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4 Abstract 

ABSTRACT

Miikka Tarkia

TRANSLATIONAL MODELS OF CORONARY ARTERY DISEASE, 
MYOCARDIAL INFARCTION AND HEART FAILURE 

Development, validation and in vivo imaging studies using positron emission tomography 

Department of Clinical Physiology and Nuclear Medicine and Turku PET Centre, 
University of Turku, Turku, Finland 

Coronary artery disease is an atherosclerotic disease, which leads to narrowing of coronary arteries, 
deteriorated myocardial blood flow and myocardial ischaemia. In acute myocardial infarction, a 
prolonged period of myocardial ischaemia leads to myocardial necrosis. Necrotic myocardium 
is replaced with scar tissue. Myocardial infarction results in various changes in cardiac structure 
and function over time that results in “adverse remodelling”. This remodelling may result in a 
progressive worsening of cardiac function and development of chronic heart failure.

In this thesis, we developed and validated three different large animal models of coronary 
artery disease, myocardial ischaemia and infarction for translational studies. In the first study 
the coronary artery disease model had both induced diabetes and hypercholesterolemia. In 
the second study myocardial ischaemia and infarction were caused by a surgical method 
and in the third study by catheterisation. For model characterisation, we used non-invasive 
positron emission tomography (PET) methods for measurement of myocardial perfusion, 
oxidative metabolism and glucose utilisation. Additionally, cardiac function was measured 
by echocardiography and computed tomography. To study the metabolic changes that occur 
during atherosclerosis, a hypercholesterolemic and diabetic model was used with [18F]
fluorodeoxyglucose ([18F]FDG) PET-imaging technology. Coronary occlusion models were 
used to evaluate metabolic and structural changes in the heart and the cardioprotective effects 
of levosimendan during post-infarction cardiac remodelling. Large animal models were used 
in testing of novel radiopharmaceuticals for myocardial perfusion imaging.

In the coronary artery disease model, we observed atherosclerotic lesions that were associated 
with focally increased [18F]FDG uptake. In heart failure models, chronic myocardial infarction 
led to the worsening of systolic function, cardiac remodelling and decreased efficiency of 
cardiac pumping function. Levosimendan therapy reduced post-infarction myocardial infarct 
size and improved cardiac function. The novel 68Ga-labeled radiopharmaceuticals tested in 
this study were not successful for the determination of myocardial blood flow.

In conclusion, diabetes and hypercholesterolemia lead to the development of early phase 
atherosclerotic lesions. Coronary artery occlusion produced considerable myocardial 
ischaemia and later infarction following myocardial remodelling. The experimental models 
evaluated in these studies will enable further studies concerning disease mechanisms, new 
radiopharmaceuticals and interventions in coronary artery disease and heart failure.

Keywords: coronary artery disease, myocardial ischaemia, myocardial infarction, heart 
failure, positron emission tomography (PET)
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TIIVISTELMÄ

Miikka Tarkia

SEPELVALTIMOTAUDIN, SYDÄNINFARKTIN JA SYDÄMEN 
VAJAATOIMINNAN TRANSLATIONAALISET MALLIT 

Kehitys, validointi ja in vivo kuvantaminen positroniemissiotomografialla

Kliininen fysiologia ja isotooppilääketiede ja Valtakunnallinen PET-keskus, Turun 
yliopisto, Turku, Suomi

Sepelvaltimotaudissa sepelvaltimot ahtautuvat ateroskleroosin vuoksi, mikä johtaa sydänli-
haksen verenvirtauksen heikkenemiseen ja sydänlihasiskemiaan. Akuutissa sydäninfarktissa 
pitkittynyt iskemia johtaa sydänlihaskuolioon eli nekroosiin, joka korvautuu arpikudoksella. 
Sydäninfarktin seurauksena sydämen rakenteessa ja toiminnassa tapahtuu muutoksia, mikä 
johtaa niin kutsuttuun haitalliseen sydänlihaksen uudelleenmuovautumiseen ja lopulta sydä-
men toiminnan heikkenemiseen ja kroonisen vajaatoiminnan kehittymiseen.

Tässä väitöskirjatyössä kehitettiin ja validoitiin kolme erilaista sepelvaltimotaudin, sydän-
lihasiskemian ja infarktin suureläinmallia translationaalisia tutkimuksia varten. Ensimmäi-
sessä osatyössä sepelvaltimotaudin mallissa oli yhdistetty diabetes ja hyperkolesterolemia. 
Toisessa osatyössä sydänlihasiskemia ja infarkti oli aiheutettu kirurgisesti ja kolmannessa 
osatyössä katetrisaatiolla. Mallien karakterisoinnissa käytettiin kajoamattomia positroni-
emissiotomografiaan (PET) perustuvia kuvantamismenetelmiä, joilla mitattiin sydänlihak-
sen verenvirtausta, hapenkulutusta ja glukoosinkäyttöä. Lisäksi sydämen pumppausominai-
suuksia mitattiin ultraäänikardiografialla ja tietokonetomografialla. Hyperkolesterolemia ja 
diabetesmallilla tutkittiin ateroskleroottisten tautimuutosten kuvantamista [18F]fluorodeoksi-
glukoosi ([18F]FDG) PET-merkkiaineella. Sepelvaltimon ahtauman malleilla tutkittiin sydä-
men metabolisia ja rakenteellisia muutoksia ja levosimendaanin sydäntä suojaavaa vaikutusta. 
Tutkimme myös uusia radiolääkeaineita sydänlihaksen verenvirtauksen määrittämiseen.

Sepelvaltimotaudin mallissa havaitsimme ateroskleroottisia muutoksia, jotka olivat yhtey-
dessä lisääntyneeseen [18F]FDG kertymään. Sydämen vajaatoiminnan malleissa krooninen 
sydäninfarkti johti systolisen funktion huononemiseen, haitalliseen sydänlihaksen uudel-
leenmuovautumiseen ja alentuneeseen sydänlihaksen hyötysuhteeseen. Infarktinjälkeinen 
hoito levosimendaanilla johti infarktialueen rajoittumiseen ja sydämen pumppausominai-
suuksien parantumiseen. Uudet testatut 68Ga-leimatut radiolääkeaineet eivät tässä tutkimuk-
sessa soveltuneet sydänlihaksen verenvirtauksen määrittämiseen. 

Johtopäätöksenä, diabetes ja hyperkolesterolemia johtavat varhaisen vaiheen ateroskleroot-
tisiin muutoksiin. Sepelvaltimon tukkeuma kehitti merkittävän sydänlihasiskemian ja myö-
hemmän infarktin johtaen sydänlihaksen uudelleenmuovautumiseen. Testattujen koemallien 
myötä meillä on mahdollisuus tutkia lisää sepelvaltimotaudin ja sydämen vajaatoiminnan 
tautimekanismeja, uusia radiolääkeaineita ja hoitomuotoja.

Avainsanat: sepelvaltimotauti, sydänlihasiskemia, sydäninfarkti, sydämen vajaatoiminta, 
positroniemissiotomografia (PET)
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ABBREVIATIONS

AC Adenylyl cyclase
ADP Adenosine diphosphate
αvβ3 Alpha-V beta-3 integrin
AHA American Heart Association
Akt Protein kinase B
AMP Adenosine monophosphate
ATP Adenosine triphosphate
[18F]FDG 2-[18F]-Fluoro-2-deoxy-D-glucose
BAPEN N,N′-bis(3-aminopropyl)ethylenediamine
BAPDMEN N,N′-bis(3-aminopropyl)-dimethylenediamine
CFR Coronary flow reserve
COX-2 Cyclooxygenase-2
CT Computed tomography
CVR Coronary vascular resistance
DOTATATE 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid octreotate
ECG Electrocardiography
EDV End-diastolic volume
EF5 2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide
EF Ejection fraction
ESV End-systolic volume
FFA Free fatty acids
FDA United States Food and Drug Administration
FMISO Fluoromisonidazole
FR Folate receptor
Gs Stimulatory G-protein
GSK-3β Glycogen synthase kinase-3β
HF Heart failure
HO-1 Heme oxygenase-1
IL Interleukin
iNOS Inducible Nitric-Oxide Synthase
IVUS Intravascular ultrasound
JAK Janus kinase
KATP Adenosine triphosphate-sensitive potassium channel
LAD Left anterior descending coronary artery
LCX Left circumflex artery
LDL Low density lipoprotein
LV Left ventricle
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MAPK Mitogen-activated protein kinase
MBF Myocardial blood flow
MCP-1 Monocyte chemotactic protein 1
M-CSF Macrophage-colony stimulating factor
MFR Myocardial flow reserve
MI Myocardial infarction
MMP Matrix metalloproteinase
MnSOD Manganese superoxide dismutase
MPI Myocardial perfusion imaging
MR Mannose receptor
MRI Magnetic resonance imaging
NF-κB Nuclear factor kappa-B
NO Nitric oxide
OCT Optical coherence tomography
PCSK9 Proprotein convertase subtilisin/kexin type 9
PET Positron emission tomography
PI3K Phosphatidylinositol-3-kinase
PK11195 N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide
PKA Protein kinase A
PKC Protein kinase C
PTI Perfusable tissue index
PTF Perfusable tissue fraction
RCA Right coronary artery
RGD Tripeptide arginylglycylaspartic acid
ROI Region of interest
RPP Rate-pressure product
SR Scavenger receptor
SPECT Single-photon emission computed tomography
STAT Signal transducers and activators of transcription
SUV Standardised uptake value
TGF-β1  Transforming growth factor-β1
TK Tyrosine kinase
TLR Toll-like receptor
TNFα Tumour necrosis factor alpha
TSPO Translocator protein
TTC 2,3,5-triphenyl-tetrazolium chloride
VCAM-1 Vascular cell adhesion molecule 1
VOI Volume of interest
WMI Work-metabolic index
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1. INTRODUCTION

Ischaemic heart disease is the leading cause of death worldwide. It is caused by coronary 
artery disease (CAD), which is a slowly progressing disease in which inflammatory 
processes together with cholesterol accumulation lead to the narrowing of the coronary 
artery. Narrowing of a coronary artery causes insufficient myocardial blood flow that 
leads to myocardial ischaemia, which is defined as reduced myocardial oxygen supply 
and metabolic changes due to decreased blood flow. Severely disturbed coronary blood 
flow or rupture of an atherosclerotic plaque resulting in intraluminal thrombosis can 
cause prolonged periods of ischaemia resulting in myocardial necrosis, i.e., acute 
myocardial infarction (MI). MI is followed by adverse cardiac remodelling including 
changes in size, shape, structure and physiology of the heart after myocardial injury. 
Chronic heart failure (HF) occurs when the heart is unable to pump enough blood to 
supply the blood flow needed to maintain the circulation of the body. It is an increasing 
health problem that is associated with high morbidity and mortality together with poor 
prognosis. (Finegold et al. 2013 and Sanz et al. 2013) 

Finding an effective animal model of atherosclerosis and myocardial ischaemia as well 
as MI involving reduced left ventricle (LV) function and remodelling with long survival 
is difficult to achieve. Several porcine models of CAD and MI exist and are used in 
research (Hughes et al. 2003 and Lukács et al. 2012). Still, better models for translational 
research are desired.

Positron emission tomography (PET) imaging of myocardial perfusion has shown high 
performance for diagnosis of CAD (Schelbert et al. 1982 and reviewed in Danad et al. 
2014). For example oxygen-15 labelled water ([15O]water) can be used in quantification 
of myocardial perfusion (Bergmann et al. 1984) and assessment of CAD (Reviewed in 
Saraste et al. 2012). Myocardial perfusion and oxidative metabolism can be measured 
simultaneously in a single PET study by using a carbon-11 labelled acetate ([11C]
acetate) tracer. Further, calculation together with cardiac function measurements gives 
an estimation of cardiac efficiency (Wolpers et al. 1994 and reviewed in Knaapen et al. 
2007). A fluorine-18 labelled glucose analogue 2-[18F]-Fluoro-2-deoxy-D-glucose ([18F]
FDG) can be used to determine myocardial viability (Tillisch et al. 1986 and reviewed 
in Knuuti et al. 2002). Viable myocardium is defined as myocardium, which does not 
contract normally due to ischaemia, but has the potential to recover its function.

New radiopharmaceuticals for cardiac PET perfusion imaging are demanded. 
Nitrogen-13 labelled ammonia ([13N]ammonia), rubidium-82 chloride ([82Rb]Cl) and 
[15O]water are the currently used PET tracers for myocardial blood flow quantification. 
These tracers have short physical half-lives and the production requires an expensive 
on-site cyclotron. A longer half-life enables centred production of the tracer and delivery 
for longer distances. Gallium-68 (68Ga) labelled radiopharmaceuticals have certain 
advantages in preclinical research including production with relatively inexpensive 
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germanium (68Ge)/68Ga generator and easy labelling of different molecules (Maecke et 
al. 2007). Recently, promising 68Ga-labelled tracers for myocardial perfusion imaging 
(MPI) have been introduced (Hsiao et al. 2009).

