOEY: U}

5(0.5)

£(0.5)
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Figure 3: Trade-off curves.

Panel A: Resource consumption ratiés) as a function of the specializa-
tion strategys for different values of the trade-off parameter

Panel B: Consumption rate of resource(2(1 — s)) as a function of the
consumption rate of resource(B(s)), i.e., the curves delimiting fitness
sets in the spirit of Levins (1962, 1963).
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which can be interpreted as strong trade-off. In the terfomo used
by, e.g., White et al. (2006) and Hoyle et al. (2008, 20119, ¢hse of
concave resource consumption function corresponds toda-t#i with

accelerating costs, and the case of convex resource cotisarfymction

corresponds to a trade-off with decelerating costs.

The resource consumption function is the only ingredietité@model
presented here that has no mechanistic interpretationatNegralues of
0 are used to model phenomenologically the situations in lwkihere
is an additional cost of generalism (or switching cost), ighas positive
values offl correspond to cases in which there is an additional benefit of
generalism (switching benefit). The linear resource comdiom function
(B(s) = s, 8 = 0) is an important special case since it can be interpreted,
for example, as the search time allocation between the tsaurees.

In the literature considering the evolution of special@at an as-
sumption that corresponds to assumitig) = s, wherer > 0, is rather
usual (see, e.g., Egas et al. (2004); Rueffler et al. (200&pabe and
Gandon (2010) and Zu et al., (2011a)). However in the modstrileed
above, this formulation would result in

lim {dﬁ(s)} =oo and lim {M} =00, If 0<v<l,

5—0 dS 5—1 S
im | PO Zo and tm [PCTS) o a1
=0 ds |, 51 ds RS

which may generate artificial singularities extremely neathe borders
of the strategy space. With the formulation (20), one olstaesource
consumption functions that resemble the casg@ = s”, but avoids
these artificial singularities.

The family of resource consumption functions given by equa(20)
covers a wide range of qualitatively different ecologicarsarios. How-
ever, the functions in this family are always either evergvehconcave or
everywhere convex. Hence, e.g., the cases with sigmomtdé{offs can-
not be covered. There are, however, methods in the adaptivencs
toolbox that are independent of the particular shape ofrddetoff func-
tion (de Mazancourt and Dieckmann, 2004; Bowers et al., 280,
2006; Geritz et al., 2007; Kisdi, 2014). These methods cangkam-
ple, reveal ecological scenarios where evolutionary braxgcmay occur.
From the point of view of evolution of specialization, it wdibe useful
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to further develop these methods such that they could be tasexveal
or exclude the possibility of the trimorphic coexistenceoat general-
ist strategy with two different specialist strategies ie tfase of two re-
sources.

4.3 Metapopulation dynamics

Once the local dynamics are derived from the individual lepvecesses
(section 4.1), one can build a structured metapopulatiodehioased on
this local population model. Below the required assumgtiand model
derivation are introduced in detail.

It is assumed that the landscape consists of an infinite nuailerge
local habitat patches that are prone to local catastropghesever, there
is only a finite number of different patch types. Each patahsigpport a
local population. Patch types differ from each other onlyhi@ carrying
capacities of the two resources. In an individual patch]dbal popula-
tion growth rate (fecundity) at time is set by the resource availabilities
at that time. These availabilities are determined by thallpopulation
sizes, specialization strategies of the consumers andotta tesource
carrying capacities as explained in equation (9).

In equation (11) these availabilities were used to detegrttie envi-
ronmentE£"™S(n) set by the resident at time-unit In metapopulations,
however, the environment set by the resident populatioreterchined
at the metapopulation level. Instead, the local resouradadilities de-
termine Ei$3(n) the local environment set by the current local resident
population at time:, equally with the definition 11.

Now, in the absence of dispersal and catastrophes, one danting
local dynamics of typg consumers with strategy?) in a patch of type
m in the form (compare with equation (13))

‘rv(mj—?-l = f™ (50)7 Eﬁ?(ﬂ))fﬁ?

In fact, once the resource availabilities are known, theriedty function
f™ is identical in all patch types:. However, the notations in the fitness
calculations are simpler when differences in the local ghowaused by
different resource carrying capacities, are denoted aipbicely in the
fecundity function.
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Once an individual decides to emigrate, it is assumed ta &mtgoool
of dispersers. The dispersers that survive migration ateilolited evenly
to all of the patches, independent of their origins. Eaclividdal emi-
grates with probability and survives migration with probability (inde-
pendent o). Furthermore]D,, (s) denotes the average number of strategy
s dispersers per patch emigrated from the patches at per{ddsperser
pool size of the strategydispersers).

During one time step, a single patch encounters a catastrah
probabilityc. These catastrophes occur independently in differenhpatc
When a catastrophe takes place, it wipes out the entire pmgallation.
After a catastrophe a new local population is founded byetsgrs from
the disperser pool. The order of events during a season usnassto
be: Potential catastrophe destroying all the eggs in a patiching —
emigration to the disperser pool — immigration from the drser pool —
census — production of the new eggs in the patches.

With these assumptions and notations, the local dynamiasye;
consumer population with strategy’ are

2l = Cln+ 1)1 = o) " (s9, Egin) )2 + 7DP(s), (1)
whereC'(n + 1) is a random variable determining the occurrence of the
catastrophes (see equation (2)), and

: Expected number of strategy) emigrants
D(s) = zm:pm ( from a typem patch at time: ) '
(22)
Equations (21) and (22) form the metapopulation model thanhalyzed
in this thesis.
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5 Invasion fithess and environmental interac-
tion variable

5.1 Invasion fitness in well-mixed populations

Consider ak-morphic resident population where the resident strasegie

are (sM,s? ... s). Suppose that the resident population has settled
to an attractof X1®, X1°S XS ... X®s .. ), where each{* comprises
the resident population sizés\’, z\”, ..., z\¥) at imen. For eachn,

the local population sizes together with resident straegnd resource
carrying capacities determine the environmgfft(n) set by the resident
population at time:. Consider now a negligibly small mutant popula-
tion with strategys™. The small mutant population does not affect the
environment, and thus based on equation (13), the mutantgtogm dy-
namics obey the linear difference equation

x?:itl — f(smut7 EreS(n))met. (23)

n

If, furthermore, the resident population dynamics havéexto a fixed
point attractor, then the environment set by the residemianes con-
stant (£"(n) = E'™° for eachn), and the equation (23) becomes an
autonomous linear difference equation. This means fthef", £ is
equivalent to the basic reproduction ratio of the mutanutetpon (Diek-
mann et al., 1990; Heffernan et al., 2005), and one can, irspiré of
Metz et al. (1992), determine the invasion fitness of a raréamun
the environment set by the residents as (see, e.g., Myld®Dakmann
(1995)).

T(Smut’ Eres> — ln (f(smut7 Eres>)_
In principle, the generalization of this invasion fithessdtion to the
case of non-equilibrium dynamics is simple:

t
T(SmUt, E'®S) :thm In i H f(smut Eres(pn))
= (24)

t—o0

~ Jim % 3 (F(™ E50)).
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In practice however, it is possible to calculate invasiamefits only in
the case op-periodic resident population dynamics wher N. In this
case,

T(SmUt, Ereﬂ _ % Z In (f(SmUt, EreS(n)))‘

5.2 Invasion fitness in metapopulations

Defining fitness in metapopulations is not straightforwardce individ-
uals compete with each other in the local patches, but adoaitbina-
tion that is extremely profilic locally, may be completelystteyed by a
catastrophe, if it fails to send out successful dispersBedow, the cal-
culation of invasion fitness in metapopulations is presgirtéhe case of
a monomorphic resident population. The generalizationolgrporphic
residents is rather straightforward, but notationally encomplex.

In metapopulation models, fithess must be determined atetred |
of dispersers and local clans initiated by the disperseydiéberg and
Metz, 2001; Metz and Gyllenberg, 2001; Parvinen, 2006). eOmdlis-
perser enters a local patch, it starts a new clan. This clagists of the
disperser itself, its descendants, their descendantsDeie to clonal re-
production, all the individuals in the clan have the samatsgyy as the
initiating disperser. Depending on this strategy and tlwallgconditions
in the patch, the clan may either die out due to the local caitgein
the patch, or increase in population size until it is desttblpy the next
local catastrophe in the patch.

Each generation in the clan sends out new dispersers uatil/iiole
clan, as well as the whole local population, is destroyed local catas-
trophe. The expected number of successful dispersersifiteated new
local clans) produced by a local clan can be interpreted @adasic re-
production number of the dispersers (or, equally, of thalletans), and
it can be used as a proxy for the invasion fithess as above immwetd
populations.

