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Abstract 

Humans are profoundly changing aquatic environments through climate 
change and the release of nutrients and chemicals. To understand the effects 
of these changes on natural populations, knowledge on individuals’ 
environmental responses is needed. At the molecular level, the 
environmental responses are partly mediated by chances in messenger RNA 
and protein levels. In this thesis I study messenger RNA and protein 
responses to an assortment of environmental stressors in fish. As daily (diel) 
rhythms are known to be ubiquitous in different tissues, I particularly focus 
on diel patterns in the responses. The studied species are the three-spined 
stickleback (Gasterosteus aculeatus L.) and the Arctic char (Salvelinus alpinus 
L.), both of which have circumpolar distribution in the Northern hemisphere. 

In the first two studies, three-spined sticklebacks were exposed to both the 
non-steroidal anti-inflammatory drug diclofenac and low-oxygen conditions 
(hypoxia), and their responses measured at separate time points in the liver 
and gills. The results show how the seemingly unrelated environmental 
stressors, hypoxia and anti-inflammatory drugs, can have harmful combined 
effects that differ from the effects of each stressor alone. Moreover, both 
stressors disturbed natural diel patterns in gene expression. 

In the third study, I studied the responses of three-spined sticklebacks to two 
test chemicals: one used in hormonal medicine (17α-ethinyl-oestradiol) and 
one used as a plasticizer and solvent chemical (di-n-butyl phthalate). The 
results suggest that the phthalate can affect genes related to spermatogenesis 
in fish testes, while estrogen-mimicking compounds can lead to numerous 
disturbances in the endocrine system.  

In the final study, the temperature-dependence of diel rhythms in messenger 
RNA levels were evaluated in the liver tissue of the Arctic char, a cold-
adapted salmonid. The results show that cold acclimation repressed diel 
rhythms in gene expression compared to warm-acclimated fish, in which the 
expression of hundreds of genes was rhythmic, suggesting the circadian clock 
of the Arctic fish species can be sensitive to temperature. Overall, the results 
of the thesis indicate that fishes’ responses to abiotic factors interact with 
their diel rhythms, and more studies on the consequences of these 
interactions are needed to comprehensively understand human impacts on 
ecosystems.  
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Tiivistelmä 

Ihmistoiminnan tuottamat kasvihuonekaasut sekä kemikaali- ja ravinne-
päästöt muuttavat ympäristöä voimakkaasti. Muutosten vaikutusten 
ymmärtämiseksi tarvitsemme tietoa eri lajien ympäristövasteista. Molekyyli-
tasolla vasteita säätelevät proteiinit, joiden määrä soluissa on osin riippu-
vainen tuotetun lähetti-RNA:n määrästä. Tässä väitöskirjassa käsittelen eri 
ympäristömuutosten vaikutuksia kaloihin lähetti-RNA:n määrän ja 
entsyymiaktiivisuuden tasolla eri kudoksissa. Vuorokausirytmien tiedetään 
säätelevän monien geenien ilmenemistä, joten keskityin etenkin ajalliseen 
vaihteluun kalojen ympäristövasteissa. Tutkitut kalalajit olivat lauhkeaan 
ilmastoon sopeutunut kolmipiikki (Gasterosteus aculeatus L.) ja arktisiin 
olosuhteisiin sopeutunut nieriä (Salvelinus alpinus L.). Kummatkin lajit elävät 
laajoilla alueilla pohjoisella pallonpuoliskolla.  

Kahdessa ensimmäisessä työssä testasin kolmipiikkien vasteita jätevesissä 
esiintyvälle tulehduskipulääke diklofenaakille ja vähähappisille olosuhteille 
(hypoksialle). Maksa- ja kiduskudoksista saadut tulokset osoittavat hypok-
sialla ja diklofenaakilla olevan mahdollisesti haitallisia yhteisvaikutuksia 
kaloihin, ja että kiduksissa ja maksassa tapahtuvat muutokset voivat olla 
erisuuntaisia. Sekä diklofenaakin että hypoksian havaittiin myös muuttavan 
entsyymien luontaista päivärytmiä. 

Kolmannessa osatyössä tutkin kolmipiikkien vasteita kahdelle hormoni-
toimintaa häiritseville yhdisteelle, keinotekoiselle estradiolille sekä muovi-
yhdisteissä käytetylle dibutyyliftalaatille. Havaitsin ftalaatin vaikuttavan 
siittiöiden toimintaa säätelevien geenien luentaan ja estradiolin estävän 
useiden steroidihormonien tuotantoa säätelevien geenien ilmenemistä 
kalojen sukuelimissä.  