Because of a high mortality and poor prognosis, new treatments for HF are needed. 
Positive inotropic therapy improves the cardiac performance including contractility 
leading to increased pump function. A calcium sensitiser agent levosimendan has also 
shown to restrict the size of MI via activation of adenosine triphosphate-sensitive 
potassium (KATP) channels (Kersten et al. 2000).

In these studies we aimed to develop large animal models of CAD, myocardial ischaemia 
and MI. Multimodality imaging methods were used in validation of these experimental 
models together with histopathological evaluation. Also, new radiopharmaceuticals 
for MPI with PET were tested. Additionally, the effect of levosimendan therapy on 
myocardial infarct size and LV function were tested in a model of chronic HF.
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2. REVIEW OF THE LITERATURE

2.1 Coronary artery disease

Atherosclerosis is a progressive inflammatory disease. Signs of atherosclerosis have 
been reported already in children and even in fetuses (Stary 2000 and Napoli et 
al. 1997). Several risk factors like hypertension, high cholesterol levels, diabetes, 
obesity and smoking are all related to increased risk of atherosclerosis (Dahlöf 2010). 
Coronary artery disease (CAD) is caused by atherosclerotic plaque formation in the 
coronary artery vessel wall. Formation of an atherosclerotic plaque is a complex 
process including inflammation, accumulation of lipids, cell death and fibrosis 
(Hansson et al. 2006). Narrowing of coronary arteries caused by atherosclerosis can 
finally lead to reduced blood flow and myocardial ischaemia. Myocardial infarction 
(MI) is usually caused by advanced CAD and atherosclerotic plaque rupture. 
Atherosclerosis usually develops slowly over years and is often diagnosed after the 
onset of symptoms or an acute cardiac event. Ischaemic heart disease, originating 
from coronary atherosclerosis, is the leading cause of death worldwide (Finegold et 
al. 2013).

2.1.1 Atherosclerotic inflammation and plaque formation

Atherosclerotic plaques develop in the arterial wall in response to local endothelial 
cell dysfunction and local inflammation (Libby 2012). Cardiovascular risk factors like 
hypertension, hypercholesterolemia, diabetes and smoking can cause endothelial cell 
dysfunction, which leads to the upregulation of adhesion molecules and inflammatory cell 
recruitment (Libby et al. 2005). Atherosclerosis is initiated by the accumulation of low-
density lipoprotein (LDL) particles into the vessel wall (Skålén et al. 2002). Oxidation of 
LDL leads to the expression of leukocyte adhesion molecules like vascular cell adhesion 
molecule-1 (VCAM-1), which lead to the infiltration of monocytes and T lymphocytes 
and, in combination with leukocytes, causes the secretion of chemokines such as 
tumour-necrosis factor alpha (TNFα), interleukins (ILs), monocyte chemoattractant 
protein-1 (MCP-1) and matrix metalloproteinases (MMPs)  (Libby 2002). Monocyte 
differentiation into macrophages is induced by macrophage-colony stimulating factor 
(M-CSF). Subsequently, scavenger receptors (SRs) and Toll-like receptors (TLRs) are 
upregulated. Formation of foam cells is mediated by SR, whereas TLR initiated signal 
cascades lead to the activation of inflammation (Figure 1) (Yan et al. 2007). Inflammatory 
processes and accumulation of lipid droplets lead to initial atherosclerotic changes called 
fatty streaks and later formation of advanced plaques and atheromas (Hansson et al. 
2006).
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Figure 1. Inflammatory processes related to atherosclerosis.

2.1.2 Coronary artery stenosis and plaque rupture

The earliest stage of progressive atherosclerosis is intimal thickening, which is defined 
as an increased number of intimal smooth muscle cells. This continuous inflammatory 
process leads to the formation of a fibroatheroma, a lesion with a necrotic core and an 
overlying fibrous cap. Progressive atherosclerosis leads to more advanced plaques and 
narrowing of vessel lumen. Over time, atherosclerosis can cause myocardial ischaemia 
by the narrowing of the vessel lumen or plaque rupture. Rupture often develops a 
luminal thrombus, which is a common cause of acute MI and sudden death (Virmani 
et al. 2000).

2.2 Ischaemic cardiomyopathy

2.2.1 Myocardial ischaemia

Myocardial ischaemia occurs when the supply of oxygen no longer meets the requirement 
of myocardial demand. Myocardial ischaemia is caused by the limited amount of blood 
supply into myocardial tissue. The blood supply of heart is organised through coronary 
circulation and CAD is the most common cause of chronic myocardial ischaemia or 
infarction (Sanz et al. 2013). Insufficient blood flow can lead to regional myocardial 
dysfunction and later on to cardiac remodelling and HF.

Under normal aerobic conditions, fatty acids supply 60% to 90% of the energy for 
adenosine triphosphate (ATP) synthesis. Approximately 10% to 40% of the energy 
comes from oxidation of pyruvate and only small amount (3%) is derived by glycolysis 
(Stanley 2004). Partial reduction in coronary blood flow shifts cardiomyocytes to utilise 
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more glucose. Glucose metabolism needs 10% less oxygen than the oxidation of fatty 
acids. Still, the most of the energy (50-70%) is derived from the oxidation of fatty acids 
(Figure 2) (Stanley 2001). Critical myocardial ischaemia results in increase of anaerobic 
glycolysis leading to production of lactate. The myocyte swells due to imbalance of 
intracellular homeostasis, which can lead to ischaemic cell death and a decrease in 
contractile work. 
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O
2
 

3% 
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Figure 2. Myocyte energy metabolism under normal aerobic and ischaemic conditions.

2.2.2 Ischaemic preconditioning

Ischaemic preconditioning refers to the myocardial protection occurring after brief 
periods of sublethal ischaemia. It has been linked to reduced MI size and increased 
survival. Protective effects start immediately after coronary occlusion following 
reperfusion (first window) (Murry et al. 1986). The first window of protection is 
activated through opioid, adenosine, bradykinin or alpha1-adrenergic receptors 
lasting 4 to 6 hours (Figure 3) (Rodrigo et al. 2008). Activation of protein kinase 
C (PKC) leads to activation of mitochondrial KATP channel. The second window of 
protection has been demonstrated 24 hours after the preconditioning lasting up to 
72 hours (Buja 2005 and Das et al. 2008). The second window is activated through 
nuclear factor kappa-B (NF-κB) (Figure 3). Preconditioning reduces the energy 
demand of the myocardium leading to preserved myocardial function and reduction 
of arrhythmias (Hagar et al. 1991). The exact mechanisms of this preconditioning 
effect remain unclear.
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Figure 3. Mechanisms of the first and second window of ischaemic preconditioning.

2.2.3 Myocardial infarction

Myocardial infarction (MI) is caused by severe and prolonged ischaemia. The existence 
of coronary collateral flow is one determinant of infarct size. Necrosis occurs first in the 
subendocardial region. The necrotic area expands progressively transmurally, i.e., affecting 
the entire thickness of the wall within time (Reimer et al. 1979). The major cause of acute 
MI is coronary atherosclerosis with luminal thrombus. MI without atherosclerosis is rare. 
A prolonged period of insufficient blood flow leads to MI. Wound-healing involves fibrosis 
formation and MI scarring. Inflammatory cells, mainly macrophages, initially infiltrate 
into the necrotic myocardium. Interstitial fibroblasts are transformed into myofibroblasts 
by transforming growth factor-β1 (TGF-β1). Myofibroblasts express alpha-type smooth 
muscle actin and contain angiotensin-converting enzyme and matrix metalloproteinases. 
TGF-β1 and angiotensin II are responsible for accumulation of collagen. Changes in the 
myocardial extracellular matrix are very rapid and formation of collagen in the infarcted 
area is visible two to three days after MI. Infarcted myocardium thins and is replaced with 
non-functioning collagen-rich scar tissue (Swynghedauw 1999 and Bujak et al. 2007).

2.2.4 Cardiac remodelling

Myocardial remodelling includes all those changes that occur after MI to compensate for 
the loss of a functional myocardium. Remodelling is initiated by increased mechanical 
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stretch due to MI scarring. A major determinant for infarct expansion and remodelling 
is the transmural extent of necrosis. Complex neurohumoral remodelling processes 
usually lead to viable cardiac tissue hypertrophy, fibrosis and cell death. After MI, 
systolic function will be impaired due to the loss of contractile myocardium. This leads 
to increased end-systolic volume, increased heart size and increased diastolic filling 
pressure (Swynghedauw 1999). Elevated myocardial wall stress will be normalised by 
hypertrophy according to Laplace’s law. The wound healing and remodelling processes 
after MI involves both the infarcted and non-infarcted myocardium. Fibrosis is more 
related to scar formation when it is replacing necrotic tissue but also to remodelling 
occurring interstitially in non-infarcted remote tissue. Fibrosis in the remote myocardium 
can be induced by vasoactive peptides and hormones like angiotensin II and by 
mechanical pressure overload (Heusch et al. 2014).

2.2.5 Heart failure

HF occurs when the heart is unable to pump enough blood to maintain normal 
circulation. It is a consequence of an abnormality in cardiac structure, function, rhythm 
or conduction. The most common causes of heart failure are myocardial infarction 
and hypertension (McMurray et al. 2005). HF can appear acutely especially in the 
case of MI. Most clinical signs are non-specific. Electrocardiography (ECG) can be 
used to measure pathological changes in the electrical conduction system of the heart. 
Echocardiography is widely used to demonstrate cardiac dysfunction. Other imaging 
modalities, such as computed tomography (CT), PET and magnetic resonance imaging 
(MRI) are used increasingly in the evaluation of HF. Despite recent advances in 
pharmacological and device therapies, prognosis of HF is often poor: 30 to 40 percent 
of patients die within a year and 60 to 70% die within 5 years of diagnosis (McMurray 
et al. 2005).

Energy metabolism is disturbed in HF. Contractile performance is decreased together 
with reduction of ATP, phosphocreatine and creatine kinase concentration (Liao et al. 
1996). Oxygen deprivation results in impaired relaxation and contraction. Stunning can 
be present after prolonged ischaemia as decreased contraction persisting for hours after 
the return of blood flow. During hibernation, blood flow is chronically limited and the 
myocardium contraction fails. Inadequate blood flow leads to MI, LV remodelling and 
further HF (Vanoverschelde et al. 1993).

The oxygen requirement of the heart can be increased in HF due to increased cardiac 
work, myocardial mass, increased myocardial wall stress and wasted contractile energy. 
After MI, neurohumoral activation and myocardial load and stretch are increased. It 
leads to myocardial growth response inducing myocardial hypertrophy and myocardial 
remodelling. The final outcome is an increased cardiac energy expenditure and 
myocardial cell death through apoptosis and necrosis leading to HF (Figure 4) (Heusch 
et al. 2014).
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Figure 4. Mechanisms leading to myocardial remodelling and HF.

2.3 Experimental models of coronary artery disease

Atherosclerosis research using human samples is difficult because of the slow and 
unnoticeable development of the disease. Tissue samples are also difficult or impossible 
to obtain from humans. Therefore, animal models are needed. Several small animal 
atherosclerosis models have been developed by genetic engineering, e.g., modifying 
genes coding the LDL receptor or apolipoproteins (Heinonen et al. 2007). Despite several 
benefits, small animals have some restrictions like small size and differences in anatomy 
and physiology compared to humans. Large animal models are better suitable for studying 
coronary arteries, which are difficult or even impossible to study by using small animals. 
Also, achieving a more human-like size, anatomy and physiology is critical in translational 
research where basic research advances can be easily transferred onto a clinical stage.

Rabbit models have been widely used in cardiovascular research. Watanabe rabbits have 
a high serum level of LDL-cholesterol and are prone to produce atherosclerosis within 
a reasonable time when fed with an atherogenic diet (Aliev et al. 1998). A pig model 
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is considered very appropriate because the anatomy and physiology of the heart and 
coronary vasculature are very similar to that of humans (Bertho et al. 1964, Kamimura 
et al. 1996, Kassab et al. 1997 and Swindle et al. 2012). The anatomy of the pig heart 
is nearly similar than that of the human heart. The LV wall is thicker than in human 
heart. Only two pulmonary veins drain into the left atrium. The left azygous vein drains 
into the coronary sinus, but otherwise the coronary circulation is identical with humans 
(Weaver et al. 1986, Crick et al. 1998 and Swindle et al. 2012).

Pig models are used for characterising the role of monocytes during early atherosclerosis 
as well as smooth muscle and endothelial cell proliferation in plaque development 
(Gerrity 1981a, Gerrity 1981b and Gerrity et al. 1985). Atherosclerotic lesions are 
mainly located similarly as in humans in the proximal part of coronary arteries (Gerrity 
et al. 2001 and Thim et al. 2010). The morphology and progression of plaques in pig are 
similar to that seen in humans. Also, blood glucose, cholesterol and lipoprotein levels 
and metabolism are similar to those of humans. 

2.3.1 Large animal models of atherosclerosis

A large animal model mimicking human-like coronary atherosclerosis is lacking, 
but highly needed for translational research approaches. Farm pigs with familial 
hypercholesterolemia develop atherosclerosis in two to three years (Thim et al. 2010). 
In that case, animals are usually weighing more than 200 kg and the extensive housing 
costs of pigs are expensive. Atherosclerosis can be induced by different techniques. The 
most relevant techniques with characteristics are presented in Table 1.

