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ABSTRACT

We consider the determination of the optimal stochastic lump-sum dividend
policy of a corporation facing cash flow uncertainty and present a set of gen-
eral conditions under which the optimal dividend policy exists and is unique.
We also consider a class of associated singular stochastic control and optimal
stopping problems and demonstrate that increased flexibility does not only in-
crease the value of a rationally managed corporation, it also increases the rate
at which this value grows (i.e. Tobin’s marginal q). We also analyze the sensi-
tivity of the optimal dividend policy and its value to changes in the transaction
costs and prove that increased transaction costs result into larger but less fre-
quent dividend payments.
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1 INTRODUCTION

In the classical study Miller and Modigliani 1961 established that dividend
policy is irrelevant in a perfect and rational market. As Miller and Modigliani
1961 state (on p. 414):

”...there are no "financial illusions” in a rational and perfect eco-
nomic environment. Values there are determined solely by "real”
considerations — in this case the earning power of the firm’s assets
and its investment policy— and not by how the fruits of the earning
power are "packaged” for distribution.”

This irrelevance result (and the related findings on the irrelevance of the capi-
tal structure on valuation of Modigliani and Miller 1958) were later extended
in the general equilibrium framework by Stiglitz 1974. These to some extent
controversial findings based on the perfection of the underlying markets have
been subsequently challenged in numerous studies by weakening the assump-
tions and introducing imperfections into the analysis of the determination of
the dividend policy (for example, by introducing economics of information
(Ross 1977), agency costs (Easterbrook 1984, Jensen 1986), asymmetric in-
formation (Miller and Rock 1985), and taxes (Kose and Williams 1985); see
also Ross and Westerfield (1988, Chapter 15). Moreover, there is empirical ev-
idence indicating that at least in some industries (for example, in the insurance
industry; cf. Akhigbe, Borde and Madura 1993) dividend policy does play a
role in the valuation of firms and that dividend policy is actually an important
strategic element in the decision making process of these corporations.

Given the arguments stated above, we plan to consider in this study the de-
termination of the optimal dividend policy of a rationally managed corporation
in the presence of transaction costs for a broad class of diffusions modelling the
stochastically fluctuating dynamics of the underlying cash reserves (retained
profits) from which the dividends are paid out. Given the recent interest on
stochastic impulse control policies, we model the admissible dividend policy
as a stochastic lump-sum impulse policy and, therefore, assunta¢hatjec-
tive of the corporation is to determine both the timing and the size of the opti-
mal dividend policy(cf. Bar-llan, Perry, and Stadje 2004, Cadenillas, Sarkar,
and Zapatero 2003 and Peura and Keppo 2003; see also Korn 1999 for an ex-
cellent survey on stochastic impulse control applications in finance). Instead
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of analyzing the stochastic control problem by relying on ordinary dynamic
programming techniques we first derive by relying on the classical theory of
diffusions an associated mapping measuring the expected cumulative present
value of the future dividend flow from the present up to the potentially in-
finitely distant liquidation date by assuming that the stochastic dividend policy
constitutes a stationary impulse control policy characterized by two constant
boundaries. Namely, the boundary at which the dividends should be paid out
and the boundary at which the underlying stochastic reserve process should be
restarted (i.e. the generic initial state). Given this observation and the admis-
sibility of such dividend policy we are able to derive an explicit representation
of the value in terms of the exercise payoff accrued every time dividends are
paid out and the minimal increasingexcessive mapping for the controlled
diffusion. In this way the original problem is transformed into a simpler two
dimensional non-linear programming problem which can be studied by relying
on ordinary static optimization techniques. By applying this representation we
are able to derive the ordinary first order necessary conditions which neces-
sarily have to be satisfied by the optimal policy within the considered class of
admissible dividend policies. We then present a set of general typically satis-
fied conditions (which are valid, for exampfey most applied mean reverting
diffusion modelsunder which both the existence and the uniqueness of the
optimal dividend policy is always guaranteed and under which the proposed
dividend policy satisfying the necessary conditions is indeed optimal. Interest-
ingly, our results unambiguously indicate tltla¢ presence of liquidation risk
results into a maximal admissible transaction cestow which the sequential
payment of dividends is optimal. Above this critical cost the sequential pay-
ment of dividends is suboptimal and the optimal dividend problem becomes an
optimal liquidation problem where the sole objective of the corporation is to
determine the threshold at which it should be irreversibly liquidated. Thus, our
results unambiguously indicate that the combined effect of the risk of potential
liquidation and transaction costs on the nature of the implemented dividend
policy may be dramatic depending on the size of the transaction costs.

For the sake of comparison, we also consider two associated stochastic
cash flow management problems. Namely, a singular stochastic control prob-
lem where the optimal dividend policy is characterized by an exercise thresh-
old at which dividends are paid out in a singular fashion (i.e. the optimal
policy typically ranges from periods of intense dividend payments to periods
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of inactivity; cf. Asmussen and Taksar 1997, Baldursson and Karatzas 1997,
Choulli, Taksar, and Zhou 2003, Hgjgaard and Taksar 1999, 2001, Holt 2003,
Jeanblanc-Picquand Shiryaev 1995, Kobila 1983, Milne and Robertson 1996,
@ksendal 2000, and Taksar and Zhou 1998. See also Taksar 2000 for an excel-
lent survey of stochastic dividend optimization models) and an optimal stop-
ping problem where the optimal dividend policy is characterized by an exercise
threshold at which all the reserves are paid out as dividends and the corpora-
tion is instantaneously liquidated. Somewhat surprisingly, we find that the
values of these cash flow management problems are ordered in an exception-
ally strong fashion. More precisely, we first demonstrate the intuitively clear
finding that the value of the associated singular stochastic dividend control
problem dominates the value of the stochastic lump-sum (impulse) dividend
control problem which, in turn, dominates the value of the associated optimal
liquidation problem. However, we also establish titnat marginal values (and,
therefore, the Tobin’s marginal g associated with the particular cash flow man-
agement problem) are ordered in the same wBwyt formally, we prove that

the marginal value of the associated singular stochastic dividend control prob-
lem dominates the marginal value of the stochastic lump-sum dividend control
problem which, in turn, dominates the marginal value of the associated opti-
mal stopping problem. Therefore, our results clearly support the economically
sensible argument thatcreased flexibility does not only increase the value of

a rationally managed corporation, it also increases the rate at which this value
grows It is also worth noticing that our results extend previous results estab-
lishing a connection between the marginal value of singular stochastic control
problems and the value of associated optimal stopping problems (cf. Alvarez
1999, 2001, Baldursson 1987, Benes, Shepp, and Witsenhausen 1980, Boetius
and Kohlmann 1998, Hausmann and Suo 1995, Karatzas 1983, Karatzas and
Shreve 1984, 1985, Menaldi and Robin 1983, and Menaldi and Rofman 1983)
by showing that the values of the considered stochastic control problems are
connected through an associated free boundary value problem as well. Simi-
larly, our results extend previous results establishing a connection between the
value of the considered stochastic impulse control problem and the value of an
associated optimal stopping problem by demonstrating that also the marginal
values of these problems are closely connected to each other in the sense that
the marginal value of the impulse control problem is greater than or equal to
the marginal value of the associated stopping problem.



