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THIS INTRODUCTORY PART is a quick look at the research papers in

Part II of this thesis from a broad perspective. This is not a summary of the

papers. The main purpose is to place the studies in their proper historical

context. However, a short abstract is available at the beginning of each

paper. Although, there is repetition in this thesis, it is unavoidable, since

the studies are intended to be individual research papers.

Historically, one can separate two lines of research that have both led to the

emergence of implementation theory and mechanism design. We present

these in turn in chapters 1 and 2. Then, in chapter 3, we concentrate on the

current state of the theory and elaborate on what is considered important

right now.

To avoid unnecessary repetition, references at the end of each research paper

are indicated by an additional number identifying the paper (1, 2, 3 or

4). For example, if we want to refer to Maskin (1999), which is the main

reference of the second research paper, we write Maskin (1999-2).

1 The Birth of Social Choice Theory

The influential theorem of Kenneth Arrow (1951), on the problem of aggre-

gating individual preferences into a social ranking, is generally considered

to mark the beginning of mathematical social choice theory. This impor-

tant theorem has generated a whole research agenda and it is well beyond

the scope of this introduction to review even the most essential part of the

literature (see Arrow, 1951; Fishburn, 1973; Plott, 1976-3; or Sen, 1986, for

example). Therefore, to get started, we simply present a very basic version

of this theorem.

1.1 Arrow’s Impossibility Theorem

Even though we are trying to be as non-technical as possible, some formal

definitions will be needed. After all, we are talking about mathematical
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social choice theory. Let I = {1, . . . , n} be the set of individuals, or agents,

and A the set of social alternatives. Every individual i ∈ I is endowed with a

complete and transitive preference relation Ri over A. The set of all possible

preference relations over A is denoted by RA. Occasionally, the designer (an

individual or perhaps third party) of a social choice mechanism (e.g., voting

rule) does not know the preference relation of individual i exactly. Rather,

only the set of possible preference relations Ri ⊆ RA is known. The set

R = R1 × · · · ×Rn is called a preference domain and U = RA × · · · ×RA is

called the unrestricted preference domain.1 A typical element of R is denoted

by R = (R1, . . . , Rn), which we call a preference profile. As usual, R−i is

a preference profile (R1, . . . , Ri−1, Ri+1, . . . , Rn) that specifies a preference

relation for every individual except i.

An “ideal way” of making a public decision or a social choice would be to

find a rule Ψ : U → RA, which we may call the Aggregation Rule. This rule

gives a social ranking % (a complete and transitive binary relation) of the

alternatives in A as a function of the preference profile. That is, a rule Ψ

such that

Ψ(R) ∈ RA for all R ∈ U. (1)

After we have found Ψ, social choice is bound to be easy. We simply choose

the alternative that is best according to the social ranking %.

However, we should require that Ψ satisfies certain natural properties for us

to consider it a “reasonable” rule of preference aggregation. After all, not

many people would accept the dictatorial aggregation rule ΨD
i defined as:

ΨD
i (R) = Ri for all R ∈ U ; that is, an aggregation rule that always places

the top alternative of individual i as the top alternative of whole society,

and which is totally insensitive to the preferences of other individuals. To

this end, the following two properties seem harmless enough.

Unanimity (Un): For any R = (R1, R2, . . . , Rn) ∈ U , if Ri = R for all

i ∈ I, then we must have Ψ(R) = R.

1In the most general case, we could assume R ⊆ RA ×· · ·×RA. This means that there

is a logical connection between the preferences of different individuals.
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Independence of Irrelevant Alternatives (IIA): For any a, b ∈ A and

any R ∈ U , if aRib for all i ∈ I, then it must also be that aΨ(R)b.

The first property is certainly indisputable; whereas the second property is

heavily criticized in the literature. Borda count, for example, does not sat-

isfy IIA.2 Still, even IIA seems like a reasonable assumption. Nevertheless,

together these properties force us into an unsettling conclusion.

Arrow’s Impossibility Theorem. Let |A| ≥ 3 and assume that the

aggregation rule Ψ : U → RA satisfies both Un and IIA. Then, it must be

that Ψ = ΨD
i for some i ∈ I. !

Instead of the idealized way of making the social choice put forward in

equation (1), which produces negative results, we could take a much more

“pragmatic view” on the problem. Even though there is no good way of

aggregating individual preferences into a social ranking, at the end of the

day, we have to make a choice. But we do not need a social ranking %

to make a choice; we need only the socially best alternative. In fact, and

to be even more pragmatic, we need only a socially acceptable alternative.

This suggests a new formulation of the problem put forth in equation (1).

Let f : U → A be a function that represents the goal of society, and let

us call it a Social Choice Rule (SCR). This function (or more generally, a

correspondence) connects a socially acceptable alternative to every admis-

sible preference profile. In this formulation, we implicitly assume that the

designer of the SCR does not know a priori what is the truly prevailing

preference profile. This is why the domain of the SCR f is set to be U .

Unfortunately, this pragmatic formulation will also force us to a negative

conclusion, albeit of a different sort.

2We will be speaking about voting rules that we do not define. For exact definitions,

see Nurmi (1987) or Saari (1994), for example.
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1.2 The Gibbard-Satterthwaite Theorem

When we present the social choice problem in the form of equation (1), it is

implicitly assumed that the designer can somehow elicit the true preference

of all individuals involved. That is, for some reason, all individuals act

sincerely or non-strategically. This brings us to the concept of (strategic)

manipulation. Consider a presidential election, for example. Assume that

f is the majority voting rule. This means that majority voting resolves

social acceptability. There are three candidates, A = {a, b, c}, and with a

little abuse of notation, 45% of the individuals have the preference aPbPc,

35% have the preference bPaPc and the remaining 20% have the preference

cPbPa. Now assume that there is a poll and this information becomes

common knowledge.3 Consequently, the 20% of individuals who prefer c

will (presumably) vote for b instead. Why is this so? Well, the 20% of

individuals know that whatever will happen, none of the remaining 80%

will vote for c, and hence, this candidate has no chance to win. Naturally,

from the two remaining candidates, these individuals prefer to vote for the

better one. But the 35% of individuals who prefer candidate b know this.

Therefore, candidate b will be selected at the end. Even though this is not

what the majority voting rule would dictate.

We are not trying to make a normative judgement on whether b should be

selected in this case or not. The main point of this example, for now, is to

show that the phenomenon called manipulation does not necessarily vanish

in a referendum context, when there are only few alternatives to choose

from (the number of individuals is immaterial in the above example). The

most natural way to formally define what is meant by a non-manipulable

SCR is strategy-proofness (see Barberà, 2001-4, for example). In this general

definition, the domain of an SCR does not have to be the unrestricted domain

U .

Strategy-Proofness.4 An SCR f : R → A satisfies strategy-proofness if,

3See Aumann (1976) or Milgrom (1981) for a definition of common knowledge event.
4Here, Pi is the strict part of Ri.
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for all R ∈ R and all i ∈ I, there is no R′
i ∈ Ri such that

f(R′
i,R−i)Pif(R).

Strategy-proofness is a strong incentive compatibility condition. It says that

no agent can gain by lying regardless of whether everyone else is speaking

the truth or not. But the idea behind strategy-proofness is much more subtle

than this. Let us return to the example of a presidential election. How many

people believe that since voting is the cornerstone of democratic society, we

must be sincere in voting to guarantee that the right outcome prevails? The

answer is practically no one. Quite the contrary. We tend to think that we

are free to express our will by voting in any way desired. This means that a

voting rule that is not strategy-proof does not really produce the outcome

it is supposed to.

Unfortunately, the requirement of strategy-proofness will also lead us to

negative results (Gibbard, 1973-1; Satterthwaite, 1975-1). We need the

following concept. An SCR f : R → A is called dictatorial if there exists

an individual i ∈ I, such that f(R) ∈ {a ∈ A | aRib for all b ∈ A} for all

R ∈ R. If this is the case, we denote f = fD
i .

The Gibbard-Satterthwaite Theorem.5 Assume that |A| ≥ 3 and let

f : U → A be strategy-proof and onto (surjective). Then, it must be that

f = fD
i for some i ∈ I. !

What can we do? It seems that we constantly end up with these dictatorial

rules that are badly at odds with the idea of democracy. Three ways to avoid

the conclusion of the Gibbard-Satterthwaite theorem come up immediately.

First, the choice could be made between only two alternatives, so that A =

{a, b}. Second, we could assume that the designer has information, or that

she can at least acquire some. That is, the domain of f could be restricted.

Third, and this finally takes us to mechanism design and implementation

theory, we could assume that the SCR f is not itself the mechanism used

to implement it (an apology is in order, we are using a lot of words not yet

5Plurality voting rule works as evidence that the assumption |A| ≥ 3 is necessary. For

more on the Gibbard-Satterthwaite theorem, see Danilov and Sotskov (2002), for example
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formally defined).

Let us once again return to the example of a presidential election. There

is a very simple explanation why we should expect to see a phenomenon

called manipulation in this voting situation. Namely, voters do not consider

majority voting rule as something normative, representing a core idea of

democracy. Rather, they consider it a social choice mechanism, and their

own vote a strategy that they can freely choose.

In the parlance of game theory, a mechanism or a game form is a tuple

G = (Σ, g), where Σ = S1 × · · · × Sn is the strategy space and g : Σ → A is

the outcome function. For a fixed preference profile R ∈ R, this mechanism

defines a game Γ (R) = (G;R) in normal form. Let S be a solution concept.6

All solutions in the game Γ (R) with respect to S are denoted by S
[
Γ (R)

]
⊆

Σ. We say that mechanism G implements the SCR f : R → A in S if

g
(
S

[
Γ (R)

])
= f(R) for all R ∈ R. (2)

That is, the outcomes of the mechanism g at the solutions defined by S

must exactly coincide with the SCR f . If there exists a mechanism that

implements f in S, then we say that f is implementable in S.

We will cite equation (2) as the implementation equation or the implemen-

tation problem. This formula is an equation in the sense that mechanism g

is an unknown variable. It was Hurwicz (1960,1972) who first formulated

the idea that institutions should be the design variable, but this was done

only in the context of resource allocation rules. Notice that, in contrast to

the standard problems of game theory, where we are trying to predict an

outcome of a given game, equation (2) is a kind of “reverse engineering”

problem. Now the equilibria are given and we are trying to find the game.

Using these formal definitions we can explain the implicit restriction behind

the Gibbard-Satterthwaite theorem. Simply, it assumes that Σ = U and

6This solution concept is not necessarily an equilibrium in any game theoretic sense.

This is why Jackson (2001) suggested that we use the term “solution concept” instead of

the term “equilibrium concept” .
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g = f , which is the same as saying that the SCR f is itself the mechanism

used to implement it. Unfortunately, this is all about to backfire − again.

1.3 The Revelation Principle

A substantial part of the solution concepts that are analyzed in game the-

ory satisfy the so called revelation principle. Dominant strategy equilib-

rium (Gibbard, 1973-1; Satterthwaite, 1975-1), Bayesian-Nash equilibrium

(Myerson, 1979-4; Harris and Townsend, 1981-4) and maximin strategies

(Thomson, 1979), for example, all satisfy this principle.7

The mechanism G = (R, f), which we encountered at the end of the pre-

vious section, is called a direct revelation mechanism.8 We say that SCR

f is truthfully implementable in S if truth-telling is a solution of the direct

revelation mechanism (with respect to S). Note that, according to this def-

inition, other solutions may exist, besides the truth-telling one. The main

point here is that if S is chosen as one of the soultion concepts mentioned

earlier, then the following theorem holds true.9

Revelation Principle. If SCR f : R → A is implementable in S, then it

is also truthfully implementable in S. !

So, why is this result negative? Some could claim that the result is in fact

positive, since now we can restrict attention in the set of direct revelation

mechanism only. At least, if we are willing to accept truthful implementa-

tion as satisfactory. To understand the negative connotation of this result,

consider implementation in dominant strategy equilibrium. This is, in many

ways, the most natural solution concept that we can use in an implemen-

tation problem. Assume that mechanism g implements the SCR f in dom-

inant strategies. Then, according to the revelation principle, f must also

be truthfully implementable in dominant strategies. But if truth-telling is

a dominant strategy equilibrium of the direct revelation mechanism, then f

7One notable exception is Nash equilibrium. We discuss this solution concept later on.
8Earlier we had R = U , but this does not have to hold in general.
9See Dasgupta et al. (1979-1) for a more detailed discussion of this principle.
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must obviously be strategy-proof. Therefore, we are back to the Gibbard-

Satterthwaite theorem. This is also true to some extent for all other solution

concepts that satisfy the revelation principle − truthful implementation is

simply quite restrictive.

All this leaves us with two possible avenues; Either we start to use a solution

concept that does not satisfy the revelation principle, so that we can get rid

of the dominant position held by direct revelation mechanisms; or we must

consider the possibility that the designer of a social choice mechanism can

acquire information about the preferences, so that the domain of an SCR f

is somehow restricted (excluding the case of A having only two alternatives).

In the next section, we concentrate on the latter case. This approach has

the added value that we can still use dominant strategy equilibrium as the

solution concept.

1.4 VCG Mechanisms and Single-Peaked Preferences

Why should we regard the assumption of unrestricted domain in the Gibbard-

Satterthwaite theorem as reasonable? In practice, social choice is mostly

done by voting.10 Assume that the set of social alternatives A does not have

any natural structure and that the designer has to choose a voting rule to be

used.11 In this case, it might be reasonable to assume that the designer does

not know anything about the possible preferences of the voters. That is, the

domain of an SCR (here, the voting rule that resolves social acceptability)

should indeed be considered unrestricted.

However, the set of social alternatives A usually does have some kind of

logical structure, a structure that is recognizable to the designer by virtue

of the problem at hand. Think about the problem of selecting a socially

optimal amount of public good, for example. Samuelson (1954) was the first

one to recognize that this problem cannot be solved through the market

mechanism because of the free rider problem. In this public good setting, as

10Think about the decision making of a Parliament.
11A could be a metric space, or more generally, a topological space.
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in any economic setting, we can use money to create incentives, since it is

quite reasonable to assume that everyone prefers more to less. Consequently,

we could assume that the domain of an SCR that assigns a socially optimal

amount of public good to every admissible preference profile consists of all

utility functions that are quasi-linear in money. But then, mechanisms do

exist, called VCG -mechanisms (named after Vickrey, 1961; Clarke, 1971;

and Groves, 1973), that are strategy-proof and give the socially optimal

amount of public good for all admissible profiles of utility functions.12

Yet, a similar thing can also happen in a voting context. Assume that the

social alternatives in A can be ordered a1, a2, . . . , ak according to a left-

wing − right-wing spectrum. That is, a left-wing member would consider

a1 the best alternative, and a right-wing member would consider ak the

best alternative. Then, it might be reasonable to assume that all voters

have single-peaked preferences over A. Basically, this means that all voters

have a best alternative aj ∈ A, called the “peak,” and the closer another

alternative al ∈ A is to this one (in the sense of |j − l| being smaller), the

better it is considered to be. Let the utility functions u1, . . . , un, one for

each voter, represent single-peaked preferences over A. Denote the peak

of ui by P (ui). Moulin (1980-1, 1983-1) has shown that the Generalized

Median Voter Rule (GMVR)

f(u1, . . . , un) = median of {P (u1), . . . , P (un), α1, . . . , αm} ,

where the numbers α1, . . . , αm, n and m must satisfy certain restrictions

that we do not discuss here, is strategy-proof over any domain that contains

only single-peaked preferences.

Now we know that strategy-proof SCRs do exist on restricted domains that

can be considered realistic. In fact, the search for new domains that allow

strategy-proof SCRs is very much alive today. The most obvious advantage

of using strategy-proof SCRs is that the search for incentive compatible

mechanisms can be restricted in the set of direct revelation mechanims.

12These mechanisms have certain well-known problems with budget balance that we do

not discuss here, see Roberts (1979), for example.
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Unfortunately, things are a bit more complicated than this. Namely, direct

revelation mechanisms can be informationally very inefficient.

An example will illustrate this. Assume that Ri, insted of being a set of

preference relations, is now the set of all utility functions that represent

a single-peaked preference over the set A = {a, b, c, d}. The designer has

chosen GMVR as the SCR. Direct revelation mechanism would require all

individuals to send a vector of real numbers, such as [u(a), u(b), u(c), u(d)] =

(1.5, 3, 2, 0.5), to the designer.13 There are, of course, an infinite amount of

these. But GMVR does not use all the information that is in this vector of

real numbers. It will only use the fact that b is the peak. One can easily

see that an indirect mechanism that would ask every individual to submit

only the peak, or to vote for the most preferred alternative, would produce

exactly the same outcome. Moreover, the informational requirements of this

indirect mechanism would be considerably smaller.