Normally farm pigs are naturally very resistant to develop inherent atherosclerosis. 
Early atherosclerotic lesions, mainly fatty streaks, are possible to achieve by 
hypercholesterolemia that is induced by an atherogenic diet containing high amounts 
of saturated fatty acids and cholesterol. Blood total cholesterol level increases from a 
normal level of 2 mmol/L to 5 mmol/L with a diet containing 2 percent cholesterol and 
17 percent to 20 percent fat (Artinger et al. 2009 and Pueyo Palazón et al. 1998). With 
additional sodium cholate in the diet (1.5%), it is possible to achieve more advanced 
atherosclerotic plaques including fibroatheroma and cholesterol crystals with 24 to 41 
percent coronary artery stenosis (Thorpe et al. 1996).

The formation of atherosclerosis can be accelerated by inducing diabetes by using 
streptozotocin to destroy insulin-secreting beta cells in pancreatic tissue and feeding 
pigs an atherogenic diet containing a high amount of cholesterol (1.5%) and lard (15%) 
(Gerrity et al. 2001). In that model both plasma glucose and cholesterol levels are 
possible to maintain near 20 mmol/L leading to more advanced atherosclerotic plaque 
formation including a well-developed fibrous cap overlying necrotic lipid core and 
coronary artery stenosis as high as 98 percent (Gerrity et al. 2001). Plaque development 
can also be controlled in these models using statin or angiotensin converting enzyme 
inhibitor therapy (Chatzizisis et al. 2009).
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Genetic models have also been demonstrated. In a minipig model that has a LDL 
receptor mutation, atherosclerosis was successfully induced by an atherogenic diet and 
mechanical injury of vessel wall (Thim et al. 2010).

Pigs having mutant alleles for apolipoprotein B develop spontaneous 
hypercholesterolemia. Early atherosclerotic changes are visible during the first year. At 
two years of age, advanced plaques with a necrotic core with fibrous cap and stenotic 
lesions exist. By three years of age, complicated lesions and rupture are common. 
(Prescott et al. 1991)

Rapacz familiar hypercholesterolemia pigs develop atherosclerotic lesions mainly in 
peripheral arteries and are thus more relevant in studies related to peripheral arterial 
disease (Bahls et al. 2011).

D374Y gain-of-function mutations in the proprotein convertase subtilisin/kexin type 9 
(PCSK9) gene lead to autosomal dominant hypercholesterolemia and atherosclerosis 
in humans. Pigs with DNA transposition of a human PCSK9 gain-of-function mutant 
represent an atherosclerosis model of familial hypercholesterolemia. (Al-Mashhadi et 
al. 2013)

Ossabaw swine represents a metabolic disease model representing increased blood 
glucose and impaired insulin sensitivity. Early atherosclerotic changes develop over 
time. (Dyson et al. 2006)

To accelerate CAD development, an oversized angioplasty balloon can be used to 
induce mechanical vessel wall injury. Histological changes are usually occur at 
the very early stage, but also advanced atherosclerotic lesions including neointima 
expansive remodelling and fibroatheroma have been observed in these models (Thim 
et al. 2010).

Coronary occlusion can be induced with a mechanical occluder to simulate plaque rupture, 
a complication of atherosclerosis. An ameroid constrictor has been used in atherogenic 
diet fed pigs in studies related to mechanisms after the rupture, e.g., collateral formation 
(Matyal et al. 2012). 

The limitations of pig models of CAD include the lack of spontaneous development of 
atherosclerosis and that formed plaques remain at the initiation state without stenosis 
and rupture leading to MI. Also, atherosclerosis can only be induced over prolonged 
periods of time, which leads to increased costs and difficulties when handling heavy 
animals.
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Table 1. Characteristics of pig models of atherosclerosis.

Technique Characteristics Reference

Hypercholester-
olemia

Early atherosclerotic lesions, fatty streaks, 
intimal thickening, low-grade stenosis

Artinger et al. 2009, Turk et al. 2005, 
Pueyo Palazón et al. 1998, Thorpe 
et al. 1996, Kim et al. 1993 and 
Shimokawa et al. 1988

Hypercholesterol-
emia + hypergly-
cemia

Advanced atherosclerotic lesions, necrotic 
lipid core, well-developed fibrous cap, high-
grade stenosis

Gerrity et al. 2001, Wilensky et al. 
2008, LiFeng Zhang et al. 2003, 
Hamamdzic et al. 2010, Mohler et al. 
2008, Artinger et al. 2009, McDonald 
et al. 2007, Dixon et al. 1999 and 
Chatzizisis et al. 2009

Genetic modifica-
tions

Spontaneous hypercholesterolemia, fatty 
streaks, advanced plaques containing necrotic 
core, calcification, neovascularization, 
hemorrhage and rupture.

Prescott et al. 1991, Hasler-Rapacz et 
al. 1998, Hasler-Rapacz et al. 1995, 
Prescott et al. 1995, Tellez et al. 2010, 
Bahls et al. 2011, Granada et al. 2011, 
Thim et al. 2010, Al-Mashhadi et al. 
2013 and Thim, Hagensen, Wallace-
Bradley, et al. 2010

Metabolic disease Increased blood glucose, insulin resistance, 
early atherosclerotic changes

Dyson et al. 2006, Neeb et al. 2010 
and Kreutz et al. 2011

Vessel wall injury
Early atherosclerotic-like lesions, eccentric 
fibrocellular plaques, increased intima-media 
ratio

Tellez et al. 2011, Worthley et al. 2000, 
Worthley et al. 2000, Mihaylov et al. 
2000, Carter et al. 1996, Shimokawa et 
al. 1985 and Thim et al. 2010

Hypercholesterol-
emia + mechanical 
coronary occlusion

Regional ischaemia/infarction
Matyal et al. 2012, Matyal et al. 
2013, Lassaletta et al. 2012 and 
Robich et al. 2011

Intramural injec-
tion of cholesteryl 
linoleate

Lipid-containing inflammatory lesions Granada et al. 2005

2.4 Experimental models of ischaemic cardiomyopathy

The most used experimental models for ischaemic cardiomyopathy are mouse and rat. 
Rodents have many advantages like the availability, cost-effectiveness, easy handling 
and transgenic strains. However, there are significant differences in the anatomy and 
physiology of the heart and circulatory system between rodents and humans.

Dog models of myocardial ischaemia have been successfully used to study mechanisms 
behind MI and later myocardial remodelling and HF (Reimer et al. 1977, Reimer et al. 1979, 
Przyklenk et al. 1986 and Jugdutt et al. 1979). The pre-existing collateral circulation makes it 
difficult to induce large myocardial ischaemia or infarction in dogs (Jugdutt et al. 1979). The 
absence of an existing collateral network enables studies related to myocardial adaptation to 
ischaemia in pigs. The pig heart and circulatory system is very close to that of humans and is 
therefore suitable as a humanoid model of heart diseases (Swindle et al. 2012).

Several pig models having different cardiomyopathies have been introduced and can 
be used in studies of mechanisms of heart failure and cardiac remodelling. Pressure 
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overload induced by aortic stenosis can be used to cause LV hypertrophy through adaptive 
mechanisms that normalise to increased LV wall stress (Gelsomino et al. 2013). This 
situation contributes to the preservation of normal LV function and excessive collagen 
accumulation (Dixon et al. 2009). LV hypertrophy is a significant contributor of HF. 
Reduced LV relaxation and filling together with increased LV stiffness creates pressure 
overload models well-suited for the investigation of HF. Volume overload models can 
be used to mimic the clinical situation of mitral valve regurgitation. A disease model can 
be induced by chordal rupture of the mitral valve. Volume overload produces cellular 
level abnormalities causing decreased myocyte contractile function finally leading to 
HF. (Dixon et al. 2009)

Doxorubicin-induced HF is another model to study global HF. Intravenous injection 
of cardiotoxic doxorubicin rapidly progresses to systolic and diastolic dysfunction and 
ECG abnormalities (Torrado et al. 2011).

Dilated cardiomyopathy is defined as LV dilatation resulting in increased LV wall stress. 
Pacemaker-induced chronic tachycardia has been used to induce dilated cardiomyopathy 
and HF since 1962 (Dixon et al. 2009). Nowadays modern telemetry systems can be used 
in these models for chronic monitoring of changes in several hemodynamic parameters 
simultaneously (Choy et al. 2014).

2.4.1 Large animal models of chronic myocardial ischaemia

Myocardial ischaemia is possible to induce in several ways by causing limited blood flow 
in coronary artery with stenosis. In surgical open-chest models, coronary artery stenosis 
is induced by an occluder placed around the coronary artery. An ameroid constrictor 
placed around the coronary artery induces gradually an increasing reduction in blood 
flow leading finally to total occlusion of coronary artery. An adjustable occluder or shunt 
applications can be used to obtain different levels of stenosis. Mechanically working 
hydraulic, screw type or inflatable occluders can be used to achieve adjusted blood flow. 
For studies concerning myocardial angiogenesis, energy metabolism and other cellular 
mechanisms under chronic myocardial ischaemia, a constantly limited blood flow is 
desired. Fixed-diameter occluders produce constant stenosis and permanently limited 
blood flow. Delran stenosis, C-shape occluder or ligations are mostly used to produce 
fixed stenosis.

Myocardial ischaemia is possible to induce percutaneously by using invasive angiographic 
methods. In closed-chest models, ischaemia can be induced with an angioplasty balloon, 
intracoronary flow-reducer, stent or by vessel wall injury. An angioplasty balloon can 
be used to create acute myocardial ischaemia whereas chronic ischaemia is possible to 
induce by stents or vessel wall injury. 

Chronic myocardial ischaemia leads to deteriorated LV function due to decreased 
contractility. Regional ischaemia is often seen as decreased wall motion, perfusion and 
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oxygen consumption. Apoptosis, glucose utilisation and lactate accumulation are usually 
increased. Different techniques with characteristics and selected references are listed in 
Table 2.

Changes in vessel geometry and intracoronary artificial occluders predispose to 
thrombosis leading to acute MI. Anticoagulant therapy has been successfully used to 
prevent premature coronary obstruction.

Table 2. Characteristics of pig models of chronic myocardial ischaemia.

Technique Characteristics Reference

Ameroid 
constrictor

Reduced left ventricular function, reduced 
blood flow

Caillaud et al. 2010 and Giordano et 
al. 2013

Carotid coronary 
shunt

Increased K+ concentration, decreased pH, ST 
changes Watanabe et al. 1987

Fixed-diameter 
occluder

Regional LV motion abnormality, reduced 
resting perfusion, hibernating myocardium, 
reduced ejection fraction (EF), increased 
apoptosis, reduced flow reserve

Fallavollita et al. 1999, Fallavollita 
et al. 1997, Fallavollita, Lim, et al. 
2001, Fallavollita, Logue, et al. 2001, 
Fallavollita 2000, Fallavollita 2002, 
Fallavollita et al. 2002, Fallavollita et 
al. 2005, Lim et al. 1999, Hardt et al. 
2001, McFalls et al. 2006, McFalls et 
al. 1997, Mills et al. 1994, Bloor et al. 
1984, Ishikawa et al. 2011 and Heil-
mann et al. 2006

Adjustable 
occluder

Regional LV motion abnormality, decreased 
wall-thickening, reduced perfusion, impaired 
Ca2+ handling, depletion of contractile materi-
al, glycogen accumulation, increased amount 
of mitochondria, decreased oxygen consump-
tion, increased glucose consumption, lactate 
production, reduced left ventricular EF, in-
creased apoptosis, decreased flow reserve

Thomas et al. 1999, Kim et al. 2001, 
St. Louis et al. 2000, Hughes et al. 
2001, Chen et al. 1996, Chen et al. 
1997, Lai et al. 2000, Liedtke et al. 
1995, Chen et al. 1997, Liedtke et al. 
1994, Bolukoglu et al. 1992, Cason et 
al. 1991, Galiuto et al. 2002 and Sas-
sen et al. 1988

Angioplasty 
balloon Regional perfusion defect Bamberg et al. 2012 and Mahnken et 

al. 2010

Intracoronary flow-
reducer

Regional perfusion defect, impaired myocar-
dial function, increased glucose utilisation

Gewirtz et al. 1981, de Groot et al. 
2011, von Degenfeld et al. 2003, 
Johnson et al. 1998, Gewirtz, Brauti-
gan, et al. 1983, Gewirtz, Williams, et 
al. 1983, Kraitchman et al. 2000 and 
Kraitchman et al. 2002

Copper stent Decreased ejection fraction, hibernation, de-
creased wall-thickening

Wu et al. 2011, Wu et al. 2010, Bito et 
al. 2004, Szilárd et al. 2000 and Hor-
stick et al. 2009

In-stent neointimal 
hyperplasia Over 40% stenosis after 1-month follow-up Hemetsberger et al. 2008 and Johnson 

et al. 2000

Coronary artery 
injury

Neointimal thickening, over 50% stenosis 
after 1-month follow-up 

Grinstead et al. 1994, Schwartz et al. 
1990, Schwartz et al. 1992 and Ander-
sen et al. 1996
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2.4.2 Large animal models of acute ischaemia-reperfusion injury and infarction

Myocardial injury leading to impaired LV function and HF can be induced by 
prolonged episodes of myocardial ischaemia followed by reperfusion. Temporal 
occlusion by angioplasty balloon is the most commonly used method to occlude 
coronary artery completely but only for a short period of time. Regional ischaemia 
occurs immediately after inflating the balloon. Deflating the balloon leads to 
reperfusion. Severity of ischaemia-reperfusion injury depends on the duration of 
ischaemia following reperfusion. Different techniques and characteristics are 
presented in Table 3.