It is worth observing that our results are of importance in the rational man-
agement of renewable resources as well, since all the considered cash flow
management problems can be interpretethasdetermination of the admis-
sible harvesting strategy maximizing the expected cumulative present value of
future harvesting yields in the presence of stochastic value groittérefore,
our results unambiguously indicate that the more flexible the implemented har-
vesting strategy is, the higher is its value and its marginal value. More specif-
ically, our results demonstrate that typically both the value and the marginal
value of the optimal single harvesting strategy are smaller than the value and
the marginal value of the optimal ongoing harvesting opportunity, respectively
(Alvarez 2003, Sgdal 2002, and Willassen 1998 have previously considered
the determination of the optimal rotation policy in the presence of stochas-
tic value growth and an exogenously given generic initial state). These val-
ues, in turn, are smaller than the value and the marginal value of the singular
harvesting opportunity modelling the most flexible harvesting strategy (singu-
lar stochastic harvesting strategies have been previously considered, among
others, in Alvarez 1998, 2000, Alvarez and Shepp 1998, Lande, Engen, and
Seether 1994, 1995, and Lungu and @ksendal 1996). These observations again
imply that the required exercise premia and, consequently, the optimal har-
vesting thresholds can be ordered accordingly. A natural and economically
sensible implication of this observation is thatreased flexibility shortens
the expected length of a time interval between two consecutive harvests (i.e.
the rotation cycle) Put somewhat differently, increased flexibility unambigu-
ously increases the project value by increasing the expected cumulative yield
accrued from harvesting and speeds up harvesting by decreasing the optimal
harvesting threshold; a finding which is in line with the literature on real op-
tions.

The contents of this study are as follows. In section 2 the considered
stochastic impulse control problem is presented. In section 3 we then present
a set of auxiliary results on linear diffusions and associated stochastic con-
trol problems needed later in the analysis. In section 4 we then consider the
stochastic impulse control problem and present both a set of necessary condi-
tions from which the optimal policy can be derived and a set of general con-
ditions under which the optimal policy exists and is unique. In section 5 our
theoretical results are then explicitly illustrated. Finally, section 6 concludes
our study.
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2 THE STOCHASTIC IMPULSE CONTROL
PROBLEM

Consider a value-maximizing competitive corporation facing cash flow uncer-
tainty. For the sake of simplicity, assume that the reservoir process measuring
the retained profits from which dividends are paid out is exogenous and mod-
elled as a general linear diffusion. More precisely,(fetF, {F;}:>o,P) be a
complete filtered probability space satisfying the usual conditions and assume
that the dynamics of the controlled cash flow dynamics are described by the
process characterized by the generalizéecljuation

¢ ¢
Xt”:a:—k/ ,LL(XSV)dS—f—/ o(XY)dW (s)
0 0
_ZCkv O§t§7(1)/7

T <t

(2.1)

wherer} = inf{t > 0: X}/ < 0} denotes the potentially infinite date at which

the firmis liqguidated angd : R, — Rando : R, — R, are known sufficiently
smooth (at least continuous) mappings guaranteeing the existence of a solution
for the stochastic differential equation (2.1) (cf. Borodin and Salminen 2002,
pp. 46—47). A stochast& lump-sum dividend polidy.e. a stochastic impulse
control) for the system (2.1) is a possibly finite sequence (cf. @ksendal 1999)

V:(7—177_27---7Tk7---;C1;<27---7<k7~--)kSN (NSOO),

where{7; } .<n iS an increasing sequenceBf-stopping times for which; >
0, and{(; }x<n denotes a sequence of non-negative dividends (,e> 0
for all k) paid out at the corresponding intervention dafes},<y, respec-
tively. We denote a¥ the class of admissible dividend policiesaind assume
that7, — 7§ almost surely for alv € V andx € R,. In accordance with
most financial and economic applications of stochastic impulse control mod-
els, we assume that the upper boundarys natural (therefore, even though
the reserves may be expected to increase, they are never expected to become
infinitely high in finite time) and that the lower boundaiyis either natural,
exit, or regular for the controlled diffusion in the absence of interventions. In
case itis regular, we assume that it is killing. As usually, we denote as

1 d? d

— 2 el
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the differential operator associated to the controlled diffusign

Given the dynamics in (2.1) and our assumptions on the dynamics of the
controlled system, define the expected cumulative present value of the net div-
idends from the present up to an arbitrarily distant (potentially infinite) future
as

J(x) = E, [Z (o c>] , (2.2)
k=1

wherer > 0 denotes the risk free discount rate and- 0 is a known trans-
action cost incurred each time the irreversible dividend pajicy exercised.
Given the definition of the expected cumulative dividengi$xz) we plan to
consider in this study the stochastic impulse control problem

N
Ve(w) = sup B, [Z e (G —c>] TER, (23)

and to determine an admissible lump-sum dividend palitye V for which

JV (x) = V,(z) forall z € R,. Put somewhat differently, we plan to determine
an dividend policyv* € ¥V maximizing the expected cumulative present value
of the paid out dividends from the present up to an arbitrarily distant future.
Given our assumptions on the controlled diffusion and the objective function,
we now present a verification lemma which is later applied for the verification
of optimality of a proposed policy.

Lemma 2.1. Assume that the mapping: R, — R is r-excessive for the
underlying diffusionX; and that

g(z) > Cz%p] [( —c+g(x— )] (2.4)

forall z € Ry. Theng(z) > V. (z) forall z € R,.

Proof. Letv € V be an admissible stochastic impulse control. SifiG¢ cw

IS an increasing sequence of stopping times, we first observe that the assumed
r-excessivity of the mapping(z) implies (see Borodin and Salminen 2002,

pp. 32-35 for a precise definition efexcessive mappings for a diffusion)

Tj+1—

E [6_””19()(” )Ifq} <e "g(X7).
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Taking expectations, invoking the tower property of conditional expectations,
and reordering terms yields

’T+1

E, [ g(X2)| — B, [ hg(XY )] > 0.

Letting 7o = 0 and summing terms fromh= 0 to j = n results in
gla) = B, [emoig(XY )] 4B, Ze gz ) - g(x2)].

Since X7 = X?_ — (; for any admissible strategy € V and the map-
ping g(z) is non-negative and satisfies the quasi-variational inequglity >
SUPceo ¢ — ¢+ 9(r — ()] = ¢ — c+ g(z — () we find that

) >E, Y e’ [Q(XTVJ._) —9(X7_ = ] > E, Ze "Ti(¢ — )
=1

Since this inequality is valid for any admissible impulse conr@ V, it has
to be valid for the optimal as well proving thetz) > V,(z). ]

Lemma 2.1 states a set of sufficient conditions guaranteeing that a map-
ping dominates the value of the considered stochastic impulse control problem
(for related results see, for example, Bensoussan 1982, Brekke and @ksendal
1994, 1996, Harrison, Sellke, and Taylor 1983, Mundaca and @ksendal 1998,
@ksendal 1999, and @ksendal 2000). It is worth noticing that the condi-
tions of Lemma 2.1 are considerably weak, since the assursxdessivity
of the mappingy(x) only guarantees that it is non-negative, continuous and
r-superharmonic (cf. Borodin and Salminen 2002, p. 32). An interesting im-
plication of Lemma 2.1 expressing its conditions in a more easily applicable
variational form is now summarized in the following.

Corollary 2.2. Assume that the mapping R, — R, satisfies the conditions
g € CY(R,)NC?*R,\D), whereD is a set of measure zero api(z+) < o
for all z € D. Assume also thaf(x) satisfies the quasi-variational inequality
(2.4) for all z € R, and the variational inequality.Ag)(x) — rg(x) < 0 for
all x ¢ D. Theng(z) > V.(z) forall z € R;.

Proof. As was established in Theorem D.1. in @ksendal 1999 (pp. 299-302)
the conditions of our corollary guarantee that there a sequépge° , of
mappingsy,, € C?*(R,) such that
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() g, — g uniformly on compact subsets Bf,, asn — oo;

(i) (Agn) — rgn — (Ag) — rg uniformly on compact subsets &f, \ D, as
n — o0,

(i) {(Agn) —rg,}>2, islocally bounded ofR,.