This takes us to the topic of the first research paper. In this paper we try

to find out the minimal number of strategies that are needed to implement

an SCR in dominant strategies or securely.14 In both of these cases, we know,

by the revelation principle, that the direct revelation mechanism implements

the SCR truthfully. But as the example in the previous paragraph shows,

we can dig deeper. We can ask whether an indirect mechanism could do any

better. The main result is that, quite generally, the number of strategies

that are needed in a secure- or dominant strategy implementation of an

SCR is exactly the same as the number of messages that are needed in a

decentralized mechanism realizing the SCR (these concepts are defined at

the beginning of the first research paper).15

At this point, we can also explain the idea of the fourth research paper,

13Note that this represents a single-peaked preference.
14Secure implementation is a term coined by Saijo et al. (2007-1). This is a form of

double implementation, in which the solution concepts are Nash and dominant strategy

equilibrium.
15Williams (2008) is an in depth treatment of decentralized mechanisms. We have

interest on this topic merely as a by product.
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even though to fully appreciate it we must return to it later on. There has

been a growing trend in implementation theory to incorporate more behav-

ioral assumptions into the theory (see Matsushima, 2008a-4 and 2008b-4, for

example). At the same time, there is nothing in the implementation problem

(2) that would force us to make the prevailing assumption of complete and

transitive preferences. Assuming, of course, that we can define a suitable

solution concept S to fit the more general framework. After this has been

done, we must ask whether we can still use the revelation principle. That is,

what are the behavioral boundaries of the revelation principle. It turns out

that we do not need to assume full rationality, only a well-known condition

called Property α (Sen, 1977-3).
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2 The Debate Between the Relative Merits of So-

cialist Economies versus Market Based Economies

The other line of research that led to mechanism design, and then to imple-

mentation theory, has its roots in the debate between the relative merits of

socialist economies versus market based economies that took place in 1930s

and 1940s. In fact, this debate is why the formal theory put forth in equation

(2) was originally created.

2.1 The Hayek-Mises-Lange-Lerner Debate

In 1930s and 1940s there was a lengthy discussion about the feasibility of

socialist economies (see Hayek, 1935; Lange, 1937; Lerner, 1936; and von

Mises, 1920). This was later to become known as the Hayek-Mises-Lange-

Lerner debate (Moore, 1992). On a large scale, the question was already

about mechanism design: Which is the better resource allocation mechanism

− market economy or economy based on planning. It was Hayek (1945)

who first expressed the most elegant argument for market economy ever

given: Since “the data from which the economic calculus starts are never

for the whole society given to a single mind”, the problem to be solved

is “how to secure the best use of resources known to any of the members

of society, for ends whose relative importance only these individuals know”

[reproduced from Maskin and Sjöström, 2002]. That is, an economy based

on planning assumes that one man could possess all the relevant information,

while market economy does the resource allocation in a decentralized way.

However, there was something that everyone participating in this debate

had overlooked.

2.2 Hurwicz and the Resource Allocation Problem

In two notable papers, Hurwicz (1960,1972) took a much more general view

on the resource allocation problem. The starting point was an observation
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about the current state of the debate: Who is to say that neither one, mar-

ket economy or economy based on planning, is the best resource allocation

mechanism. After all, what we see in practice is something in between. This

led Hurwicz to formally define the idea of a mechanism, and makes him the

father of mechanism design and the forefather of implementation theory.

This general formulation left economists pondering what is the truly distinc-

tive feature of market economy. That is, what distinguish market mechanism

from all other resource allocation mechanisms. The fact that it is decentral-

ized is obvious. On the other hand, there are certainly other decentralized

mechanisms (maybe even an infinite amount of them). The first big break-

through of mechanism design, as a field of its own, was to show that market

mechanism is informationally the most efficient way to obtain Walrasian

allocation (see Osana, 1978-1, for example).

2.3 The Genesis of Implementation Theory

It was Erik Maskin (1977-3, 1999-2) who first formulated the implementation

problem (2) for an arbitrary SCR f , not just for resource allocation rules,

using a solution concept S that does not satisfy the revelation principle.

The solution concept that he used is the single most important idea in

modern game theory, that of Nash equilibrium (see Kuhn and Nasar, 2002,

for example).

To reiterate, the research tradition that followed Arrow (1951) never ended

up considering any solution concepts that do not satisfy the revelation prin-

ciple. In fact, the most common notion of incentive compatibility was simply

that of strategy-proofness. This is the reason that SCR was itself consid-

ered the mechanism that is used to implement it.16 On the other hand, the

research tradition that began from the debate between the relative merits

of socialist economies versus market based economies never went beyond

resource allocation rules. Therefore, the paper of Maskin (1977-3) must be

16The “sophisticated voting” of Farquharson (1961) is somewhat of an exception, but

there are certainly others too.
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considered the true genesis of implementation theory. For this, among other

things, he was awarded the Sveriges Riksbank Prize in Economic Sciences in

Memory of Alfred Nobel together with Leonid Hurwicz and Roger Myerson

in 2007.17

The result of Maskin (1977-3) states that monotonicity is a necessary condi-

tion for an SCR to be implementable in Nash equilibrium, and together with

a condition known as no-veto-power, it is also a sufficient condition for Nash

implementation.18 Since this paper there has been an ongoing search for one

condition that would be a full characterization (a necessary and sufficient

condition). Danilov (1992-2) and Yamato (1992-2) solve this problem for

a restricted class of preference domains. Bochet (2007) solves the problem

when the designer can use lotteries over the social alternatives A. The result

of Bochet (2007) is quite surprising, monotonicity alone is a full character-

ization. In the second research paper we give yet another solution to

this problem. We show that a generalization of monotonicity exists that is

a full characterization without any domain restrictions or otherwise special

structure (i.e., whether lotteries are possible or not).

We also work closely in this “Maskinian tradition” in the third research

paper. As we already mentioned, there is nothing in the implementation

problem (2) that would force us to assume that choice behavior is generated

by a complete and transitive preferences relation. It was Hurwicz (1986-

3) who first observed this fact. The most natural way to formulate the

implementation problem (2) without the assumption of rationality is to start

from choice functions. This requires that the solution concept S must also

fit this more general choice function setting. In the third research paper

we claim that the solution concept used by Hurwicz (1986-3), called the

Generalized Nash Equilibrium, is not entirely consistent with the assumption

17We must stress that the use of Nash equilibrium does not free us totally from the

problems that plague truthful implementation (or dominant strategy implementation).

This is due to the fact that informational assumptions of the two solution concepts, Nash

equilibrium and dominant strategy equilibrium, are different. However, the results in Nash

implementation do show that sometimes we can accomplish more.
18See the second research paper for exact definitions.
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that behavior is describable by a choice function. If we use this solution

concept, then we have to assume that choice behavior is normal (see Sen,

1977-3). In the second part of the paper we give a new solution concept

that better fits this framework. Using this, we show that the old results in

Nash implementation theory still hold if we assume only a condition known

as Property α (rationality of behavior also requires another condition, called

Property β). We also show, through an example, that if Property α does

not hold, then the old characterization results do not necessarily hold either.

We can now finally explain also the deeper idea behind the fourth research

paper. Most characterization results in implementation theory are obtained

in the following way (in a technical sense): First, verify that truth-telling

is an equilibrium of the direct revelation mechanism. There might be, and

usually also are, other equilibria. Second, augment the direct revelation

mechanism with additional strategies to obtain uniqueness, or at least, to

remove all non-desirable equilibria. Since the behavioral assumption that

we need for the revelation principle to still work is Property α, we can

expect that it is important in every type of implementation and will come

up repeatedly. This property is a kind of wedge between being able to use

only augmented direct revelation mechanisms and having to enter the world

of truly indirect mechanisms.19

19Mookherjee and Reichelstein (1990) give a formal definition of an augmented direct

revelation mechanism.
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3 Modern Era: It Boils Down to“Social Engineer-

ing”

After the groundbreaking result of Maskin (1977-3), the field expanded

rapidly. Therefore, it is not possible to describe all that is on agenda right

now. We are only going to present some broad guidelines. There are nu-

merous general treatments that the reader can consult, including Baliga

and Sjöström (2007), Chorchón (1996), Chorchón (2007), Jackson (2001),

Maskin and Sjöström (2002), Moore (1992) and Serrano (2003).

3.1 Refined Solution Concepts and More Elaborate

Mechanisms

Subsequent to solving the implementation problem (2) using Nash equilib-

rium as the solution concept S, it is only natural to ask what would happen

if the solution concept is chosen as some refinement of Nash equilibrium

and the mechanism g as an extensive form game (as opposed to a normal

form game). An obvious candidate is the subgame perfect equilibrium of

Selten (1975). This problem was first studied by Moore and Repullo (1988)

and Abreu and Sen (1990), and later completely solved by Vartiainen (1999,

2007).20 The result is striking and, in a sense, transforms the whole field

into “social engineering.” The condition for subgame perfect implementa-

tion turns out to be very weak. This transformation was made even more

striking by the results in undominated Nash implementation (Palfrey and

Srivastava, 1991), virtual implementation (Abreu and Sen, 1990) and im-

plementation in perfect equilibrium (Sjöström, 1993).21 Almost nothing but

at least one preference reversal between different preference profiles in the

domain is needed.

20Herrero and Srivastava (1992) solve this problem when only games of perfect infor-

mation are allowed.
21For a criticism of undominated Nash implementation and a resolution, see Jackson

(1992) and Jackson, Palfrey and Srivastava (1994), respectively.
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However, as the reader may have already realized, things are a bit more

complicated: The solution concept is not really a choice variable of the

designer. The mere fact that all individuals can select the best alternative

from any choice set does not imply that Nash equilibrium, let alone subgame

perfect equilibrium, would be played. In other words, the solution concept

that we use will unavoidably incorporate a lot of behavioral assumptions.

In fact, it obviously requires a higher level of rationality to play a subgame

perfect equilibrium than Nash equilibrium. This is why it is important

to understand every form of implementation, so that we can choose the

right solution concept for the problem at hand. In effect, then, these recent

developments in implementation theory have not rendered the old result of

Maskin (1977-3) in any way outdated.

3.2 Robust Mechanism Design

So far, we have only talked about implementation under specific informa-

tional assumptions. To be more precise, all solution concepts that we have

presented assume that everyone knows the whole preference profile (if Nash

equilibrium is used) or does not need to know anything about others (if

dominant strategy equilibrium is used).22 We could as well assume that ev-

ery individual has only a belief about the truly prevailing preference profile.

This branch of the implementation literature is known as implementation

under incomplete information or Bayesian implementation (for the most

general result, see Jackson, 1991; for an overview, see Palfrey, 1992). The

surprising thing is that the results embody an extensive analogy with the

complete information case.23

However, the informational assumptions behind Bayesian implementation

are much more demanding that those behind other types of implementation.

22We are not going to defend these assumption here, even though they are central in

this thesis. These assumptions are sometimes realistic and sometimes not (see Moore,

1992, for example).
23Notice that Bayesian equilibrium is nothing more than a Nash equilibrium in an

incomplete information setting.
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This time the burden is just on the designer, since we must assume that the

designer knows the beliefs (as agents now maximize expected utility). We do

not have a single example in mind that would render this assumption com-

pletely realistic. On the other hand, if we require that the mechanism must

implement the SCR no matter what the true beliefs are, then an elegant

result of Bergemann and Morris (2005-1), on robust implementation, shows

that we are back with dominant strategy implementation quite tightly.24

As we have already noted, this is a very restrictive form of implementation.

The disappointing thing is that, if we consider implementation under in-

complete information as the most realistic framework, then we have made

an almost complete circle and returned to the original position, where only

direct revelation mechanism where used.

Fortunately, the result of Bergemann and Morris (2005-1) gives a more pes-

simistic view than what is really justifiable. This is because all beliefs are

not logically possible. To push the argument even further, the designer may

sometimes be able to affect the beliefs through the mechanism. This should

convince the reader that there is a lot of unexplored territory in the liter-

ature on Bayesian implementation, and it is anything but obvious where it

will lead. One thing is certain, information has and will be an important in-

gredient in explaining social and economic organization (see Akerloff, 1970;

Mirrlees, 1971; and Rothschild and Stigliz, 1976, for example).

3.3 The Prevailing Consequentialist View

To conclude, we just note that the idea behind the implementation equation

(2) is very much consequentialist in nature. That is, given any SCR f , or the

goal, the implementation problem is solved by any mechanism g satisfying

equation (2). But the fact is that people may accept unfair outcomes if they

are obtained through a procedurally fair system; or on the other hand, not

accept fair outcomes that are obtained through a procedurally unfair system

(here, g can be interpreted as the “system”). This observation suggests

24See Eliaz (2002) for another notion of robustness.
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that there should be some kind of endogeneity between the SCR and the

mechanism that is used to implement it. A preliminary step towards solving

this type of questions is Jackson and Wilkie (2005).

This is all that we want to say at this point. The central motivation behind

the research papers in this thesis should now be clear. One should keep

in mind that the “story” we told in this introduction is something that a

historian would call a super rational reconstruction: We have not made any

effort to interpret these past events from a contemporary point of view.
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Abstract

The literature on communication requirements of goal functions (or

social choice rules) mostly assume that agents act sincerely. In the case

that incentive compatibility must be met, these results give only a lower

bound for the number of messages needed. In this paper, we show that

the lower bound of sincere behavior is also an upper bound for a wide

class of goal functions, when the appropriate incentive compatibility

requirement is secure or dominant strategy implementation.
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1. INTRODUCTION

When the designer of a social choice mechanism has no reason to assume

that agents know anything about the environment but merely their own

preferences, dominant strategy equilibrium is the appropriate solution con-
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cept to be used in an implementation problem.1 On the other hand, direct

revelation mechanism is able to implement truthfully any goal function that

is implementable in dominant strategies (Dasgupta et al., 1979), so that

implementation problems look almost trivial under this informational as-

sumption. Furthermore, even if truthful implementation is not considered

satisfactory, as there may be other dominant strategy equilibria besides the

truth-telling one, an additional property called weak non-bossiness is enough

to guarantee that direct revelation mechanism has no bad equilibria (Saijo

et al., 2007; Mizukami and Wakayama, 2007).

Unfortunately, this clean view does not address one important practical

question: What if the direct revelation mechanism is informationally very

inefficient? When mechanism design problem has m possible (social) out-

comes, the number of conceivable linear preferences alone is m!. Therefore,

the number of messages needed in a direct revelation mechanism can, at least

potentially, be exponentially larger than the number of messages needed in

a minimal indirect mechanism. Even though the Gibbard-Satterthwite the-

orem (Gibbard, 1973; Satterthwaite, 1975) 2 tells us that the preference

domain cannot be this large for every agent (if the goal function is to be im-

plementable at all), it can certainly be many times larger than the number of

outcomes. This has been made evident by many interesting dominant strat-

egy implementable goal functions recently presented in the literature: Gen-

eralized median voter rules in single-peaked environments (Moulin, 1980),

serial cost sharing rules (Moulin and Shenker, 1992) and many others (Saijo

et al., 2007; Barberà, 2001).

The main purpose of this paper is to find out how many messages are needed

in a minimal indirect mechanism when the relevant incentive constraint is

that of secure or dominant strategy implementation. Quite surprisingly, it

1Dominant strategy implementation can be interpreted as a sort of robust implemen-

tation. See Bergemann and Morris (2008), for example.
2If the preferences domain is unrestricted (i.e., universal) and the goal function is

sovereign (i.e., onto), then strategy-proofness implies that the goal function must be dic-

tatorial.
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turns out that the minimal number of messages (or strategies) needed in

an implementing game form is often exactly the same as the minimal num-

ber of messages needed in a mechanism that realizes the goal function in

a decentralized way. The literature on communication requirements of goal

functions has mostly concentrated on resource allocation processes (e.g.,

Hurwicz, 1972; Osana, 1987)3 or completely neglected the incentive side

(e.g., Mount and Reiter, 1974; Segal, 2007). There are few notable excep-

tions (e.g., Williams, 1984; Reichelstein and Reiter, 1988), but contrary to

this paper, the relevant incentive constraint has been that of Nash equilib-

rium. Moreover, these papers usually assume some structure on the set of

outcomes (manifold or a topological space), whereas we assume no abstract

structure at all.

The most common objection raised against indirect mechanisms is that

agents will have to learn more complicated rules, instead of simply announc-

ing their own preferences, which they do not necessarily even understand.