A cardiopulmonary bypass model can be used to mimic the situation in open heart 
surgery or transplantation. An animal is first connected to a heart-lung machine. 
The heart is arrested with cardioplegia and the remaining body is perfused by using 
cardiopulmonary bypass. Global myocardial ischaemia-reperfusion injury can be 
studied after weaning from a heart-lung machine. Despite that the heart is well-
protected with cardioplegia, damage of muscular fibres, mitochondrial swelling and 
intracellular oedema can be observed with transmission electron microscopy (Hong 
et al. 2013). Hemodilution, volume loading as well as cytokine and catecholamine 
surge are often induced after cardiopulmonary bypass and reperfusion (Olson et al. 
2012).

The clinical situation with coronary artery occlusion following the resolution of clots 
and reperfusion can be modelled by regional ischaemia-reperfusion injury induced 
with temporal occlusion of the coronary artery surgically with clamping and ligation 
or percutaneously with angioplasty balloon. An ischaemic period of 30 to 120 minutes 
seems to be well-tolerated. Ventricular extrasystoles, non-sustained tachycardia and 
ventricular fibrillation can occur during ischaemia. Myocardial stunning is related to 
inadequate contractility of cardiomyocytes after an ischaemic condition following 
reperfusion and is possible to study with these models. MI is usually observed in these 
models without protective cardiac arrest.

Cardiac arrest has been caused also by using alternative methods like asphyxia 
induced by endotracheal tube clamping, electric fibrillation or placement of 
intracoronary ball. 
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Table 3. Characteristics of pig models of acute ischaemia-reperfusion injury and infarction.

Technique Characteristics Reference

Cardiopulmonary 
bypass

Decreased LV contractility, function and 
blood pressure, increased myocyte apoptosis, 
coronary blood flow and troponin levels, my-
ofibril damage and neutrophil infiltration

Hong et al. 2013, Olson et al. 2012, 
Shinohara et al. 2011, Salminen et 
al. 2011, Abdel-Rahman et al. 2009, 
Banz et al. 2008, Jormalainen et al. 
2007, Malmberg et al. 2006, Vähäsilta 
et al. 2005 and Lim et al. 2005

Coronary clamping Stunning, decreased LV function and blood 
pressure, increased heart rate, MI

Díez et al. 2013, Aarsæther et al. 2012 
and Sala-Mercado et al. 2010

Coronary ligation Decreased LV function, increased apoptosis 
and oxidative stress, MI

Xiang-dong Li et al. 2013, Doganci et 
al. 2012, Meyer et al. 2013, Skyschally 
et al. 2013, Chinda et al. 2013, Kanlop 
et al. 2011, Arslan et al. 2012, Gelsom-
ino et al. 2012, Gelsomino et al. 2011, 
Oyamada et al. 2010, Sodha et al. 
2009, Osipov et al. 2009, Metzsch et 
al. 2006 and Garcia-Dorado et al. 1987

Balloon occlusion Decreased LV contractility, function, in-
creased apoptosis, MI

Hashizume et al. 2013, Duran et al. 
2012, Ogura et al. 2012, Wheeler et al. 
2012, Barallobre-Barreiro et al. 2012, 
Lu et al. 2013, Wojakowski et al. 2012, 
Chatziathanasiou et al. 2012, Bhindi et 
al. 2012, Poulsen et al. 2011, Dash et al. 
2011, van der Pals et al. 2010, Wiggers 
et al. 1997, Silva et al. 2009, Boekste-
gers et al. 2002 and Hinkel et al. 2013

Asphyxia Decreased LV contractility and function Lin et al. 2013

Electric fibrillation Elevated cardiac enzymes Bertsch et al. 2001 and Bertsch et al. 
2000

Intracoronary ball Elevated cardiac enzymes, MI

Näslund, Häggmark, Johansson, 
Marklund, et al. 1992 and Näslund, 
Häggmark, Johansson, Pennert, et al. 
1992

2.4.3 Large animal models of chronic myocardial infarction, remodelling and heart 
failure

A large animal model of chronic MI and HF is crucial in translational research to study 
complex mechanisms underlying ischaemic heart diseases. Based on literature searches, 
the most common way to induce MI is to use an angioplasty balloon to occlude coronary 
artery totally for a temporal period of time following reperfusion. Coronary artery 
ligation, ameroid constrictor and embolisation are also widely used methods. Different 
techniques and characteristics are presented in Table 4.

MI can be induced percutaneuosly by angioplasty balloon. The coronary artery is 
catheterised under X-ray angiography. An angioplasty balloon is placed into the 
coronary artery and inflated to occlude the vessel totally. After the desired occlusion 
time, the balloon is deflated and removed. The severity of MI depends on the occlusion 
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time and the balloon location. A 60-minute occlusion time produces a large transmural 
MI. Occlusion of 30 minutes does not produce myocardial necrosis and a 45-minute 
occlusion produces only a small necrotic area (Garcia-Dorado et al. 1987). Ischaemic 
preconditioning can be induced with repetitive balloon occlusions (Yang et al. 2011). 

Coronary artery ligation and ameroid constrictor placement requires surgery. Usually 
thoracotomy is enough for accessing coronary arteries. A direct view of the left anterior 
descending coronary artery (LAD) is possible to achieve by dissecting skin and muscle 
between the third and fourth ribs. A spreader needs to be used to separate the ribs. After 
dissecting pericardium, LAD is visible.

Permanent ligation of the coronary artery leads to acute MI following LV remodelling 
and worsening of LV function (Huang et al. 2010 and J. Zhang et al. 1996). Infarction 
can also be induced by  temporal coronary artery ligation following reperfusion (So et 
al. 2012).

An ameroid constrictor placed around a coronary artery induces gradual occlusion 
leading usually to MI. Complete coronary occlusion is necessary in research related to 
MI and for example, collateral growth.

Induction of MI by inducing embolisation with thrombogenic material like embolisation 
coils, intracoronary ethanol or a gelatine sponge leads to very similar MI and later 
changes than coronary ligation (Gálvez-Montón et al. 2014).

The size of MI should be large enough to induce remodelling processes. Distal and 
midpoint ligation of LAD leads to a MI size of 10 percent and 14.9 percent, respectively 
(Munz et al. 2011). MI sizes of 12.8 percent and 23.8 percent are reported to be achieved 
by ligating one-third of the LAD from the apex and below the second diagonal branch, 
respectively (Huang et al. 2010). Over 25 percent MI of LV is possible to achieve with 
proximal occlusion of LAD whereas proximal left circumflex artery (LCX) occlusion 
induces MI covering 20 percent of LV (Teramoto et al. 2011, Munz et al. 2011 and Roth 
et al. 1987).  High mortality rates have been reported if the MI size exceeds 25% of the 
LV (Kamimura et al. 1996). Sudden cardiac deaths are reported to be in relation to fatal 
arrhythmias due to intolerance of ischaemia (Fallavollita et al. 2005). The ligation of a 
distal part of coronary artery demonstrates reasonable survival rates but only small MI. 
Gradual coronary artery occlusion induced using an ameroid constrictor has interestingly 
led to very small MI and an aggressive collateral development may be the cause (Roth 
et al. 1987). Combining the distal coronary ligation and proximal ameroid constrictor 
demonstrates large MI (>25% of LV) with clear signs of remodelling. End-diastolic and 
end-systolic volumes were markedly larger and EF lower in MI group when compared 
to controls. Hypertrophy and fibrotic changes can visualised by histology in MI group. 
Also, a survival rate at the 4-month time point was reported to be as high as 75 percent 
(Teramoto et al. 2011). A study configuration with only a proximal ameroid constrictor 
produced a survival rate of 30 percent. The pig heart is very sensitive to acute ischaemia 
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and sudden cardiac deaths can occur (Fallavollita et al. 2005). The mechanism of 
inhibition of sudden cardiac death with distal coronary ligation is not well-known. One 
hypothesis is that distal ligation provides a preconditioning effect through ischaemia 
and small MI as demonstrated by several studies (Murry et al. 1986, Kuzuya et al. 
1993 and Hagar et al. 1991). Also, gradual occlusion may adapt the myocardium to 
tolerate ischaemia. A chronic HF model with impaired LV systolic function including LV 
dilatation, reduced EF and cellular evidence of LV remodelling offers new possibilities 
in translational research.

Table 4. Characteristics of pig models of chronic MI, remodelling and HF 

Technique Characteristics Reference

Coronary ligation Transmural MI, impaired LV function, LV 
dilatation, increased apoptosis

Garcia-Dorado et al. 1987, Jiang et 
al. 2014, Zhu et al. 2013, Prescimone 
et al. 2013, Munz et al. 2011, Kuster 
et al. 2011, So et al. 2012, Qu et al. 
2012, Sahul et al. 2011, Weiss et al. 
2010, Huang et al. 2010, Cho et al. 
2008 and Shuros et al. 2007

Ameroid 
constrictor

Transmural MI, impaired LV function, LV 
dilatation, impaired LV wall motion and in-
creased myocyte hypertrophy and interstitial 
fibrosis in the non-infarcted remote tissue, 
rapid collateral development

Giordano et al. 2013, Kawamura et 
al. 2012, Shudo et al. 2011, Teramoto 
et al. 2011, Barandon et al. 2010, 
Schneider et al. 2010, Tuzun et al. 
2010, Pätilä et al. 2009, Christian et 
al. 2008, Ikonen et al. 2007 and Roth 
et al. 1987

Angioplasty 
balloon

Transmural MI, impaired LV function, LV 
dilatation 

Xiaorong Li et al. 2014, Tanaka et 
al. 2014, Sheriff et al. 2014, Vila-
hur et al. 2014, Varga-Szemes et al. 
2014, Pavo et al. 2014, van Hout et 
al. 2013, Koudstaal et al. 2013, Yan 
Chen et al. 2013, Duran et al. 2012, 
Yang et al. 2011, Pleger et al. 2011, 
Angeli, Amabile, Shapiro, et al. 
2010, Angeli, Amabile, Burjonroppa, 
et al. 2010, Lautamäki et al. 2009, 
Pérez de Prado et al. 2009, Holz et al. 
2009, Brødløs et al. 2009, Krombach 
et al. 2005, Garcia-Dorado et al. 1987 
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2.5 Imaging of coronary artery disease and ischaemic cardiomyopathy

2.5.1 Invasive coronary artery imaging

Coronary artery stenosis, plaques and their progression can be evaluated with invasive 
angiography combined with intravascular ultrasound (IVUS) and optical coherence 
tomography (OCT). Calcified plaques, shear stress as well as atheroma volume and 
fibrous cap thickness can be assessed with OCT (Sanz et al. 2013).

2.5.2 Molecular imaging of atherosclerotic inflammation

Several pathological processes related to atherosclerosis can be assessed with PET 
imaging. Plaque formation is a response to the inflammatory process. Macrophages 
are a good imaging target (Rudd et al. 2002). Also, neoangiogenesis, hypoxia and 
microcalcification are associated with advanced plaque formation and are good targets 
for imaging purposes (Tarkin et al. 2014).

[18F]FDG is a radiolabelled glucose analogue, which is widely used in PET imaging 
of metabolic activity. [18F]FDG is taken up by the cells using glucose transporters. 
Phosphorylated [18F]FDG is trapped inside the cell. Clearance from blood circulation 
is rapid and trapped tracer accumulation can be visualised even with a low background 
if PET imaging is performed for some time after the tracer injection. Because of high 
glucose metabolism of myocardium, the analysis of the [18F]FDG uptake in coronary 
arteries can be difficult due to high background activity. A low-carbohydrate, high-fat meal 
prior to scanning has been introduced to suppress myocardial uptake (Wykrzykowska et 
al. 2009). Increased vascular [18F]FDG accumulation indicates increased macrophage 
activity in atherosclerotic inflammation (Figure 5) (Tarkin et al. 2014).

Mannose receptors (MRs) are expressed by macrophages in high-risk plaques and are 
suggested to serve as more specific targets of imaging tracers (Figure 5). 18F-labelled mannose 
has successfully been used in the visualisation of atherosclerotic lesions (Tahara et al. 2014).

Overexpression of somatostatin receptors in activated macrophages can be visualised 
with the [68Ga]DOTATATE (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 
octreotate) tracer (Figure 5) (Rominger et al. 2010).

The translocator protein (TSPO) ligand [11C]PK11195 (N-butan-2-yl-1-(2-chlorophenyl)-
N-methylisoquinoline-3-carboxamide) accumulates during vascular inflammation through 
increased TSPO expression in activated macrophages (Figure 5) (Laitinen et al. 2009).