In metapopulation models, the environment set by the rasiaheist
be determined at the metapopulation level. Throughoutttigsis, the
ecological parameters are always chosen such that a metapop-level
gquasi-steady state exists (Article 4 that considers narnibgum dynam-
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ics focuses solely on the well-mixed populations). This nsethat, at
this quasi-equilibrium, the siz® of the resident disperser pool is con-
stant. However, as long as local disasters may occur, tiaé population
sizes still vary. After a catastrophe a new local populat®oimmedi-
ately founded by the immigrants from the disperser pool.sT@w lo-
cal population is, however, usually very small comparechtresident-
population’s fixed point size set by the resource carryingacdies, the
resident strategy and disperser pool dizeThe local population size then
approaches a stable attractor until the next local disastrrs. It is even
possible that the metapopulation level dynamics have a-fixaat attrac-
tor (constantD) even though the local dynamics have cyclic attractors
(Gyllenberg et al., 1993). However, in this thesis the magus is on the
metapopulations with local dynamics of the Beverton—Hgttet where
population size always approaches a fixed point value moizliby.

In a metapopulation-dynamical equilibrium, the disperseol size
and the distribution of local population sizes remain canstalthough
the size of the local population in each patch varies. It mayiucial
for a mutant, whether it enters a patch that is almost empey afrecent
local disaster, or a patch where the local population sizealraady grown
large.

Let now R(s™ E'S) denote the expected number of new successful
dispersers sent out by an average local clan initiated byategt s™"
disperser in an environmeht®s set by the strategy®* resident.

Consider a monomorphic resident metapopulation that et a
metapopulation-dynamical equilibrium with constant eiser pool size
D. Then, all patches of typa and agen (time elapsed since the latest
catastrophe in the patch) have the same population desj3itjt is easy
to iteratively calculate these densities from the equation

Ty = (L= e)f"(s™ Eigg(n))ay + 7D, xg' =7D,  (25)

where Ei$3(n) is the local environment (resource availabilities) in the
patch under consideration determined by the local resideptilation

n time-units after the latest local catastrophe. Once theessive res-
ident population densities have been calculated usingtequeb), it is
possible to further calculate the vector of successive loaronmental
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conditions set by this resident, i.e.,

Eioe = (Eioc(1); Eige(2), - - - Eige(n), - - -)-

oc loc\"?

These local resource availabilities allow one to calcultgsatively
the dynamics of the mutant clan in this patch as a functiorheftime
elapsed since the latest catastrophe and the time elapsmdtbe foun-
dation of this clan. The local populations are assumed tatgel(math-
ematically speaking infinite), which allows one, e.g., tgleet demo-
graphic stochasticity. Therefore, numbejsdo not represent individuals
but some abstract units of population density. It is clearlpossible to
determine the size of a mutant clan consisting of only a singltant in-
dividual (or a few mutant individuals) using these unitsrtioately, this
is not even necessary, since the mutant population is asstanbe small.
Thus, the resident population determines the density e factors in
the mutant dynamics, i.e., one can neglect the changes ireioeirce
availabilities caused by the mutants as well as the effdatamigration
on the local population dynamics of the mutants. This melaaisthe dy-
namics of a mutant clan are linear with growth set by the ptogseof the
patch and the resident population densities. Hence, onesathe rel-
ative size (actual size divided by the initial size) of tharcto determine
how many new successful dispersers a clan is expected tagzod

Let now a local mutant clan with strateg{t be founded in a type
m patch that has encountered its latest local catastrgphiene units
ago. Denote the relative size of this clan whetime units have elapsed
since the latest catastrophe @y (1, s™, Ei55), where E52 refers to the
local environment set by the resident population. Npw 7 is the time
elapsed since the foundation of this clan.

It is now possible to solvg;" (n, s™, E5?) from a linear difference
equation

Yo (1 + 1, 8™ Eige) = (1 — ) f™ (™, Eigg(n))Ypg (1, 5™, Eige),
Yo (105 8™, Eige) = 1.

Therefore

ym(n, s™ 1SS H 1—e)f™(s™ Egs(d)). (26)

=0
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Now, y=(n, s™, E5s) is the size of the mutant clan given that there
are no local catastrophes. When calculating the expectedbauof dis-
persers produced by this clan, however, the catastroplvesh®e taken
into account. Furthermore, the exact ordering of the evdunisig season
has to be considered also. A local catastrophe destroysldheatong
with the entire local population. The clan foundgctime units after the
latest local catastrophe is still aliyg + 1 time units after the catastrophe
with probability1 — ¢, and at the census of that season it has relative size

yno (770 + 1 SmUt Eloc - (1 - 6)fm(3mmv E|r§cs(770))

However, emigration takes place before census, espebigitye the size
of the clan has been diminished by the factor e. Therefore, the ex-
pected number of successful dispersers produced by thercthe first
season after its foundation is

yr(no + 1, s™ Eigs)
1—e ’

me(l —c) f™(s™, Eigelno)) = me(1 — ¢)

This reasoning can be generalized forward, and altogethermutant
clan is expected to produce

e o m
TS (1 Ty, 5™, B

=10

new successful dispersers.

The probability that the clan is founded in a patch, wheydime
units have elapsed since the latest local catastroplie-is:) ¢, and the
probability that the clan is founded in a typepatch isp,,, the fraction
of type m patches. Thus, one can calculdtés™! E™), the expected
number of new mutant clans initiated by an average strat&tjymutant
clan in an environment'™* set by the resident population, as

R<Smut Ereﬂ _
me Z 1-— C 770@ (16_7T€ Z(l _ C)1+77_77()y:773(77,5m“t7 Elroec ) :
m0=0 n=mno

(27)
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which simplifies into

( mut Ereﬂ _ enc Z Z Z 1+ny770 n, s mut EI 3 (28)

m n0=0 n=no

Until now, it has been assumed that the dizef the resident disperser
pool is a known constant. Now, one can finally solve the actakle of
D from a fixed point equation

R(s' B9 = 1, (29)

since in the metapopulation-dynamical quasi-equilibrigach success-
ful disperser has to produce on average exactly one new ssfotelis-
perser. In the case of a polymorphic resident populatioa,aiiains one
fixed-point equation for each resident strategy, and tresszthe disper-
sal pools of each strategy may, in principle, be solved frioimiéquation,
but in practice, the actual calculation becomes rapidlylgwimbersome
as the amount of resident strategies increases.

Note, that even though the disperser pool dizes not explicitly in-
volved in the equation (29), it affects the values of the emvinental
interaction variableds$s as it determines the local population density
distributions of the residents in each patch. As mentioreddri, the in-
teraction variable contains the information about the mexr feedback,
and thus, the model becomes linear if its value is assumed kadwn.

5.3 Environmental interaction variable and the
principle of competitive exclusion

The traditional interpretation of the principle of compieg exclusion
(Gause, 1934; Hardin, 1960; Levin, 1970; Armstrong and Mu&e 1980)
states that at steady state there cannot be more coexipBoges (strate-
gies) than there are resources (or other limiting factohs)any model
with two distinct resources, including the current modeis tvould pre-
vent the coexistence of more than two different stratediesvever, this
statement has already been shown incorrect in several ionsasee,
e.g., Wilson and Yoshimura (1994)). The modern version o finin-

ciple (Diekmann et al., 2003; Meszéna et al., 2006), howestates that
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the maximum number of species (strategies) that can rgbcséxist at
steady state is less than or equal to the dimension of theastien vari-
able.

In a well-mixed population with a fixed-point attractor, teeviron-
mental interaction variable only includes the equilibriawailabilities of
the two resources, and hence the maximum number of coaxistiate-
gies is limited to two. However, already in the case of a twoqaic
attractor in a well-mixed population, the interaction adte includes two
successive availabilities for each resource, and henceinignsion is
four. In metapopulation models with quasi-equilibrium dymics, i.e.,
fixed disperser pool size even though local population siageg due to
catastrophes, the dimension of the interaction variabie isrinciple, in-
finite. Thus, the principle of competitive exclusion setslinats for the
coexistence of different strategies, even though the tatmexistence of
a continuum of strategies is still not possible (Gyllenbangl Meszéna,
2005).
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6 Evolution of resource specialization

6.1 Ways to model specialization

As mentioned at the beginning of this thesis, evolution @&fcsqlization
affects the dynamics of virtually any other life-historgitt Therefore,
it has been studied within numerous frameworks. In thisighéke fo-
cus is on the case of usage of two distinct resources thatédes dlso
considered, e.g., by MacArthur and Levins (1964); Lawlod &nay-
nard Smith (1976); Schreiber and Tobiason (2003); Ma andthL(@006);
Rueffler et al. (2006, 2007) and Abrams (2012). However, wiat of
resource utilization has also been widely studied in the cdsa single
resource with a continuously varying character (see, BlgcArthur and
Levins (1967); Dieckmann and Doebeli (1999); Kisdi and @€1999);
Egas et al. (2005) and, for the case with several resourdgsh(End
Vuilleumier, 2014)). This approach relates closely to thel®s of niche
evolution (see, e.g., Roughgarden (1972, 1976); Abram8g)1 Kassen
(2002); Ackermann and Doebeli (2004); Holt (2009)).