Applying Itd’s theorem to the mapping@, z) — e "'g,(z), taking expecta-
tions, and reordering terms yields

Tj+1—
J

Ti+1-
e gy(XY) =B [e_”j“gn(X” ) — / e "G (XY)ds ij],

whereG,,(z) = (Ag,)(z) — rgn(x). Lettingn — oo, applying Fatou’s theo-
rem, and invoking the variational inequalitylg)(z) — rg(z) < 0 yield

e "g(X7) =2 E [e‘”ﬂ’“g(X roi—)

Tj+1—

7).

The alleged result now follows from Lemma 2.1. ]

3 AUXILIARY RESULTS

Before proceeding in the analysis of the considered stochastic dividend opti-
mization problem, we first derive some auxiliary results needed later in the
analysis of the original problem. For the sake of notational simplicity, denote
now asX; the controlled diffusion modelling the stochastic cash flow dynam-
ics in the absence of interventions. As usually, we deno#&'é®&, ) the class
of measurable mappings: R, — R satisfying the uniform integrability con-
dition T

B, [ e If(X)lds < oo,

0

wherery = inf{t > 0 : X; < 0}. Thatis,£'(R,) can be interpreted as the
collection of cash flows with finite expected cumulative present values. Given
the classC! (R, ) we define forf € £1(R,) the functional R, f) : R, — R as

(R f)@) =B, | e p(X,)ds.
14



As is well-known from the literature on linear diffusions fifc £!(R, ) then

T

(Re)@) =B~¢(@) [ w)fm'(n)dy+
B [ o)l )y,

where(x) denotes the increasing agdzx) the decreasing fundamental so-
lution of the ordinary second order differential equatiofu)(z) = ru(x)
(defined on the domain of the operator of the diffusioki;;¢ € [0,7)};
see Borodin and Salminen 2002, pp. 18-20 for a throughout characteriza-
tion of the fundamental solutions and the Green function of a linear diffu-
sion), B = (¢'(z)¢(x) — ¢'(z)(x))/S'(x) > 0 denotes the constant (with
respect to the scale) Wronskian determinant of the fundamental solutions,
S'(z) = exp (=2 [*(u(y)/o*(y))dy) denotes the density of the scale func-
tion S of X, andm/(x) = 2/(c?(x)S’(x)) denotes the density of the speed
measuren of X.

Define the mapping : R, — R measuring the net appreciation rate of the
reservesX; as

plr) = p(x) —re. (3.1)

Given this definition, consider now the associated singular stochastic dividend
control problem

TZ(O)
K(x) =supE, e "dZ,, (3.2)
ZeA 0

whereA denotes the class of non-negative, non-decreasing, right-continuous,
and { F;}-adapted dividend payment processes,0) = inf{t > 0 : X7 <
0} denotes the potentially infinite liquidation date, and the underlying reserve
process evolves dR, according to the dynamics described by the generalized
(Itd) stochastic differential equation

dXF = w(X7)dt + o(X7)dW,; — dZ;, X{ == (3.3)

An important result needed later in the analysis of the dividend optimization
problem (2.3) (slightly extending the results originally proved in 3 and 5) is
now summarized in our next lemma.
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Lemma 3.1. Assume thap € £!(R,) and thatlim, .., p(z) < 0. Assume
also that

(i) if 0 is unattainable forX; then there is a unique threshaid € (0, co)
such thatp(z) is increasing on(0, z*) and decreasing ofiz*, o) and
limg o pu(x) > 0;

(i) if 0 is attainable forX; then there is a unique threshold € [0, o)
such thatp(z) is increasing on(0, z*) and decreasing ofiz*, o) and
limg o pe(x) > 0.

Then, the value of the optimal dividend payment policy reads as

T+ p@) g > T
K(z) = () " X (3.4)
V' (&) T<

wherez is the unique optimal exercise threshald= argmin{v’(x)} satis-
fying the ordinary first order condition”(z) = 0. The value of the optimal
dividend policy is twice continuously differentiable, monotonically increasing,
and concave. Moreover, the marginal value (i.e. Tobin's q) of the optimal
dividend policy can be expressed as

vz LY(Y)

K'(a) = v/ ()sup || = {i/(m) r=e (3.5)

Proof. Applying Dynkin’s theorem to the identity mapping— x yields
B[ X ] =2+ B, /O " e (X )ds, (3.6)
wherer* = inf{t > 0: X; &€ (a,b)} denotes the first exit date of; from the

open sefa,b) C (0,00). Ther-harmonicity and continuity of the left-hand
side of (3.6) implies that

E, [e‘rT*XT*} = agb(x) + bz%(:z:)
¢ U(b)’

whereg(z) = ¢(z) — p(b)¢(x)/v(b) and(z) = ¥(x) — ¥(a)p(r)/p(a)

denote the decreasing and the increasing solutions of the ordinary differential
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equation(Au)(z) = ru(z) subject to the boundary conditionga) = 0 and

o(b) = 0, respectively. On the other hand, since the integral expression on the
right-hand side of (3.6) satisfies the ordinary differential equatién)(z) —

rv(x) + p(xz) = 0 subject to the boundary conditionga) = v(b) = 0 we
observe that

E/ ) s =B7'¢(x) /zp y)dy+
/90 y)dy,

whereB = (1 — ¥(a)p(b)/(¥(b)p(a)))B denotes the constant Wronskian of
the solutionsy(z) andy(x). Combining these expressions now imply that
(3.6) can be re-expressed as

x:aﬂx) bl;(x) — B 'o(x 0 m (y)d
o) + 30 o( )/a V(y)p(y)m'(y)dy o
. . b
B [ e (v)d.

Dividing equation (3.7) withﬁ(a:), differentiating, and multiplying the result-
ing equation with)?(z) yields

O(a) — 2 (@) = §'(a / Oy Bif;@ (3.8)

Lettinga | 0in (3.8), invoking the absolute integrability conditipre £*(R ),
and multiplying the resulting equation withnow implies that

rb(x) = red! (z) + S'( / Oy | (3.9)

Subtracting the term(x)«’(z) from both sides of equation (3.9) and applying
the identitleQ(a:)w”(:c) = rp(z) — pu(z)y'(z) then finally yields

@b” /¢ y)dy — ()?Eg (3.10)

Denote now the rlght-hand side of equation (3.10J @s. It is clear that our
assumptions imply that(0) < 0 and that

27

z) < p(z /¢ y)dy — p(@) g~ = —p(2)g

CQ
5
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for all z € (0,z*). On the other hand, the assumed monotonicity(af) on
(z*, 00) and the assumptiolim, ., p(z) < 0 imply that there is a threshold
xo > z* at whichp(zy) = 0 and, therefore, at which

Hao) =+ [ ooy )y >0

Combining this observation with the continuity and monotonicity of) on

(z*, 00) then finally implies that equatiof(x) = 0 and, therefore, that equa-
tion ¢”(x) = 0 has a unique roat € (z*, z¢) and thatt = argmin{¢y’(x)}.
Consequently, we discover that the proposed value funéfi@af) is monotoni-
cally increasing, concave, and satisfies the variational inequaliiie§s/’ (z) —
1,rJ(z) — (AJ)(x)} = 0 proving that it dominates the value of the singular
stochastic control problem (3.2). However, since the proposed value can be
attained by applying &ocal time push-typéividend strategy and the solution

of the stochastic differential equation (3.3) subject to reflectioheatists and

is unique (cf. Freidlin 1985, Section 1.6), we find that the proposed value
function is indeed the value of the singular stochastic control problem (3.2).
Moreover, since

i{ ! }:—Wx)io =
dzx [ (x) U I
we find thatK’(z) can be expressed as in (3.5). ]

Lemma 3.1 states a set of weak sufficient conditions under which the as-
sociated singular stochastic control problem (3.2) is solvable and under which
the value of the optimal policy can be expressed in terms of the increasing
minimal r-excessive mapping for the underlying diffusion. Lemma 3.1 has
two important capital theoretic implications. First of all, since the optimal
dividend threshold is attained on the set where net appreciation rate of the un-
derlying reserve is positive, we find thdividends are paid out on the set where
the expected per capita rate at which the reserves are increasing dominate the
opportunity cost of investmenecond, since the optimal dividend threshold
is attained on the set where net appreciation rate of the underlying reserve is
decreasing, we find that at the optimum the marginal yield accrued from retain-
ing yet another marginal unit of stock undistributed should be smaller than the
interest rate- and, therefore, that the optimal dividend policy diverges from

18



the deterministic golden rule of capital accumulation (cf. Merton 1990, pp.
594-595, see also Alvarez 2001).