Folate receptors (FRs) are expressed by activated macrophages (Figure 5). Increased 
uptake of folate receptor targeting tracers in atherosclerotic plaques has been shown in 
recent studies (Ayala-López et al. 2010 and Jager et al. 2014).

Scavenger receptors (SRs) are related to the macrophage differentiation into foam cells. 
Radiotracers targeting scavenger receptor may help to visualise foam cells in active 
atherosclerotic lesions (Bigalke et al. 2014).
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Increased expression of different adhesion molecules are related to atherosclerotic 
inflammation and, for example, P-selectin and VCAM-1 are possible targets for imaging 
tracers (Figure 5) (Nakamura et al. 2013 and Nahrendorf et al. 2009).

Choline takes part in cell membrane formation. Choline is believed to be accumulated 
in activated macrophages and incorporated into cell membranes after phosphorylation 
by choline kinase (Figure 5). Increased uptake of [11C]choline and [18F]choline in 
atherosclerotic plaques has been demonstrated (Laitinen et al. 2010 and Matter et al. 2006).

Hypoxia plays an important role in atherosclerotic plaque formation (Figure 5). [18F]
fluoromisonidazole ([18F]FMISO) is used to successfully visualise hypoxia. FMISO 
is a cell permeable compound, which is rapidly reoxidised and moved out from the 
cell under normal oxygenation conditions. In hypoxic cells, FMISO is covalently 
bound to intracellular macromolecules and remains in the cells (Mateo et al. 2014). 
[18F]EF5 (2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide) 
is a lipophilic compound and has better pharmacokinetic properties than FMISO. 
Atherosclerotic lesions containing hypoxia have been successfully visualised with [18F]
EF5 in atherosclerotic mouse models (Silvola et al. 2011).

Formation of atherosclerotic plaques leads to local hypoxia. Hypoxia is able to induce 
increased expression of integrin αvβ3, which is related to angiogenesis (Figure 5). 
Elevated integrin αvβ3 expression is linked to macrophages involved in atherosclerotic 
inflammation (Antonov et al. 2004). Experiments with radiolabelled tri-peptide sequence 
arginine-glycine-asparagine based tracers such as [68Ga]NOTA-RGD and [18F]galacto-
RGD have increased tracer accumulation in atherosclerotic plaques (Paeng et al. 2013, 
Laitinen et al. 2009, Beer et al. 2014 and Haukkala et al. 2009). Also, apoptosis plays 
a central role in atherosclerotic inflammation and has shown to be a possible target 
for molecular imaging. For instance, apoptosis-specific Annexin 5 is used to visualise 
vascular inflammation (Laufer et al. 2008).

Microcalcification is related to atherosclerotic plaque development. [18F]Sodium fluoride 
([18F]NaF) is an option for identifying plaques (Figure 5) (Joshi et al. 2014).
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Figure 5. Possible PET imaging targets related to atherosclerosis are macrophage infiltration, 
hypoxia, neoangiogenesis and microcalcification.



30 Review of the Literature 

2.5.3 Left ventricular function and structure

Echocardiography is one of the most important techniques for the detection and assessment 
of myocardial ischaemia and infarction. Cardiac ultrasound is used in the detection of 
the effects of myocardial ischaemia or infarction on LV function. LV size, wall thickness 
and myocardial wall motion can be examined by conventional 2D imaging. Diastolic 
and systolic volumes and EF of LV can be calculated using well-established methods. 
Echocardiography is a valuable tool for diagnosing MI with assessment of wall motion. 
MI is, in most cases, associated with regional LV motion abnormality (Greupner et al. 
2012).

CT is a technique that allows for the evaluation of cardiac structure and function. When 
combined with ECG gating and a contrast agent, high quality images can be obtained. 
Diastolic and systolic volumes and EF of LV can be calculated using semi-automated 
analysis software. LV size, wall thickness and myocardial wall motion can also be 
examined easily. The advances of CT imaging include high spatial resolution (Greupner 
et al. 2012).

Cardiovascular magnetic resonance imaging (CMR) is the gold standard for the 
assessment of LV function (Pennell et al. 2004). The assessment of cardiac function can 
be implemented using CineMRI, which is accurate in the measurement of diastolic and 
systolic volumes and EF as well as cardiac mass (Scholtz et al. 2014).

2.5.4 Myocardial perfusion

Myocardial perfusion imaging (MPI) can be performed with several techniques. 
Nuclear cardiology has been growing in the diagnosis and risk assessment of patients 
with suspected heart disease. Single-photon emission computed tomography (SPECT) 
was used in MPI since the early 1980s with thallium-201 (201Tl) and Technetium-99m 
hexakis(2-methoxy-2-methylpropylisonitrile) ([99mTc]sestamibi) after approval by the 
United States Food and Drug Administration (FDA) in 1990. In addition to 201Tl and 
[99mTc]sestamibi, a newer widely used SPECT tracer [99mTc]tetrofosmin allows evaluation 
of myocardial perfusion (Kelly et al. 1993).

PET is increasingly used in MPI. Kinetic properties of PET tracers enable more accurate 
quantification of myocardial blood flow. For example, [15O]water is ideal for the blood 
flow quantitation (Knuuti et al. 2009).

Cardiac MRI is becoming more commonly used in MPI with a gadolinium-based 
contrast agent. First-pass perfusion can be detected. The gradient echo pulse sequence is 
most commonly used to visualise perfusion. Stress perfusion MRI has a high diagnostic 
accuracy in detecting coronary artery disease (Scholtz et al. 2014).

CT imaging allows also MPI with dynamic acquisition. Iodinated contrast bolus behaves 
similar to gadolinium-based contrast agents used in MRI. The most recent techniques 
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with 320-row CT enable MPI covering whole heart with relatively high temporal 
resolution (George et al. 2012).

Myocardial perfusion can be assessed with echocardiography using gas-filled 
microbubbles, nano- or microparticles as a contrast media (Seol et al. 2014).

Resting myocardial perfusion remains normal until occlusion of a coronary artery exceeds 
90% (Gould et al. 1974). Stress imaging can be used to confirm perfusion defect in unclear 
case. Pharmacologic stress testing is used with coronary vasodilators, e.g., adenosine 
or regadenoson. Coronary blood flow will be increased three- to five-fold. Combining 
rest- and stress-imaging enables calculation of myocardial flow reserve (MFR). Resting 
myocardial blood flow (MBF) values can be corrected with rate-pressure product (RPP).

Changes in hemodynamics during vasodilatator infusion are possible at least with a high 
dose of vasodilators used in experimental study settings. To maintain blood pressure, the α1-
adrenoceptor agonist phenylephrine can be used to oppose the systemic effects of adenosine, 
while leaving adenosine-induced coronary vasodilation unperturbed (Sorop et al. 2008).

MPI results are usually presented using 17-segmental standardised myocardial 
segmentation and nomenclature for the tomographic imaging of the heart as proposed by 
the American Heart Association (Cerqueira et al. 2002).

2.5.5 Myocardial infarction and viability

[99mTc]Sestamibi is the most used SPECT tracer for assessment of myocardial viability. 
Retention in myocardium is dependent on the intensity of the Na+/K+ pump in the cell 
membrane and reflects the intracellular level of potassium. [99mTc]Sestamibi is taken up 
by mitochondria (Allman 2013).

[18F]FDG is a widely used PET tracer for assessing myocardial viability. PET has 
higher spatial resolution than SPECT. Metabolic clamping can be used for standardising 
myocardial glucose utilisation. The myocardium usually uses free fatty acids (FFAs) for 
energy production. Glucose and insulin administration before tracer injection switches 
energy metabolism to use more glucose than FFAs. [18F]FDG is trapped inside the viable 
myocyte through phosphorylation by hexokinase. The clearance from blood circulation 
is fast allowing high myocardium-to-blood ratios. [18F]FDG viability imaging is often 
combined with MPI using [13N]ammonia, [82Rb]Cl or [15O]water.

Previous approaches can be replaced by a dynamic imaging with carbon-11 labelled 
acetate ([11C]acetate). Quantification of regional MBF and oxidative metabolism are 
possible with a single study (Wolpers et al. 1997). 

[15O]Water enables calculation of perfusable tissue fraction (PTF) and perfusable tissue 
index (PTI). Assessment of viability has also demonstrated to be possible by using PTF 
calculated by a [15O]water study (Iida et al. 2012).
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Cardiac MRI enables viability assessment by using a gadolinium-based late enhancement 
method to define the existence of the MI scar. The transmural extent of the MI scar is 
possible to visualise very accurately from MRI images with high spatial resolution (Kim 
et al. 2000).

Viable myocardium can be estimated by measuring the contractile reserve during stress. 
Based on this, echocardiography can be used for the evaluation of viable myocardium 
(Bisplinghoff et al. 2014).

2.5.6 PET imaging of myocardial metabolism

Myocardial energy expenditure can be measured with PET. FFAs are a major myocardial 
energy substrate under normal conditions. Energy metabolism in failing myocytes is 
altered and shifted to use more glucose. Myocardial glucose utilisation can be assessed 
with [18F]FDG or [11C]glucose and fatty acid utilisation with [18F]FTHA (14(R,S)-[18F]
fluoro-6-thia-heptadecanoic acid) or [11C]palmitate (Tuunanen et al. 2011).

Oxidative metabolism is affected rapidly after MI. Myocardial oxygen consumption can 
be estimated with [11C]acetate imaging. Myocardial efficiency, which is defined as the 
ratio between cardiac work and myocardial oxygen consumption, is often decreased 
in HF and can be measured non-invasively by combining measurement of myocardial 
oxygen consumption and LV work (Bengel et al. 2000).

New specific radioligands make it possible to evaluate cellular changes related to post-
MI remodelling. For example the development of new blood vessels can be assessed 
with RGD–based tracers targeting αvβ3 integrin in relation with neoangiogenesis (Kiugel 
et al. 2014).

2.6 Positive inotropic therapy in heart failure

The calcium ion (Ca2+) has a central role in myocyte contraction. The calcium ion 
makes the contraction possible by binding to troponin C, which leads to conformational 
changes in troponin I. During relaxation, Ca2+ will be released from troponin C and will 
be transported to sarcoplasmic reticulum or outside the cell (Figure 6). Phospholamban 
regulates the storing of calcium ions into the sarcoplasmic reticulum. The Na+/Ca2+ 
exchanger delivers calcium ions out of the cell, which is also regulated by Na+/K+-
ATPase. Cyclic AMP increases the activity of protein kinase A (PKA), which leads 
to phosphorylation of the Ca2+ channel and increased calcium ion influx into the cell. 
Intracellular concentration of Ca2+ increases leading to contraction. Activation of 
β-receptor leads to increased cyclic AMP and the activation of PKA. (Francis et al. 
2014)

The PKA-dependent contractility of myocardium can be increased with β-receptor 
agonists like dobutamine and dopamine or phosphodiesterase inhibitor, e.g., milrinone. 
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The Na+/Ca2+ exchanger can be regulated with cardiac glycosides (digoxin). Calcium 
sensitisers act by binding to troponins.

Levosimendan is a calcium sensitiser used for inotropic support in acutely decompensated 
congestive HF. Levosimendan binds to cardiac troponin C and with the presence of 
calcium ions stabilises the troponin conformation. Levosimendan has also a vasodilatory 
effect by opening ATP sensitive potassium channels leading to vascular smooth muscle 
relaxation. Unlike inotropic agents in general, levosimendan has neutral effects on 
myocardial efficiency (Ukkonen et al. 2000). Inotropic and vasodilatory effects result in 
an increased contractility and decreased preload and afterload. Also, the mitochondrial 
ATP sensitive K+-channel-mediated cardioprotective effect is linked to levosimendan 
(Papp et al. 2012). 
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Figure 6. Mechanisms of cardiomyocyte calcium metabolism and contraction. Levosimendan 
is a calcium sensitiser acting through binding to cardiac troponin C and with the presence of 
calcium ions stabilises troponin conformation.
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3. AIMS OF THE STUDY

The purpose of this study was to develop and validate experimental large animal models 
for the use in studying coronary artery disease, MI and HF using multimodality imaging 
approaches. Additionally, potential radiopharmaceuticals and therapies were tested.

The specific aims of the study were:

1. To investigate the feasibility of [18F]FDG PET imaging of inflammation in early 
coronary atherosclerotic lesions in a pig model of diabetes and hypercholesterolemia

2. To characterise cardiac remodelling in a new pig model of chronic heart failure by 
assessment of left ventricular functional, metabolic and structural changes using 
PET, CT and echocardiography 

3. To characterise a bottleneck stent model for chronic myocardial ischaemia and 
infarction in pigs using PET imaging of myocardial perfusion

4. To test new 68Ga-labeled tracers for PET imaging of myocardial perfusion in pigs 

5. To study the effects of long-term levosimendan therapy on myocardial infarct size 
and left ventricle function after acute coronary occlusion in a pig model of post-
infarction heart failure
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4. MATERIALS AND METHODS

Finnish landrace pigs were used in the experiments. All animal experiments were 
conducted in accordance with the European Union Directive for the use of experimental 
animals and approved by the national Animal Experiment Board of Finland (ELLA) and 
the Regional State Administrative Agency for Southern Finland (ESAVI).