Resource continuums have also been studied in the contegbtdg-
ical character displacement (see, e.g., Brown and Wils®8q}t Slatkin
(1980); Grant (1994); Doebeli (1996); Kawecki and Abran9@); Miz-
era and Meszéna (2003)), where the main interest is thee@ot@®n of
two competing species or strategies. In the studies of ctardisplace-
ment, it is usually assumed that there exists, in the enmert under
consideration, a single optimal phenotype towards whiehntonomor-
phic population evolves. However, monomorphic population evolu-
tionary branching are not usually considered, but the magug is on
the effects of interspecific competition to the evolutiontwbd compet-
ing species, or strategies: How far from the optimal phepetyan the
phenotypes of the competing species be driven by the tepderavoid
competition. The ecological character-displacement @gogr is rather
closely related to the theories of optimal foraging (seg,, élacArthur
and Pianka (1966); Schoener (1971); Charnov (1976); Oagtv()); Pyke
(1984); Stephens and Krebs (1986)).

The evolution of specialization may also be approached trepoint
of view of phenotypic plasticity (see, e.g., Via and Land83); Moran
(1992); Scheiner (1993); van Tienderen (1997); Sultan aardish (2002)).
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In this case, the specialist strategies correspond to tastipphenotypes
utilizing one resource, whereas the generalist stratelg§p#x phenotypic
plasticity being able to utilize both of the resource busleficiently than
the specialists on these resources. The trade-off parafetethis case,
measures how limited are the resource consumption abibfithe plastic
phenotype compared to the specialist phenotypes (DeWtt,et998).

Biologically more specific models of the evolution of resmispe-
cialization have been constructed, e.g., for the analylsevolution of
host specialization of parasites and phytophagous insgbtse it is nat-
ural to interpret alternative hosts as different resoufoeshe parasite
or phytophagous insect (see, e.g., Jaenike (1990); JodhTaompson
(1995); Fry (1996); Abrams and Kawecki (1999); Nosil (2Q0Rdpulin
et al. (2006)). Moreover, in spatially heterogeneous nmgdeifferent
types of suitable habitats may also be considered as reso{irabitat spe-
cialization, see, e.g., Levins (1962, 1963); van Tiend¢i®91); Fryxell
(1997); Kisdi (2002); Morris (2003))

Also, diverse modeling approaches have been used. Genetiels
(see, e.g., Taper and Chase (1985); Drossel and McKane,(2999);
Burger (2002, 2005); Via (2002)) are able to treat difféigenetic archi-
tectures in detail but usually require one to use rather leinmmdels for
the ecological dynamics. Phenotypic models of evoluticende, 1976;
Emlen, 1980) sometimes lack immediate genetic underpgsnbut on
the other hand let one to study ecologically more compleiesys. The
traditional approaches on the phenotypic modeling of diatuof spe-
cialization have included for example game theoretic nodste, e.g.,
Brown (1990); Parker and Maynard Smith (1990); Brown andc¥int
(1992); Hofbauer and Sigmund (1998)) and models using tlaptac
dynamics approach (see, e.g., Meszéna et al. (1997);rfearand Egas
(2004); Ma and Levin (2006)).

6.2 Evolution of specialization in well-mixed populations
under equilibrium dynamics

Majority of mathematical models focusing on the evolutidéspecializa-
tion assumes a well-mixed population. As a consequencepdhsible
evolutionary scenarios are, especially in the case of ibqguim popula-
tion dynamics, rather well-known. In the case of two diffdgreesources,
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the most striking common feature of the evolutionary dyrems the
importance of the trade-off: A strong trade-off between dhdities to
utilize the resources leads to specialist populations edseweak trade-
off results in generalist populations. These are the enwiaty scenarios
observed when evolution is frequency-independent (Leiii62, 1963),
but see also Rueffler et al. (2004)). However, when seledifsrequency-
dependent and trade-off is moderately strong, it is possitat evolution
of a monomorphic population directs to increased genenalisit the gen-
eralist population undergoes evolutionary branching,farally, the pop-
ulation comprises two different specialist strategie®(®g., Meszéna
et al. (1997)).

The evolutionary scenarios observed in this thesis cooras$po this
general overview. They are illustrated in Figure 4. Note thalution-
ary branching illustrated in panel B requires that the egickl dynam-
ics are modeled such that the dimension of the environmanrigahction
variable is at least two (so that selection is frequencyeddpnt). When
there are two resources and the ecological dynamics haveualibeum
attractor, it is rather natural to the environmental intéoa variable to
have two dimensions (two scalars, each describing theibguih avail-
ability of one resource). This is the case also in the modeddyaed in
this thesis. Thus, the modern competitive exclusion ppieddy Meszéna
et al. (2006) prevents the robust coexistence of more thattvategies.
However, Rueffler et al. (2006) have shown that there areralatvays
to model specialization also such that the interactionaidei has only
one dimension, which excludes evolutionary branching abhdst coex-
istence of any pair of strategies.

The effect of the trade-off strength (trade-off paraméjean the evo-
lutionary dynamics is summarized in Figure 5 that illustsagvolution-
ary bifurcation diagrams, where the evolutionary singstaategies of a
monomorphic population are plotted as a functior oft is noteworthy
that, the devoted specialist strategies may still maintagéir evolution-
ary attractivity for a while, even though the unbiased galigrstrategy
becomes evolutionarily attracting as the valué aicreases.

After evolutionary branching, the evolution of the dimoigppopula-
tion usually directs towards the combination of the two dedaspecialist
strategies. This is the always case in this thesis when thiegical dy-
namics have fixed point attractors in a well-mixed populatidlowever,
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Figure 4. Evolutionary scenarios under equilibrium population
dynamics.

Strategies present in the population as a function of thiggaary time.
One unit of evolutionary time corresponds to one loop of iheutation
procedure depicted in the Appendix of Nurmi and Parvined 80Thus,

it is only applicable for comparison between different siations using
the same procedure.

Panel A: Concave resource consumption function (weak trade-off) —
Evolution leads to generalism.

Panel B: Weakly convex resource consumption function (moderately
strong trade-off) — Evolution of a monomorphic populaticgads to
generalism, where evolutionary branching takes place. &undution

of a dimorphic population leads to the combination of the tlewoted
specialist strategies.

Panels C and D:Strongly convex resource consumption function (strong
trade-off)— Evolution leads to the nearest devoted spstgttategy.
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Figure 5: Singular strategies as a function of the tradepafmeteid
when )\ = 3 in the Beverton—Holt model (equation 16). Thin black curve
indicates evolutionary repellors, thick grey curve branghpoints and
thick black curve evolutionary endpoints. The arrows in plagels in-
dicate the expected direction of evolution in a monomorjplaipulation.
The evolutionary bifurcation diagrams for other corresfinog models,
e.g., discrete logistic model (equation 18) and Ricker rh¢eguation
19) are qualitatively similar.

Zu etal. (2011a, 2011b) have shown that, for complicatetetatf struc-
tures, the evolution of the dimorphic population may lead ttimorphic
singular strategy combination, in which the coexistingtggies are not
devoted specialists. Further branching, however, is nssipte.

Altogether, there are four different endpoints for the sqleation
evolution in the models studied in this thesis in well-mixgmpulations
under equilibrium dynamics. None of them, however, invelegolution
to the trimorphic coexistence of specialists and genesgalighis in in
accordance with the majority of previous results, (see, Brgwn (1990);
Meszéna et al. (1997); Parvinen and Egas (2004); Ma anchl(2@06);
Ravigné et al. (2009)). In this thesis, it is explored hows tmodeling
approach could be extended in order to allow evolutionis@gfrom a
monomorphic population to lead to trimorphic coexistence.