Consequently, it is not obvious whether anything can be accomplished using

indirect mechanisms. Despite this, there are at least two things that suggest

the question might be important. First, and foremost, the direct revelation

mechanism is mostly just a representational tool. In the complicated real

world institutional environment, strategies are not usually preferences them-

selves (even though they can be). It may then be that the role of complexity

and informational efficiency are central in explaining the evolution of these

institutions. These are, in fact, some of the questions that we do not yet

understand well.4 Second, sometimes it may be preferable to use indirect

mechanisms because then the agents do not need to know their preferences

accurately. It may be demanding for an agent to know her preferences in a

fine tuned manner, and indirect mechanisms can have one strategy that is

dominant for an entire class of preferences. Think about the median voter

3Mainly the competitive price system.
4There is no consensus about the definition of an institution. Are instituitons part of

the equilibrium concept, or are they rules of the game. See Hurwicz (1994) and Oström

(1986), for example.
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rule, for example.5 If the number of voters is odd and the domain consists

of all possible single-peaked preferences, then this rule is dominant strat-

egy implementable. But the outcome only depends on some features of the

preferences, namely the “peak”. So the rule would be dominant startegy im-

plementable even if every agent is asked to announce only the “peak”. That

is, to vote for the most favored candidate.

The rest of the paper is organized as follows. In section 2, some properties

that are needed in characterizing implementable goal functions are given.

After this we introduce a method, presented in Hurwicz and Reiter (2008),

which can be used to construct a decentralized mechanism with minimal

number of messages. Since every game form that implements in Nash or

dominant strategy equilibrium is a decentralized mechanism, it is conceivable

that this minimal decentralized mechanism can be expanded to obtain a

minimal implementing game form.6 In section 3, we prove that this can

indeed be done. More than this, it turns out that the minimal decentralized

mechanism of Hurwicz and Reiter (2008) is quite generally also incentive

compatible. Finally, section 4 concludes the paper. It is not possible to

go through all set theoretic concepts that are needed, so a fair amount of

familiarity is assumed.

2. DEFINITIONS, PRELIMINARIES AND NOTATIONAL

CONVENTIONS

We denote the set of outcomes by Z and the set of agents by N = {1, . . . , n}.

A typical element of N is denoted by i or j, and a typical element of Z is

denoted by x, y or z, and so forth. We assume that there are at least two

agents n ≥ 2. Every agent i is endowed with a complete and transitive

preference ordering θi over the outcomes Z and the set of all admissible

preferences orderings for agent i is denoted by Θi. The strict part of θi

is denoted by P (θi) and the indifference part by I(θi). Then, using the

notation θ = (θ1, . . . , θn) ∈ Θ ≡ ×i∈NΘi, a goal function is any function

5See Moulin (1980).
6See Williams (1984) for a rigorous definition of an embedding problem in the case of

Nash equilibrium.
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f : Θ → Z that associates a unique alternative f(θ) ∈ Z with every profile

of preference orderings θ ∈ Θ. A few properties of goal functions will be

needed.

Definition 1 (Strategy-Proofness). A goal function f satisfies strategy-

proofness if, for all θ ∈ Θ and all i ∈ N , there is no θ′i ∈ Θi, such that

f(θ′i, θ−i)P (θi)f(θ).

Strategy-proofness is a strong incentive compatibility condition. It says that

no agent can gain by lying regardless of whether everyone else is speaking

the truth or not.7

Definition 2 (Rectangular Property). A goal function f satisfies rectangular

property if, for all θ, θ′ ∈ Θ, we have

f(θ′)I(θi)f(θi, θ
′
−i) for all i ∈ N ⇒ f(θ′) = f(θ).

Rectangular property is a technical rule that emerges as a necessary condi-

tion for secure implementation (Saijo et al., 2007) defined later on.

Definition 3 (Weak Non-Bossiness).8 A goal function f satisfies weak non-

bossiness if, for all θ ∈ Θ, all i ∈ N , and all θ′i ∈ Θi, we have

f(θi, θ−i) *= f(θ′i, θ−i) ⇒ ∃ θ∗−i ∈ Θ−i : ¬ f(θi, θ
∗
−i)I(θi)f(θ′i, θ

∗
−i).

Basically, weak non-bossiness requires that whenever an agent can unilater-

ally change the outcome, this must affect her own utility, at least in some

cases.

A mechanism, as defined by Hurwicz and Reiter (2008), is a triplet π =

(µ,M, h), where M is the (common) message space, µ : Θ → M is the

(group) equilibrium message correspondence and h : M → Z is the outcome

function. We say that mechanism π realizes f if

h ◦ µ(θ) = f(θ) for all θ ∈ Θ, (1)

7See Barberà (2001), for example, for more on strategy-proofness.
8This condition is called Quasi-Strong-Non-Bossiness in Mizukami and Wakayama

(2007). A similar condition has been presented in Satterthwaite and Sonnenschein (1981).
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and call π informationally decentralized, or simply decentralized, if for every

agent i there exists a correspondence µi : Θi → M , such that

µ(θ) =
⋂

i∈N

µi(θi) for all θ ∈ Θ.9 (2)

This condition states that equilibrium can be obtained in a privacy-preserving

way. That is, the message sent by an agent depends on her own prefer-

ences only. One should notice that any goal function f can be realized

with the decentralized direct revelation mechanism, defined by M = Θ,

µi(θi) = {θ′ ∈ Θ | θ′i = θi} and h(θ) = f(θ). Therefore, the question is

not whether a given goal function f can be realized, but rather, how can it

be realized with the minimal number of messages |M |? This has been solved

in Hurwicz and Reiter (2008). Below we explain the constructive method in

its essentials.

By a covering of Θ, we mean a class C = {K | K ⊆ Θ} ⊆ 2Θ, such that
⋃

K∈C K = Θ. Covering C is called f contour contained (in brief, f-cc) if

for all K ∈ C there exists z ∈ Z, such that K ⊆ f−1(z), and it is called

rectangular if all sets K ∈ C have the structure of a cartesian product. Any

f-cc and rectangular covering C, that does not contain redundancy,10 has a

system of distinct representatives (SDR),11 that is, a function Λ : C → Θ

that satisfies two properties: (1) Λ(K) ∈ K for all K ∈ C, and (2) K ′ *= K ′′

implies Λ(K ′) *= Λ(K ′′).

For any covering C of Θ, define a correspondence Ω : Θ → C, Ω(θ) = {K ∈

C | θ ∈ K} and let v : Λ(C) → M be a bijective (onto) mapping.12

9Let us assume that every agent i acts according to some message verification protocol

m
t+1

i = gi(m
t, θi), where m

t is the vector of messages sent at time t and m
t+1

i is the reply

of agent i at time t + 1. With this interpretation, µ can be thought of as representing a

static equilibrium of a message verification scenario i.e.

µ(θ) = {m ∈ M | mi = gi (m, θi) for all i ∈ N} =
⋂

i∈N

{m ∈ M | mi = gi(m, θi)} =
⋂

i∈N

µi(θi).

For more details see Hurwicz (1994).
10Formally, we do not have K ⊆

⋃

K′∈C\K K′ for any K ∈ C.
11A basic theorem on systems of distinct representatives is proven in Hall (1948).
12We could simply choose a subset of Θ as our message space. The main purpose of
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Theorem 1 (Hurwicz and Reiter, 2008 ). Let C be an f-cc and rectangular

covering of Θ that does not contain redundancy. The mechanism πC =

(µ,M, h), defined by the following two conditions:

(i) µ = v ◦ Λ ◦ Ω, and

(ii) h = f ◦ v−1,

will realize f . !

To complete the description, we need to address two more questions. First,

can µ be decentralized? Second, what are the properties of C that guarantee

the minimality of M? To this end, we define for every agent i ∈ N , a

correspondence Ωi : Θi → C, Ωi(θi) = {K ∈ C | θi ∈ projiK}.13

Theorem 2 (Hurwicz and Reiter, 2008 ). The mechanism πC satisfies con-

dition (2) when we choose µi = v ◦ Λ ◦ Ωi for all i ∈ N . Hence, mechanism

πC can indeed be decentralized. !

To answer the second question, we must emphasize that any decentralized

mechanism π can be produced with the previous method by using some

rectangular and f-cc covering of Θ. That is, for any decentralized mechanism

π, there exists a rectangular and f-cc covering C of Θ, such that π = πC .

Consequently, it should be obvious that the minimal size of the message

space M is somehow connected with C being a maximally coarse covering.14

Unfortunately, the relation “coarsening” is not complete. There can exist,

and usually do exist, many maximally coarse coverings with different or

equal numbers of sets.

Luckily, we do not need to dwell on the question of constructing a maximally

coding function v is to make it explicit that agents do not have to transmit a complete

characterization of their preferences, only an abstract message.
13The set projiK is formally defined as {θi ∈ Θi | (θi, θ−i) ∈ K for some θ−i ∈ Θ−i}.
14Covering C′ is a coarsening of C if for every K ∈ C there is K′ ∈ C′, such that

K ⊆ K′. It is a proper coarsening if it is a coarsening and K ⊂ K′ for some K ∈ C

and K′ ∈ C′. A maximally coarse covering can then be defined as a covering that does

not have any proper coarsenings. Notice that a maximally coarse, f-cc and rectangular

covering cannot contain redundancy (see Theorems 1 and 2).



48

coarse covering with the minimal number of sets. It turns out that when the

goal function f is sufficiently “well-behaved” (e.g., implementable), then the

construction of Hurwicz and Reiter (2008), reproduced in Theorems 1 and

2, can be used to build an incentive compatible mechanism with a minimal

message space starting from any maximally coarse covering of Θ. 15

Before presenting the main results, we need a few definitions to make a clear-

cut distinction between realization and an incentive compatible realization.

A Game form is a tuple G = (S, g), where S = S1 × · · · × Sn is the strategy

space, the set Si is a strategy space of agent i and g : S → Z is the outcome

function. For a fixed preference profile θ ∈ Θ, this game form defines a game

Γ (θ) = (G, θ) in normal form. Strategy profile s
∗ is a Nash equilibrium of

the game Γ (θ) if g(s∗)θig(si, s
∗
−i) for all i ∈ N and all si ∈ Si. The set of

all Nash equilibria in the game Γ (θ) is denoted by NE
[
Γ (θ)

]
. We say that

game form G implements f in Nash equilibrium if

g
(
NE

[
Γ (θ)

])
= f(θ) for all θ ∈ Θ. (3)

In a similar way, strategy profile s
∗ is a dominant strategy equilibrium of

the game Γ (θ) if g(s∗i , s−i)θig(s) for all i ∈ N and all s ∈ S. The set of all

dominant strategy equilibria in the game Γ (θ) is denoted by DOM
[
Γ (θ)

]
,

and a game form G implements f in dominant strategies if equation (3) holds

when NE = DOM . If game form G implements f in Nash and dominant

strategy equilibrium, then according to Saijo et al. (2007), we call it securely

implementable.16

15Hurwicz and Reiter (2008) advance two methods of constructing a maximally coarse

covering. The simpler one, called reflexive rectangular method (rRM), works heuristically

as follows: Take an arbitrary preference profile θ ∈ Θ and form a largest possible rectangle

contained in the same contour set (outcome is not unique). Choose a new preference profile

that is outside the class already formed and continue until a covering of Θ is obtained.

The end result will always be a maximally coarse covering in the set of all rectangular and

f-cc coverings (but not generally the minimal).
16Double implementation, a term that was coined by Maskin (1979), is called secure

implementation if the two solution concepts are Nash and dominant strategy equilibrium.

To better appreciate this implementation form, see Repullo (1985) and Saijo et al. (2007).
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3. MAIN RESULTS

Even though the problem of finding an informationally efficient decentra-

lized mechanism and the problem of finding a minimal implementing game

form are fundamentally very different, we can still use the former as a start-

ing point when seeking an answer to the latter. If we want to implement

goal function f using a solution concept that is decentralizable,17 then every

game form G = (S, g) that implements f can be used to form a decentral-

ized mechanism with a (common) message space of cardinality |S|. It is then

conceivable, but by no means a priori certain, that the minimal decentral-

ized mechanism can be used to obtain a minimal implementing game form.

The main purpose of this section is to show that this can be done – not only

that, but fairly easily.

Next, we need to complete the construction given in Theorems 1 and 2 to

show how the individual message space Mi can be recovered. Let f be a

goal function and C an f-cc and rectangular covering of Θ that is maximally

coarse (and hence does not contain redundancy). Moreover, for all agents

i ∈ N , let C[i] be the maximally coarse covering of Θi that satisfies the

following condition: For all A ∈ C[i] and all K ∈ C,

either A ⊆ projiK or A ∩ projiK = ∅. (4)

Now, let vi : C[i] → Mi be a bijective (coding) function for all i ∈ N ,

and define a decentralized mechanism π̂C = (µ,M, h) by the following three

rules:18

(i) M = M1 × · · · × Mn (5)

(ii) µ(θ) =
⋂

i∈N

µi(θi) and µi(θi) = {m ∈ M | θi ∈ v−1
i (mi)} (6)

(iii) h(m) = f

(
×

i∈N
v−1
i (mi)

)
(7)

17The Nash equilibrium correspondence f : Θ → NE
[

Γ (θ)
]

of game form G = (S, g)

can be decentralized through the mechanism π = (µ, S, g), where µi(θi) = {s ∈ S |

g(s)θig(s′, s−i) for all s′ ∈ Si}. Not all equilibrium concepts are decentralizable in this

fashion, such as strong equilibrium, for example.
18For any K ⊆ Θ, we denote f(K) = {f(θ) | θ ∈ K} as usual.



50

The general idea behind this construction is sketched in Figure 1 below.

Here, C = {Ki | i = 1, 2, 3, 4, 5 or 6} and Mi = {mi
1, m

i
2, m

i
3, m

i
4} for agent

i ∈ {1, 2}.

Θ1

Θ2

K1

K2

K3

K4

K5

K6

m1
1

m1
2

m1
3

m1
4

m2
1 m2

2 m2
3 m2

4

FIGURE 1. Constructing the message space of mechanism π̂C

The following important Lemma makes the construction in equations (4)-(7)

more transparent.

Lemma. Mechanism π̂C is well-defined and it realizes f .

Proof. Notice that a maximally coarse covering C[i] of Θi must exist due

to the fact that Θi itself satisfies the defining condition (4). We shall first

show that C[i] is unique. Suppose there are two different maximally coarse

coverings of Θi, C[i] and C∗[i], which both satisfy (4). Then, for some

A ∈ C[i] and A′, A′′ ∈ C∗[i], such that A′ *= A′′, we have

A ∩ A′ *= ∅ and A ∩ A′′ *= ∅.

But then, the class (C∗[i] \ {A′, A′′})∪(A′∪A′′) also satisfies condition (4),19

which is a contradiction with the fact that C∗[i] is maximally coarse. For

π̂C to be well-defined, we still have to show that ×
i∈N

v−1
i (mi) is included

in the same contour set for all m ∈ M . Choose any m ∈ M and θ ∈

×
i∈N

v−1
i (mi). Let K ∈ C be such that θ ∈ K, so that by definition, we

19Since A∪A′ and A∪A′′ must satisfy condition (4), as θ ∈ A∩A′ and ψ ∈ A∩A′′ for

some θ, ψ ∈ Θ, A′ ∪ A′′ must also satisfy it.
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have v−1
i (mi) ⊆ projiK for all i ∈ N . Since C is rectangular, this implies

×
i∈N

v−1
i (mi) ⊆ K, and since C is f-cc, the set ×

i∈N
v−1
i (mi) must be included

in the same contour set, and hence the outcome function h is well-defined.

The fact that π̂C realizes f can be verified by a direct computation:

h(µ(θ)) = h

(
⋂

i∈N

µi(θi)

)
= h

(
{m ∈ M | θ ∈ ×

i∈N
v−1
i (mi)}

)
= f(θ),

where the last equality must hold, since h is well-defined. !

The construction given in equations (4)-(7) is important. Hurwicz and Reiter

(2008) has shown that the mechanism π̂C has a minimal number of messages

|Mi|, in the set of all decentralized mechanisms that realize f , when C

is chosen as a maximally coarse covering with a minimal number of sets.

In fact, as we shall see shortly, this construction even preserves incentive

compatibility. The following example illustrates the theoretical construction

in equations (4)-(7) and gives a preview of the theorems to come.

Example 1. Let N = {1, 2}, Z = {x, y, z} and Θ = {θ1, θ2, θ3}×{ψ1, ψ2, ψ3}.

The preferences are given in Table 1 below and goal function f is defined in

Figure 2 below.