It is at this point worth emphasizing that the value (3.4) of the optimal
singular stochastic dividend policy can be re-expressed as

) A
T—T+ 5% T>T
_ () =
K(:z:) = {:f/((@) e (3.11)

As we will later observe in our subsequent analysis, this expression is closely
related to the value of the considered stochastic lump-sum dividend optimiza-
tion problem (2.3). An important inequality illustrating the importance of the
value of the associated singular stochastic dividend policy is now summarized
in the following.

Lemma 3.2. Define the continuously differentiable mappiig R% — R as

. Y(y)
' (y) T<Y

and assume that the conditions of Lemma 3.1 are satisfied. Kieh =
H(z,z) > H(x,y) and K'(z) = H,(z,z) > H,(z,y) forall (z,y) € R, X
R, \{z}. Moreover,H,(x,y) < 0forall (z,y) € Ry x (Z,00).

Proof. Assume thay > z. Then

0(z) —6(y) T<y<uw

H(z,#) = H(z,y) = (o +0(&) - 5 #<w<y
(W' (y) = (2))(2) >

V() Tet<y

where the continuously differentiable mappthgR, — R is defined as

()
e

0(x)

Sinee V(e (2)
, x x
0'(z) = — 12
(@)
we find thatz = argmax{f(z)} and, therefore, thad(z) > 6(y) for all

y # &. Moreover, sincer = argmin{v/(z)} we find thaty’'(y) > /()

0, =x

T,

AV
VIIA
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for all y # z as well. Consequently, it is sufficient to consider the difference
H(x,z) — H(z,y) on the sefz,y). The monotonicity ob(x) and«’(z) on
[z, 00) implies that

() () @W'y) —¥'(@)y(x)
V'(y) W' (y) V'(y)y' (@)

proving thatH (x,z) > H(z,y) for all z € Ry wheny > Z. It remains to
consider the case whege< z. In that case

r+0(2) — >0

> x4 0(r) —

0(z) —0(y) y<z<zx

H(w, &) — H(z,y) = { 53 — (@ +0(y) y<z<i
(W' (y) =" (2))1(x) -

) Ty<.

In light of our observations above, it is sufficient to consider the difference
H(z,z) — H(x,y) on the sefy, ). Since

() () (¢'(x) — (%)) ()
w@ )2 GG @)
we observe thatl (z, ) > H(x,y) for all z € R, wheny < z as well and,
therefore, that{ (z,z) > H(x,y) forall (z,y) € Ry x R;\{z}. Establishing
that H,(z,2) > H,(x,y) for all (x,y) € Ry x Ry \{z} is completely analo-
gous. It remains to establish th&t,(z,y) < 0 for all (z,y) € Ry x (Z,00).
To observe that this is indeed the case, we find by ordinary differentiation that

— (z+0(z)) = >0

0'(y) x>y
Hy(x,y) = {_ P(x) ¢//(y) T < y
3 (y)

which is negative sincé(y) is decreasing and(y) is convex on(z, o). [

In order to slightly qualify the results of Lemma 3.2 we first observe that
the auxiliary mapping.,(z) = H(z,y) satisfies or{0, y) the absence of arbi-
trage conditionAu,)(z) = ru,(x), stating that the expected percentage rate
of return from the project has to coincide with the risk-free rate of return, sub-
ject to the boundary conditiom,(0) = 0. On the other hand, sineg (=) sat-
isfies on(y, oo) the linear growth condition; () = 1 we find that Lemma 3.2
essentially demonstrates that given the conditions of Lemma 3.1 the mapping
H(x,z) dominates any other mapping satisfying these variational inequalities.
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This dominance is surprisingly strong, since Lemma 3.2 indicates that also
H.(x,z) dominates the derivativl.(z, y) for any other chosen boundagy
Consequently, Lemma 3.2 establishes that the variational inequalities stated
abovehave a unique dominant solution which is not only greater but also
grows faster than any other admissible solutiofin interesting implication

of our results is now summarized in the following.

Lemma 3.3. Assume that the conditions of Lemma 3.1 are satisfied. Then
K(z) > Go(z) and K'(z) > Gj(x), where

Go(z) =sup E, [e 77X, ]

T<T0

_ Ly ) T > Iy (3.12)
= vlx)sup W} B {% TS o

denotes the maximal expected present value of the cash reservag and
p~}(R_), denoting the threshold at which this value is attained, is the unique
root of equationy)(zy) = zoY'(Zo).

Proof. In order to establish (3.12) we first denotexas> z* the unique in-
terior threshold at whichy(z;) = 0 and observe that equation (3.9) implies
that

WC)) N ‘/Eg:Ex; - /ox b(y)ply)m' (y)dy. (3.13)

Since

d [¢(x) W(x)] _ o) 2 <

L O s @) 20, 2 Z

we observe thaty(z) — x¢/'(x))/S(x) > 0 for all x € (0, xy). AsSsume now
thatz > k > z,. The monotonicity of the mapping(z) on (z*, co) and the
assumed boundary behavior of the underlying diffusiosoahen implies that

U)W ek o)
I A
wk) W (k W) W (k
I ORICREE. [sm Sf<k>]l‘o°’

sincey’(x)/S(x) — oo asx — oo andp(k) < 0. This demonstrates that
there is a unique thresholt), € p~!'(R_) at which the ordinary first order
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necessary condition(zy) = zyY'(zy) is satisfied. Moreover, since

GG I ETC B
(@) do Lot)] ~ 5@ " 9w

we also observe that = argmax{x/¥(z)}. Given these findings denote the
proposed value function &s,(z). Since

G()(ZL’) = ET [G_TTX;} s

wherer = inf{t > 0 : X; > &z}, we immediately find tha(f?()(x) < Go(x).

On the other hand, we observe that the proposed value function is continuously
differentiable, twice continuously differentiable @&n \{z,}, and satisfies the
variational inequalities

min{rGo(z) — (AGo)(z), Go(z) — 2} = 0.

Thus, it constitutes a-excessive majorant of the exercise payoffor the
underlying diffusionX;. SinceGy(z) is the least of these majorants, we ob-
serve thatiy(z) > Go(z) proving thatGy(z) = Gy(z). In order to prove

the inequality K (z) > Gy(x) we first observe that the value of the asso-
ciated singular stochastic control problem satisfies the variational inequality
(AK)(z) < rK(z) and the inequality

K(xz) — 2 > f(min(x,z)) > 0.

Thus, K(z) constitutes a-excessive majorant of the exercise payoffor
the underlying diffusionX;. SinceG(z) is the least of these majorants, we
observe that{(x) > Gy(z). The inequalityK’(x) > G{(z) is now a straight-
forward consequence of equation (3.5) and Lemma 3.2. ]

Lemma 3.3 demonstrates that the value of the optimal singular stochas-
tic dividend policy dominates the maximal expected present value of the fu-
ture cash reserves. This result is intuitively clear, since the maximal expected
present value of the cash reserves can always be attained by choosing the ad-
missible dividend policyZ, = X;1jz, ) (X;). Since the class of admissible
policies is, however, larger than this single dividend payment strategy, we find
thatthe value of the optimal singular stochastic dividend policy has to dom-
inate the maximal expected present value of the cash reseHesever, a
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slightly more surprising result is that also the marginal value of the optimal
singular stochastic dividend policy dominates the marginal value of the maxi-
mal expected present value of the cash reserves. Theréfergield accrued

from retaining a marginal unit of stock undistributed is higher in the case
where dividends are paid out sequentially than in the case where dividends
are paid out only oncécorresponding to instantaneous liquidation at the opti-
mal threshold). A second important implication of the results of Lemma 3.3 is
thatzy, > z. That is,the required exercise premium is naturally higher in the
case where the opportunity to pay out dividends may be exercised only once
than in the case where this decision may be subsequently repdébeeover,
sincez, is attained on the set where the net appreciation rate of the reserves
is decreasing we again find that at the optimum the marginal yield accrued
from postponing exercise further into the future should be smaller than the
opportunity cost of investment measured by the risk free ratelence, the
deterministic golden rule of capital accumulation is violated in this case as
well.