4.1 Coronary artery disease model (I)

4.1.1 Experimental protocol

The formation of atherosclerotic plaques was accelerated by inducing diabetes. Diabetes 
was induced by destroying beta cells using streptozotocin injections. Pigs were sedated 
with ketamine (30 mg/kg intramuscularly (i.m.), Ketalar, Amgen Technology Ireland, 
Dublin, Ireland) and streptozotocin 50 mg/kg (Zanosar, Pharmacia & Upjohn, Kalamazoo, 
MI, USA) was injected via ear vein once a day for 3 days. In order to offset insulin release 
from pancreas, glucose was given 25 g per os twice daily for 2 days. An atherogenic diet 
containing either 1.5% cholesterol and 15% lard (HF, n=6) or 4% cholesterol, 20% lard 
and 1.5% sodium cholate (HF+c, n=4) (Special Diet Services, Witham, UK) was started 
five days after the last streptozotocin injection and was continued for 6 months. Blood 
glucose and cholesterol levels were monitored regularly.

4.1.2 In vivo PET imaging of atherosclerotic inflammation

After six months of diet intervention, [18F]FDG uptake of coronary arteries was studied by 
PET. Myocardial glucose uptake was suppressed with an overnight fasting and by giving 
a carbohydrate free diet for two days before the PET study. PET studies were performed 
by a PET and a 64 slice CT hybrid scanner (Discovery VCT, General Electric Medical 
Systems, Milwaukee, WI, USA) operated in 3-dimensional mode. List-mode acquisition 
for 30 minutes started 120 minutes after intravenous (i.v.) [18F]FDG injection. The acquired 
list-mode data was divided into cardiac and respiratory gates and were combined as dual 
gates compensating for both respiratory and cardiac motion. Results were presented as 
target-to-background ratios (TBR) calculated by dividing maximum standardised uptake 
value (SUV) of each coronary segment by mean SUV value of the blood.

4.1.3 Ex vivo studies

After the PET study, animals were sacrificed by i.v. injection of potassium chloride (B. 
Braun Medical Oy, Helsinki, Finland). Coronary arteries were prepared and proximal 
samples were collected. Samples were weighed and [18F]FDG uptake was measured with 
a gamma counter (1480 Wizard 3″; PerkinElmer/Wallac, Turku, Finland). SUVs and 
further vessel-to-blood ratios were calculated.
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The coronary artery samples were mounted, frozen in isopentane mixed with dry ice and 
cut into longitudinally sections. An autoradiography study with a phosphor imaging plate 
(BAS-TR2025, Fuji Photo Film Co. Ltd., Tokyo, Japan) was performed. Radioactivity 
distribution of the 40 μm cryosections was analysed using Fluorescent Image Analyser 
(Fujifilm FLA-5100, Fuji Photo Film Co. Ltd., Tokyo, Japan). 

Cryosections of 8 μm were stained with hematoxylin & eosin (HE) and Movat’s 
pentachrome staining. Movat’s pentachrome stained samples were graded using a 
light microscope with the following scores: 1=healthy normal vessel wall, 2=intimal 
thickening, and 3=atheroma.

Tissue sections stained with HE were digitally photographed using a light microscope. 
Autoradiographs and HE images were co-registered and [18F]FDG accumulation 
of atherosclerotic lesions and non-atherosclerotic vessel wall as photostimulated 
luminescence per square millimetre (PSL/mm2). Lesion-to-normal vessel wall ratios 
were calculated for each segment. 

4.2 Surgical and percutaneous myocardial infarction model (II, III)

4.2.1 Experimental protocol

Before operations or imaging studies, animals were anaesthetised by i.m. administration 
of midazolam 1 mg/kg (Midazolam Hameln, Hameln Pharmaceuticals GmbH, Hameln, 
Germany) and xylazine 4 mg/kg (Rompun vet, Bayer Animal Health GmbH, Leverkusen, 
Germany) (II) or with atropine (0.05 mg/kg; Leiras, Helsinki, Finland) and azaperone 
(Stresnil, 8 mg/kg; Janssen, Titusville, NJ, USA) (III). Animals were intubated and 
ventilated mechanically. Anaesthesia was maintained with i.v. infusion of propofol 
10−50 mg/kg/h (Propofol Lipuro, B. Braun Melsungen AG, Melsungen, Germany) 
combined with fentanyl 4−10 µg/kg/h  (Fentanyl-Hameln, Hameln Pharmaceuticals 
GmbH, Hameln, Germany).

In order to induce myocardial ischaemia and infarction surgically (II), a short left anterior 
thoracotomy was performed. The pericardium was opened and a complete ligation of 
the distal LAD was made immediately after the second diagonal branch using a 5-0 
monofilament polypropylene suture (Prolene, Ethicon, Norderstedt, Germany). After 15 
minutes, the proximal LAD was prepared free and an ameroid constrictor (2.50 mm or 
2.75 mm, model MRI-2.50-TI and MRI-2.75-TI; Research Instruments SW, Escondido, 
CA, USA) was placed around the LAD. Arrhythmias were prevented by administration 
of amiodarone (Cordarone, Sanofi-Synthelabo Ltd, Newcastle upon Tyne, UK) 8 mg/kg 
perorally (p.o.) daily for 1 week before and for 2 weeks after the operation. Amiodarone 6 
mg/kg i.v., metoprolol 0.2 mg/kg i.v. (Seloken, Genexi, Fontenay sous Bois, France) and 
magnesium sulphate (MgSO4) 25 mg/kg i.v. (Addex-magnesium sulfate, Fresenius Kabi 
AB, Uppsala, Sweden) were administered intraoperatively. Clopidogrel 3 mg/kg p.o. 
(Plavix, Sanofi Winthrop Industrie S.A., Ambarès et Lagrave, France) was administered 
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daily 1 day before and daily for 2 weeks after the surgery to prevent premature thrombosis 
of the LAD.

A percutaneously placed intracoronary bottleneck stent was used to induce myocardial 
ischaemia and infarction (III). Catheterisation was done using a GE Innova 3100IQ three-
dimensional (3-D) angiography device (GE Healthcare, Waukesha, WI, USA). The 
bottleneck stent consisted of a bare metal stent and polytetrafluoroethylene heat shrink 
tube. The other end of the tube was shaped into a bottleneck to restrict coronary blood 
flow. The construct was placed into LAD with 6-F AR-2 guiding catheter. In order to 
prevent arrhythmias, per oral amiodarone (Cordarone, 200 mg/day, Sanofi-Aventis, Paris, 
France) and bisoprolol (Bisoprolol-ratiopharm, 2.5 mg/day, Ratiopharm, Ulm, Germany) 
was started 1 week before stenting. Prior to stenting, 100 mg intravenous lidocaine (10 
mg/ml, Orion Pharma, Espoo, Finland) and 2.5 ml MgSO4 (Addex-magnesium sulfate, 
246 mg/ml, Fresenius Kabi, Uppsala, Sweden) was administered. One day before 
stenting, per oral acetylsalicylic acid (ASA-ratiopharm, 300 mg, Lannacher Heilmittel 
GmbH, Lannach, Austria) and clopidogrel (Clopidogrel Mylan, 300 mg, Mylan, Saint 
Priest, France) was given. ASA (100 mg/day p.o.), clopidogrel (75 mg/day p.o.) and 
enoxaparin (30 mg/day s.c.) were continued for one week to keep the stent open.

4.2.2 PET imaging of myocardial perfusion and viability

Myocardial perfusion was measured at 3 months after the ameroid constrictor placement 
(II) and one week and five weeks after the bottleneck stenting (III) with [15O]water 
PET. MPI was done at rest and under pharmacological stress with adenosine 200 μg/
kg/min (Adenosin Life Medical, Life Medical Sweden AB, Stocksund, Sweden). The 
acquisition protocol consisted of following frames: 14 × 5 s, 3 × 10 s, 3 × 20 s, 4 × 30 
s (total duration 4 min 40 s). The segmental LV myocardial blood flow was quantified 
using a single-compartment model (Iida et al. 1992).

Infarcted and ischaemic myocardial regions were defined using 70% of maximum as a 
threshold in [15O]water PET flow quantitation at rest and during stress, respectively (III).

Myocardial viability was assessed at five weeks after the bottleneck stenting with [18F]
FDG PET (III). Myocardial glucose utilisation was normalised with an intravenous 
injection of 1 g/kg glucose and 10 IU of insulin prior tracer injection. A static 15-min 
PET scan was performed 40 minutes after the injection. Viability was determined as 
viable, partially viable or nonviable (relative [18F]FDG uptake 85, 67–85 and 67%, 
respectively).

4.2.3 Left ventricular size and function (II)

Transthoracic echocardiography was performed for measurement of cardiac output by 
pulsed-wave Doppler from the LV outflow tract (LVOT) and calculated as velocity time 
integral × heart rate.
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End-diastolic and end-systolic volumes (EDV, ESV) and EF as well as LV mass were 
evaluated by contrast-enhanced CT.

4.2.4 Myocardial oxidative metabolism and efficiency (II)

Myocardial perfusion and oxidative metabolism was assessed by [11C]acetate PET 
imaging. The scanning frames were as follows: 10 × 10 s, 1 × 60 s, 5 × 100 s, 5 × 120 s, 
5 × 240 s (total duration 41 min). Myocardial blood flow was determined by the initial 
uptake rate (k1) of [11C]acetate (van den Hoff et al. 2001). The clearance rate constant of  
[11C]acetate (Kmono) was assessed reflecting myocardial oxygen consumption (Armbrecht 
et al. 1990).

Myocardial infarct size was determined using a reduction of 40% as a cut-off for the k1 
of [

11C]acetate PET.

Global myocardial efficiency was estimated by a work-metabolic index (WMI) with the 
following equation: WMI = (cardiac output) × (systolic blood pressure) / Kmono × LV mass 
(Ukkonen et al. 2009). Regional efficiency of the remote non-infarcted myocardium, 
Kmono, was studied in relation to the systolic wall stress using the following equation: 
Efficiency = wall stress / regional Kmono.

4.2.5 Tissue samples and histology

Immediately after the imaging studies, the animals were sacrificed and heart was 
prepared and sliced horizontally to four slices. After 15-min incubation in 1% 
2,3,5-triphenyltetrazolium chloride (TTC) (Sigma-Aldrich, Saint Louis, MO, USA), 
samples were photographed and the size of infarcted region was visually estimated.

Samples for histology were collected from the infarcted, non-infarcted remote 
(inferolateral wall). Samples were mounted and frozen in isopentane mixed with dry 
ice. Cryosections of 7 μm were stained with Masson’s trichrome staining. The content of 
fibrosis was quantified from remote sections with the colour deconvulation method using 
ImageJ software (Ruifrok et al. 2001).

4.3 New myocardial perfusion tracers (IV)

4.3.1 Study design

The suitability of four previously discovered 68Ga-labelled ligands for MPI was 
tested. Results obtained with 68Ga-tracers were compared with [15O]water PET flow 
quantitation. Hexadentate bis(salicylaldimine) ligands, tris(3-methoxysalicylaldimine) 
(Tracer-1) and tris(3-ethoxysalicylaldimine) (Tracer-2) of bis(2,2-dimethyl-3-
aminopropyl)-ethylenediamine (BAPEN) and the bis(salicylaldimine) (Tracer-3) and 



 Materials and Methods 39

bis(3-methoxysalicylaldimine) (Tracer-4) of bis(3-aminopropyl)-dimethylenediamine 
(BAPDMEN) were tested in healthy pigs.

4.3.2 PET imaging and kinetic modelling of [68Ga] ligands

Myocardial blood flow (MBF) was measured first with [15O]water. Then 68Ga-tracer was 
injected following 92-min scanning with following frames: 18 × 10 s, 4 × 30 s, 2 × 
120 s, 1 × 180 s, 4 × 300 s, 6 × 600 s. For analysis of MBF with 68Ga-chelates, single-
compartment model and multiple-time graphical analyses for irreversible tracer uptake 
(Patlak plot) and reversible tissue uptake (Logan plot) were applied. Linear correlation 
between MBF measured with [15O]water and modelling results of 68Ga-ligands was 
calculated as using Pearson correlation.

4.3.3 Organ distribution

Organ samples were collected immediately after the PET imaging. Samples of whole 
blood, plasma, urine, heart, lung, liver, spleen, kidney, muscle, brain, bone, bone marrow, 
salivary gland and abdominal fat were prepared, weighed and measured for radioactivity 
using a gamma counter (Wizard). Additionally, myocardium-to-liver, myocardium-to-
lung and myocardium-to-blood ratios were calculated.

4.3.4 In vitro binding to serum proteins

Binding of 68Ga-ligands to serum proteins was determined using serum obtained from 
human, pig or rat. The assay was performed with the ultrafiltration method as described 
earlier by Basken et al. (Basken et al. 2008) and results were expressed as an unbound 
fraction (%).