θ1

x

y

z

θ2

x

y, z

θ3

z

x, y

ψ1

x

y

z

ψ2

z

y

x

ψ3

x

y, z

TABLE 1

It is straightforward to show that the direct revelation mechanism G =

(Θ, f) implements f in dominant strategies. It satisfies strategy-proofness

and weak non-bossiness (see Theorem 6). The unique maximally coarse,

rectangular and f-cc covering of Θ is C = {K1, K2, K3, K4}, where

K1 = {θ1, θ2} × {ψ1, ψ3}, K2 = {θ1, θ2} × {ψ2},

K3 = {θ3} × {ψ1, ψ3} and K4 = {θ3} × {ψ2}.
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x y x

x y x

y z y

θ1

ψ2

θ2

ψ1

θ3

ψ3

Agent 1

Agent 2

FIGURE 2. A diagram of goal function f

Hence, the maximally coarse covering C[1] of Θ1 is {{θ1, θ2}, {θ3}} and

the maximally coarse covering C[2] of Θ2 is {{ψ1, ψ3}, {ψ2}}. Using the

construction in equations (4)-(7) gives us the mechanism in Figure 3 below.

x y

y z

m1
1

m2
2

m1
2

m2
1

Agent 1

Agent 2

FIGURE 3. The mechanism given by equations (4)-(7)

Again, it is straightforward to show that the game form defined by this

mechanism implements f in dominant strategies.20 This must be the game

form with minimal number of strategies, since f cannot be even realized in

a decentralized way with less than |M1| = |M2| = 2 messages. "

20A game form Gπ defined by the mechanism π = (µ, M, h) is Gπ = (M, h). That is,

the message verification protocol µi can be freely chosen by agent i.
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In the remainder of this paper we show that the phenomenon in Example 1

is quite general.

3.1 The Case of Secure Implementation

The following theorem presents a necessary and sufficient condition for a

goal function f to be securely implementable.

Theorem 3 (Saijo et al., 2007 ). A goal function f is securely imple-

mentable if and only if both strategy-proofness and rectangular property

hold. !

The proof of this theorem is simple and elegant. If the two properties hold,

then the direct revelation mechanism G = (Θ, f) implements f .21 Still,

the strategy space S = Θ of this game form can be informationally very

inefficient, which makes it important to find out how many strategies are

needed in a minimal indirect game form implementing f . The following

theorem will answer this question.

Theorem 4. Let f be securely implementable and π̂C = (µ,M, h), the

mechanism defined by equations (4)-(7) using a maximally coarse, rectangu-

lar and f-cc covering C. The game form G = (S, g) = (M,h) implements f

securely.

Proof. Denote Γ (θ) = (G, θ). To prove this theorem, we have to verify two

things: For every preference profile θ ∈ Θ, there exists a strategy profile

m ∈ DOM
[
Γ (θ)

]
such that h(m) = f(θ), and for every strategy profile

m ∈ NE
[
Γ (θ)

]
we have h(m) = f(θ). First, choose any θ ∈ Θ and let

m
d ∈ M be such that θ ∈ ×

i∈N
v−1
i (md

i ). We show that m
d ∈ DOM

[
Γ (θ)

]
.

Assume the contrary. That is, there exists a message profile m
′ ∈ M ,

such that h(m′)P (θj)h(md
j ,m

′
−j) for some j ∈ N . Since π̂C realizes f in

a decentralized way, we have h(m′) = f(θ′) and h(md
j ,m

′
−j) = f(θj , θ

′
−j)

for all θ′ ∈ ×
i∈N

v−1
i (m′

i), so that f(θ′)P (θj)f(θj , θ
′
−j) must hold for some

21This is the hard direction in all implementation proofs, since some kind of canonical

mechanism has to be found.
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θ′−j ∈ Θ−j
22. This is a contradiction with the fact that f is strategy-proof,

and hence m
d ∈ DOM

[
Γ (θ)

]
.

To verify the second part, let us assume that m ∈ NE
[
Γ (θ)

]
. Since the

strategy m
d
i defined in the previous paragraph is a dominant strategy for

every agent i ∈ N , we must have h(md
i ,m−i)θih(m) for all i ∈ N . As m

is Nash equilibrium under θ, this implies that h(md
i ,m−i)I(θi)h(m) for all

i ∈ N . Thus, since π̂C realizes f in a decentralized way, there must exist

θ′ ∈ ×
i∈N

v−1
i (mi) such that f(θi, θ

′
−i)I(θi)f(θ′i, θ

′
−i) for all i ∈ N . Now, the

fact that f satisfies rectangular property implies f(θ′) = f(θ), and since

θ′ ∈ ×
i∈N

v−1
i (mi), we finally get h(m) = f(θ′) = f(θ), as required. !

This theorem implies the following strong result as a direct corollary.

Corollary 1. The minimal number of messages needed for a decentralized

realization of a securely implementable goal function is exactly the same as

the minimal number of strategies needed to implement it.

Proof. The number of strategies needed in implementation is at least as

great as the number of messages needed to realize in a decentralized way.

Hence, the result follows from Theorem 4. !

Next, we prove this result directly to generate deeper insight into equations

(4)-(7).

Theorem 5. Let f be securely implementable and π̂C = (µ,M, h), the

mechanism defined in Theorem 4. Then, f cannot be securely implemented

with less than
∑n

i=1
|Mi| strategies (or less that |M | strategy profiles).

Proof. We prove this claim by showing that every agent i ∈ N needs at least

|Mi| strategies. For the sake of contradiction, suppose that agent i could

have fewer strategies in a securely implementing game form G = (S, g).

Then, by the definition of message space M , there must exist K, K ′ ∈ C,

K *= K ′, such that the same strategy sd ∈ Si is dominant for some θi ∈

projiK \ projiK
′ and θ′i ∈ projiK

′. Choose θ′−i ∈ Θ−i in such way that

22Notice that (θi, θ
′
−i) ∈ v−1

i (md
i ) ×

(

×
j∈N\{i}

v−1

j (m′
j)

)

.
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(θ′i, θ
′
−i) ∈ K ′ and let s

d
−i be a vector of dominant startegies for θ′−i. Since

dominant strategies only depend on the agent’s own preferences, it must

be that (sd
i , s

d
−i) ∈ DOM

[
Γ (θi, θ

′
−i)

]
and (sd

i , s
d
−i) ∈ DOM

[
Γ (θ′i, θ

′
−i)

]
,

which implies that f(θi, θ
′
−i) = f(θ′i, θ

′
−i). As this must hold for any θ′−i ∈

×
j∈N\{i}

projjK
′, the covering

(C \ K ′) ∪

(
{θi ∪ projiK

′} ×
j∈N\{i}

projjK
′

)

is f-cc and rectangular − a contradiction with the assumption that C is

maximally coarse. !

Theorems 4 and 5 do not seem to depend on the covering, as long as it

is maximally coarse. We could easily show that this is due to the fact

that maximally coarse covering is a unique partition when f is securely

implementable.

Notice that any securely implementable goal function can be implemented

with the direct revelation mechanism, which means that only outcomes in

the range are needed in an implementing game form. That is, outcomes in

Z \ f(Θ) are never needed. We can interpret this by saying that secure im-

plementation is context independent, which is in stark contrast with Nash

implementation23 and dominant strategy implementation (Example 2 be-

low). This is the reason that allows us to use the method of Hurwicz and

Reiter (2008) as a starting point in the first place.

Example 2. Assume that Z = {x, y, z} and Θ = {θ1, θ
′
1} × {θ2}. Define

goal function f by the rule f(θ1, θ2) = x and f(θ′1, θ2) = y, so that z /∈ f(Θ).

Moreover, define the preferences θ1, θ
′
1 and θ2 by setting

xI(θ1)y, xI(θ′1)y and xI(θ2)y.

It is obvious that f cannot be implemented in dominant strategies using

alternatives only from f(Θ) = {x, y}, since both agents would be indifferent

about playing any strategy. Still, it can be implemented using Z = {x, y, z},

23See Williams (1984), for example.
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at least if the following preference reversals hold:

zP (θ1)x, xP (θ′1)z and xP (θ2)z.

Assuming that this is indeed the case, the game form in Figure 4 below

will implement f . As a consequence of Theorem 3, f cannot be securely

implemented even when using the whole set Z. For example, the game form

in Figure 4 has a bad Nash equilibrium (s2
1, s

2
2) for the preference profiles

(θ′1, θ2).

x z

y x

s1
1

s2
2

s2
1

s1
2

Agent 1

Agent 2

FIGURE 4. A game form implementing f

in dominant strategies
"

There is nothing trivial in this example. The fact that all outcomes are indif-

ferent for the agents involved, does not mean that they are indifferent from

the social point of view (or from the principal point of view). Nonetheless,

it is not completely harmless to use game forms that do not give outcomes

from the range of a goal function if out of equilibrium strategies are played.

As explained in Maskin and Moore (1999), this will inevitably raise some

questions of credibility. If the designer cannot fully commit to implement

anything that might arise as an outcome of the game, then agents can use

this to initiate a renegotiation process by playing non-equilibrium strategies.

It is then natural to assume that the outcome played before the renegotia-

tion serves as an outside option. This will completely change the nature of

the game and a new implementation concept is needed. It would be a lot

harder to find a minimal implementing game form in this kind of setting,

since more elaborate schemes could be used. Leaving this problem behind,
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Example 2 makes it very clear that Corollary 1 cannot hold for dominant

strategy equilibrium as such.

3.2 The Case of Dominant Strategy Implementation

When the solution concept is dominant strategy equilibrium, we do not

necessarily get a minimal implementing game form by applying equations

(4)-(7) with maximally coarse covering. Some new strategies may have to

be added. To proceed then, we need to know when our goal function can be

implemented in dominant strategies by the direct revelation mechanism.

Theorem 6 (Saijo et al., 2007 ). The direct revelation mechanism G =

(Θ, f) implements f in dominant strategies if and only if both strategy-

proofness and weak non-bossiness holds. !

It turns out that Theorems 4 and 5 hold for dominant strategies in the case

described by Theorem 6.

Theorem 7. Let f satisfy strategy-proofness and weak non-bossiness and

let π̂C = (µ,M, h) be the mechanism defined in Theorem 4. The game form

G = (S, g) = (M,h) implements f in dominant strategies, and furthermore,

f cannot be implemented with less than
∑n

i=1
|Mi| strategies (or less that

|M | strategy profiles).

Proof. We already know that for any θ ∈ Θ, the messages profile m
d ∈ M

that was defined in Theorem 4 is a dominant strategy equilibrium and

h(md) = f(θ). Only strategy-proofness was used to prove this. Now as-

sume that m is any other dominant strategy equilibrium for θ and let

θ′ ∈ ×
i∈N

v−1
i (mi). Notice that, again by Theorem 4, m is a dominant

strategy equilibrium also for θ′. By the definition of dominant strategy

equilibrium, we must then have h(mi,m
′
−i)I(θi)h(md

i ,m
′
−i) for all i ∈ N

and all m
′
−i ∈ M−i, so that by the definition of π̂C , we must also have

f(θ′i, θ
′′
i )I(θi)f(θi, θ

′′
i ) for all i ∈ N and all θ′′i ∈ Θ−i. Consequently, weak

non-bossiness implies f(θi, θ−i) = f(θ′i, θ−i), and by the defintion of π̂C we

then have h(md) = h(mi,m
d
−i). But also (m1,m

d
−1) must be a dominant

strategy equilibrium for θ (since m1 is a dominant strategy for θ1). We
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can then replace m
d with (m1,m

d
−1) in the previous argument and continue

inductively in the number of agents to finally obtain h(m) = h(md) = f(θ)

as required.

The proof that f cannot be implemented with less than
∑n

i=1
|Mi| strategies

is analogous to Theorem 5. !

Corollary 1 also generalizes in an obvious manner.

Corollary 2. Assume that f satisfies strategy-proofness and weak non-

bossiness. The minimal number of messages needed for a decentralized real-

ization of f is exactly the same as the minimal number of strategies needed

to implement it in dominant strategies. !

To conclude the paper, let us take a look at one well-known example from

the literature.

Example 3 (The Generalized Median Voter Rule in a Single-Peaked Envi-

ronment).24 For all i ∈ N , let Θi = Ui be the set of all single-peaked prefer-

ences on some interval [a, b] ⊆ R+. The “peak” of the preference ui ∈ Ui is

denoted by P (ui). It is well-known that in this environment, the generalized

median voter rule

f(u1, . . . , un) = median of
{
P (u1), . . . , P (un), α1, . . . , αk

}
,

where n is odd, k < n and the numbers αj ∈ [a, b] are“votes”of the society,25

is implementable in dominant strategies by the direct revelation mechanism.

It is obvious that the strategy space of the minimal implementing game form,

in this unrestricted preference domain, should consist of announcing only

the “peak.”This is exactly what our construction suggests. Even though the

maximally coarse coverings C of Θ is a bit complicated to obtain, the only

maximally coarse covering C[i] that satisfies condition (4) must be

C[i] = {A ⊆ Ui | ui, uj ∈ A if and only if P (ui) = P (uj)}.

24We do not define all these, by now, well-known concepts here. See Moulin (1980,1983)

or Saijo et al. (2007) for rigorous definitions. Moulin (1980) attributes the idea of single-

peaked environments dating at least as far as Dummett and Farquharson (1961).
25Numbers α1, . . . , αk are sometimes called “phantom” votes.
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Note that this need not hold if the preference domain is restricted, but it is

rather hard to say anything about this more general case without arbitrarily

fixing the domain. "

4. CONCLUDING REMARKS

We have shown that the systematic procedure of Hurwicz and Reiter (2008)

for constructing a minimal decentralized mechanism quite often preserves

incentive compatibility. This is always so for a securely implementable

goal function, but for a goal function implementable in dominant strate-

gies, an additional property called weak non-bossiness in Saijo et al. (2007)

is needed. A simple example from Mizukami and Wakayama (2007) verifies

that the assumption of weak non-bossiness is essential. Let N = {1, 2},

Z = {x, y, z} and Θ = {θ1, θ
′
1}×{θ2, θ

′
2}. The preferences are defined in the

following way:

zP (θ1)xP (θ1)y, xP (θ′1)zP (θ′1)y, zI(θ2)xP (θ2)y and yP (θ′2)zI(θ′2)x.

Goal function f is defined in the following way:

f(θ1, θ2) = z and f(θ1, θ
′
2) = f(θ′1, θ2) = f(θ′1, θ

′
2) = x.

This goal function is implementable in dominant strategies. The indirect

game form in Figure 5 below verifies this. The only dominant strategy for

θ1 is s1
1; the only dominant strategy for θ′1 is s2

1; the only dominant strategy

for θ2 is s1
2; and the only dominant strategy for θ′2 is s2

2. It is easy to

verify that the outcome in these equilibria coincide with f . Since the direct

revelation mechanism G = (Θ, f) does not implement f ,26 and on the other

hand, the direct revelation mechanism must be inside any game form that

implements f , the game form in Figure 5 must have a minimal number of

strategies. Still, it has more strategies than direct revelation mechanism,

which is the largest number of messages that is ever needed for realization.

Basically, the main idea behind the procedure of Hurwicz and Reiter (2008)

is to group similar preferences behind the same equilibrium strategy. We

26Since f(Θ) = {z, x}, agent 2 would be completely indifferent about any two strategies

in the direct revelation mechanism.
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have seen, in Example 3, that the usefulness of this result depends very

heavily on the context. That is, on the exact form of the preference domain.

Unfortunately, the construction does not give us any means to calculate

numerical bounds for the number of strategies needed in a minimal imple-

menting game form, and hence, there is no way to say how much it differs

from the order of magnitude of the preference domain. However, the results

that we have obtained stand in a stark contrast with the results obtained

for other equilibrium concepts, such as Nash equilibrium. Williams (1984)

and Reichelstein and Reiter (1988) have shown that the increase in commu-

nication requirements can be quite substantial in this case.

z x

x x

x y
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1
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2

s3
1
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FIGURE 5. A game form implementing f
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Saijo, T., Sjöström, T. and Yamato, T. (2007), Secure Implementation.

Theoretical Economics 2, 204-229.

Satterthwaite, M. and Sonnenschein, H. (1981), Strategy-Proof Allocation

Mechanisms at Differentiable Points. Review of Economic Studies 48,

587-597.

Satterthwaite, M. (1975), Strategy-Proofness and Arrows’ Condition:

Existence and Correspondence Theorems for Voting Procedures and

Social Welfare Functions. Journal of Economic Theory 10, 187-217.

Segal, I. (2007), The Communication Requirements of Social Choice

Rules and Supporting Budget Sets. Journal of Economic Theory 136,

341-378.

Williams, S. (1984), Realization and Nash Implementation − Two

Aspects of Mechanism Design. Econometrica 54, 139-51.



ARTICLE 2

Ville Korpela (2010) Nash implementation theory − a note

on full characterizations. Economics Letters, 108, pp. 283-

285.

Reprinted with permission from Elsevier Inc.