4 THE OPTIMAL DIVIDEND POLICY

Having presented in the previous section some auxiliary results and an asso-
ciated singular stochastic dividend optimization problem we now plan to an-
alyze the stochastic lump-sum dividend optimization problem (2.3). In order
to present a general detailed treatment of the problem, we first derive a set of
necessary conditions which have to be satisfied by a candidate for an optimal
policy. We then study the necessary conditions and establish a set of general
and typically satisfied conditions under which the necessary conditions admit
a unique solution and under which this solution is indeed optimal.

4.1 Necessary conditions

Typically, stochastic impulse control problems of the type (2.3) are solved
by relying on dynamic programming techniques and, especially, on quasi-
variational inequalities. Although such an approach is very general in the sense
that it applies in the multidimensional setting as well, it is usually rather dif-
ficult to derive expressions independent of the value function with simple and
clear economic interpretations. Similarly, marginalistic interpretations pro-
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viding valuable economic content and general information on the nature of
the optimal solution and its value are typically difficult to derive from gen-
eral approaches based on dynamic programming techniques. Given this ar-
gument, we propose in this paper an alternative approach for analyzing and
solving the stochastic lump-sum dividend optimization problem (2.3). In-
stead of considering all admissible dividend policies at once, we follow the
approach introduced in 6 and restrict our interest to dividend poligjgs =

{7!; ¢ }r<n characterized for akt > 1 by the sequence of intervention times

. = inf{t > 7/ | : X} > y} (with 7y = 0) and the sequence of dividend
payments = ¢ + (x —y)*. Thatis, we restrict our attention to the sequence
of constant-sized dividends (except for the initial impulse which depends on
the state) which are exerted every time the underlying diffusion hits a given
predetermined constant threshold. Given this subclass of admissible dividend
strategies, define the value : R, — R accrued from applying the impulse
controly, o) asF.(z) = J. % (z). SinceX? , = X? _—( for all k and the
underlying controlled diffusion evolves according to the linear diffusign
between two successive intervention times we observe that fer ally the

value of the considered class of dividend policies reads as

Fc<$) = Em [e_m-y (C —Cc+ Fc<y - C))]
. Y@ (4.1)
=((—c+F(y O)w(y)’

wherer, = inf{t > 0 : X; = y} denotes the first hitting time of; to the state
y. Lettingz — y — (in (4.1) then yields that

o (C=avly =)
P =90 = 5oy —0
implying that the value”,(x) can be re-expressed o, y) as

(€ —)v(z)
P(y) =Yy —¢)
On the other hand, since the reserves can exceed the thresholder the
proposed impulse policy only at= 0 and{{ = ¢ + (z — y)™ we find that on
[y, 00) the valueF,(z) reads ad'.(z) =z —y + ( — ¢+ F.(y — (). Hence,
we finally observe thak,.(x) can be re-expressed as

F.(x) =

4.2)

B (=)
Fu(z) = {*’L’(C y); ORI T2y (4.3)
W)= (y—0) T<Y
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It is worth observing that (4.3) implies the familiar balance identity

C"’"Fc(y_C):C"_Fc(y)

stating thatthe project value (current revenues + future dividend potential)
should be equal to its full costs (transaction castslost option valueF,(y)).
This observation is of interest since it clearly indicates thatbalance iden-
tity is an intrinsic property of the considered class of admissible policies and,
therefore, is independent of the optimality of the proposed policy

Given the definition of the valug,.(x), define now the mapping : R? —
R as

(€—¢
U(y) — vy =)

and consider the ordinary inequality constrained non-linear programming prob-
lem

h(¢,y) = (4.4)

(=0
u . 4.5
clo, 900) ~ 0y =0 (4.5)

If an admissible pai((’, y}) maximizing the mapping((,y) exists, denote

the value associated to this pair B$(x). More precisely, if an admissible

pair (¢¥, y¥) maximizing the mapping (¢, y) exists, define the mapping’ :

Ry — Ry as

*@ﬁ{xﬁ+h(;£wwﬁ vy @)
h(¢s vz )i () T < yp.

It is then clear that if an admissible interior p&ff, v) maximizing the map-
ping h({, y) exists, then the ordinary first order necessary conditions

bys) =¥y — ) = ¢y — QI — o) (4.7)
V) = Yy - Q) (4.8)
have to be satisfied. Consequently, we observe that
MGy = s =

Vys =) v(yE)
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and, therefore, that

ok (ye) *
) T Per

It is worth observing that the necessary condition (4.8) implies that if an in-
terior solution of the non-linear programming problem (4.5) exists, then by
Rolle’s theorenthere has to be at least one state (y* — (!, y}) where the
marginal valueF’*/ () attains an extreme value and, therefore, wheie) =

0. Moreover, itis also clear thd{’(x) belongs into the class of mappings con-
sidered in Lemma 3.2 and, therefore, thitr) < K(x) andF*.(z) < K'(x)
whenever a unique pair satisfying the necessary conditions (4.7) and (4.8) ex-
ists and is unique.

4.2 Existence and sufficiency

Having derived a set of necessary conditions from which the potentially op-
timal dividend threshold and dividend policy could be derived, we now plan
to state a set of general and considerably weak conditions under which these
optimal variables exist and are unique, and under which the derived auxiliary
mapping indeed constitutes the value of the optimal dividend policy. A set of
general conditions under which the necessary conditions (4.7) and (4.8) admit
a unique solution is now summarized in the following.

Lemma 4.1. Assume thap € £!(R,) and thatlim, .., p(z) = —oco. Assume
also that either the conditions (i) or conditions (ii) of Lemma 3.1 are satis-
fied and thatlim, o ¢’'(z) = oo. Then there is a unique optimal paic’, v)
satisfying the necessary conditions (4.7) and (4.8) for a@lR., .

Proof. Consider now the mappinds : R — RandL, : R? — R defined as

Li(zy) = 0(y) —0(2) +c,
La(z,y) = ¥'(y) —4'(2),
where the continuously differentiable mappifi\g R, — R is defined as in

the proof of Lemma 3.2. As was established in Lemma 3.1 and in Lemma 3.2
our assumptions imply that there is a unique threshold argmin{y’(x)} =
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argmax{6(z)} € R, such that)”(z) = 0 and#’(x) = 0 for = = &. Moreover,
since equation (3.9) can be re-expressed as

v(x) ) [T :
5@ CS(x) /O D(y)p(y)m'(y)dy

we also observe that
o) = () [ vwpwntway

The assumed boundary behavior of the underlying diffusiar anplies that
ﬁgg — oo and [y (y)p(y)m’'(y)dy | —oo asz — oo. Hence, L'Hospital’s

rule implies thatlim, .., 6(z) = lim, ., 22 = —cc. If 0 is attainable for
the underlying diffusion¥X;, then we have thdim, % > 0 implying that

lim, o f#(x) = 0 in that case. On the other hand)iis unattainable foX;,, then
lim, o % = 0 and L'Hospital’s rule implies thaim, , 6(z) = lim,o @ >

0. Consequently, we observe that for alk z the mappingl,(z, y) satisfies
the conditiond(z, 2) = ¢ > 0, lim, .« L1(2,y) = —o0, and

z.