Viimeisessä osatyössä tutkin lämpenemisen vaikutuksia geeniluennan 
päivärytmiin lohikaloihin kuuluvalla nieriällä. Tulokset osoittivat, että 
korkeassa lämpötilassa nieriän geenien luenta vaihteli voimakkaasti päivän 
aikana, mutta viileässä lämpötilassa vaihtelu oli huomaamatonta, mikä 
viittaa siihen, että arktisten kalojen biologinen kello voi olla herkkä 
lämpötilamuutoksille. Kokonaisuudessaan väitöskirjan tulokset osoittavat, 
että meidän on vaikea ennustaa ympäristömuutosten yhteisvaikutuksia 
luonnon populaatioihin, jos emme ymmärrä ympäristövasteiden ja bio-
logisten rytmien vuorovaikutuksia.  
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1. Introduction 

Organisms are constantly interacting with their environment. As the 
environment changes, populations respond by adapting to the novel 
conditions, altering their habitat range, migrating, increasing or decreasing in 
size or by going locally extinct. Population-scale responses are the outcome of 
physiological responses of individuals. Direct genetic effects and plasticity in 
the phenotype, which is partially regulated by epigenetic mechanisms, 
influence individual responses and fitness. Fitness differences among 
individuals in a population attributed to genetic variation result in 
evolutionary changes in genotype frequencies over generations. Thus, 
historical environmental conditions have shaped the tolerance of extant 
species to variation in abiotic environmental conditions (Bijlsma and 
Loeschcke 2005), such as temperature, oxygen availability and pH. Since the 
global changes create novel environments different to those experienced by 
extant species during their evolutionary history (Hobbs et al. 2006, Williams 
et al. 2007), it is now more important than ever to understand the physiological 
mechanisms by which organisms respond to various stressors and their limits. 

Since the industrial revolution, human impact on the environment has 
increased rapidly, to the extent that the on-going era, characterized by 
human domination on Earth, has been informally named as the 
Anthropocene (Zalasiewicz et al. 2010). Recent climate change, caused 
largely by the increasing release of carbon dioxide and other greenhouse 
gases to the atmosphere, is accelerating and has effects on ecosystems, sea 
level, agriculture and human livelihood around the planet (IPCC, 2014). 
Increased human and domestic animal populations and decreased carbon 
dioxide consumption by autotrophic organisms both contribute to the 
change, which encompasses global warming and several other climatic 
phenomena and the associated ocean acidification (Harley et al. 2006, 
Trenberth 2011). The negatively affected species are predicted to be those 
whose habitat is currently limited by temperature or other abiotic and biotic 
factors now being altered by climate change (Hannah et al. 2007, Rahel et al. 
2008), but also those in which evolutionary stasis prevents adaptation of key 
traits necessary for survival (Reusch and Wood 2007). Generally, the most 
threatening combination for populations arises from habitat fragmentation 
combined with the rapid climate change (Travis 2003). 

Global warming is projected to increase the surface temperature of the Earth 
by approximately 1.5−4 °C during the 21st century, with the most rapid 
increase occurring in the Arctic (IPCC, 2014). Warming is driving changes in 
the spatial distribution or phenology of species by changing habitat 
characteristics (Parmesan and Yohe 2003). In aquatic environments, a rise in 
temperature decreases oxygen availability, which further decreases survival 
in cold-adapted species already challenged by high temperatures. An 
additional decrease in oxygen availability can be induced by the release of 
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large quantities of nutrients from agriculture and wastewater. In a warm 
environment, the nutrients are rapidly bound to biomass. The decomposition 
of large amounts of biomass consumes more oxygen than is provided by 
diffusion and photosynthesis, leading to environmental oxygen shortage 
(hypoxia) or a total lack of oxygen (anoxia).  

In high latitudes, hypoxia caused by decomposing biomass is especially 
pronounced in the late summer, whereas in the winter ice cover prohibits 
oxygen from dissolving from the atmosphere, causing a sustained, long-term 
hypoxia or anoxia. In addition, circadian (from circa -about, diem -day) 
variation in oxygen availability during the growth season can be significant 
in eutrophic aquatic systems in temperate regions and the tropics (Nikinmaa 
and Rees 2005). During the day, when sunlight is available, photosynthesis 
by primary producers maintains normal oxygen levels (normoxia), or creates 
an excess of oxygen (hyperoxia). During the night, photosynthesis ceases, 
while all organisms in the ecosystems continue to consume oxygen, which 
rapidly leads to decreased oxygen levels. In addition, ecosystems in several 
marine coastal areas are at risk due to a more permanent hypoxia, caused by 
a stratification of the water column (Helly and Levin 2004).  