64



Nash implementation theory — A note on full characterizations

Ville Korpela ⁎

Public Choice Research Centre (PCRC), Publicum, Assistentinkatu 7, FIN-20014, University of Turku, Finland

a b s t r a c ta r t i c l e i n f o

Article history:

Received 15 October 2009

Received in revised form 25 January 2010

Accepted 20 May 2010

Available online 27 May 2010

JEL classification:

C72

D71

Keywords:

(Maskin) Monotonicity

Moore–Repullo-set

Nash implementation

No veto power

n≥2 players

The first full characterization of social choice correspondences that are implementable in Nash equilibrium,

given in Moore and Repullo (1990), together with the working principle behind an algorithm to check this

condition, given in Sjöström (1991), can be used to give a simple necessary and sufficient condition for

implementation that is a generalization of monotonicity.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The first important result on Nash implementation was derived by

Eric Maskin in 1977 and later published as Maskin (1999). It states that

monotonicity, together with no veto power, forms a sufficient condition

for a social choice correspondence to be implementable in Nash

equilibrium. This simple partial characterization has one disturbing

feature. It does not have bite with some very simple social choice

correspondences, such as the constant or dictatorial choice correspon-

dence. Atfirst glance this does not seem too problematic aswe can easily

construct an implementing game form in both cases. But consider a

choice correspondence that ismonotonic, doesnot satisfynovetopower,

and, is not Nash implementable. This time there is nothing we can do,

except to demonstrate that no implementinggame formcan in fact exist.

This difficulty canonly be avoided througha full characterization, like

the one in Moore and Repullo (1990).1 Their necessary and sufficient

condition is based on theexistenceof certain sets that can be understood

as representing the alternatives on specific rows of the implementing

game form. How to construct these sets is obvious when monotonicity

and no veto power are satisfied. It is also clear in the case of constant or

dictatorial choice correpondence, which just reflects the fact that an

implementing game form is easy to construct. However, exactly the

same social choice correspondences that were problematic before, are

still problematic. To verify that the desired sets do not exist is essentially

analogous to verifying that no implementing game form does exist.

In comparison with the partial characterization of Maskin (1999),

there is one considerable advantage in the full characterization of

Moore and Repullo (1990). An algorithm to check whether a given

social choice correspondence is Nash implementable can be based on

the latter. This was accomplished in Sjöström (1991). The central

working principle of this algorithm is to form test sets that must be

accepted as Moore–Repullo-sets exactly in the case of social choice

correspondence is Nash implementable. A simple necessary and

sufficient condition for Nash implementation, that may be seen as a

generalization of (Maskin) monotonicity, can be based on this idea.

Our main purpose is to express this monotonicity condition

explicitly. The main contribution of this paper is then to compress the

full characterization of Moore and Repullo (1990), which consists of

three separate conditions, into a one unified condition that should be

a lot easier to comprehend.

The organization of the paper is as follows. In Section 2 we fix

notation and run through the main concepts. Section 3 elaborates on

the new necessary and sufficient condition for a social choice

correspondence to be Nash implementable. This will be termed as

generalized monotonicity. Also Danilov (1992) has presented a

stronger monotonicity condition, but this is necessary and sufficient

only in comprehensive domains.2 We shall make no such restrictions.

Section 4 concludes.
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1 Dutta and Sen (1991) have independently derived the same condition in two player
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2 Yamato (1992) generalized this result, but also he made a restriction on the class

of admissible domains called condition D.
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2. Preliminaries

Let N={1,…n} be the set of players and A the non-empty set of

social alternatives. Let ℛA be the class of all complete and transitive

preference orderings on A i.e. the unrestricted domain. A social choice

correspondence (SCC) f is defined to be any function f:ℛ→2A\{Ø},

such that ℛp×ℛA. A SCC gives the set of socially acceptable

alternatives as a function of the prevailing preference profile. We shall

denote a generic element of ℛ by R and the preference of player i in

this profile by Ri. In the usual manner, R− i will denote an (n−1)-

dimensional vector that specifies a preference ordering for all players

except i.

Two properties of SCCs' are needed. Let Li(a, R) denote the

lower contour set of player i at aaAwhen the preference profile is R i.e.

Li(a, R)={baA|aRib}.
3 A SCC f is called monotone, if aa f(R) and Li(a,

R)pLi(a, R′) for all iaN implies aa f(R′). A SCC f satisfies no veto

power, if #{i | Li(a, R)=A}=n−1 implies aa f(R) for all aaA.

Moreover, the set of maximal elements in CpA with respect to Ri is

denoted by Mi(C, R) i.e. Mi(C, R)={aaC|aRic for all caC}.

A tuple G=(S, g), where S=×Si is the set of strategy profiles and g:

S→A is an outcome function, is called a game form or a mechanism.

Here Si is the strategy set of player i. When a preference profile R is

given, this game form will define a game Γ= 〈G, R〉 in normal form. A

Nash equilibrium of this game is a strategy profile saS such that g(s)

Rig(si⁎, s− i) for all si⁎aSi and all iaN. Let NE(G,R) be the set of all Nash

equilibria in the game Γ. We say that the game form GNash implements

a SCC f, if g(NE(G, R))= f(R) for all R ∈ℛ. If there exists a game form

G that Nash implement f, then f is called Nash implementable.

3. Generalization of monotonicity — a necessary and

sufficient condition

The test sets that are used in the algorithm of Sjöström (1991) can

be formed iteratively. To this end, let's define an operator4

ρðAÞ = A∖ a∈A∖ f ðℛÞ j∃ℛ∈R : a∈MiðA;RÞ∀i∈Nf g

that excludes some of the alternatives which can never be used in the

implementing game form.5 The set of alternatives that can possibly be

used is then defined iteratively as A⁎=∩ρm(A), since a one round

elimination may create new alternatives that can not be used.6,7 From

now on Li⁎(a, R) will denote the set Li(a, R)∩A⁎.

We shall also need another operator

δiðCÞ = C∖ a j∃R∈ℛ : a∉f ðRÞ; a∈MiðC;RÞ; a∈MjðA*;RÞ∀j∈N∖ i
n o

;

which for a given set CaA and for a given player iaN, eliminate all

veto problematic alternatives.8 Iterating δis, in the same fashion we

did with ρ, allow us to define new sets in the following way L̂ i⁎(a, R)=

∩δi
m(Li⁎(a, R)).

9

Definition. A SCC f satisfy generalized monotonicity, if for all R,R′aℛ

and all aa f(R), we have aaL̂i⁎(a, R), and the following condition holds

L̂⁎i ða;RÞpL
4

i a;R′ð Þ∀i∈N ⇒ a∈f R′ð Þ10

The proof that generalized monotonicity is both a necessary and

sufficient condition for a SCC to be implementable in Nash equilibrium

when there are three or more players is simple. It follows directly

from the characterization of Moore and Repullo (1990), called

condition μ, together with the working principle behind the algorithm

in Sjöström (1991).

Condition μ. There exists a set BpA, and for each jaN, Raℛ and

aa f(R), there exists a set Ci(a, R)pBwith aaMi(Ci(a, R), R), such that

for all R′aℛ the following conditions are satisfied:

(i) If aa∩Mi(Ci(a, R), R′), then aa f(R′).

(ii) If caMi(Ci(a,R),R′)∩[⋂j≠ iMj(B,R′)] for some iaN, then ca f(R′).

(iii) If da∩Mi(B, R′), then da f(R′).

Theorem. Let n≥3. A SCC f is Nash implementable if and only if it satisfy

generalized monotonicity.

Proof. The algorithm in Sjöström (1991) is based on the fact that a

SCC f is Nash implementable exactly in the case that the choice B=A⁎

and Ci(a, R)= L̂ i⁎(a, R) for all iaN and all Raℛ, such that aa f(R),

satisfies condition μ. But with these sets condition (i) is generalized

monotonicity, so f is in fact Nash implementable exactly in the case

that generalized monotonicity holds (as conditions (ii) and (iii) are

satisfied by construction). □

Example 1. Let caA and define the SCC f:ℛA→A by f(R)={aaA|

aRic∀iaN}. This correspondence is monotone, but does not satisfy no

veto power. Now A⁎=A and L̂ i⁎(a, R)=Ø, so f is not Nash

implementable by generalized monotonicity.

Example 2. Let caA and assume that fc:ℛ→A is the constant SCC i.e.

f(ℛ)={c}. In this case A⁎ and L̂ i⁎(a, R) may be hard to find, since they

depend heavily on the preference domain ℛ. Still, generalized

monotonicity is satisfied trivially — the right hand side of the

implication is always true.

Generalized monotonicity is a necessary condition also in the two

player case. This can be seen in the following way. First, if B and the

class {Ci(a, R)} satisfy condition μ, then it must definitely be that BpA⁎

and Ci(a, R)pL̂i⁎(a, R) for all iaN and all Raℛ, such that aa f(R).

In other words, A⁎ and {L̂ i⁎(a, R)} form the class of maximal sets that

can possibly satisfy condition μ. Second, if these sets do not satisfy

condition μ, then no subsets of them can either.11 But the

implementation condition for the two player case, condition μ2 in

Moore and Repullo (1990), require that also condition μ is satisfied.

Hence generalized monotonicity is necessary also in the two player

case.

4. Conclusion

Many characterizations of Nash implementable social choice

correspondences have been given in the literature. Simple partial

characterizations usually exclude most of the hard and/or easy cases,

and on the other hand, full characterizations tend to be complicated

because they try to incorporate everything. The latter also goes for

generalized monotonicity, as it cannot always be easily verified. One

3 Strictly speaking Li only depends on Ri. Still, it is notationally more convenient to

express it as depending on R.
4 For simplicity we do not express the operator as explicitly depending on the SCC f.
5 If an alternative in A∖ f(ℛ) is top ranked for every player, it would clearly

constitute a bad Nash equilibrium in any game form.
6 ρm(A) is defined recursively as: ρ0(A)=A and ρh(A)=ρ(ρh−1(A)) for all h≥1.
7 With most SCCs' there is no difference between A and A⁎. The set A⁎ is just defined

to obtain full generality. In fact, these sets can differ only when unanimity does not

hold.
8 Veto problematic in the sense that elements in a row of an implementing game

form can not coincide with the set C, since there would be a bad Nash equilibrium.
9 Notice that we may not be able to construct the set Li⁎(a, R) in algorithmic sense,

but it does exist. Same goes with A⁎.

10 If no veto power is satisfied, then L̂⁎i (a, R)=Li⁎(a, R)=Li(a, R) and the definition of

generalized monotonicity coincide with monotonicity.
11 Since these sets satisfy (ii) and (iii) of condition μ by construction, the failure must

come from (i). But if this is the case, then one can easily see that no subsets of them

can satisfy (i) either.
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possible way to get around this would be to give the characterizing

condition in multiple parts, each part characterizing Nash implemen-

table SCCs in different types of preference domains. By this we do not

mean a simple restriction on the admissible domain, rather, we mean

a carful division of the class of all domains in parts that are similar

from Nash implementation point of view. Still, it seems that

generalizing monotonicity is the right way to go. Some papers, like

Benoît and Ok (2006), have chosen to generalize no veto power. But as

we have shown, the main purpose of this property is just to simplify

certain iterative processes.
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Abstract Hurwicz (Social Choice and public decision making. Essays in honor of

Kenneth J. Arrow, Cambridge University Press, Cambridge, 1986) was the first to

study an approach to implementation theory based on choice functions instead of

preference relations. We argue that the solution concept used by him, the generalized

Nash equilibrium, is not really compatible with the idea that individual behavior is

describable by a choice function. A new solution concept that better fits the choice

function framework is then introduced. Using this, we investigate what behavioral

assumptions are needed for the full characterizations of Nash implementable social

choice correspondences to still hold. We will show that a condition known as Property

α is central.

Keywords Moore–Repullo set · Nash Implementation · n ≥ 2 Players ·

Properties α and γ

JEL Classification C72 · D03 · D71 · D78

1 Introduction

Complete and transitive preferences are assumed in the implementation literature,

with very few exceptions. This is despite the fact that there is nothing in the idea of

mechanism design that really requires that assumption. After all, the goal is to design

an institutional setting that produces socially acceptable outcomes as a function of

plausible behavior. The main message of Hurwicz (1986) is that the important results
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of Maskin (1977)1 on Nash implementation are still essentially valid, even if we do

not make the assumption of complete and transitive preferences.

In conventional implementation theory, the domain of a social choice correspon-

dence is a subset of all possible profiles of preference relations. The central idea of

Hurwicz (1986) was to replace this domain with a subset of all possible profiles of

choice functions. To do this, a new solution concept had to be defined. The one used

by Hurwicz (1986) is entitled generalized Nash equilibrium (GNE).

However, GNE is not really compatible with the idea that individual behavior is

describable by a choice function. More specifically, GNE is based on a pairwise

comparison of alternatives in the rows of a game form, whereas a truly choice func-

tion-based solution concept would select from the set of all alternatives in a row

simultaneously. For the former to imply the latter, an additional assumption, called

normality in Sen (1977), has to be made. This condition states that choice function

must be generated by the “base relation”, also known as the “underlying binary rela-

tion” (Mas-Colell et al. 1995), that it defines. Unfortunately, this restrictive assumption

precludes a large class of behaviors.

The main purpose of this article is to generalize the result of Hurwicz (1986). We

define a new solution concept, which we dub behavioral Nash equilibrium (BehNE).

Contrary to Hurwicz (1986), this does not place any restrictions on the choice behavior.

We prove that the new solution concept, together with Sen’s Property α, can be used

to fully characterize implementable social choice correspondences directly in terms of

choice functions. Property α says, roughly, that whenever an alternative is selected in

one situation, it must also be selected in any situation that has less alternatives. Since

no additional assumptions are made concerning the behavior of players, our result is

a generalization of the characterization by Moore and Repullo (1990).

Furthermore, it is easy to express the exact scope of the generalization. This is

due to the fact that normality is not equivalent to Property α alone. Another property,

known as Property γ , is needed (Sen 1977, Proposition 8). Property γ says, roughly,

that whenever an alternative is selected in multiple different situations, it must also be

selected in a situation where all the alternatives are possible at once.

Our study contributes to the recent trend in implementation theory which incorpo-

rates more flexible behavioral assumptions into the theory (Matsushima 2008a,b). At

the same time, it has become increasingly apparent that framing, or menu-dependence,

is an essential feature of human behavior (Rubinstein and Salant 2008; Manzini and

Mariotti 2007). This is exactly what Properties α and γ are about; they both rule out

certain types of framing. In effect, we will be able to handle certain forms of framing

(γ need not hold), but not all (α must hold). To dispense with the latter form of framing

is beyond the scope of this article, even though an important topic for future research.

In a real world, framing usually happens in a situation where people behave in what

could be called a rule of thumb manner. We will give an example of such behavior in

Sect. 4.

Independently of this article, Ray (2010) has recently studied social choice corre-

spondences that are implementable without assuming full rationality. To the best of our

1 This working paper was later published as Maskin (1999).
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knowledge, this is the only other paper on the subject in addition to Hurwicz (1986).

Ray (2010), however, is mostly interested in generalizing the necessary and sufficient

conditions of Maskin (1977), whereas we are interested in the full characterization

due to Moore and Repullo (1990).

It should be noted that by the very definition of implementation, questions about

the existence of equilibria are irrelevant, even when games are played via choice func-

tions. Implementation can only be successful if a game form does exist that has at

least one equilibrium for all possible profiles of choice function.

Finally, we note that Ray (2010) also provides a generalization of the Moore–

Repullo characterization. However, in contrast to this paper, his aim is to simulta-

neously solve the equilibrium selection problem. The definition of implementation

allows a game form to have multiple equilibria for the same preference profile, which

can cause a coordination failure. If we require that this can never happen, then the set

of implementable social choice correspondences can, at least in principle, be reduced.

Interestingly, this problem has not been solved satisfactorily, even in the fully rational

case. Our approach is to focus on Sjöström (1991) algorithm to check the Moore–

Repullo characterization. We will show that this algorithm still works if normality is

assumed, but may otherwise become more inefficient. To conclude, this article and Ray

(2010) have independently tackled the same problem from slightly different points of

view.

The article is organized as follows: Section 2 introduces the basic notation and

concepts. Section 3 argues for the new solution concept that does not necessitate any

additional assumptions on choice behavior in contrast to Hurwicz (1986). Section 4

provides the characterization result and explains why Property α is needed. Before

Sect. 6 concludes this article, Sect. 5 investigates whether the verification of the char-

acterizing condition is as simple as in the case of complete and transitive preferences.

2 Notation and definitions

Let I = {1, . . . , n} be the set of players and X the set of social alternatives. A typical

element of I is denoted by i or j , and a typical element of X by x, y or z, and so forth.