VIIA

S @Y =020 y

Therefore, we find that for all < 2 there is a uniqué.(z) € (z, co) satisfying
the equation’;(z,g.(z)) = 0. Moreover, we also find thaj.(0+) < oo,
J.() > &, and

Lo 0GR ) ()
yC(Z) - 9/ ~ - ~ 2 "~ < 0
(9e(2))  ©(@e(2))¥" (2)¥" (§e(2))
Consider now, in turn, the mapping/(z,y). The strict convexity of)(x)
on (z,00) and the mean value theorem imply thdtx) — oo asz — oc.
Consequently, we find that for alle (0, z) the mappingls(z, y) satisfies the

conditionsLy(z, z) = 0, lim, ., La(z,y) = oo, and

oL , )
a—;(z,y) ="(y) S0 y=a

Therefore, we again find that for all < & there is a uniqug(z) € [z, o)
satisfying the equatiofiy(z, y(z)) = 0. Moreover, we also find thaj(z) =
& < g.(z), and
v V()
¥ (2) = -~ < 0.
)
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Given these findings, we observe that/if0+) = oo theng(0+) = co >
7.(0+) and, therefore, that equatigtiz) — g.(z) = 0 has at least at one root
z* € (0,2). Since

(e V)
R X E) T A e RN e VA

we find thatz* is unique. H

Lemma 4.1 presents a set of typically satisfied conditions under which a
pair (¢*, y) maximizing the mapping (¢, y) and satisfying the necessary con-
ditions (4.7) and (4.8) exist and is unique fora#t R, . Itis worth pointing out
that the conditions of Lemma 4.1 are typically satisfied in the cases where the
lower boundary) is unattainable for the underlying diffusioty. Wheneve®
is attainable for the underlying diffusiali; we typically have that/’(0) < oo
and, therefore, that the conditions of Lemma 4.1 are no longer satisfied. A
set of conditions extending the results of Lemma 4.1 to that case as well are

presented in the following.

Lemma 4.2. Assume thap € £1(R,) and thatlim, ., p(z) = —oco. Assume
also that the conditions (ii) of Lemma 3.1 are satisfied and filnaf,( /' (z) <
oo. Then, there is a critical cost such that there is a unique optimal pair
(¢*,y?) satisfying the necessary conditions (4.7) and (4.8) whengver <

A

C.

Proof. To establish the existence of the critical céswve first consider the
mappings

filz) = (@) =¥ (x)x

falx) = '(x) = 4'(0).
It is now clear that our assumptions and the results of Lemma 3.1 imply that
f1(0) = £2(0) = 0 and thatz = argmax{ fi(z)} = argmin{f(x)}. More-

over, standard differentiation implies tht(x) = —z f;(z). Integrating this
equation from) to = and applying integration by parts then yields

file) = [ Sy — who(o).
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As in the proof of Lemma 4.1 denote now@$) < oo (sincey’(0) < oo) the
interior root of equatiorf,(z) = 0. Then

9(0)
HO) = [ falydy <0

implying thaty(0) > 70(0), whereg,(0) denotes the root of the interior root
of equatiord(z) = 0 (which, by definition, coincides with the interior root of
equationf;(z) = 0). Sincedy.(0)/dc > 0 we finally observe that there is a
critical ¢ > 0 such thatj(0) > ¢.(0) for all ¢ < ¢ However, sincej(#) <
7.(Z) the existence and uniqueness of the rgatf equationy(z) — g.(z) = 0
follows from the proof of Lemma 4.1. []

As is now clear from Lemma 4.2 in cagé(0) < oo there is a maximal
admissible transaction cosisinder which the necessary conditions (4.7) and
(4.8) are satisfied whenever(0) < oco. Since this condition arises typically
in cases where the underlying boundary is attainable for the res&ryege
find thatthe risk of potential liquidation results into a maximal admissible
transaction costAs we will later observe, this critical cost can be interpreted
as the maximal cost the firm is prepared to incur in order to pay out dividends
sequentially in first place. Our first result characterizing the optimal dividend
policy and its value is now stated in the following.

Theorem 4.3. Assume that the conditions of either Lemma 4.1 or Lemma 4.2
are satisfied. Then, the optimal lump sum dividend poliey is- v, :) and
its value reads a¥,(x) = F(x).

Proof. Itis now sufficient to establish that the proposed value satisfies the suf-
ficient quasi-variational inequalities, since the admissibility of the considered
class of impulse controls naturally implies tHatx) > F(x). We first ob-
serve thatr; € C'(Ry) N C2(R\{y:}), F2/(yi+) = 0, and 2 (y:—) =
h(Cyi)v"(yk) < oo. Moreover, since continuous mappings are bounded
on compacts an; € (0,y}) except for at-set of measure zero we find
thatlim, .., E.[e " F(X})] = 0 for all z € R,. Define the mapping!; :
Ri\{y:} — RasA(x) = (AF})(x) — rFf(z). Itis clear that

x| U(ye) *
ple) —rle—y:+ 225 o>y
Ai(z) = {0 ( ¥ (yc)> ey
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implying that

1 1,

fim A1 (2) = 1 [0 ) — )] = 50 (u) )

zly: ) V' (ye)
sincey; is attained on the set wherg ) is convex. However, sincé,(z) =
p(x) —r <$,(é% - y;“) for all z > y* andy is on the set where the net appre-
ciation ratep(x) is decreasing, we find that; (z) < 0 for all x € R \{y}}.
It now remains to establish tha}'(x) satisfies the quasi-variational inequality

F(x) > supeeoql¢ — ¢+ Fl(z — ()] for all z € Ry. To accomplish this

<0

C

task, we first observe that this quasi-variational inequality can be rewritten as
FX(z) > x — c+supyep [ F7 (y) — y]. Define now the mapping, : Ry — R
as

As(x) = Fi(z) — (x — ¢) — sup [F(y) —y].

y€[0,7]

Sincey’(z) /v (y:) < 1forall z € (y: — ¢, y}) we first observe that

sup [F(y) —y] =
yE[O,ZE]

iy =) — (e —¢) x>y — ¢
Fi(x)—x r<y:—(

Consequently, we find that

0 T >y

Ag(x) = { ¥ Ly — 0 € (y7 — o)

c T <y.— G
Sincelim, .~ As(x) = 0 and A5(z) = % —1<o0on(y:— ¢ yk) we
find that A;(z) > 0 on (v} — ¢, y¥) and, therefore, thatl,(z) > 0 for all
r € Ry. Thus,FX(z) > V.(z) implying that £ (x) = V.(x) and, therefore,
thatr* = V(ys cx)- []

Theorem 4.3 demonstrates that the conditions of both Lemma 4.1 and
Lemma 4.2 are actually sufficient for guaranteeing that the auxiliary mapping
F*(z) indeed constitutes the maximal attainable expected cumulative present
value of the future dividend payments. As intuitively is clear, the optimal div-
idend policy is completely characterized by the optimal threspplat which
a lump-sum dividend is paid out. Hence, the stat¢ — ¢ can be viewed
as a generic initial state at which the diffusion process modelling the retained
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profits is restarted after the dividends have been paid out. An important set of
results characterizing the relationship between the associated optimal dividend
problems is now presented in the following.

Theorem 4.4. Assume that the conditions of either Lemma 4.1 or Lemma 4.2
are satisfied. Then,

K(z) 2 Ve(r) 2 Ge(z) and K'(z) 2 V/(z) > G.(z),

where

Ge(x) = sup E, [e7(X; —¢)]

= Y(x)sup = .
vz LY(Y) qﬁ((i,z) T < T,

denotes the value of an associated optimal stopping problenzandc is the
unique root of equation(z.) = (z. — ¢)y'(z.). Moreover,z. > y* > & for
all admissible costs > 0.