There are several models where the ecological coexistdrzcgamer-
alist strategy and two specialist strategies is possibls@~and Yoshimura,
1994; Kisdi, 2002; Abrams, 2006b). However, such coexctanay of-
ten be evolutionarily unstable. Even more rarely is suchdrphic coex-
istence evolutionarily attainable, i.e., reachable frenmaially monomor-
phic population when mutations are assumed small and inéretg

The possibility of ecological trimorphic coexistence wastfdemon-
strated in a model compiled by Wilson and Yoshimura (1994)weler,



6 EVOLUTION OF RESOURCE SPECIALIZATION 56

Egas et al. (2004) showed that this coexistence is not egakty at-
tainable, and furthermore, evolution even destroys th&istence. Later
on, trimorphic coexistence has been shown evolutionatigiraable un-
der cyclic resource dynamics (Abrams, 2006a,b), or wheraiseimp-
tions concerning the consumer behavior are relativelyiotise (Egas
et al., 2004), or only in a narrow parameter domain (Kisd@20 In spa-
tially heterogeneous model with spatially aggregateduess, distance-
limited dispersal may also allow evolutionarily attainadimorphic co-
existence such that generalists live in the habitat bouesl@Débarre and
Lenormand, 2011; Karonen, 2011).

Below, different extensions of the well-mixed consumer ydapon
model with two resources are introduced, that allow thewdumh to the
trimorphic coexistence of specialists and generalists.

6.3 Evolution of specialization in the case of well-mixed
populations with non-equilibrium dynamics

In the context of dispersal evolution, the importance of-eqguailibrium
ecological dynamics has been recognized for a long time. ri@nhand,
non-equilibrium population dynamics may forge dispersal aven en-
able evolutionary branching of dispersal strategies,diuthe other hand,
dispersal may stabilize population dynamics (Gyllenbdrgle 1993;
Holt and McPeek, 1996; Parvinen, 1999; Ronce, 2007). Hoxyveee
cent results indicate that the type of population-dynahattiaactor may
affect the evolution of other life history traits as well (Wéhet al., 2006;
Geritz et al., 2007; Hoyle et al., 2011). Previous work oneottraits
has shown that, under non-equilibrium population dynajreeslution-
ary branching may be possible also in such ecological smentrat do
not allow branching under equilibrium dynamics (ParvinE®99; White
et al., 2006; Hoyle et al., 2011). Thus, non-equilibrium ayrcs may
result in enhanced biodiversity.

In the model analyzed in this thesis, evolutionary brangsnpossi-
ble already under equilibrium dynamics. However, non-iopuim dy-
namics may still add in diversity by allowing a secondaryletionary
branching to occur, which results in the trimorphic coextiste of gener-
alists and specialists. Furthermore, non-equilibriumaaigits may result
in evolutionary suicide. Below, these evolutionary scersaenabled by
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the non-equilibrium dynamics are presented by illustgatesults of evo-
lutionary simulations.

In order to illuminate how the population dynamics affeat #wvo-
lutionary dynamics, one needs to illustrate the populatipnamical at-
tractors during the evolutionary time together with thelationary tree
in the strategy space. However, the evolutionary simutatiare never
completely mutation limited. Instead, the population rspractice, al-
ways polymorphic during the simulation. Therefore, in oreillustrate
the population-dynamical attractor of the entire popolatione needs to
calculate how much extant strategies use resources, whitarm al-
lows one to calculate the availabilities of the resourcekstiategies
(s, 5@ .. sk) are present at time unit with corresponding popu-
lation sizes(z, 22, ..., z{¥), then the availabilities of the resources
1 and?2 are for the case with logistic ecological dynamics, acecurdb
equations 9 and 17, respectively

A = Kymax (0,1 — > Bls)ary (30)
A? = Kymax (0,1 — Z§:1 A1 - S(i))xg)) .

When the population is on a non-equilibrium attractor, éesilabil-
ities fluctuate as the consumer population sizes fluctuase@on these
availabilities, it is often possible to deduce the type & gopulation-
dynamical attractor of the consumer population as a whate ekample
in the case with two equally abundant resources, if the @djaur is on
a two-periodic in-phase orbit, the sum of the resource aldities takes
two different values on the population-dynamical attragtbereas their
difference is close to zero. If the population is on a twokic out-
of-phase orbit (asymmetric attractor), the differencdésrahte between
a positive and a negative value on the population-dynanatiahctor
whereas the sum remains virtually constant. More generélly more
asynchronous are the resource fluctuations, the largehasbsolute val-
ues of the differences in the resource availabilities.

Evolution to singular dimorphic strategy pairs

Under non-equilibrium dynamics, dimorphic evolution magd to sin-
gular strategy pairs instead of pairs of devoted specisiiiategies even
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when the trade-off function is everywhere convex (concav®n one

hand, Nurmi and Parvinen (2013) showed that, under in-pbasia-

tions of the resource availabilities, a dimorphic popualatisually evolves
towards the combination of the two devoted specialistagjias when pa-
rameter values are such that a monomorhic population evdtvgen-
eralism where evolutionary branching takes place. On therdband,
asynchronous oscillations of the resource availabilitiey benefit gen-
eralists, since the generalists experience less variante iresource in-
take.

Evolutionary dynamics, in this case increasing speciglisay cause
attractor switches to the ecological dynamics. Due to tiectsf intro-
duced above, these attractor switches may stop the dinmepbiution
to a singular dimorphic strategy pair as illustrated in tiguFe 6. Fur-
thermore, under chaotic population dynamics, it is eversibtes that
the stochastic mutations, even though they are small ircteffeduce
attractor-switches in the ecological dynamics. Thesaettr switches
may sometimes generate evolutionary fluctuations (ikkdstt in Nurmi
and Parvinen (2013)).

Evolution to the trimorphic coexistence of a generalist wih two
specialist

Evolution starting from a monomorphic population may, unen-equi-
librium population dynamics, lead to the trimorphic co¢sise of a gen-
eralist and two specialists strategies. In such coexistezach of the spe-
cialists uses the corresponding resource more efficiemaly the compet-
ing strategies. The viability of the generalist strategytlee other hand,
is based on the asynchronous non-equilibrium populatio@uhycs of the
specialists. The population sizes of the specialist gir@sdfluctuate, and
hence they are repeatedly rather low, which means that tliespmnd-
ing resource is abundantly available allowing the genstrédi increase
in population size. This phenomenon was originally obsgbseAbrams
(2006b,a) in a continuous-time model involving Holling &b functional
response in the case where the dynamics of the two resoueeiffar-
ent, which creates sufficient asynchrony to the resourcamyss. How-
ever, non-linear functional response is known to have aangisd part in
allowing species coexistence, e.g., several species existeven on a
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Figure 6: The result of an evolutionary simulation leading to a di-
morphic singular strategy pair under periodic population dynamics
in the logistic model (equation 18).

Panel A: Strategies present in the population as a function of th&uevo
tionary time. One unit of evolutionary time corresponds @& doop of
the simulation procedure depicted in the Appendix of Nurrmd &arvi-
nen (2013). Thus, it is only applicable for comparison betwvdifferent
simulations using the same procedure.

Panels B, C, and D:Resource availabilitied'” and A as defined in
equation (30) as a function of the evolutionary time. Fomhealution-
ary time unit, Panel B illustrates the sum of the resourcedlahilities
during each step on the population-dynamical attractareRaiillustrates
the differences of the resource availabilities and pandi®abvailability
of resource 1.
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single resource under non-equilibrium dynamics (Armsirand McGe-
hee, 1980; Kisdi and Liu, 2006; Geritz et al., 2007; Tachi&ka2008).

In the models analyzed in this thesis, consumers use respaccord-
ing to the law of mass-action with a linear functional resgg(Holling
type | functional response). Furthermore, evolution tomriphic coex-
istence is possible also in the case of similar resource= ghme asyn-
chronous fluctuations in the resource availabilities magdyeerated solely
by the over-compensatory consumer population dynamicsas,Tthe re-
sults indicate that non-equilibrium population dynamigally is the main
factor enabling evolution to trimorphic coexistence.

Figure 7 illustrates an example of an evolutionary simafatiead-
ing to trimorphic coexistence. There, the population fixsthees to gen-
eralism, where evolutionary branching occurs. After bramng, the di-
morphic population "inherits” its population-dynamic#ractor from the
preceding monomorphic population Geritz et al. (2002). sThbe di-
morphic population is initially on an in-phase two-periodrbit. There-
fore, the dimorphic population evolves initially towardgetcoexistence
of the two devoted specialists. However, as the branchesadize fur-
ther, their ecological dynamics undergoes a series of getoubling bi-
furcation which leads to chaotic ecological dynamics, Whiceaks the
synchronism in the dynamics of the two morphs. Finally, tbpylation-
dynamical attractor becomes an out-of-phase two-perioid, where
the evolutionary dynamics lead to a singular dimorphidsgpair, which
is not uninvadable, and thus, a secondary evolutionarycbiag occurs
and leads to trimorphic coexistence.