A choice function is any function C: 2X \ {∅} → 2X, such that C(A) ⊆ A for all

A ∈ 2X \ {∅}. Choice function may equally well be an individual decision function

or a group decision function. We do not preclude the case C(A) = ∅. This can be

interpreted by saying that deadlocks, where a player refuses to make any choice at all,

are allowed. A binary relation &, defined by the rule2

x & y if and only if x ∈ C(x, y),

is called a base relation of the choice function C. This relation may not be complete.

If & is able to generate the choice behavior C, that is, if C(A) = {x ∈ A | x &

y for all y ∈ A} for all A ∈ 2X \ {∅}, then we say that choice function C is normal

(Sen 1977, Proposition 7).

2 We will use the standard convention C({x, y}) = C(x, y) throughout.
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The set of all possible choice functions over X is denoted by CX. Any function

f : C → 2X \ {∅}, such that C ⊆
∏

i∈I CX, is called a social choice correspondence

(SCC). Since no assumptions about rationality have been made, we interpret this by

saying that social choice is based on behavioral patterns. A typical element of C is

denoted by C and the choice function of player i in this profile by Ci . In addition, C−i

denotes the (n − 1)-dimensional profile that specifies a choice function for all players

except i and Ci = {C ∈ CX | C = Ci for some C ∈ C }.

A tuple G = (S, g), where S = S1 × · · · × Sn is the set of strategy profiles and

g: S → X is the outcome function, is called a game form or a mechanism. For a fixed

profile of choice functions C = (C1, . . . , Cn), this game form will define a game

Ŵ(C) = (G; C). The specification of choice functions is enough to fully describe

the behavior of all players when facing any row of the game form. Let E be some

game theoretic solution concept. The set E [Ŵ(C)] ⊆ S consists of all strategy profiles

that are solutions in the game Ŵ(C) with respect to E. The game form G is said to

implement f in E if

g (E [Ŵ(C )]) = f (C) for all C ∈ C .

If some game form G implements f in E, then we call this SCC implementable in E.

3 A new solution concept for the implementation approach based on choice

functions

There are several ways to generalize the idea of Nash equilibrium for the game Ŵ(C).

The first one is from Hurwicz (1986)

Definition 1 Strategy profile s
∗ ∈ S is a generalized Nash equilibrium (GNE) of Ŵ(C)

if and only if

g(s∗) ∈ Ci(g(s∗), g(s∗
−i, si)) for all i ∈ I and all si ∈ Si . (1)

In this definition, players are comparing alternatives in the rows of a game in a pairwise

manner. The definition is not really compatible with the idea of a choice function unless

we assume normality.3 To understand this, consider the set g(s∗
−i, Si) = {g(s∗

−i, si) |

si ∈ Si}. This set includes all alternatives that player i can obtain by unilaterally

deviating from the GNE s
∗. If condition (1) truly determines an equilibrium of the

game Ŵ(C), then it must guarantee that g(s∗) ∈ Ci(g(s∗
−i, Si)) for all i ∈ I . In other

words, the pairwise comparisons made in condition (1) must be sufficient to guarantee

that g(s∗) is chosen when considering the whole set g(s∗
−i, Si) at once. This is why

3 Hurwicz (1986) did know this. His main goal was to handle choice behavior that can have Condor-

cet cycles, and this is what he tried to take into account when defining GNE. Normal choice functions

can have Condorcet cycles. However, all choice functions that have Condorcet cycles are not normal. If

C(x, y) = x, C(y, z) = y, C(x, z) = z and C is normal, then we must have C({x, y, z}) = ∅. That is, there

must be a deadlock when choosing from the Condorcet cycle. The assumption of normality is, of course, a

generalization in comparison to the standard case, where the Weak Axiom of Revealed Preference (WARP)

is assumed. See Moulin (1985), Plott (1976), Samuelson (1938), and Sen (1970) for more on WARP.
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the consistency of condition (1) necessitates an additional assumption of normality. In

addition to this implicit restriction, Definition 1 has another shortcoming. That is, even

though g(s∗) does not win every alternative of g(s∗
−i, Si) in a pairwise comparison,

it may very well be chosen from the set g(s∗
−i, Si). The following two examples will

clarify this.

Example 1 4Let X = {x, y, z} and C = {C1, C
′
1} × {C2}, so that player 1 has two

possible choice functions and player 2 only one possible choice function. Assume

that C(x, y) = {x}, C(y, z) = {y} and C(z, x) = {z} for both C ∈ {C1, C
′
1}. This

implies that the base relation & is cyclic for both C1 and C′
1, that is, x & y & z & x.

To complete the description, let C1(X) = x and C′
1(X) = y. The exact form of C2

will play no role. Now, consider an SCC f defined by the rule f (C1, C2) = x and

f (C′
1, C2) = y. This SCC should be implementable − the designer can simply let

player 1 select from the set X. Despite this, a game form that can implement f in

GNE does not exist. Assuming the contrary, a game form G = (S, g) implements f

in GNE. This implies that a GNE s
∗ of Ŵ(C1, C2) must exist, such that g(s∗) = x.

Moreover, it must be that z /∈ g(S1, s
∗
2), otherwise C1(x, z) = z would contradict

(1). This implies that g(S1, s
∗
2) ⊆ {x, y} and hence that s

∗ is also a GNE in the game

Ŵ(C′
1, C2). This is impossible, since f (C′

1, C2) = y. Therefore, a game form that

implements f in GNE cannot exist. This is despite the fact that f should be deemed

implementable. ⊓⊔

This example is not unrealistic. It has been pointed out many times that even rational

agents can have cyclic preferences, at least when alternatives are evaluated in multiple

dimensions (Bar-Hillel and Margalit 1988; Manzini and Mariotti 2007; Tversky 1969).

In the next example, we show that the result of Example 1 does not crucially depend

on cyclicity.

Example 2 The environment is exactly as in Example 1, except that this time

C(x, y) = {x, y}, C(x, z) = {x} and C(y, z) = {y} for both C ∈ {C1, C
′
1}. We

interpret this as follows: Player 1 is indecisive between alternatives x and y, but the

presence of alternative z would make the player choose between them. For exactly the

same reason as before, SCC f should be implementable. Again, it is not implement-

able in GNE. Assume that a game form G = (S, g) implements f . Let s
∗ be a GNE

of the game Ŵ(C1, C2), such that g(s∗) = x. It is obvious, by condition (1), that s
∗

must be a GNE also in the game Ŵ(C′
1, C2). This cannot be. Hence, a game form that

implements f in GNE does not exist. ⊓⊔

There is a subtle difference between Examples 1 and 2 that will be explained in

due course. For the time being, notice that both examples have choice functions that

are not normal. These examples work as a motivation for the second generalization5

of Nash equilibrium.

4 The fact that there are only two players is not critical. We could simply add “dummy” players identical

to player 2.

5 Ray (2010) calls it a setwise Nash equilibrium.
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Definition 2 Strategy profile s
∗ ∈ S is a behavioral Nash equilibrium of Ŵ(C) if and

only if

g(s∗) ∈ Ci(g(s∗
−i, Si)) for all i ∈ I. (2)

In this definition, instead of making pairwise comparisons, players are now choos-

ing simultaneously from all the alternatives in the rows of a game. It has been known

since Hurwicz (1986) that the important results of Maskin (1977) on Nash implemen-

tation are still valid if we use GNE as the solution concept. Naturally, this requires, in

addition to the normality of choice functions as we have argued, that the conditions

known as Maskin-monotonicity and No Veto Power are generalized to a choice func-

tion setting.6 The main contribution of Hurwicz (1986) was to demonstrate that central

implementation results do not essentially depend on the assumption of complete and

transitive preferences, or in other words, on the rationality of behavior. This makes

perfect sense. There is nothing in the mechanism design approach that would crucially

depend on rationality per se. After all, the purpose is simply to design an institutional

setting that always leads to desired outcomes as a function of plausible behavior. Based

on this intuition, we are going to show that it is possible to characterize the set of SCCs

that are implementable in BehNE, and hence broaden the scope of implementation

theory even further.

4 A characterization of social choice correspondences implementable

in behavioral Nash equilibrium

The full characterization of Nash implementable SCCs, given in Moore and Repullo

(1990),7 is based on the existence of a certain class of sets. These sets are, in fact, rows

of a possible game form. The characterization places restrictions on the best alter-

natives in these sets. These are the alternatives, that a rational player would choose

from the row. This raises a natural question: If we impose the same restrictions on any

possible behavior, rational or not, does the result still hold true? This motivates us to

generalize Condition µ of Moore and Repullo (1990) as follows:

Condition (λ) . There is a set Y ⊆ X, and for each i ∈ I, C ∈ C and x ∈ f (C), there

is a set Ri(x, C) ⊆ Y with x ∈ Ci(Ri(x, C)), such that for all C
∗ ∈ C , the following

three conditions are satisfied:

(i) If x ∈
⋂

C
∗
i (Ri(x, C)), then x ∈ f (C∗).

(ii) If y ∈ C
∗
i (Ri(x, C))

⋂ [⋂
j -=i C

∗
j (Y )

]
for some i ∈ I , then y ∈ f (C∗).

(iii) If z ∈
⋂

i∈I C
∗
i (Y ), then z ∈ f (C∗).

6 SCC f satisfies Maskin-monotonicity, if for all C, C
′ ∈ C , such that x ∈ f (C), the following holds: If

x ∈ Ci (x, y) implies x ∈ C
′
i
(x, y) for all i ∈ I and all y ∈ X, then x ∈ f (C′). It satisfies No Veto Power,

if the following holds true for all subset I∗ of I that have either n or n − 1 players: If y ∈ Ci (y, z) for all

i ∈ I∗ and all z ∈ X, then y ∈ f (C). Remember that these properties together form a sufficient condition

for implementation (now in GNE), not a necessary one. How these properties should be generalized when

normality is not assumed can be found in Ray (2010).

7 This characterization was derived independently by Dutta and Sen (1991) in the two-player case.
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Items (i),(ii) and (iii) can be interpreted as follows: (i) Maskin-monotonicity,

(ii) No Veto Power and (iii) Unanimity. These properties have simply been gener-

alized by demanding that they hold in a suitable class of sets. The sufficiency of

Condition λ can be proved without any restrictions on the choice behavior in exactly

the same way as the sufficiency of Condition µ in Moore and Repullo (1990). It is the

necessity side that does not hold universally. In the original characterization of Moore

and Repullo (1990), the existence of the set Y is crucially dependent on the fact that

rational behavior allows for some degree of predictability. In their necessity proof, if

g: S → X implements f , then Y can be chosen as g(S) to satisfy (iii). Assume that x

is the best alternative in g(S) for all players under some preference profile. Then, the

strategy profile s ∈ S, such that g(s) = x, must be an equilibrium of g. This implies

that x must belong to the range of f under this preference profile as required by (iii).

For this reason, we have to assume something about the choice functions in
⋃

i∈I Ci

so that this still holds true. The next property, which is from Sen (1977), turns out to

be central.8

Property α For all A,B ⊆ X and all x ∈ X, if x ∈ A ⊆ B and x ∈ C(B), then it is

also true that x ∈ C(A).

Property α is concerned with keeping a chosen alternative x still choosable once

the set has been shrunk by dropping other alternatives. In other words, certain types of

framing are not allowed. The assumption is not completely harmless. Kahneman and

Tversky (1984), among others, have found that framing does happen in practice, and

by assuming Property α we will exclude some of these cases. Nonetheless, we have

the following two theorems.

Theorem 1 (Sufficiency) Let n ≥ 3. If SCC f satisfies Condition λ, then it is imple-

mentable in BehNE.

Proof A direct generalization of the proof in Moore and Repullo (1990). The proof is

given in the Appendix. ⊓⊔

Theorem 2 (Necessity) Let n ≥ 3 and assume that all choice functions in
⋃

i∈I Ci

satisfy Property α. If SCC f is implementable in BehNE, then it satisfies Condition λ.

Proof A simple generalization of the proof in Moore and Repullo (1990) with the help

of Property α. The proof is given in the appendix. ⊓⊔

The reason we need Property α in the necessity part is very simple. Suppose that

f is implementable by the game form G = (S, g). For any C ∈ C and x ∈ f (C),

let s
∗(x, C) be some BehNE of this game form, such that g(s∗(x, C)) = x. Choose Y

as the set g(S) of all alternatives used in the implementing game form and Ri(x, C)

as the set g(Si, s
∗
−i(x, C)) of all alternatives that player i can obtain by unilaterally

deviating from the BehNE s
∗(x, C). These sets must satisfy Condition λ when all

choice functions in
⋃

i∈I Ci satisfy Property α. For example, if x ∈
⋂

i∈I Ci(Y ) for

8 In the literature, this condition is also known as the Chernoff property, after Chernoff (1954), and inde-

pendence of irrelevant alternatives, used in Nash (1950), for example.
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some C ∈ C , then any strategy profile s ∈ S, such that g(s) = x, must be a BehNE

of the game Ŵ(C) by Property α. Hence, x ∈ f (C) must hold as required by (iii). A

similar argument applies in the case of (i) and (ii). A more detailed account is shown

in the appendix. Besides the obvious fact that Hurwicz (1986) gave only a partial

characterization, it is possible to express exactly the extent of the generalization that

we have made using well-known properties from the literature. Normality, which is

the implicit consistency requirement behind Definition 1 used by Hurwicz (1986), is

more demanding than Property α alone. Normality implies that Property α must hold,

but to guarantee that normality holds, we also need Property γ (Sen 1977).

Property γ For any M ⊆ 2X and x ∈ X, if x ∈ C(A) for all A ∈ M , then it is also

true that x ∈ C (∪M).

This property, then, identifies exactly the class of choice functions that Hurwicz

(1986) was unable to deal with. If Property γ does not hold for all choice functions

in
⋃

i∈I Ci , then some choice functions in the domain are not normal, and hence it is

not legitimate to use GNE as the solution concept. But if all choice functions in the

domain satisfy Property α, even though not Property γ , we can still use BehNE as the

solution concept and apply Theorem 2.

Property γ requires that alternative x, which is selected from smaller sets, must also

be selected from a larger set that makes all the alternatives in these sets possible at

once. Also this behavioral assumption excludes certain types of framing. The follow-

ing is an archetypal example of behavior, in an economic environment, that satisfies

Property α, although not Property γ .

Example 3 (A Rule of Thumb Behavior). LetX = {x1, . . . , xm}be the set of consump-

tion goods and let p1, . . . , pm be the associated prices. Assume p1 > p2 > · · · > pm

and define Ind(A) = {k | xk ∈ A} for all A ⊆ X. Denote k∗(A) = max{Ind(A)} and

use this to construct a choice function C by the rule

C(A) =

{{
xk∗(A), xk∗(A\{xk∗(A)})

}
, if | A |> 2,

A, if | A |≤ 2.

This choice function will select, from any set A ⊆ X, those two alternatives with

the highest index. In other words, the consumer will always select the two cheapest

goods when there are at least two goods available. If x ∈ C(A), so that x has the

highest or the second highest index in A, and x ∈ B ⊆ A, then x must obviously also

have the highest or second highest index in B, and hence x ∈ C(B). This means that

C satisfies Property α. However, it does not always satisfy Property γ . Assume that

m ≥ 3. Let A = {xm−2, xm} and B = {xm−2, xm−1}. By definition, xm−2 ∈ C(A)

and xm−2 ∈ C(B), while xm−2 /∈ C(A ∪ B) = {xm−1, xm}. Therefore, C does not

satisfy Property γ . ⊓⊔

Condition µ2 in Moore and Repullo (1990) can also be generalized to choice function

setting as follows:

Condition λ2 Condition λ is satisfied. Moreover, for each quadruple (x, C, y, C
′) ∈

X × C × X × C , with x ∈ f (C) and y ∈ f (C′), there is an alternative e =
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e(x, C, y, C
′) ∈ R1(x, C)

⋂
R2(y, C

′), such that for all C
∗ ∈ C , the following con-

dition is satisfied:

(iv) If e ∈ C
∗
1(R1(x, C))

⋂
C

∗
2(R2(y, C

′)), then e ∈ f (C∗).

As in the case n ≥ 3, we have the following two theorems:

Theorem 3 (Sufficiency) Let n = 2. If SCC f satisfies Condition λ2, then it is

implementable in BehNE.

Theorem 4 (Necessity) Let n = 2 and assume that all choice functions in
⋃

i∈I Ci

satisfy Property α. If SCC f is implementable in BehNE, then it satisfies Condition

λ2.