Proof. Inequality K (z) > V.(x) follows directly from Lemma 3.2 and the
representation (4.9). On the other hand, as was established in the proof of The-
orem 4.3, the value functiovi.(z) is continuously differentiable oR ., twice
continuously differentiable oR ., \ {y*} and satisfies the variational inequality
(AV.)(z) — rV.(z) < 0forall z € R, \{y*}. Moreover, since

Ve(z) Z sup[¢ —c+ Ve(z = Q)] 22 —c

<z

we observe thal,.(z) constitutes a-excessive majorant of the exercise pay-
off x — ¢ and, therefore, that.(z) > sup, E, [e7"" (X, — ¢)]. Establishing
equation (4.10) is analogous with the proof of Lemma 3.3. It is now clear
from the proof of Lemma 4.1 and Lemma 4.2 tlyat> z. Moreover, for all

x € (0,min(y}, z.)) the inequality

Vile) = Gula) = LI W)

implies thatz, > y; since both thresholds are attained on the set whérg
is convex. It remains to establish thet(z) > V!(z) > G.(x). The inequality
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K'(z) > V!(x) follows directly from Lemma 3.2. Since. > y! > z we find
that

0 yr<zZ.<uw
Vi(z) - Gy(w) = { Havls) yi <w < T
(W' (Ze) =9 (ye))Y' (x) * @
Ve LS Ye < Te
which is non-negative since the thresholglsand y’ are attained on the set
where(z) is convex. O]

Theorem 4.4 demonstrates that given the conditions of both Lemma 4.1
and Lemma 4.2 both the values and the marginal values of the considered
dividend optimization problems are completely ordered. More precisely, The-
orem 4.4 proves that the value of the associated singular stochastic control
problem dominates the value of the stochastic impulse control problem which,
in turn, dominates the value of the associated optimal stopping problem (sin-
gle dividend payment). An important implication of this finding is that the
optimal dividend threshold associated with the single dividend payment domi-
nates the optimal dividend threshold of the sequential lump-sum dividend pol-
icy which, in turn, dominates the optimal dividend threshold of the optimal
singular dividend policy. Put somewhat differently, Theorem 4.4 shows that
the required exercise premium is highest in the single dividend payment case
and lowest in the singular dividends case. Somewhat surprisingly, Theorem
4.4 also proves that not only the values of the considered different types of
optimal dividend policies are ordered but also the marginal values of these
policies are ordered. Since the marginal value of the optimal policy can be
interpreted as the (marginalpbin’s gwe find that according to the findings
of Theorem 4.4 the marginal value of the reserves in the presence of a sin-
gular dividend policy is higher than in the presence of a sequential lump-sum
dividend policy which, in turn, dominates the marginal value of the reserves
in the single dividend payment case. This result is very interesting since it
formalizes the intuitively clear argument thatreased dividend payment flex-
ibility does not only increase the value of the optimal policy, it also increases
the marginal benefits (and, therefore, Tobin’s marginal q) associated to the in-
creased flexibility Another important result illustrating the importance of the
risk of potential liquidation is now summarized in the following.

Theorem 4.5. Assume that the conditions of Lemma 4.2 are satisfied and as-
sume that > ¢, where the critical cost satisfies the conditiod= —6(y(0)),

32



wherey(0) > & satisfies the equationy(y) = ¢/(0). Then, the optimal policy
is v* = vz, (I.6. instantaneous liquidation at.) and its value reads as
Ve(x) = Ge(x).

Proof. As was established in the proof of Theorem 4.4, the value of the optimal
stopping policy reads as

r—cCc T 2> T,
Gelz) =\ v

w/(ic) X < xc.

Sincez, is attained on the set whetdz) is convex and’(0) < v¢/(z.) we find
thatG.(x) < 1for all z € R;. Consequently, we observe tlGit(z) satisfies
the quasi-variational inequality.(v) > (z—c)+sup,ep . [Ge(y) —y] = v—c.
SinceG.(x) satisfies the conditiofAG.)(z) < rG.(x) for all x € R \{z.}

as well, we find tha67.(x) > V.(z) proving thatG.(x) = V.(z). Finally, since
the policy(¢’, v}) = (z., z.) and the stopping time* = inf{¢t > 0: X; > 7.}
are admissible, ant.(x) is attained by implementing this policy, we find that
V(z..7.) IS optimal. O

Theorem 4.5 demonstrates that the presence of potential liquidation risk
(in the sense that the underlying reserve may vanish in finite time even in the
absence of a dividend strategy) results into a maximal admissible cost at which
the sequential payment of dividends becomes suboptimal. In that case, the
problem can actually be interpreted as an optimal liquidation (or exit) problem
where the objective of a rationally managed corporation is only to determine
the optimal exercise threshold at which the firm should be liquidated and all the
retained profits should be instantaneously paid out as dividends. An interesting
special case where liquidation is also the optimal policy is presented in the next
corollary.

Corollary 4.6. Assume thatim, |, () < 0, that the net appreciation rate
p(x) is non-increasing, and thaim, .., p(z) < —rc. Then, the optimal policy
IS v* = vz, 3, (i.e. instantaneous liquidation at.) and its value reads as
Ve(z) = Go(x).

Proof. We first observe that under the assumptions of our Corofiaty < 0
for all z € Ry sincep(0+) = p(0+) < 0 andp(x) is non-increasing. On
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the other hand, the assumed monotonicity of the net appreciatiop(rgtand
equation (3.10) imply that

L, ) V(@)
50 (z) S'(x) > p(z) (S -

(4.11)

proving that the convexity of the increasing fundamental solutior). Estab-
lishing that the value of the optimal stopping policy reads as

r—c T2 X,
Cele) = v g <z
V'(Ze) ¢

iIs now analogous with the proof of Lemma 3.3. Combining this observa-
tion with the convexity of the increasing fundamental solution implies that
G.(x) is convex and satisfies the inequali®y(z) < 1 for all z € R;.
Consequently, we notice thét.(z) satisfies the quasi-variational inequality
Ge(r) > (x = ¢) + Supyep(Gey) — y] = z — ¢. SinceG.(z) satisfies
the condition(AG.)(z) < rG.(x) for all x € R, \{z.} as well, we find
that G.(x) > V.(z) proving thatG.(z) = V.(x). Finally, since the policy
¢ty = (Z.,7.) and the stopping time* = inf{¢t > 0 : X; > z.} are ad-
missible, and/,(z) is attained by implementing this policy, we find that_ ;

is optimal. ]

Corollary 4.6 states a set of conditions under which the sequential pay-
ment of dividends is suboptimal and, therefore, under which the value of the
considered stochastic impulse control problem coincides with the value of the
associated optimal stopping problem corresponding to the optimal liquidation
of the firm. Itis worth observing that this case arises in situations where the net
appreciation rate is negative and, therefore, in cases where the optimal singu-
lar dividend strategy is to liquidate the corporation immediately and pay out all
the reserves instantaneously (the so-caté@ the money and run-stratggy

Our main results on the sensitivity of the optimal policy and its value to
changes in the transaction cesire now summarized in the following.

34



Theorem 4.7. Assume that the conditions of either Lemma 4.1 or Lemma 4.2
are satisfied. Then,

dy: V()

de V" (y2)(Cr — )
dez V(Y)W (yr — ¢) —¢"(y2))
de (s — " (ye) (& —¢)

Moreoverlim,. o y¥ = Z, lim.|o ¢} = 0, lim.|o dy}/dc = oo, and

>0

> 0.

ez
lim

im = () = —0 (4.12)

forall x € R,.