Coinciding with recent climate change, humans have introduced thousands 
of chemicals to the environment, a fraction of which have been studied for 
risks related to sub-lethal effects in the ecosystems. In developed countries, 
exposure to low levels of low-persistence chemicals, including 
pharmaceuticals and personal-care products, is considered as the least 
understood environmental risk by chemicals (Daughton and Ternes 1999). 
Many of these substances, together with plastics, are nearly ubiquitously 
present in aquatic environments around the world (Andrady 2011, Corcoran 
2015). 

In the environment, organisms are faced with multiple abiotic changes 
simultaneously, and their responses to the factors are not isolated. For 
example, hypoxia and warm acclimation have species-specific effects on the 
tolerance to each stressor in salmonids (Anttila et al. 2015), exposure to heat 
stress can protect fish from osmotic stress in tidal pools (Todgham et al. 
2005) and the co-effects of hypoxia and pollutants can be additive, 
synergistic or inhibitory compared to exposures to single stressors (Matson 
et al. 2008, Celander 2011, Gauthier et al. 2014, Song et al. 2014, Sappal et al. 
2015). Hence, the acclimation abilities of aquatic species are under pressure 
by the constant release of chemicals, increasing temperatures and frequent 
hypoxia. To understand why unrelated environmental stressors can have so-
called cocktail effects on organisms, we must tease apart the factors that 
determine how genes and proteins interact at the lowest level of complexity 
(Fig. 1). This knowledge can help understand how entire populations and 
species are affected by the current environmental changes. 
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Figure 1. The levels of biological complexity from molecular to organismal level. 
Complexity increases from left to right, and often our understanding of how a multitude 
of simple responses generate the complex processes, such as disrupted reproduction by 
pollutants, is limited. Modified from Heath (1995). 

1.1. Genomic regulation of protein function 

Environmental responses of organisms are mediated by changes in protein 
activity and abundance. Proteins make up most of the structures of 
organisms and carry out all the biological functions by acting as, e.g., 
hormones, transcription factors and receptors that respond to changes in 
environmental conditions to adjust behavior and the synthesis and 
degradation of molecules in tissues. The deoxyribonucleic acid (DNA) 
sequence mainly determines the amino acid sequence of a protein, but 
specific enzymes can change individual amino acids in the protein sequence 
by editing the mRNA before translation (Garrett and Rosenthal, 2012). In the 
protein the elements that define its function are called domains. For 
environmental responses, a domain called Period-Arnt-Sim (PAS) is 
particularly important, since the key transcription factors involved in 
circadian rhythms and the cellular responses to hypoxia and chemical 
detoxification all contain PAS domains (McIntosh et al. 2010). PAS domains 
allow these proteins to recognize each other and facilitate the formation of 
specific protein homo- and heterodimers, which is a necessary step in target 
gene activation for many environmentally relevant PAS proteins (Möglich et 
al. 2009).  

Proteins are produced in a multi-step process called gene expression (Fig. 2). 
In the first step, messenger ribonucleic acid (mRNA) is transcribed from the 
DNA template by RNA polymerase enzymes. Next, ribosomes combine single 
amino acids carried by transfer-RNAs into a polypeptide during translation. 
The abundance of mRNAs and the rate of translation are regarded as the most 
important determinants of the abundance of a protein in cells, and recent 
studies have shown mRNA level to explain approximately 40% − 86% of 
variation in protein abundance (Schwanhaeusser et al. 2011, Li et al. 2014, 
Csardi et al. 2015). The rate of translation can be attenuated globally through 
the phosphorylation of eukaryotic initiation factor 2α, while the availability 
of mRNA for translation is regulated by multiple global and gene-specific 
mechanisms (Sonenberg and Hinnebusch, 2007). Notably, the relationship 
between mRNA and protein is also species- and protein-specific; for example 
different species of salmonids respond to heat stress by increasing both the 
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mRNA and protein abundance or only the mRNA abundance of heat shock 
proteins (Mario Lewis, personal communication).  

Different non-protein-coding RNAs affect the availability of mRNA for 
translation. These include micro-RNAs, which are on average only 22 base 
pairs (bp) in length, and the so-called long non-coding RNAs (lnc-RNAs), 
which can be hundreds of bp long. Micro-RNAs silence the expression of 
target genes by affecting mRNA stability and inhibiting the translation of 
mRNA to protein (Valencia-Sanchez et al. 2006, Guo et al. 2010), while lnc-
RNAs can facilitate epigenetic modifications of DNA and premature 
termination of transcription or modify protein activity directly (Mercer et al. 
2009, Kornfeld and Bruening 2014). Alternative folding of the translated 
peptides and the degradation of proteins is used as another level of 
regulation of gene expression. The process of generating a functional protein 
product based on DNA sequence is called gene expression, although the term 
is frequently used in reference to the expression of mRNA. 