Proof Omitted as a simple generalizations of the proofs in Moore and Repullo

(1990). ⊓⊔

Whether these theorems are able to deal with the SCC in Examples 1 or 2 depends

crucially on the specification of the domain C . Assume that the choice function of

player 2 in these examples is normal. For the SCC in Example 2, Theorem 4 implies

that there must be a class of sets that satisfies Condition λ2 and by Theorem 3, this

is sufficient for implementability. For the SCC in Example 1, on the other hand, we

can never apply Theorem 4. The choice function of player 1 does not satisfy Prop-

erty α. Despite this, we may sometimes be able to verify implementability by using

Theorem 3. This will ultimately depend on the choice function of player 2.

Nothing that we have presented so far is sufficient to prove that the character-

ization of Moore and Repullo (1990) is no longer valid when Property α ceases to

hold. This property was simply used to guarantee that we can still continue to use the

same canonical mechanism as in the original work of Moore and Repullo (1990). But

another kind of canonical mechanism could, at least in principle, exist. The following

example verifies that once Property α does not hold, Condition λ2, or Condition λ for

that matter, is no longer necessary. In this example, the choice behavior of the other

player is determined by what Manzini and Mariotti (2007) call a rational shortlist

method (RSM). In RSM, an individual is sequentially applying different rationales,

asymmetric binary relations, until only one alternative remains. Formally, a single-

valued choice function C : 2X → X is an RSM whenever there are two (or more)

asymmetric binary relations P1, P2 ⊆ X × X, such that9

C(A) = max{max{A;P1};P2} for all A ⊆ X.

Notice that Lexicographic Preferences (Mas-Colell et al. 1995, p. 46) can be obtained

as a special case of RSM when the rationales are chosen in an appropriate way.

9 The operator max is defined as max{A;P } = {a ∈ A | cPa for no c ∈ A}. An interesting question for

future research is whether a similar characterization, as in Moore and Repullo (1990), can be given when all

choice functions in
⋃

i∈I Ci are RSMs (Property α would not hold). This could possibly be based on some

kind of augmented revelation mechanism, where each player is asked to announce both (or all) asymmetric

relations (P1, P2).
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Fig. 1 A game form that implements f

Example 4 10 Assume that X = {x, y, z} and I = {1, 2}. Player 1 has only one pos-

sible pattern of behavior. The player will act according to an RSM where the primary

rationale is P1 = {(z, x)} and the secondary rationale is P2 = {(x, y), (y, z)}. The

choice behavior that this RSM generates is C1(X) = {y}, C1(x, y) = {x}, C1(x, z) =

{z}, C1(y, z) = {y}, and hence it does not satisfy Property α. The choice of player 2,

on the other hand, may be generated by either a preference relation P2 = y ≻ z ≻ x

or by a preference relation P ′
2 = x ≻ z ≻ y. We will denote the corresponding choice

functions by C2 and C′
2 respectively. Now, let C = {C1} × {C2, C

′
2} and define a

SCC f by the rule f (C1, C2) = {x} and f (C1, C
′
2) = {x, z}. Condition λ, which

is necessary for Condition λ2 to hold, would suggest that f is not implementable in

BehNE, because it is impossible to find a set Y that satisfies (iii) of Condition λ. This

set should be either X = {x, y, z} or {x, z}, since it must include the range of f ,

that is f (C ) = {x, z} ⊆ Y , and neither one satisfies (iii) of Condition λ. To see this,

notice that C1(X) ∩ C2(X) = {y} /∈ f (C1, C2) and C1({x, z}) ∩ C2({x, z}) = {z} /∈

f (C1, C2). Still, f can be implemented in BehNE by the game form in Fig. 1.

The only BehNE of this game under C = (C1, C2) is s = (s1, s2), and, there are

two BehNE under C = (C1, C
′
2), s = (s1, s2) and s = (̂s1, ŝ2). ⊓⊔

5 Testing implementability

The usefulness of Condition µ in Moore and Repullo (1990), which is a bit unintu-

itive, was not truly established until the work of Sjöström (1991).11 His paper gave an

algorithm to test the condition in a constructive way. The algorithm is based on the

fact that one can construct a class of test sets that satisfy Condition µ exactly in case

SCC is implementable. Unfortunately, for a direct generalization of this algorithm

we would need both Property α and Property γ . That is, we would need normality. So

even though the characterization of Moore and Repullo (1990) requires only Property

10 Similar to Example 1, the fact that there are only two players is not critical. We could simply add

“dummy” players identical to player 1.

11 I am indebted to an anonymous referee for pointing out that the algorithm of Sjöström (1991) does not

necessarily work if we assume only Property α.
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α, efficient verification may sometimes also require Property γ . We will now explain

why. For the rest of this section, consider SCC f fixed.

Assume that all choice functions in
⋃

i∈I Ci satisfy Property α. If there is a profile

of choice functions C ∈ C , such that Ci(X) = x for all i ∈ I and x /∈ f (C), then x

cannot be used in any game form that implements f . In any game form g : S → X,

a strategy profile s ∈ S, such that g(s) = x, would be a bad BehNE by Property α.

Delete all such alternatives from X to obtain the set Y 1 ⊆ X. Since some alternatives

were deleted, there may now be new alternatives that cannot be used. This is why we

have to continue iteratively

Y 1 ⊇ Y 2 ⊇ Y 3, . . .

until Y∞ =
⋂

Ym is reached. Let us denote the limit set by Y ∗. This set always exists,

even though we may not be able to construct it algorithmically when X is infinite. If

we should have Y ∗ = ∅, then f is clearly not implementable.

Notice that the set Y ∗ satisfies item (iii) of Condition λ by construction. In the

algorithm of Sjöström (1991), Y ∗ is used as a test set for Y .12 An important thing to

note is that if Property α does not hold, then nothing guarantees that an alternative

x, unanimously chosen from X, is a bad BehNE in all game forms where it is used.

So, there is no a priori reason to delete it. In fact, there may no longer be a unique

maximal set Y ∗, in the sense of inclusion, that is unproblematic from a unanimity point

of view. To see this, note that when Property α does not hold, we may be able to delete

something other than x from X to guarantee that some player no longer chooses it.

Assume then, that all choice functions in
⋃

i∈I Ci satisfy Property γ . For all i ∈

I, C ∈ C and x ∈ f (C), let R 0
i (x, C) be the maximal subset of Y ∗, such that x ∈

Ci(R
0
i (x, C)). This is the most natural generalization of a lower contour set into

a choice function setting. If R 0
i (x, C) does not exist for some i ∈ I, C ∈ C and

x ∈ f (C), then f obviously cannot be implemented in BehNE. The next Lemma

verifies that this concept is well defined.

Lemma 1 Let C be a choice function that satisfies Property γ and assume that x ∈

A ⊆ X. The maximal subset B ⊆ A, such that x ∈ C(B), is unique whenever it exists.

Proof Notice first that since deadlocks are allowed, x need not be chosen from any

set. For the sake of contradiction, assume there are two maximal subsets B,B ′ ⊆ A,

such that x ∈ C(B) and x ∈ C(B ′). Since both B and B ′ are maximal, we cannot

have B ⊆ B ′ or B ′ ⊆ B. But Property γ implies that x ∈ C(B ∪ B ′) must be the

case, so neither B nor B ′ can in fact be maximal. This is a contradiction. Therefore,

the maximal subset from which an alternative is chosen must be unique whenever it

exists. ⊓⊔

If R0
i (x, C) together with Y ∗ do not satisfy item (ii) of Condition λ, then there must

be an alternative y ∈ R0
i (x, C) ⊆ Y ∗ and a profile of choice functions C

∗ ∈ C , such

that

12 See Condition λ.
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y ∈ C
∗
i (R

0
i (x, C))

⋂

⋂

j -=i

C
∗
j (Y )


 and y /∈ f (C∗).

Delete all such alternatives from R 0
i (x, C) to obtain the set R 1

i (x, C). Since some

alternatives were deleted, there may now be new alternatives that do not satisfy item (ii)

of Condition λ. Again, we have to continue iteratively

R 0
i (x, C) ⊇ R 1

i (x, C) ⊇ R 2
i (x, C), . . .

until R ∞
i (x, C) =

⋂
Rm

i (x, C) is reached. Let us denote the limit set by R∗
i (x, C).

In the algorithm of Sjöström (1991), this set is used as a test set for Ri(x, C). As in

the case of Y ∗, if Property γ does not hold, we may have several different candidates

for R 0
i (x, C)—as should be obvious by the Lemma above. The observations in this

section gives us the following theorem.

Theorem 5 Assume that every choice function in
⋃

i∈I Ci satisfies Property α and

Property γ . That is, all choice functions in the domain are normal. Assume that n ≥ 3

and x ∈ R∗
i (x, C) for all i ∈ I, C ∈ C and x ∈ f (C). An SCC f is implementable in

BehNE if and only if the choice Y = Y ∗ and Ri(x, C) = R∗
i (x, C) for all i ∈ I, C ∈ C

and x ∈ f (C) satisfies Condition λ.

Proof 13 Notice first that the sets Y ∗ and R∗
i (x, C) will satisfy items (ii) and (iii) of

Condition λ by construction. Furthermore, and again simply by construction, these

are the maximal sets that can satisfy them. But then, if these sets do not satisfy item

(i) of Condition λ, no subset of them can do so by Property α either. This verifies our

claim. ⊓⊔

It is important to understand that the verification of Condition λ is not difficult if X

is finite. We can simply use direct search, that is, we can try all possible combinations

of sets. The main point is that if all choice functions in the domain are normal, then

we can construct one class of test sets that satisfy Condition λ exactly in case SCC

f is implementable in BehNE. This is what makes the algorithm of Sjöström (1991)

so efficient. In contrast, when normality does not hold, whether because Property α

does not hold or because Property γ does not hold, there may no longer be only one

class of test sets. As we have seen, several sets can be chosen as Y ∗ or R∗
i (x, C).

Since Condition λ ties these sets together, we have to test all possible combinations.

This will rapidly expand the number of classes we have to run through and make the

algorithm much more inefficient.

6 Concluding remarks

We have shown that the results of implementation theory do not require the assumption

of rationality per se. Rather, what is important, is that the assumption of rationality

13 Notice that Property γ is used only implicitly in this proof to guarantee that there is a unique set we can

choose as R∗
i
(x, C).
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render certain types of framing impossible (Property α does not hold). However, if

we do not assume full rationality, then the verification of the characterizing condition

may sometimes be more challenging.

It should not come as a surprise that some form of regularity in behavior is needed if

results originally designed to hold when all players are fully rational are generalized.

Still, it is an important topic for future research to find out what can be implemented

when this regularity—Property α—does not hold. The behavior that we observe in

reality does not always satisfy this property, an interesting example being the RSM of

Manzini and Mariotti (2007). In RSM, an individual is sequentially applying different

rationales until only one alternative remains—a heuristic that we all use, consciously or

unconsciously, in multi-criteria decision making. But we would need a new canonical

mechanism to give a characterization that does not use Property α. The character-

ization of Moore and Repullo (1990) is based on the fact that one can construct an

implementing game form by using the class of sets in Condition λ. We learned in

Example 4 that this cannot necessarily be done if Property α does not hold.

As a final point we want to stress that there is nothing wrong in the result of Hurwicz

(1986). If players behave according to GNE, then so be it. This is as good behavioral

assumption as any. The main idea was to demonstrate that there is a more general solu-

tion concept, that of BehNE, which can be applied to a wider class of implementation

problems. This follows directly from the fact that BehNE coincides with GNE if all

choice functions in the domain of a SCC are normal.

Appendix

Proof of Theorem 1 (Sufficiency) Let the strategy set of player i be

Si = {(C, x, y, n) ∈ C × X × Y × N | x ∈ f (C)},

and, define the mechanism g: S → X by the following three mutually exhaustive

rules:

(1) If there is a strategy (C, x, y, n) ∈ C × X × Y × N, such that si = (C, x, y, n)

for all i ∈ I , then g(s) = x.

(2) If there is a strategy (C, x, y, n) ∈ C × X × Y × N and a player i ∈ I , such that

sj = (C, x, y, n) for all j -= i and si = (C′, x′, y′, n′) -= (C, x, y, n), then

g(s) =

{
y′ if y′ ∈ Ri(x, C),

x otherwise.

(3) If neither (1) nor (2) applies, and the strategy of player i is denoted by si =

(Ci, xi, yi, ni), then g(s) = yk for k = min{j ∈ I | nj ≥ ni for all i ∈ I }.14

We shall prove the claim by showing that f (C) = {g(s) | s ∈ BehNE [Ŵ(C)]} for

all C ∈ C . First, we verify that f (C) ⊆ {g(s) | s ∈ BehNE [Ŵ(C)]} for all C ∈ C .

14 The index selection method is simply a tie breaking rule.
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Let x ∈ f (C) and consider the strategy profile s ∈ S, such that si = (C, x, x, 0) for

all i ∈ I . By the definition of g player i can obtain exactly the set Ri(x, C) through a

unilateral deviation from the strategy profile s. This strategy profile is then a BehNE

of the game Ŵ(C) and g(s) = x. Since this holds for all C ∈ C and x ∈ f (C), we

have established the claim.

Second, we will verify that
{
g(s) | s ∈ BehNE

[
Ŵ(C∗)

]}
⊆ f (C∗) for all C

∗ ∈

C .15 Pick s ∈ BehNE
[
Ŵ(C∗)

]
. There are three cases to consider, as the BehNE can

come from any one of cases (1), (2) or (3). If (1) applies, and C
∗ is the true profile

of choice functions, then g(s) = x ∈
⋂

i∈I C
∗
i (Ri(x, C)), so that g(s) ∈ f (C∗) by

item (i) of Condition λ as required. If (2) applies, and C
∗ is the true profile of choice

functions, then g(s) ∈ C
∗
i (Ri(x, C))

⋂ [⋂
j -=i C

∗
j (Y )

]
for some player i,16 so that

g(s) ∈ f (C∗) by item (ii) of Condition λ as required. Finally, if (3) applies, and C
∗ is

the true profile of choice functions, then g(s) ∈
⋂

i∈I C
∗
i (Y ),17 so that g(s) ∈ f (C∗)

by item (iii) of Condition λ. Since this holds for all s ∈ BehNE
[
Ŵ(C∗)

]
, no matter

which one of cases (1), (2) or (3) gives rise to the BehNE, we have established the

claim. This completes the proof of sufficiency. ⊓⊔

Proof of Theorem 2 (Necessity) Assume that SCC f is implemented in BehNE by

the game form G = (S, g). First, define the set Y by the rule

Y ≡ {x ∈ X | x = g(s) for some s ∈ S}.

Second, choose a profile of choice functions C ∈ C and an outcome x ∈ f (C). Take

any behavioral Nash equilibrium s(x, C) of the game Ŵ(C), such that g(s(x, C)) = x.

Let Ri(x, C) be the set of all alternatives that player i can obtain by unilaterally

deviating from s(x, C), that is

Ri(x, C) ≡ {y ∈ Y | y = g(si, s(x, C)−i) for some si ∈ Si}.

We will prove that these sets satisfy items (i),(ii) and (iii) of Condition λ as a direct

consequence of the fact that G implements f in BehNE. Assume that the left side of

implication in (i) is satisfied, that is, all players i choose x from the set Ri(x, C) when

the true profile of choice functions is C
∗. By definition, s(x, C) is then also BehNE in

the game Ŵ(C∗). Since f is implemented by the game form G, this implies x ∈ f (C∗)

as required in (i). Assume then, that the left side of the implication in (ii) is satisfied. By

definition, there is a strategy si ∈ Si , such that y = g(si, s(x, C)−i). Since alternative

y is the choice from Y by all players j ∈ I \ {i}, strategy profile (si, s(x, C)−i) must

be a BehNE of the game Ŵ(C∗) by Property α. This implies y ∈ f (C∗), as required

in (ii). Finally, assume that the left side of the implication in (iii) holds. Now, there

must be a strategy profile s ∈ S, such that z = g(s). Again, by Property α, this strategy

15 We are here using C
∗ instead of C because we have to make a distinction between the true profile of

choice functions and the choice functions that are given as part of the strategies.

16 Every player j -= i could unilaterally deviate to any alternative in Y by announcing a high enough

integer.

17 In this case, every player can deviate to any alternative in Y .
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profile must be a BehNE of the game Ŵ(C∗), and so we have z ∈ f (C∗) as required

in (iii).18 This completes the proof of necessity. ⊓⊔
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Abstract

The revelation principle is the foundation stone of mechanism de-

sign. This principle states that the search for incentive compatible

mechanisms can be restricted in the set of direct mechanisms without

loss of generality. In this paper we ask: What are the minimal assump-

tions on behavior for the revelation principle to still work? It turns

out that a well-known property, called Property α, is central.