Evolutionary suicide and branching—extinction cycles

The possibility of evolutionary suicide relates to one piecity of the
discrete-time version of the logistic population modelthé resources
are abundant and the consumers use them efficiently, it silgeghat
one or both of the resources become exhausted. It is noty@$sipro-
duce new eggs by utilizing an exhausted resource. Thusthfiesources
are exhausted simultaneously, all the consumers die outteeeigh the
resources recover later. If one of the resources becomesistdd, all the
devoted specialists utilizing this resource die out. Bdtthese scenarios
may lead to evolutionary suicide and the latter one evendtugonary
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A) Strategies present during the evolutionary time
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Figure 7: The result of an evolutionary simulation leading to the co-
existence of generalist and specialists in the logistic met(equation
18).

Panel A: Strategies present in the population as a function of theuevo
tionary time. One unit of evolutionary time corresponds te doop of
the simulation procedure depicted in the Appendix of Nurrmd &arvi-
nen (2013). Thus, it is only applicable for comparison betvdifferent
simulations using the same procedure. Initial populattamnonomorphic
practicing strategy = 0.1. Simulation ended in a trimorphic population
practicing strategies, = 0, s, = 0.5, andss = 1.

Panels B and C:Resource availabilitied!,) andA'? as defined in equa-
tion (30) as a function of the evolutionary time. For eachletionary
time unit, Panel B illustrates the sum of the resources albviities during
each step on the population-dynamical attractor. Paneu€tiates the
differences of the resource availabilities.

Parameters: K1 = K, =38, 0 = —0.72, a1 =g =1, A\{ = Ay = 1.
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branching—extinction cycles (see Nurmi and Parvinen (2€dr3llustra-
tions). However, in the latter scenario, the possibilitgweblutionary sui-
cide in evolutionary simulations depends on the detailfiefdimulation
procedure (see the Appendix of Nurmi and Parvinen (2013)).

An overview of the evolutionary dynamics under non-equililsium
population dynamics

A concise overview of the evolutionary dynamics under nga#érium
dynamics is presented by the way of evolutionary bifurcat@gram in
Figure 8. Since the current adaptive dynamics toolbox sdfanly for
algebraic analyses of the cases with equilibrium or pecigaipulation
dynamics, the evolutionary bifurcation diagram has to bmgemented
by illustrating the endpoints of evolutionary simulatidhat are based on
procedure presented in the Appendix of (Nurmi and Parvigéh3).

In Figure 8, if the trade-off is sufficiently strond (< —2.4), the
population always evolves to a monomorphic specialist fagmn with
chaotic population dynamics. #2.4 < 6 < —1.7, the initial strategy of
the population determines, whether the population evdtvasnonomor-
phic specialist population, or, via evolutionary branghito a dimorphic
population comprising two devoted specialist strategies:-1.7 < 6 <
—0.87, evolutionary branching occurs independent of the ingiedtegy,
and evolution leads to a dimorphic combination of the devsteecialist
strategies. Wher-0.86 < 6 < —0.585, one observes evolution to trimor-
phic coexistence. In the parameter domaiih585 < ¢ < 0, evolution
leads to dimorphic singular strategy pairs and evolutiprilactuations
caused by attractor switches of the chaotic ecological ahycs

When0 < 0 < 0.35, evolution of specialization ends in a monomor-
phic unbiased generalist population.OlB5 < 6, evolution still directs
towards generalism, but increasing benefit obtained froneigdism to-
gether with high resource carrying capacities finally ressul overly ex-
tensive resource usage exhausting both resource simoltsiyewhich
results in evolutionary suicide, and thus, evolutionamgidations end to
extinction at the boundary of the black area indicating abie strategies
in the evolutionary bifurcation diagram.
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Strategies

Figure 8: Evolutionary bifurcation diagrams in the case of possibly
non-equilibrium population dynamics in the logistic model (equation
18). Singular strategies and endpoints of evolutionary sinutatas a
function of the trade-off parametémwhen specialists have chaotic popu-
lation dynamics. Biased usage of two resources may stalpbpulation
dynamics, but high benefit of generalism enables chaotiamycs and
even evolutionary suicide.

Thin black curve indicates evolutionary repellors and khitey curve
branching points. The arrows indicate the expected doedaif evolution
in a monomorphic population. In the black-colored paramdtmain,
the population is not viable. In the grey-colored paramdtenain, the
monomorphic population dynamics are (nearly) chaotic.

The evolutionary simulations are initiated in a monomocgiopulation
with random strategy. If an evolutionary simulation ends imonomor-
phic population, the end-strategy is denoteabif it ends in a dimorphic
or polymorphic population, the strategies comprising thep®int are de-
noted byx-signs. If evolutionary suicide occurs, the last viablatggy is
denoted byt-sign.

Other parameter values’; = K, =38, ay =as =1, Ay = Ay = 1.
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Altogether, Figure 8 illustrates the qualitative overviefithe evolu-
tionary dynamics in the discrete-time logistic populatmoadel with non-
equilibrium dynamics. The cases with local dynamics deteeohby the
Ricker (1954) or Hassell (1975) models are qualitatively@dt similar.
In all of these models, there exists a parameter domain wiretke di-
morphic population, a secondary evolutionary branchinguos; and the
population starts to evolve towards trimorphic coexiséenéccording
to the observations of Nurmi and Parvinen (2013), in thesibgimodel
the evolution in this case always ends to trimorphic coexis¢. Evo-
lution to trimorphic coexistence is possible in Ricker anaisbell mod-
els as well, but in addition, there exists also a parameterailo, where
the appearance of the generalist strategy affects thegical@onditions:
As the generalist strategy becomes more unbiased and more@o,
it synchronizes the resource dynamics such that the géstataelf be-
comes unviable and goes extinct. Thus, the population besatimor-
phic again making way to a new evolutionary branching andigiemary
cycles (Nurmi and Parvinen, 2013).

6.4 Spatially heterogeneous models for the evolution of
specialization and the joint evolution of dispersal
propensity and specialization

Spatial heterogeneity usually makes mathematical modete whifficult

to analyze. A temptingly simple approach to include spatsgects into
the models is to resort to individual-based models wheretinent loca-
tion defines the resource availabilities of an individuabéta, 1996;
Doebeli and Dieckmann, 2000, 2004). However, even thoughirth

creasing computational power of modern computers alloves &rger
and more detailed models to be analyzed, it is always easiexttact
patterns from these models when they can be backed up byetieabr
models.

Another simple way to add spatial heterogeneity is to stysyesns
where two (or several) patches are connected by dispeesalljenderen,
1991; Wilson and Yoshimura, 1994; Abrams, 1999; Kisdi anditGe
1999; Abrams, 2000a; Day, 2000). This approach is, nayunadit able
to include the possibility of local catastrophes, even giokisdi (2002)
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included the possibility of "good” and "bad” years independy in each
patch.

Majority of theoretical studies considering evolution pésialization
in spatially heterogeneous environments has taken platéwvthe con-
text of evolution of habitat specialization (Levins, 196263; van Tien-
deren, 1991; Brown and Pavlovic, 1992; Kisdi, 2002), wherse gener-
ally assumed that there is a trade-off between individyei$ormances in
two different environments or habitat patch types. Theltegqublished
by Gyllenberg & Metz (Gyllenberg and Metz, 2001; Metz and |Eyi
berg, 2001) provided tools that allowed Parvinen and EgaB4Pto con-
sider habitat specialization even within the frameworktoigured meta-
population models with local catastrophes and infinitelynynpatches
(but only two different patch types).

The habitat specialization approach has two obvious wessase First
of all, it usually limits to the cases with only two differgpaitch types and,
secondly, it does not determine the origins of the diffeesnzetween the
patch types, and thus, prevents the mechanistic derivafidhe local
population dynamics. In this thesis, the derivation of thetapopulation
theory for the evolution of specialization, initiated byrdaen and Egas
(2004), is continued.

Nurmi et al. (2008) rationalize the differences betweerpiditeh types
on the basis of different resource availabilities and foonghe evolu-
tion of resource utilization. The modeling approach usedbymi et al.
(2008) resembles the habitat specialization or habitageisaodels, but
enables the inclusion of several patch types, which, inlit, might fa-
cilitate the coexistence of specialists and generalists.

However, price paid for the conformity with habitat usagedeis in
the model of Nurmi et al. (2008) is that the local resourceasigits within
the habitat patches are omitted, and the resource avéikddimply de-
termine, for each patch, a’quality” that delineates thealqupulation
dynamics, but unfortunately does not enable mechanistivad®on of
the local population dynamics starting from the individiealel. Thus,
even though the model by Nurmi et al. (2008) was a step fonrard
the habitat usage models, there was still, in terms preddatdrueffler
et al. (2006), an obvious need for the evolutionary analyike models
that take into account the local resource—consumer dyrsariiais defi-
ciency was fixed by Nurmi and Parvinen (2008), who analyzedrbdel
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introduced in section 4.