4.4 Chronic levosimendan therapy for heart failure (V)

4.4.1 Study design

The pigs had a two-step occlusion of the LAD with distal ligation and proximal ameroid 
constrictor. Three weeks after the surgical operation, transthoracic echocardiography was 
done to visualise LV wall motion (Figure 7). Clear signs of large motion abnormality in 
the LAD region was defined to be inclusion criteria. Animals with LV wall motion defect 
were allocated into control group (n=18) or levosimendan group (n=7). Levosimendan 
was given per orally 5 mg/kg once a day (Orion Pharma Ltd, Espoo, Finland). Intervention 
was continued 8 weeks and was stopped one week before terminal imaging studies. 
Imaging studies consisted of echocardiography, PET and CT. After imaging studies, 
animals were sacrificed and cardiac tissue samples were collected.
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Figure 7. Study outline of the 8-week levosimendan intervention study where distal left anterior 
descending coronary artery (LAD) was ligated and ameroid constrictor was placed in the proximal 
part of LAD.

4.4.2 Effects of chronic levosimendan therapy on MI size, LV function and remodelling

Myocardial infarct size was determined by TTC-stained tissue samples and using a 
reduction of 40% as a cut-off in the initial uptake rate (k1) of [

11C]acetate PET.

Left ventricular function was evaluated by measurement of end-diastolic and end-
systolic volumes and ejection fraction from CT images.

Cardiac remodelling was evaluated by calculation of work-metabolic index reflecting 
myocardial efficiency. Myocyte hypertrophy and amount of fibrosis was estimated by 
histology.

4.5 Statistical analyses

Results were expressed as means ± standard deviation. A Shapiro-Wilk test was applied 
to determine whether the data were normally distributed. Correlation between study 
characteristics was analysed using either Pearson or Spearman correlation. Statistical 
significances between two study groups were evaluated by Mann-Whitney U test or 
two-tailed t-test. Statistical significances between more than two study groups were 
evaluated with one-way ANOVA and Bonferroni post hoc tests. P-values <0.05 were 
considered significant.
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5. RESULTS

5.1 Atherosclerotic plaque inflammation (I)

The principal study consisted of 10 pigs with a 6-month diet intervention. Pigs were 
hyperglycemic and hypercholesterlomic. Prior to imaging studies, the blood glucose 
level was 12.3±4.7 mmol/L and plasma total cholesterol level was 12.7±5.1 mmol/L.

5.1.1 Ex vivo studies

In total, 33 coronary artery segments were prepared and studied. As histological grading 
based on Movat pentachrome staining, seven segments were defined as a healthy vessel 
wall, 16 as intimal thickening and 10 as an atheroma. Intimal thickening and atheroma 
lesions contained a high density of inflammatory cells.

Increased [18F]FDG uptake was seen by autoradiography in coronary segments with 
intimal thickening and atheroma. Lesion-to-normal vessel wall ratio was 1.7±0.7 times 
higher in the areas of intimal thickening and 4.1±2.3 in the atheroma plaques.

The ex vivo biodistribution study showed increased [18F]FDG accumulation in atheroma 
lesions compared to healthy coronary segments. Vessel-to-blood ratios of [18F]FDG 
accumulation were 1.3±0.7, 2.0±1.0 and 2.6±1.2 in the segments with no plaque, intimal 
thickening or atheroma lesions, respectively.

5.1.2 In vivo PET imaging

Coronary [18F]FDG accumulation was visualised by dual-gated cardiac PET images co-
registered with CTA image (Figure 8). [18F]FDG uptake in the myocardium was low. 
Average TBR was 1.1±0.5, 1.2±0.4 and 1.6±0.6 in the segments with no plaque, intimal 
thickening and fibroatheroma, respectively. In dual-gated PET, the highest TBR was 2.7 
whereas it was only 2.0 in non-gated PET.

  
Figure 8. Fused axial coronary CTA and dual-gated [18F]FDG PET images showing cross-section 
of the proximal right coronary artery (arrow) in an animal with atheroma.
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5.2 Myocardial infarction and remodelling (II, III)

5.2.1 Myocardial perfusion and viability

Average MBF measured in the remote non-infarcted myocardium with [15O]water PET 
was comparable between pigs with distal LAD ligation and proximal ameroid constrictor 
and sham-operated control pigs (rest MBF: 0.97±0.32 vs. 1.24±0.40 mL/g/min, P=0.12; 
stress MBF: 1.61±0.75 vs. 1.94±1.00 mL/g/min, P=0.43). Also, further calculations of 
coronary flow reserve (CFR) and coronary vascular resistance (CVR) in the remote tissue 
showed no statistical differences between study groups (CFR 1.68±0.63 in ameroid pigs, 
1.60±0.65 in control group, P=0.80; CVR 107.1±31.5 in ameroid pigs, 93.0±29.2 mm 
Hg/(mL/g/min) in control group, P=0.33) (II).

In the bottleneck stented pigs, a smaller perfusion defect (24±12% of the LV) was seen 
at rest and larger during stress (53±10% of the LV). Four weeks after discontinuation of 
antiplatelet medication, large perfusion defect areas were seen in both at rest and during 
stress (42±13% and 54±10% of the LV, respectively) (Figure 9) (III).

0 100 %60 40 20 80

REST 1W STRESS 1W

REST 5W STRESS 5W

REST 5W 

STRESS 5W 

Figure 9. Inducible ischaemia seen in perfusion maps obtained with [15O]water PET at 1 week 
after placing a bottleneck stent into the left anterior descending coronary artery (LAD). After 
stopping the antiplatelet medication, the stent has occluded and caused myocardial infarction as 
seen at the 5-week time point.



 Results 43

Analysis of the [18F]FDG viability study performed in bottleneck stented pigs at four 
weeks after discontinuation of antiplatelet medication showed that 36±3% of the LV 
myocardium was non-viable and 36±18% viable whereas 28±15% was defined as 
partially viable (III).

5.2.2 Left ventricular function (II)

CT imaging showed increased LV end-diastolic and end-systolic volumes in pigs having 
distal ligation of the LAD and proximal ameroid constrictor compared to controls (EDV 
252±84 vs. 145±17 mL, P=0.003; ESV 154±68 vs. 53±7 mL, P<0.001) (Figure 12). 
Ejection fraction was reduced in ameroid pigs (40±8% vs. 63±4%, P<0.001). LV mass 
normalised for body weight showed a higher LV mass to body weight index in ameroid 
pigs (1.90±0.39 vs. 1.37±0.61 g/kg, P=0.02).

5.2.3 Myocardial oxidative metabolism and efficiency (II)

Analysis of the clearance rate (Kmono) of [11C]acetate showed that oxygen consumption 
was reduced in the infarcted regions, but was comparable in the non-infarcted remote 
myocardium of the ameroid pigs and sham-operated controls (remote Kmono 0.104±0.020 
vs. 0.119±0.028 min-1, P=0.16). Global myocardial efficiency was lower in the ameroid 
than sham-operated pigs (33.2±11.1 vs. 52.7±16.6 mmHg × mL × min × g-1 × 103, 
P=0.005). Regional efficiency in the remote tissue was increased in ameroid pigs 
(995±287 vs. 647±99 mmHg × min, P=0.004).

5.2.4 Tissue samples and histology (II)

TTC staining revealed that there was mostly a transmural infarct scar in the LV region 
vascularised by the LAD. Based on analysis of [11C]acetate data, the size of MI was 
29±14% (range 14%-57%) of the LV. MI size defined by [11C]acetate perfusion and TTC 
staining corresponded well.

Measurement of cardiomyocyte diameter in samples from the remote non-infarcted 
myocardium indicated increased myocyte hypertrophy in ameroid pigs (23.5±2.6 vs. 
21.4±1.6 µm, P=0.04). The amount of fibrosis was comparable between the study groups 
(5.5±1.9% in ameroid pigs; 4.9±1.1% in control group, P=0.39).

5.3 Evaluation of new perfusion tracers (IV)

5.3.1 PET imaging and kinetic modelling of [68Ga] ligands

PET imaging of four 68Ga labelled hexadentate bis(salicylaldimine) ligands showed the 
highest and fastest uptake into myocardium on Tracer-3 (Figure 10). 
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Figure 10. Representative horizontal long-axis view of heart showing the myocardial uptake of the 
68Ga tracers at 52-92 min after the tracer injection. 

Patlak plots (Ki) and one-tissue compartmental model (K1) were calculated. Modelling results were 
plotted against MBF results obtained with [15O]water. There was no correlation between Ki and MBF 
measured with [15O]water. There tended to be a weak correlation between K1 and MBF for Tracer-1 
(r=0.81, P=0.20), but not for any other tracer. 

5.3.2 Organ distribution 
 

Uptake of 68Ga labelled hexadentate bis(salicylaldimine) ligands was slightly higher in the 
myocardium than in other examined organs. Accumulation in kidney and bile were high indicating 
elimination and excretion routes. Tracer-3 showed good myocardium-to-blood (7.63±1.89), 
myocardium-to-lung (3.03±0.33) and myocardium-to-liver (1.80±0.82) ratios. 

 

5.3.3 In vitro binding to serum proteins 
 

A high difference in tracer binding to serum proteins was seen between human, pig and rat serum. 
The unbound tracer fraction was similarly low between human serum (9.4±5.7%) and pig serum 
(5.5±2.1%), whereas it was markedly higher in rat serum (45.4±20.9%). 
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As measured after the 8-week intervention period following one week washout, myocardial infarct 
size was smaller in the levosimendan group when compared with control animals (12±13% vs. 
27±15%, P=0.03). 

CT imaging showed smaller LV EDV and ESV in the levosimendan group (EDV 161±29 mL vs. 
245±84 mL, P = 0.06; ESV 81±18 mL vs. 149±67 mL, P=0.03). The ejection fraction tended to be 
higher in the levosimendan group (50±6% vs. 41±8%, P=0.06). 
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Figure 10. Representative horizontal long-axis view of heart showing the myocardial uptake of 
the 68Ga tracers at 52-92 min after the tracer injection.

Patlak plots (Ki) and one-tissue compartmental model (K1) were calculated. Modelling 
results were plotted against MBF results obtained with [15O]water. There was no 
correlation between Ki and MBF measured with [15O]water. There tended to be a weak 
correlation between K1 and MBF for Tracer-1 (r=0.81, P=0.20), but not for any other 
tracer.

5.3.2 Organ distribution

Uptake of 68Ga labelled hexadentate bis(salicylaldimine) ligands was slightly higher in 
the myocardium than in other examined organs. Accumulation in kidney and bile were 
high indicating elimination and excretion routes. Tracer-3 showed good myocardium-
to-blood (7.63±1.89), myocardium-to-lung (3.03±0.33) and myocardium-to-liver 
(1.80±0.82) ratios.

5.3.3 In vitro binding to serum proteins

A high difference in tracer binding to serum proteins was seen between human, pig 
and rat serum. The unbound tracer fraction was similarly low between human serum 
(9.4±5.7%) and pig serum (5.5±2.1%), whereas it was markedly higher in rat serum 
(45.4±20.9%).

5.4 Evaluation of chronic levosimendan intervention for heart failure (V)

5.4.1 Effects of chronic levosimendan therapy on MI size, LV function and remodelling

As measured after the 8-week intervention period following one week washout, 
myocardial infarct size was smaller in the levosimendan group when compared with 
control animals (12±13% vs. 27±15%, P=0.03).

CT imaging showed smaller LV EDV and ESV in the levosimendan group (EDV 161±29 
mL vs. 245±84 mL, P = 0.06; ESV 81±18 mL vs. 149±67 mL, P=0.03). The ejection 
fraction tended to be higher in the levosimendan group (50±6% vs. 41±8%, P=0.06).



 Results 45

Myocardial efficiency remained unchanged after intervention and was comparable 
between study groups (44±11 in the levosimendan group and 33±11 mmHg × mL × min 
× g-1 × 103 in the control group, P=0.15).

Histological analysis of non-infarcted remote sections indicated that the average diameter 
of cardiomyocytes (levosimendan group 23.2±2.0 µm vs. control group 23.5±2.6 µm, 
P=0.83) and the amount of fibrosis (4.8±1.9% in the levosimendan group; 5.5±1.9% in 
the control group, P=0.37) were comparable between study groups.
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6. DISCUSSION

Non-invasive assessment of atherosclerotic inflammation can be beneficial to recognise 
patients having a high risk for cardiac events. Early detection of highly inflamed 
atherosclerotic lesions could give us an opportunity to identify unstable plaques, improve 
the care of CAD patients and reduce the risk of sudden cardiac death.

Myocardial infarction often leads to adverse cardiac remodelling and finally heart failure. 
Oxidative metabolism and perfusion of myocardial tissue can be evaluated by [11C]
acetate PET. Additionally, efficiency of cardiac work can be calculated. In this study we 
wanted to validate the HF model of distal LAD ligation and proximal ameroid constrictor 
with the evaluation of perfusion, oxidative metabolism and cardiac efficiency.

As the prognosis of heart failure is poor, new therapies for the management of progression 
of post-MI adverse cardiac remodelling and heart failure are warranted. As earlier studies 
have already shown levosimendan could have multiple positive effects to prevent adverse 
cardiac remodelling. This study proved the beneficial effects of levosimendan as well as 
that the developed model of HF can be used for the evaluation of new interventions.