JEL Classification: D03, D71, D78

Keywords: Property α; Revelation Principle; Truthful Implementa-

tion

1. INTRODUCTION

The revelation principle forms the foundation of mechanism design by con-

siderably simplifying the search for incentive compatible mechanisms (see

Dasgupta et al., 1979; Harris and Townsend, 1981; and Myerson, 1979, for

example). This principle states that, assuming truthful implementation is

considered satisfactory, one can focus on direct mechanisms only. That is,

∗E-mail: ville.korpela@utu.fi.
†Many thanks to Hannu Vartiainen for useful discussions.
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one can restrict attention in the set of mechanisms that simply ask individ-

uals to truthfully reveal their type.

Recently, there has been a growing trend in implementation literature to

incorporate more behavioral assumption into the theory (see Matsushima,

2008a; and Matsushima, 2008b, for example). Since the revelation principle

was originally formulated in a fully rational environment,1 it is important to

find out the exact behavioral boundaries for this central principle of mech-

anism design. If it turns out that revelation principle does not hold for the

most natural types of individual behavior, then a lot more attention has to

be paid towards indirect mechanisms in the future.

This topic has been previously studied by Saran (2011) in the case of Bayesian-

Nash equilibrium. In contrast to Saran, our purpose is to solve the question

for dominant strategy equilibrium. Even though there are some parallels

between implementation in Bayesian-Nash equilibrium and implementation

in dominant strategy equilibrium, the latter being a robust version of the

former (see Bergemann and Morris, 2005), the case of dominant strategy

equilibrium still demands a treatment of its own for at least two reasons.

First, dominat strategy equilibrium is the most natural solution concept

used in a mechanism design problem, and second, the results are much more

transparent, an hence easier to understand. Moreover, it is not immediate

that the connection between these two implementation forms remain when

rationality is not assumed, even though the central position of Property α

in both papers suggest that it does.

The rest of this short paper is organized as follows. In Sect. 2 we fix notation

and define basic concepts. We also present the framework of Hurwicz (1986)

for incorporating more behavioral assumption into implementation theory.

Sect. 3 contains all the main results. We show that a well-known property,

called Property α, is a necessary and sufficient condition for the revelation

principle to work when no reference is made to the social choice function (a

1By rationality we mean that choice behavior is generated by a complete and transitive

preference relation.
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condition imposed only upon the domain of behavior). We give also a general

characterization, which is a simple generalization of strategy-proofness that

we dub behavioral strategy-proofness. Sect. 4 concludes.

2. NOTATION AND PRELIMINARIES

Let I = {1, . . . , n} be the set of agents and A the set of (social) alternatives.2

A typical element of I is denoted by i and a typical element of A is denoted

by a, b or c, and so forth. A choice function is a mapping C : 2A \ ∅ → 2A,

such that C(B) ⊆ B for all B ∈ 2A\∅.3 The case C(B) = ∅ is not precluded.

We interpret this by saying that an agent refuses to make any choice at all,

that is, there is a deadlock. A choice function C is generated by the complete

and transitive binary relation R ⊆ A × A if and only if

C(B) = {a ∈ B | a R b for all b ∈ B} for all B ∈ 2A.

If C is generated by R, then we simply write C = R.4 A few well-known

properties of choice functions are needed.

Property α : For all B, D ⊆ A, if a ∈ B ⊆ D and a ∈ C(D), then it

must also be true that a ∈ C(B).

Property β : For all B, D ⊆ A, if a, b ∈ C(B), B ⊆ D and b ∈ C(D),

then it must also be true that a ∈ C(D).

Basically, Property α states that a chosen alternative a must still be choos-

able when the choice set is reduced by dropping other alternatives. Property

β, on the other hand, states that if two alternatives a and b are “inseparable”

in a smaller set, then these alternatives cannot be “separated” in any larger

choice set either. Both of these axioms are consistency requirements, and

taken together, they imply that choice behavior is rationalizable.5 In a sense,

2We do not rule out the case n = 1.
32A is the power set of A, that is, 2A = {B | B ⊆ A}.
4With a little abuse of notation
5Choice function C is rationalizable when a complete and transitive binary relation

exists that generates it. See Kreps (1988) and Sen (1977), and the references given there,

for a full treatment.
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then, rationality can be interpreted as a very strict form of consistency in

behavior.

The set of all possible choice functions over A is denoted by CA. A Social

Choice Correspondence (SCC) is any correspondence f : C ։ A, such that

C ⊆ ×
i∈I

Ci and Ci ⊆ CA for all i ∈ I. If f is in fact a function, then we call it

a Social Choice Function (SCF) and denote f : C → A. We interpret this by

saying that social choice is based on behavioral patterns. A typical element

of C is denoted by C and the choice function of agent i, in this profile, by

Ci. As usual, C−i denotes a profile of choice functions that specifies a choice

function for all agents except i. If all choice functions that are admissible

are generated by a complete and transitive binary relation (the standard

implementation setting), then we simply write CA = RA, Ci = Ri, C = R,

C = R and C−i = R−i respectively. Finally, for any function q : X → Y and

any set Z ⊆ X, we use the standard convention q(Z) = {q(z) | z ∈ Z} ⊆ Y .

A tuple G = (S, g), where S = S1×·· ·×Sn is the set of strategy profiles and

g : S → A is the outcome function, is called a mechanism. We sometimes

identify the mechanism by giving only the outcome function g. For a fixed

profile of preference relations R = (R1, . . . , Rn), this mechanism defines a

game Γ (R) = (G;R). Strategy profile s is a dominant strategy equilibrium

of this game if and only if g(si, ŝ−i)Ri g(ŝ) for all ŝ ∈ S and all i ∈ I.

The set of all dominant strategy equilibria of the game Γ (R) is denoted

by DSE
[
Γ (R)

]
⊆ S. We say that mechanism g implements an SCC f in

dominant strategies if

g
(
DSE

[
Γ (R )

])
= f(R) for all R ∈ R. (1)

That is, if the outcomes of dominant strategy equilibria coincide exactly

with the SCC f . If a mechanism that implements f in dominant strategies

exists, then we say that f is dominant strategy implementable. A mechanism

h, that has the set of preferences as the set of strategies (Si = Ri), is called

a direct mechanism. If

[
R ∈ DSE

[
G(h;R)

]
and h(R) ∈ f(R)

]
for all R ∈ R, (2)
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then we say that h implements f truthfully.6 Note that all dominant strategy

equilibria of h do not have to coincide with f , only the truth-telling one.

3. MAIN RESULT

To get started, we state and prove the influential Revelation Principle. Our

proof follows closely that given in Dasgupta et al. (1979).7 Notice that if

the designer of a social choice mechanism is willing to implement the SCC

f , then to be consistent with the idea that all alternatives in the range of f

are socially acceptable, the designer should also be willing to implement any

selection from f . That is, the designer should be willing to implement any

function s : R → A, such that s(R) ∈ f(R) for all R ∈ R. The fact that

SCC f is implementable does not, of course, imply that all selections from

it are implementable. We are only saying that if some selection would be

implementable, then it should not make any difference whether the designer

implements the SCC f or the selection from it.

Theorem 1 (The Revelation Principle). If SCC f : R ։ A is imple-

mentable in dominant strategies, then at least one selection from it is im-

plementable truthfully.

REMARK I. Truthful implementation is satisfactory when truth-telling is a

focal strategy. If one cannot gain anything by lying, it might be reasonable

to assume that one does not.8

Proof. Let G = (S, g) be a mechanism that implements f in dominant

strategies and let s∗ : R → S be a selection that associates every preference

profile R ∈ R with some dominant strategy equilibrium of the mechansim

G. That is, s∗(R) ∈ DSE
[
Γ (R )

]
for all R ∈ R. Since dominant strategies

of agent i do not depend on the strategies chosen by others, there must exist

at least one selection that satisfies s∗(R) = (s∗
i
(Ri), s

∗
−i

(R−i)) for all R ∈ R

and all i ∈ I. Use this selection to define a direct mechanism h : R → A by

6In this case, h is sometimes called straightforward.
7See also Repullo (1985).
8Recent experimental results indicate that truth-telling is not always focal (see Saijo,

2005, for example).
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the rule:

h(R) = g(s∗(R)) for all R ∈ R.

It is sufficient to show that h implements f truthfully. To this end, fix

R ∈ R and i ∈ I. By the definition of dominant strategy equilibrium we

have

g(s∗i (Ri), s
∗
−i(R

′
−i))Rig(s∗i (R

′
i), s

∗
−i(R

′
−i)) for all R

′ ∈ R,

which, by the definition of h, can be re-written as

h(Ri,R
′
−i)Rih(R′

i,R
′
−i) for all R

′ ∈ R.

This completes the proof, since truth-telling is a dominant strategy equilib-

rium of h. "

To formulate the Revelation Principle in a more general behavioral setting,

we must first generalize the idea of dominant strategy equilibrium. Notice

that a mechanism G = (S, g) will define a game Γ (C ) also for a fixed profile

of choice functions C = (C1, . . . , Cn). The specification of choice functions

will tell us how agents act when they face any row of the mechanism.

Definition 1. Strategy profile s is a Strong Behavioral Equilibrium (SBE)

of the game Γ (C ), induced by the mechanism G = (S, g), if and only if

g(si, s
′
−i) ∈ Ci(g(Si, s

′
−i)) for all s′−i ∈ S−i and all i ∈ I.

This definition is a straightforward generalization of the idea behind domi-

nant strategy equilibrium: Agent i is willing to play the strategy si despite

the strategies chosen by others. Both implementation formulas of section

2, formula (1) and (2), can be directly generalized for this solution concept

(set DSE=SBE, R = C and R = C). The main result of this paper can

now be stated, and follows below.

Theorem 2. Assume that all choice functions in
⋃

i∈I
Ci satisfy Property

α. If SCC f : C ։ A is implementable in SBE, then at least one selection

from it is implementable truthfully.
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REMARK II. If all choice functions in
⋃

i∈I
Ci are rationalizable, then we

are back to Theorem 1. Here, we do not assume Property β, only Property

α.9

Proof. Let G = (S, g) be a mechanism that implements f in SBE and let s∗ :

C → A be a selection that associates every profile of choice functions C ∈ C

with some SBE of the mechanism G. That is, s∗(C) ∈ SBE
[
Γ (C )

]
for all

C ∈ C . For the same reason as in the case of dominant strategies, there

must be at least one selection that satisfies s∗(Ci,C−i) = (s∗
i
(Ci), s

∗
−i

(C−i))

for all C ∈ C and all i ∈ I. Use this selection to define a direct mechanism

h : C → A by the rule:

h(C) = g(s∗(C)) for all C ∈ C .

Again, it is sufficient to show that h implements f truthfully. So fix C ∈ C

and i ∈ I. By the definition of SBE we have

g(s∗i (Ci), s−i) ∈ Ci(g(Si, s−i)) for all s−i ∈ S−i and all i ∈ I.

Since g(s∗
i
(Ci), s−i) ⊆ g(Si, s−i) for all s−i ∈ S−i, and since Ci satisfies

Property α by assumption, this implies that for all i ∈ I we must have

g(s∗i (Ci), s
∗
−i(C

′
−i)) ∈ Ci(g(s∗i (Ci), s

∗
−i(C

′
−i))) for all C ′

−i ∈ C−i,

which, by the definition of h, can be re-written as

h(Ci,C
′
−i) ∈ Ci(h(Ci,C

′
−i)) for all C ′

−i ∈ C−i.

This completes the proof, since truth-telling is an SBE of h. "

In the next example we show that when Property α does not hold, Revelation

Principle may not hold either. The second example is an application of

Theorem 2.

9Deadlocks are now allowed as long as Property α holds. Notice how this comes about

in the proof. If mechanism G = (S, g) implements f in SBE, then deadlocks cannot occur

when any agent is choosing from any row by Definition 1, so deadlocks cannot occur in

mechanism h either by Property α.
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Example 1 (Seller Choosing a Product Variety). Let us assume that a seller

has three products to offer for a potential customer, that is A = {a, b, c}.

Moreover, let us denote the profit from a sale of a, b and c by π(a), π(b)

and π(c) respectively, and the price to customers by p(a), p(b) and p(c)

respectively. Assume that, for whatever reason, we have

π(b) > π(a) > π(c), but p(a) > p(b) > p(c).

Furthermore, assume that there are two types of customer, so that C =

C1 = {C1, C2}. These customers act according to the following rule of

thumb: If the seller has only one product to offer, then both types refuse

to buy and go elsewhere. Formally, if B ∈ 2A is a singleton, then C1(B) =

C2(B) = ∅ . If more than one product is offered, then type one customer

will buy the second-most cheap and type two customer will buy the second-

most expensive. Notice that neither C1 nor C2 satisfies Property α. The

seller would obviously want to implement a sales function S : C → A,

such that S(C1) = S(C2) = b. This would maximize her profit. This sales

function is implementable in SBE. Simply, offer a product variety {a, b, c}

and let both types of customer self-select. Every customer will then select

product b and the seller will maximize the profit by keeping a product variety

containing items that are never actually bought. Still, no direct mechanism

can implement S truthfully. The range of a direct mechanism would be {b},

suggesting that this should be the product variety of the seller. But then,

all customers would go elsewhere.10 #

Example 2 (Voting Rule). Let I = {1, 2, 3}, A = {a, b, c} and C = PA ×

PA × {C}. Here PA is the set of all linear orderings over A and we define

choice function C by the rule: C({a, b}) = a, C({b, c}) = b, C({a, c}) = c

and C({a, b, c}) = ∅. Choice function C satisfies Property α and we interpret

it by saying that agent 3 cannot decide which alternative, a, b or c, is the

best. Let m(P ) be the best alternative with respect to P ∈ PA. Define a

10The fact that we allow deadlocks is not critical for this example. Notice that deadlocks

can be interpreted here as a participation constraint.
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voting rule f : C → A by the following condition:

f(P1, P2, C) =





m(P1), if m(P1) = m(P2),

C ({m(P1), m(P2)}) , otherwise.

That is, an alternative is selected if agent 1 and agent 2 are unanimous,

otherwise agent 3 decides. This voting rule cannot be truthfully implemented

in SBE. Hence, it cannot be implemented in SBE by any indirect mechanism

either, according to Theorem 2. To see this, let P1 = a ≻ b ≻ c and

P2 = c ≻ b ≻ a. Since agent 3 will choose b or c from any set of two

alternatives that contain c, we have f(PA, P2, C) = {b, c}. On the other

hand f(P1, P2, C) = c, so that truth-telling is not an SBE of G = (f,C )

under the choice function profile C = (P1, P2, C). #

It must be emphasized that Example 1 does not in any way prove that

Property α is necessary for the Revelation Principle to work. In fact, the

Revelation Principle generally holds due to a specific connection between

the domain of all admissible profiles of choice functions C and the SCC

f : C ։ A. The following definition gives us the exact boundaries of the

Revelation Principle.

Definition 2. An SCF f : C → A is behaviorally strategy-proof if and only

if

f(C) ∈ Ci(f(Ci,C−i)) for all i ∈ I and all C ∈ C .

It should be obvious that the Revelation Principle will hold for a given SCC

if and only if at least one selection from it is behaviorally strategy-proof.

Note that behavioral strategy-proofness is not a necessary condition for an

SCC to be implementable in SBE.11. On the other hand, Revelation Prin-

ciple applies in the standard rational environment simply because strategy-

proofness is a necessary condition for dominant strategy implementation.12

Therefore, the implementation approach based on choice functions has a gap

11Example 1 verifies this when deadlocks are allowed. A similar example without dead-

locks could easily be given.
12See Dasgupta et al. (1979) or Repullo (1985). For a lengthier introduction to strategy-

proofness, see Barberà (2001).
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between full implementation and truthful implementation. Something that

we do not see in the standard rational environment.

However, our goal was to find a condition that allow us to use only direct

mechanisms, without any reference to the SCC. Example 1 established that

this condition is Property α by showing that the Revelation Principle may

not hold when Property α does not hold. Of course, whether it does or not,

depends on the SCC.

4. CONCLUDING COMMENTS

It has become evident that menu-dependence is a part of human behavior

(see Manzini and Mariotti, 2007; and Rubinstein and Salant, 2008, for ex-

ample). The fact that an item is selected from the menu M = {a1, . . . , am},

does not necessarily imply that it will be selected from every sub-menu

M ′ ⊂ M that contains it. And yet, this is exactly the kind of behavior

that we have to rule out (by assuming Property α) to guarantee that the

revelation principle still works. Otherwise, mechanism design problems are

bound to get much harder.

It appears, then, that a lot more attention has to be paid to indirect mecha-

nisms in the future. This is an almost entirely unexplored territory. Indeed,

we do not even have a clear picture about the SCCs that are important in

environments that exhibit menu-dependence. It might be that behavioral

strategy-proofness is a predominant property of these SCCs. However, all

of these question are well beyond the scope of this paper, and therefore left

for future research.
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