Both Nurmi et al. (2008) and Nurmi and Parvinen (2008) comsd
evolutionary effects of various ecological parameterssmdyht for pos-
sibilities for trimorphic coexistence. When studying theletionary ef-
fects of ecological parameters, it was found that the @tdbetween dis-
persal propensity and the evolution of specializationtiseacomplicated
and can even be counterintuitive. This prompted Nurmi anmifen
(2011) to study the joint evolution of specialization angidirsal propen-
sity. This study revealed several mechanisms that enaldeitean to
trimorphic coexistence, and moreover, Nurmi and Parvird11) en-
abled the analysis of the evolutionary effects of variouslagical pa-
rameters in a setting where the dispersal propensity ieadof a preas-
sumed value, assumed to have evolved to the correspondihgienarily
singular (attracting and uninvadable) value. Nurmi and/ihan (2008)
showed also that evolution of specialization may, in mepajbetions, end
to a dimorhic singular strategy pair. This may, as preselyedurmi and
Parvinen (2011), be an important step on the path to trimorpbexis-
tence.

When analyzing the joint evolution of dispersal propensityl spe-
cialization, one needs to understand also the evolutiorspedsal propen-
sity. Therefore, at this point, a small interlude introcigcthe main as-
pects of dispersal evolution is necessary.

Evolution of dispersal propensity

Its rather typical that the evolutionary dynamics of disaéhave only a
single evolutionarily singular dispersal propensity, e¥his always evo-
lutionarily attracting (see, e.g., Johnson and GainesQ)t9%vin et al.
(2003) and Ronce (2007)). This is the case also in the motiaiées
in this thesis. The numerical value of this propensity isnaniily deter-
mined by the catastrophe probabilityand the probabilityr of surviving
dispersal. The higher is the probability the higher is the singular dis-
persal propensity. When there remains any risk of dispdrsat 1),
the catastrophe probability affects the singular dispgnsgpensity in a
non-monotonous way: in the absence of catastrophes (), all local
populations stay at the fixed point of the local dynamics, @, the
strategy not to disperse is an evolutionarily attractimgslar strategy, as
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proved by Parvinen (2006) for the class of structured disetiene meta-

population models studied in this thesis. As the catastqpbbability

increases, the singular dispersal propensity increaséeifeginning,

too. This is due to the fact that catastrophes result in empptghes,

which make dispersal profitable. As the catastrophe prdibaivicreases

further, most individuals find themselves in sparsely pafad patches
with plenty of resources. This decreases the advantagdaspdrdal and
causes the singular dispersal propensity to diminish. Bheewof the sin-
gular dispersal propensity reaches zero again at the thiceslhere the
metapopulation loses its viability. This phenomenon hanhebserved
also by, e.g., Ronce et al. (2000); Gyllenberg et al. (20R3jyinen et al.
(2003) and Parvinen (2006). In this thesis, the focus is ipan the pa-

rameter domain in which the singular dispersal propengipears as an
increasing function of the catastrophe probability.

Various mechanisms resulting in evolutionary branchingaymor-
phisms of dispersal have been observed in different metdatpn mod-
els. These mechanisms include temporal variation in forayolic (Doe-
beli and Ruxton, 1997; Parvinen, 1999) or chaotic (Holt ancPiEk,
1996) local population dynamics, or temporally and spigtiarying car-
rying capacities (McPeek and Holt, 1992; Mathias et al.,120Blowever,
catastrophes alone, have been observed not to create eteughbral
variation to promote branching. For example, Gyllenbergle{2002)
did not find evolutionary branching in a structured metapation model
defined in continuous time with one patch type. Parvinen 22@fud-
ied the corresponding model with several patch types, asdrgbd that
catastrophes together with spatial heterogeneity in theesef different
patch types can result in evolutionary branching of disger$he nec-
essary level of spatial heterogeneity can be obtained wfittreinces in
growth conditions alone, as well as with differences in saitgphe rates
alone. A similar observation in a metapopulation model witiall local
populations, and therefore, locally stochastic poputatgnamics, was
made by Parvinen et al. (2003) (one patch type) and Parvindrivietz
(2008) (several patch types).

Parvinen (2006) studied a discrete-time metapopulatiodehand
found another additional mechanism, which can togethen watastro-
phes result in evolutionary branching. Even though all llpcgulations
would eventually reach an equilibrium population size,hiéy are not
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hit by a catastrophe, this convergence to the equilibrium lza non-
monotonous due to overcompensation in the local discnete-lynam-
ics, such as in the Ricker model. Parvinen (2006) obsenaddstith tem-
poral heterogeneity together with catastrophes can rasaitolutionary
branching of dispersal.

In this thesis, the joint evolution of dispersal propensity special-
ization is explored only in the case where local populatipmednics of the
metapopulation are of the Beverton-Holt type, where caysece to the
population-dynamical equilibrium is monotonous. Therefthe mecha-
nism for evolutionary branching of dispersal observed hyiRan (2006)
Is not present here. Thus, the effects of non-equilibriumeahyics to this
joint evolution remains an interesting question for theifatresearch.

In the case of Beverton—Holt-type local dynamics, the enaharily
singular dispersal propensity is in most cases uninvadahheutants fea-
turing a different dispersal propensity. In accordancénthie reasoning
above, Nurmi and Parvinen (2011) observed evolutionamdiriag of
dispersal, if individuals encounter a sufficient amount dtgl hetero-
geneity in the sense of different patch types (Parvinen2200

The living conditions of generalists in a specific patch atednined
by the overall availability of the two resources, whereaslthing con-
ditions of specialist are determined solely by the avdlitgbof a single
resource. With spatially and temporally varying resourcailabilities,
the former naturally presents less spatial variance tleatatter. There-
fore, the evolutionary branching of dispersal propensigyre impos-
sible in a generalist population even though it is possibla specialist
population under otherwise similar ecological conditioBspecially, an
unbiased generalist regards the two resources as ideatiddherefore it
observes no difference between two patches with swappednescar-
rying capacities K = K2 and K} = K?). Thus, Nurmi and Parvinen
(2011) conjectured that evolutionary branching of disgkisnot possi-
ble in a metapopulation comprising unbiased generalistidhdals in an
environment comprising two patch types with swapped cagyapac-
ities. For a specialist, evolutionary branching of dispemopensity in
such an environment is possible.

Evolution of dispersal is, in a sense, an inviting field olagh, since
externally determined trade-offs are not necessary bueWoéution of
dispersal always takes place in the balance between theandtbenefits
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of dispersal (risks and costs of dispersal versus the bsmgfihed from,
e.g., the colonization of new areas (Hamilton and May, 197HAgence,
there has been a wide range of research focusing in the evohitdis-
persal. However, when both dispersal and ecological sizatian may
evolve, the mathematical models become notably more comfleus,
there have been only a few studies exploring this area (K&gf)2; Han-
ski and Heino, 2003; Heinz et al., 2009; Scheiner et al., 2012

(Scheiner et al., 2012) analyze the joint evolution of phwpic plas-
ticity and dispersal using individual-based simulatiombey do not ob-
serve evolutionary branching of dispersal, which is theikgyedient of
all the non-trivial results of Nurmi and Parvinen (2013)stkad in their
results, high dispersal is always accompanied with phgnotylasticity
whereas low dispersal leads to genetic differentiatiopgesilly in the
presence of cost of plasticity. Hanski and Heino (2003) ltawded out a
simulation-based case study on the evolution of dispershahast-plant
preference (specialization) among Glanville fritillamytterflies Melitaea
cinxid). Their model is parametrized on the basis of observing thiesh
metapopulation in thAland Islands in south-western Finland. This field-
biologically inclined approach differs notably from thepapach of this
thesis, where the aim is to explore the biologically remligiarameter
domain in order to find different possible evolutionary sm@s. Heinz
et al. (2009) have studied the joint evolution of dispersstiashce and lo-
cal adaptation in an environment with a continuously vagyiharacter by
means of individual-based simulation models both with al@nd sexual
reproduction. Their viewpoint is different from the viewpbof this the-
sis, but noteworthily in their model, predictions based sexaial model
are, qualitatively speaking, principally consistent viltle predictions de-
rived from the sexual model. Kisdi (2002) explores a twoepahodel in
which the evolving traits are dispersal propensity and thep#on to the
local conditions in different patches. Compared to the pmpalation
models with local catastrophes, she assumes rather milploi@nvari-
ations: "good” and "bad” years that occur randomly and iredefently
in each patch. These temporal variations are not influeetalgh to
allow selection for high dispersal. Thus, a high degree epélisal or
generalism usually appeared only as a response to the dtiowpetith
low-dispersal specialists. Kisdi (2002) also observesutiam to the tri-
morphic coexistence of the specialists and generalistgridy on an ex-
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tremely narrow parameter domain.