6.1 PET imaging of early atherosclerotic lesions

Imaging of atherosclerotic inflammation by [18F]FDG PET could be valuable for 
identifying high-risk patients. Increased [18F]FDG accumulation exists in culprit lesions 
by in vivo imaging studies (Rogers et al. 2010). In this study we evaluated [18F]FDG 
uptake in early atherosclerotic lesions by in vivo imaging and ex vivo studies. The main 
finding of this study was that [18F]FDG accumulation was increased in coronary arteries 
with intimal thickening and atheroma as confirmed by autoradiography and histological 
evaluation.

PET imaging of coronary arteries may be an effective method to differentiate 
atherosclerosis patients having highly inflamed vulnerable plaques or stable plaques 
with low inflammatory activity. The dual-gated method for minimising the cardiac and 
respiratory movement artefact increased TBR as the highest TBR in dual-gated PET was 
2.7 and 2.0 in non-gated PET that is consistent with previous studies (Tarkin et al. 2014). 
Still, it was not statistically possible to differentiate [18F]FDG uptake between a healthy 
vessel wall or one with intimal thickening or an atheroma. The sensitivity of in vivo PET 
is probably not sensitive enough for detecting small objects with a low accumulation of 
imaging tracer.

Advanced atherosclerotic lesions with coronary stenosis was reported in a previous study 
with a similar study setting that combined hyperglycemia and hypercholesterolemia 
(Gerrity et al. 2001 and Chatzizisis et al. 2008). However, very early atherosclerotic 
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changes were noticed in the current study. Coronary stenosis was not identified as 
confirmed with CTA and histology.

Further studies are warranted to clarify if more advanced atherosclerotic lesions can 
be induced within a reasonable follow-up time. PET imaging of atherosclerotic lesions 
showed to be effective and the dual-gating method improved the signal-to-noise ratio. 
Clinically relevant CAD model could be beneficial in developing further clinical 
diagnostics and treatments.

6.2 Validation of a surgically induced model of myocardial infarction

A translational research model to study chronic changes after MI is needed. In this study, 
cardiac remodelling was followed 3 months after MI. Two-step occlusion of LAD with 
distal ligation and proximal ameroid constrictor led to MI covering 24 percent of the LV 
as confirmed with [11C]acetate perfusion imaging and TTC staining of myocardial organ 
samples.

LV size was increased over 70 percent whereas EF was decreased 37 percent. Global 
myocardial efficiency was decreased 37 percent, which is connected to HF. Increased 
LV size led to increased myocardial wall stress. Histologically-detectable myocyte 
hypertrophy is linked to cardiac remodelling and is a compensatory mechanism 
for increased wall stress. Interestingly, interstitial fibrosis was not seen as described 
previously in a similar study (Teramoto et al. 2011).

As high as a 75 percent survival rate was reported by the authors of the original model 
description (Teramoto et al. 2011). In this study, the overall survival was only 26%. Still, 
most of unexpected sudden deaths occurred during the first week of the surgery and 
chronic phase survival was 44%. Sudden cardiac deaths are common in other pig studies 
and are probably linked to large MI size (Fallavollita et al. 2005, Huang et al. 2010 and 
Ishikawa et al. 2011).

In this study, we confirmed the feasibility of a chronic post-MI heart failure model 
utilising two-step occlusion of the LAD with distal ligation followed by implantation 
of an ameroid constrictor in the proximal part. Left ventricular hypertrophy, impaired 
systolic function and LV remodelling were confirmed by imaging studies and histological 
evaluation. Measurements of myocardial oxidative metabolism demonstrated reduced 
cardiac efficiency. We conclude that this model may be used for the evaluation of new 
interventions.

As the mortality observed in this study was very high, further development of the model 
of chronic HF is needed. This study furthered the understanding behind the mechanisms 
of cardiac remodelling. Further studies relating to ischaemic preconditioning and 
preventing adverse cardiac remodelling post-MI are needed.
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6.3 Validation of percutaneously-induced model of myocardial ischaemia 
and infarction

Bottleneck stenting of LAD induced large ischaemic region as measured with [15O]water 
(24% of LV at rest and 53% of LV during stress). Discontinuing of antiplatelet medication 
led to an increased defect area (42% of LV at rest and 54% of LV during stress). 

As measured by [18F]FDG, the non-viable portion of LV was 36 percent at four weeks 
after discontinuing of antiplatelet medication. Infarct size was large referring to the 
clinical situation and this measurement makes it possible to evaluate processes after 
MI.

An advantage of this model compared to ameroid model is that chronic myocardial 
ischaemia can be studied by continuing antiplatelet medication. Also, a lack of adhesion 
and inflammation induced by wound healing occurring after thoracic surgery noticed 
in surgical MI model can be beneficial in studies based on surgical interventions. 
Inflammation induced by wound healing can influence negatively also imaging studies 
of inflammation.

6.4 PET imaging and kinetic modelling of [68Ga] ligands

Studied 68Ga-labelled hexadentate bis(salicylaldimine) ligands were retained in the 
myocardium as shown in previous study with rats (Hsiao et al. 2009). Uptake into the 
myocardium was slow as well as clearance from blood pool. Kinetic modelling showed 
that myocardial perfusion cannot be determined with these four [68Ga] ligands as 
compared to MBF results obtained with [15O]water.

There was no significant correlation between results obtained with [15O]water and the net 
uptake rate Ki (Patlak plot) and K1 (one-compartmental model). One possible explanation 
for slow kinetics could be that tracers are very slowly moved across the cell membranes. 
A slow transport rate is a limiting factor for Ki and K1. An unknown factor other than 
perfusion may be limiting the accumulation into the myocardium. Another explanation 
could be a high tracer binding to serum proteins (91%-96% in pig vs. 29%-73% in rat) 
because the protein-bound fraction tracers are not expected to freely diffuse into tissues, 
which is one requirement for an effective perfusion tracer.

A slow transport rate and high protein binding together could be the explanation for the 
lack of correlation between MBF measured with [15O]water and [68Ga] ligands as tested 
in healthy pigs.

Despite the lack of correlation between tested [68Ga] tracers and [15O]water in this study 
with pigs, further studies are needed to clarify the mechanisms of the [68Ga] ligands, 
which showed to be promising for MPI in a previous rat study.
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6.5 Chronic levosimendan intervention for heart failure

In this study, the effects of 8-week levosimendan intervention, started three weeks after 
distal ligation of the LAD and placement of proximal ameroid constrictor, were studied. 
A significant reduction in MI size was seen in animals that received levosimendan 5 
mg/kg for 8 weeks. Previously this kind of cardioprotection and reduced MI sizes were 
reported in a study where levosimendan therapy was initiated before inducing myocardial 
ischaemia and infarction (Kersten et al. 2000). In this study, a LV wall motion defect 
was confirmed by echocardiography before allocating animals into study groups and 
beginning the therapy.

Animals in the levosimendan group have also smaller EDV and ESV and higher EF than 
animals in the control group. That is probably explained by a smaller MI size. These 
results are consistent with the results of previous small animal studies.

Beneficial effects of levosimendan in this study are possibly explained by mitochondrial 
KATP channel-mediated preconditioning, which protects myocytes against ischaemia 
(Gross et al. 1992). Also, increased collateral blood flow has been noticed after 
levosimendan administration (Kersten et al. 2000).

Levosimendan intervention restricted the size of MI and further cardiac remodelling, but 
more studies are needed to explain the exact mechanisms. Levosimendan is used for the 
management of acutely decompensated heart failure. Based on our results, levosimendan 
could have benefits also in the early treatment of acute myocardial infarction. Large 
animal models and clinical imaging methods used in this study enable quantitative 
analysis of myocardial perfusion and efficiency. This study that experimental pig model 
for CAD, MI, and HF could be used for further intervention studies.

6.6 Critical evaluation of the results

Large animal models of atherosclerosis enable the evaluation of coronary arteries by 
using in vivo imaging methods. In this study we were able to induce early atherosclerotic 
changes including intimal thickening and atheroma-type lesions in relation to clinical 
coronary artery disease. This study showed how ex vivo methods can be used in a 
validation of in vivo results obtained by clinical imaging device. Despite the relatively 
long follow-up time we did not noticed any narrowing of coronary arteries with 
anatomical imaging methods. Also, highly inflamed coronary lesions clinically related 
to increased risk for cardiac events were lacking. Long follow-up led to high expenses 
due to costly animal housing and special high-fat diet. Also, a significant increase in 
body mass in short periods of time led to difficulties in animal handling.

Surgical protocol consisted of distal ligation of the LAD and proximal ameroid constrictor 
led to large myocardial infarction following LV adverse cardiac remodelling in relation 
to clinical picture of myocardial infarction and heart failure. Even though we used distal 
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ligation of the LAD to induce ischaemic preconditioning, a high amount of sudden deaths 
were noticed in this study. Intolerance of myocardial ischaemia leading to high mortality 
was one important limitation in this study. Mortality in this study was higher than in 
HF patients and is probably not reflecting well the clinical picture. Additionally, in the 
clinic, HF is mainly a problem in older adults. Fairly young animals need to be used in 
experiments. Physiologic increases in heart mass during follow-up can be avoided by 
using models involving adult minipigs (Schuleri et al. 2008).

A bottleneck stent placed into the LAD led to the situation mimicking clinically relevant 
myocardial ischaemia and infarction. Premature occlusion of coronary artery was 
prevented by antiplatelet medication, which can lead to bleeding complications. Also, a 
high quality coronary angiography device and good operator skills are needed to perform 
this percutaneous method.

The evaluation of myocardial perfusion with 68Ga-labelled hexadentate bis(salicylaldimine) 
ligands was positive in rat studies. In this study with healthy pigs, these ligands were 
retained into myocardium, but the kinetics were very slow. We noticed that tracers 
were binding highly to serum proteins. Binding properties to serum proteins were very 
similar between pig and human (91%-96% in pig vs. 83%-96% in human), whereas 
it was remarkable different in rat (29%-73%). This large animal model was better for 
translational studies because it is more close to human metabolism than rodent models 
in this case.

Chronic levosimendan therapy tested in chronic MI model showed to have beneficial 
properties to restrict the size of MI and cardiac remodelling post-MI. Limitations in this 
study are related to high variability in the size of MI and imbalance of study population 
between control and intervention group.

6.7 Future aspects

Experimental pig models of atherosclerosis having myocardial ischaemia and 
infarction offer a versatile platform for translational research. In the future, more 
novel radiopharmaceuticals and interventions can be studied. Novel therapeutics 
can be focused on prevention of atherosclerotic plaque formation and rupture. New 
interventions concerning heart failure could consist of an innovative batch materials 
replacing infarcted myocardium. Also, gene and stem cell therapies are promising to 
improve cardiac function after MI. Large animal models with a human-like clinical 
picture are effective and valuable tools for biomedical research.

Large animal models are needed because it is not possible to study complex mechanisms 
of atherosclerosis and HF with alternative methods like cell cultures. The size of pig 
enables the imaging studies of coronary arteries. In small animal models, we need to use 
another vessel like the aorta for modelling of atherosclerosis. In large animal studies, 
we can use already existing methods and devices dedicated to clinical studies and thus 
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new innovations are more easily translated into clinical use. Despite many advantages 
of large animal models, there are also some disadvantages, which might be taken into 
account in study planning like difficulties in handling of heavy animals. Large animal 
studies need special facilities for animal housing and operations and can lead to high 
expenses. The use of large animal models remains restricted to research of new concepts 
close to clinical application.

More advanced mechanisms behind atherosclerosis and heart failure can be evaluated 
with multimodality imaging methods. We and others have evaluated the imaging of 
different stages of atherosclerotic changes with [18F]FDG PET, but it is still unsolved 
how to use this information in clinical imaging of atherosclerotic patients in the future. 
Myocardial oxidative metabolism and further assessment of cardiac efficiency is possible 
with [11C]acetate PET. Still, these methods are relatively rarely used in clinical imaging 
and thus have a huge potential in monitoring of efficacy of treatment in HF patients. 
Large animals enable the use of clinical imaging methods and thus new interventions can 
be studied in translational models before entering clinical trials.



52 Summary and Conclusions 

7. SUMMARY AND CONCLUSIONS

On the basis of our experimental studies on atherosclerosis and heart failure, we make 
these conclusions:

1. Model of diabetes and hypercholesterolemia was feasible and we found an 
increased uptake of [18F]FDG in early coronary atherosclerotic lesions in a pig 
model of diabetes and hypercholesterolemia.

2. Two-step occlusion of the LAD with distal ligation and proximal ameroid 
constrictor resulted in a large MI and LV remodelling together with decreased 
myocardial efficiency during a 3-month follow-up.

3. The bottleneck stent placed in the LAD resulted in a large ischaemic region of 
myocardium followed by large MI after discontinuing of antiplatelet medication.

4. Evaluation of four 68Ga-labelled hexadentate bis(salicylaldimine) ligands showed 
no correlation between myocardial perfusion measured with [15O]water.

5. Eight-week levosimendan therapy started after recent occlusion of the LAD 
resulted in decreased MI size followed by attenuation of myocardial remodelling 
and improved systolic function.

Large animal models mimicking clinical conditions and multimodality imaging can be 
used as valuable tools in translational research of atherosclerosis and HF. Large animals 
enable the use of clinical imaging methods and thus new interventions can be studied in 
translational models before entering clinical trials.
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