Proof. The comparative statics of the optimal variabl¢sand( can be ob-
tained from the ordinary first order conditions (4.7) and (4.8) by implicit differ-
entiation. The limitdim. |,y = 2 andlim.|, ¢} = 0 follow directly from the
proofs of Lemma 4.1 and Lemma 4.2. The continuity)tfz), ¢ (x), v}, and

¢ then imply thatlim.|o dy;/dc = oo sincelim. o " (y¥) = " (lim. o y}) =
Y'(z) =0, limg o ¢ — ¢ =0, andlim.|o ¢ (y}) = ¢'(lim.jo y)) = ¢'(2) > 0.

It remains to establish the limit (4.12). Standard differentiation yields that

Ve (py = _Min((), ¥{yc))
dc V()& — <)

which finally implies (4.12). ]

Theorem 4.7 establishes the intuitively clear result that increased transac-
tion costs not only increase the required exercise premium by increasing the
optimal threshold at which dividends should be optimally be paid out but it si-
multaneously increases the size of the optimal dividend policy. An interesting
implication of this conclusion is thamcreased transaction costs should result
into larger but less frequent dividend$/oreover, we are also able to verify
thatthe impact of the transaction costs on the value of the optimal policy is
dramaticin the sense that the sensitivity of the value function with respect to
changes in the costs becomes unbounded as the transaction costs tend to zero
(see, for example, Pksendal 1999 and Pksendal 2000).
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5 ILLUSTRATIONS

5.1 Brownian motion with drift

In order to illustrate our results in the case where the lower boundary is regu-
lar for the underlying diffusionX; and, consequently,’(0+) < oo, we now
assume that in the absence of interventions the underlying diffusion evolves
according to a Brownian motion with drift characterized by the stochastic dif-
ferential equation

dX; = pdt + odW; Xy = x.

In this casey)(z) = e — e’ where

po, | 2r
l{:—;—l- g+;>0

2
1 weo2r
A:_?_ Atz =<y

and

denote the positive and the negative root of the characteristic equatibn-

2ub — 2r = 0, respectively. In this case the conditions of Lemma 4.2 are
satisfied and, therefore, there is a critical gostich that there is a unique op-
timal pair (C}, y}) satisfying the necessary conditions (4.7) and (4.8) whenever
0 < ¢ < ¢. In this case, the critical threshold at whigh(x) vanishes reads as

1 (e
m_(/ﬂ—)\)l (/@2>'

This example is illustrated numerically in Table 1 for various values of the
volatility coefficiento (with © = 0.1, » = 0.025, andc = 0.1).

o [01]02]03]04]05
& 043]1.13]1.78]2.30]2.68
T. |4.15]4.29(4.51|4.775.03
yr o [1.26]1.93]2.64|3.25|3.74
* 10.99|1.15[1.39|1.64 | 1.88
yr—Cr10.27]0.78 | 1.25 | 1.61 | 1.86

Table 1 The Optimal Thresholds, Intervention Size, and Generic Initial State
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Along the lines of previous studies considering the determination of a rational
dividend strategy Table 1 clearly indicates that increased volatility increases
the required exercise premium in all cases and, therefore, that increased volatil-
ity leads to the postponement of dividends. However, it is also worth noticing
that our numerical results seem to indicate that increased volatility increases
the optimal size of the paid out dividends at a lower rate than it increases the
optimal exercise threshold. Thus, our findings show thateased volatility
increases the generic initial state and, therefore, leads to a higher capital re-
guirement in terms of the reservedthough this result is intuitively clear, it is

of importance since it demonstrates ttiag presence of liquidation risk should
result into greater capital buffersThe critical cost at which liquidation be-
comes optimal is illustrated numerically in Table 2 for various values of the
volatility coefficiento (with ¢ = 0.1 andr = 0.025).

ol 01 |02]03]04]05
¢ [13.8418.94(6.47]4.97 ] 3.96

Table 2 The critical cost as a function of volatility

The results of Table 2 indicate that increased volatility decreases the critical
costc. Therefore, our numerical results support the intuitively clear result that
increased liquidation risk decrease the maximal admissible transaction cost
under which the sequential payment of dividends can be sustained.

In order to illustrate the results of Theorem 4.4 as well, we illustrate the
values of the optimal dividend policies in Figure 1 and the marginal values
of these policies in Figure 2 under the assumption that 0.1, » = 0.025,
¢ = 0.1, ando = 0.3. As was established in Theorem 4.4 we observe from
these figures that boti (z) > V.(z) > G.(z) andK'(z) > V!(z) > G.(z).

5.2 Logistic diffusion

In order to illustrate our results in the case where the lower boundary is natural
(and, therefore, unattainable) for the underlying diffusiorwe now assume
that in the absence of interventions the underlying diffusion evolves according
to a logistic diffusion characterized by the stochastic differential equation

dXt = ILLXt(l — ”)/Xt>dt + O'Xtth XO = X.
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Figure 1: The Value Functions (z), V.(z), andG.(x)

1.8
1.6
1.4
1.2

0.8
0.6

Figure 2: The Marginal Value&”(x), V!(z), andG.(z)

In this case(z) = 2"M(n,1 + n — «,2uvyxz/0?), where M denotes the
Kummer confluent hypergeometric function and

denotes the negative root of the quadratic characteristic equgtidn — 1) +
2ua — 2r = 0. It is well-known that if > r thenn < 1 and the conditions
of our Theorem 4.1 are satisfied. This example is illustrated in Table 3 for the
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parameter values afe= 0.1, » = 0.025, ¢ = 1, and~y = 0.5.

o 01]02]03)|04]0.5
T 0.8 10.93]1.08|1.22|1.32
T 2.16 [2.7213.31|3.84 | 4.31
(M 2.05(2.5413.08|3.62|4.13
. 1.96 | 2.41|2.90 | 3.42 | 3.93
yr—¢;10.09/0.13]0.18] 0.2 | 0.2

Table 3 The Optimal Thresholds, Intervention Size, and Generic Initial State

6 CONCLUDING COMMENTS

In this study we considered the determination of the optimal lump-sum stochas-
tic dividend payment policy for a broad class of linear diffusion modelling
the random dynamics of the underlying cash reserves. Instead of tackling the
stochastic control problem directly via ordinary dynamic programming tech-
niques we first derived an associated mapping depending on both the exercise
payoff accrued every time dividends are paid out and on the minimal increas-
ing r-excessive mapping for the diffusion modelling the cash reserves. Having
derived this expression, we then presented a set of general conditions under
which the existence and uniqueness of an optimal policy is always guaranteed
by relying on a combination of stochastic calculus, the classical theory of dif-
fusions, and ordinary nonlinear programming techniques. Interestingly, our
results demonstrate that the presence of liquidation risk results into a maximal
admissible transaction cost below which the sequential payment of dividends is
optimal. Above this critical cost the sequential payment of dividends becomes
suboptimal and the optimal dividend problem becomes an optimal liquidation
problem where the objective of the corporation is to determine the threshold at
which it should be irreversibly liquidated.

We also considered two associated stochastic cash flow management prob-
lems and established that these values are ordered in an exceptionally strong
way. More precisely, we found that the value of the associated singular stochas-
tic control problem dominates the value of the impulse (lump-sum) control
problem which, in turn, dominates the value of the associated optimal stop-
ping problem. However, we also demonstrated that the marginal values (and,
therefore, Tobin’s q associated with these particular problems) are ordered in
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the same way. In other words, we found that the marginal value of the asso-
ciated singular stochastic control problem dominates the marginal value of the
impulse (lump-sum) control problem which, in turn, dominates the marginal
value of the associated optimal stopping problem. Hence, our results clearly
support the economically sensible argument that increased flexibility should
increases the value of a rationally managed corporation.

While our results are considerably general, they are based on a model
where the cash flow process is exogenous and, therefore, overlooks the cap-
ital accumulation dynamics and financing decisions of a corporation. Thus, a
natural way to extend our analysis would be to introduce endogenous capital
accumulation and financial constraints into the model. Unfortunately, such an
extension is out of the scope of the present study and is, therefore, left for
future research.
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