Evolution to a singular dimorphic strategy pair

In a well-mixed population with globally convex (concavede-off func-
tions (given by, e.g., equation 20), the usage of two ressuevolves to
generalism with concave trade-off curvésx 0), and to devoted special-
ism with convex trade-off curved (< 0). Under frequency-dependent
selection, it is also possible that evolutionary branchoeegurs and the
population evolves to the combination of the two devotedcisbiets.
However, evolution to any other singular dimorphic strgtegmbination
requires rather complex trade-off structures (Zu et all,120 2011b).

Figure 9A illustrates two evolutionary scenarios broughtoy the
metapopulation structure (when only the specializaticaisgy evolves).
On one hand, a metapopulation structure may enable evoautidranch-
ing also when it is not possible in well-mixed populatiofis* 0, i.e.,
weak trade-off). Note that, sometimes, spatial structuag aiso inhibit
diversification (Day, 2000, 2001). On the other hand, Figikeillus-
trates that, within a metapopulation structure, the evatubdf specializa-
tion may, even for simple trade-off curves, end in a singdiarorphic
strategy combination, where the involved strategies ateleeoted spe-
cialists.

Evolution to trimorphic coexistence

In structured metapopulation models of the type charadriby the
equations 21 and 22, the competitive exclusion principlegkéna et al.,
2006), i.e., the dimension of the environmental interactiariable never
limits the number of coexisting strategies. In fact, thegilméty for eco-
logical coexistence of a generalist strategy with two sgéestistrategies is
rather firmly built into the metapopulation models wherecpaypes are
determined by the carrying capacities (or availabilitefswo resources.
Trimorphic coexistence may occur, for example, in landssajat
consist of equal amounts of three different patch types suahin one
patch type resource 1 is abundant and resource 2 scarces patch type
resource 2 is abundant and resource 1 scarce and in one yaedioth of
the resources are equally abundant. If furthermore, thergéist has even
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Figure 9: Result of evolutionary simulations where only gakzation
evolves in a metapopulation model with local dynamics ofBlegerton—
Holt type (equation 16).

Panel A: Evolution ends to a singular dimorphic strategy combirratio
an environment comprising two patch types with moderatastaiphe
probability. Parameter valueg8:= 0.1,¢ = 0.05, A =3, e = 0.3, 7 =
0.8, Kl = K3 =3, K! = K} =1andp, = p, = 0.5.

Panel B: Evolution ends to the trimorphic coexistence of two paltial
specialized strategies and the unbiased generalistgraten environ-
ment comprising three patch types when catastrophes asnedy rare.
Parameter value®: = 0.1,¢ = 0.0001, A\ =3, e = 0.3, 7 = 0.9, K{ =
K2 =3, K3=K3=2,p =py=025andps; = 0.5.

a small advantage (> 0), then the generalist is a superior competitor in
patches with equal amount of the two resources, whereap#uadists
are superior competitors in patches rich in resource theyspecialized
to. Now, all the three morphs have patches that they can tadeio the
long run (if the patch avoids local catastrophes sufficielathg).

Assume now, that catastrophes are extremely rare. Thepasisible
to assume an extremely low dispersal propensity withoutdpthe viabil-
ity of the metapopulation. Then the local dynamics withia gatches are
virtually independent of each other, with dispersal onlgwaing slow re-
colonization of the patches emptied by the local catasespMoreover,
due to extremely small catastrophe probability, the patare virtually
always fully occupied, which means, that the type that it bdapted to
a certain patch, will outcompete all the other types frors fatch, and
the immigrants adapted to other patch types will be rapidted, which
makes the ecological dynamics in different patches vilgyuatiependent.
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This mechanism allows the evolution to trimorphic coexiseeas il-
lustrated in figure 9B. A similar mechanism may also affeetribh vari-
ety of the patterns of local adaptation observed in someapéar clades)
inhabiting extremely isolated but stable habitats, sucthasGalapagos
finches (Darwin, 1845; Grant and Grant, 2002).

Altogether, in the models studied in this thesis, the evotuof spe-
cialization hardly ever leads to trimorphic coexistencdemequilibrium
population dynamics with moderate catastrophe probggdslivhen only
specialization can evolve. This is largely related to thgpdrsal pro-
cess: dispersal is assumed to be completely global andmaridistance-
limited dispersal together with spatially aggregated availabili-
ties is known to enable trimorphic coexistence (Débargelaanormand,
2011; Karonen, 2011). Moreover, the evolutionary dynarofcspecial-
ization, and thus, the possibilities of trimorphic coegrigte, are affected
by form of habitat selection, i.e., whether a dispersingpiadial is able to
assess different habitats and choose its target patchdawegdo its char-
acteristics (Rosenzweig, 1981, 1987, 1991; Richards anddas, 2001;
Ravigné et al., 2004, 2009).

In this thesis, evolution to trimorphic coexistence is mitkely un-
der equilibrium population dynamics when both dispersappnsity and
specialization may evolve. A typical evolutionary sceaagsulting in
such coexistence is illustrated in Figure 10. In this figloeal dynamics
are of the Beverton—Holt type and the environment is symmete., the
two resources are, on average, equally abundant. Howeves, there are
three patch types, it is possible to find such parameter quatibns that
the branching of the dispersal propensity is possible in @population
comprising generalists, and that the dispersal propesgjtyficantly af-
fects the invadability of the generalist strategy.

After the initial phase of evolutionary branching of disgerpropen-
sity, the two branches diverge further apart from each odimel, given
that trade-off parametel has an appropriate value, the generalist strat-
egy may turn from an ESS to an evolutionary branching pointife less
dispersive morph. This results in evolutionary branchifthe special-
ization strategy employed by the scarcely dispersing maoapd finally
in trimorphic coexistence, in which each of the three moitmdis patches
where it is a superior competitor and can outcompete ther otloephs
given that the patch avoids local catastrophes sufficidotly.
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Note that although panel A in Figure 10 may seem to indicate-a d
generate case in which specialization divides in threedires this is
not the case. Instead, after evolutionary branching ofedsad, both
morphs employ the same specialization strategy,0.5. The morph with
low dispersal propensity undergoes branching of speeitihia into two
branches, while the specialization strategy of the higipelisal morph
remains as = 0.5 as illustrated in Figures 10B-F.

Each evolutionary path leading to trimorphic coexistenuseoved by
Nurmi and Parvinen (2011) involves an evolutionary brangtuf disper-
sal propensity in a nearly generalist metapopulation aich parameter
combinations that dispersal propensity affects the inpdithaof the (un-
biased or biased) generalist strategies. In environmemgdsing only
two different patch types, it is rather difficult to find suatoéogical set-
tings, and evolution rarely leads to the coexistence ofigpsts and gen-
eralists. However, this possible at least in two ways (imowaparameter
domains).

Figure 11 illustrates the scenario, where evolution to anphic co-
existence is possible even in a symmetric environment (ress are on
averages equally abundant) comprising only two patch typéere, in
a monomorphic population, evolution leads to a singularadphic strat-
egy combination. Even though evolutionary branching of diepersal
propensity is not possible in a metapopulation comprisimigiased gen-
eralists (since they observe only one patch type), it isipteskor both of
these partially specialized strategies. As the environnsesymmetric,
and thus, the evolutionary forces acting on both branchesyanmetric,
also the events of evolutionary branching occur fairly dtameously (for
most sequences of stochastic mutation events).

Thus for a while, the population becomes quadrimorphic, ted
more dispersive morphs start to evolve towards generalibite\the less
dispersive morphs become more specialized. Finally, elibéh of the
more dispersive morphs converge to generalism or one of thesout
and the other converges to generalism. In the resultingotpimsm the
more dispersive morph finds its niche by efficiently colomizpatches
emptied by catastrophes. On the other hand, the low didpspsaial-
ists get along as, in the long run, they can take over the patdhh in
the resource they are specialized in. Recently, NagelkankieMenken
(2013) showed, in a Levins-type metapopulation model, ttnatkind of



6 EVOLUTION OF RESOURCE SPECIALIZATION 74

ecological coexistence may possible even without diffeesnn the dis-
persal propensities if the specialists can live only on glsipatch type
while generalists can inhabit any patch type, since in thé®the general-
ists can colonize new patches efficiently because they have patches
(different types) to colonize.

Figure 12 illustrates the scenario, in which the asymmigfraf the
environment enables the evolutionary branching of disdgpensity
in a metapopulation utilizing the slightly biased singujaneralist strat-
egy that is evolutionarily attracting in a monomorphic plggion. In fig-
ure 12, the environment consists of unequal amount of twohplypes
with swapped carrying capacities. An unbiased generalisexwes no
differences between such patches, and hence evolutionanghing of
the dispersal propensity is not possible in a metapopulatsing the un-
biased generalist strategy. Due to the asymmetricity,itigutar special-
ization strategy is, however, sufficiently distant from thebiased strat-
egy in order to enable evolutionary branching of the dispgrsopensity.
In Figure 12, one actually observes two successive everggajfition-
ary branching of dispersal. In both cases, the dispersalgmsity at the
branching point is rather large. Therefore, the dispensaignsity of one
of the emerging morphs cannot increase much more and thishmer
mains nearly generalist, while the dispersal propensiti@bther emerg-
ing morph decreases substantially. During the first eveetofutionary
branching, the morph with decreasing dispersal propespiggializes in
the less abundant resourcesl=£ 1), whereas during the second evolu-
tionary branching the newly appeared morph with decreadisgersal
propensity specializes in the more abundant resource (). Finally,
the metapopulation reaches a trimorphic state comprisezhefabun-
dantly dispersing generalist and two scarcely dispergpegialists. The
exploited niches are qualitatively similar to those in tlse involving
symmetric environments (Figure 11).
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Figure 10: Panel A illustrates the strategies present im&@population
with local dynamics of the Beverton—Holt type as a functibewmlution-
ary time. Grey curve = the specialization componewtf the strategy,
black curve = the dispersal component Each dot in Panels B-F rep-
resents a strategy that has been present in the metapopudating the
corresponding evolutionary time interval. The verticakahustrates the
dispersal propensity and the horizontal axis illustrates specialization
The arrows in Panels B-F indicate the direction of evolutidrhe ini-
tial strategy(e,s) = (0.1,0.1). The simulation ended in a trimorphic
metapopulation using strategiés s) ~ (0.1,0), (0.1,1) and(0.8,0.5).
Parameter value#: = 0.1, 7 = 0.99, A =3, ¢ =0.05, K| =5, K] =

1, K?=1, K2=5, K3 =K} =1, py =p; =0.25, p3 = 0.5
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Figure 11: Panel A illustrates the strategies present imb@population
with local dynamics of the Beverton—Holt type as a functibevolution-
ary time. Grey curve = the specialization componemtf the strategy,
black curve = the dispersal componentEach dot in Panels B-I repre-
sents a strategy that has been present in the metapoputiationy the
corresponding evolutionary time interval. The verticakakustrates the
dispersal propensity and the horizontal axis illustrates specialization
The arrows in Panels B-I indicate the direction of evolutidme initial
strategy(e, s) = (1,1). The simulation ended in a trimorphic population
using strategiese, s) ~ (0.2,0.5), (0.1,0.1) and (0.1,0.9). Parameter
values:) = 0.1, 1=08, A=3, c =005, K| = K2 =3, K} = K] =

L, pr=p2=05
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Figure 12: Panel A illustrates the strategies present im&@population
with local dynamics of the Beverton—Holt type as a functibewolution-
ary time. Grey curve = the specialization componewmt the strategy,
black curve = the dispersal componentEach dot in Panels B-G rep-
resents a strategy that has been present in the metapopudating the
corresponding evolutionary time interval. The verticakakustrates the
dispersal propensity and the horizontal axis illustrates specialization
The arrows in Panels B-G indicate the direction of evolutidine ini-
tial strategy(e,s) = (0.1,0.1). The simulation ended in a trimorphic
population using strategids, s) ~ (0.25,0), (1,0.4) and(0.1,1). Pa-
rameter valuese = 0.1, 7 = 0.99, = 0.1, A = 1.5, K| = K3 = 10,
K12 = K21 = 1,p1 = 0.2,]92 =0.8.
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Evolutionary effects of ecological parameters

In this thesis, the evolutionary dynamics of specializative dominated
by the trade-off parameté:. For low values ofJ, the evolutionary dy-
namics of specialization always converge to a specialiatesty. Asf
increases, the generalist strategy first turns from an &oeolary repel-
lor into a branching point. For even greater values) dhe generalist
strategy becomes an evolutionary endpoint, after whicleasing) does
not cause any further qualitative changes under equilbracological
dynamics (when evolutionary suicide is not possible). Thhere are
always at least two critical values 6f

e At 07, the generalist strategy turns from an evolutionary repello
into a branching point.

e At 65, the generalist strategy turns from a branching point into an
evolutionary endpoint (ESS)

Since the trade-off parametémeasures the additional benefit or cost
of generalism (see equation (20)), the critical value® cdn be exploited
when studying how changes in different ecological pararsettfect the
evolutionary dynamics of specialization. If a certain ajp@am ecological
parameters causes both of the critical values to decrdasehtange can
be interpreted to favor the spread of the generalist styatégrrespond-
ingly, a change that causes an increase in both criticakgaiavors the
spread of the specialist strategies.f}fdecreases an@ increases, the
parameter domain where evolutionary branching occursrhesdarger.

Nurmi and Parvinen (2008) did this kind of investigation éovariety
of different metapopulation models assuming constantetigsg propen-
sity, whereas Nurmi and Parvinen (2011) assumed the delpanspen-
sity always to have the corresponding evolutionarily slagualue. Both
studies focused on metapopulations where within-patctahycs have
fixed-point attractors. The results of Nurmi and Parvine@0@ and
Nurmi and Parvinen (2011) are qualitatively similar comeg the fol-
lowing conclusions:

e Increasing environmental heterogeneity, i.e., increpsifference
between the resource carrying capacitiés and K, among the
patches enlarges the parameter domain where evolutioramngp-
ing may occur.
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¢ Increasing fecundity\ and increasing dispersal survivalfavor
the spread of the generalist strategy. In the case of joioluev
tion (Nurmi and Parvinen, 2011), this is natural, since #t&osin-
gular dispersal propensity increases, which again is absimce,
on one hand, increasing dispersal survival obviously @mes dis-
persal propensity, and on the other hand, increasing fetyuimd
creases crowding within the patches, which makes dispersed
profitable. More surprising is the observation that inciregfecun-
dity favors the spread of the generalist strategy even vatistant
dispersal propensity (Nurmi and Parvinen, 2008).

Nurmi and Parvinen (2008) observed, that with constanieigg propen-
sity, the evolutionary effects of decreasing catastropbbatility depend
on the details of the within-patch dynamics. However, Nuami Parvi-

nen (2011) deduced that decreasing catastrophe progabiiays results
in decreasing dispersal propensity, which always enlattgeparameter
domain where evolutionary branching may occur.

Clonal interference and the joint evolution of dispersal popensity
and specialization

Besides, the results described above, Nurmi and Parvirgdri j2iemon-
strated that the evolution of dispersal is usually slowantthe evolution
of specialization, i.e., evolutionary forces influencimgesialization are
stronger than those influencing dispersal. This phenomsnather nat-
ural, since the degree of specialization always affectsodpction. Dis-
persal affects both the reproduction of the disperserslanceproduction
of those remaining. However, the effect on the disperseirdity de-
pends crucially on how the original patch and the targettpditfer in
terms of quality and crowdedness. Thus, it requires segema¢rations
and dispersal events to be able to observe the average efffeispersal
on the dispersers’ fecundity. Moreover, the fecundity & thmaining
individuals is increased by dispersals only in crowded pedc

When two traits are evolving and there are significant diffiees in
the strength of the evolutionary forces influencing thens éven possi-
ble that the evolution of the faster evolving trait slows dogv halts the
evolution of the other. For example, in Figures 10, 11 andh&zvolution
of specialization halts the evolution of dispersal at theahphase. This
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may occur, since mutations affect only one trait at a timepleatropy).

When a new mutant dispersal propensity comes up, it haaligia very

small population size that increases rather slowly evehafrnutant is
capable to invade the population. New mutants usually copmieefiore

this mutant population has reached a significant size. Questly, the
new mutants usually have a dispersal propensity inhenited the initial

resident population. If any of these mutants has a speataliz strategy
that is capable to invade the resident, this mutant (cagrifse original

dispersal propensity) will increase rapidly in populatgire (due to the
stronger evolutionary forces) and outcompete the othategjies, includ-
ing the one in which the new dispersal propensity resultaghdr inva-

sion fitness compared to the initial resident population.

This phenomenon is based on clonal interference. It is pessince
there is no pleiotropy or recombination (Gerrish and Len$RP8). In
this thesis, pleiotropy is not under consideration, sinoeaay the case
without pleiotropy involves the main evolutionary featdhe search of
which motivated the analysis of the joint evolution of disgs propen-
sity and specialization: the evolutionary attainabiliytbe trimorphic
coexistence of a generalist strategy with two specialiategies.
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