 
Figure 2. Illustration of the stages in gene expression from DNA to the final protein 
product. The quantity of each intermediate product is affected by the rate of the 
preceding process as well as the factors depicted in the orange boxes.  

In environmental physiology, the abundance of proteins or the intermediate 
products of gene expression, such as mRNA, are often measured to gain an 
insight into the molecular regulators of environmental responses and their 
differentiation among populations (Schulte 2004, Larsen et al. 2011, Rees et 
al. 2011). The methods for quantifying protein and RNA abundances have 
advanced tremendously in the past few decades due to the introduction of 
mass-spectrometry-based methods for protein quantification, and 
microarray and Next Generation Sequencing (NGS) -based methods for 
quantifying different types of RNA (Bowtell 1999, Aebersold and Mann 2003, 
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Wang et al. 2009). With microarray and RNA-sequencing technologies it has 
become possible to quantify mRNAs at the whole genome level. At the 
individual gene level, quantitative real-time polymerase chain reaction 
(qPCR) is widely used to quantify the abundance of individual mRNA 
sequences (Bustin et al. 2005), and the costs of this method are a fraction of 
the genome-wide technologies. In contrast to measuring RNA abundance, 
measuring protein activity, the rate at which enzymes perform, can only be 
performed using “low-throughput” methodology, i.e., by measuring each 
enzyme activity individually from a tissue homogenate. Only by this method 
can protein performance, i.e., its function, be estimated (Nikinmaa and 
Rytkönen 2012). Combining both low-throughput (e.g, fluorescence 
spectrophotometry and qPCR) and high-throughput (e.g, NGS- and 
microarray-based) methods can be regarded as a comprehensive method for 
studying the dynamics involved in the process of gene expression.  

Despite the rapid advances taken at understanding molecular environmental 
responses between and within populations, temporal variability in gene 
expression introduced by endogenous time-keeping mechanisms is still 
poorly known. Disturbances in adaptive, temporal gene expression patterns 
may introduce a new level of costs that are not considered in many 
environmental physiology and toxicology studies. In addition, overlooking 
this variation can have implications for the repeatability and generality of 
observations made under constant conditions. 

1.2. Circadian rhythms in vertebrates 

Circadian rhythms are 24-h cycles in physiology and behavior followed by 
nearly all species on Earth –across all domains from Eukarya and Bacteria to 
Archaea (Lowrey and Takahashi 2004, Whitehead et al 2009). Circadian 
rhythms are expressed in one of the oldest life forms on our planet, the 
cyanobacteria, suggesting an ancient origin for biological rhythms (Ditty et 
al. 2003). Within the animal kingdom, circadian rhythms originate from a 
time before the previous common ancestor of mammals and insects, as 
shown by the similarities in the circadian systems between these lineages 
(Rosbash 2009). 

The advantage that has allowed circadian rhythms to spread so widely in 
different species is that they allow organisms to anticipate rhythmic changes 
in their environments, such as temperature and light, thus optimizing their 
energy use by the timing of metabolism and behavior. For example, cell cycle, 
DNA repair, immunity and the secretion of several hormones are in part 
controlled by circadian rhythms (Plytycz and Seljelid 1997, Falcon et al. 2011, 
Challet 2015). Many rhythmic processes are regulated by the hormone 
melatonin, which in many vertebrate taxa is secreted from the pineal gland 
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and regulated by the central circadian clock via noradrenergic signaling 
(Simonneaux and Ribelayga 2003, Falcon et al. 2011).  

The central clock, which is located in the suprachiasmatic nucleus of the 
hypothalamus in mammals, and in the pineal gland in fish, acts as a master 
regulator of the rhythms in other tissues, referred to as the peripheral 
rhythms or “slave oscillators” (Reppert and Weaver 2002, Idda et al. 2012). 
The central clock responds to environmental zeitgebers (time-givers), the 
most potent of which is the light dark rhythm (Reppert and Weaver 2002). 
To allow for a tissue-specific, coordinated timing of different metabolic and 
catabolic reactions, different tissues obey their own endogenous circadian 
rhythms (Lowrey and Takahashi 2004).  

 The transcriptional engine of the circadian clock is similar in the central and 
peripheral clocks, and highly conserved in vertebrates. It can be simplified 
into two feedback loops (Fig. 3): a positive loop, involving the proteins CLOCK 
and cycle (CYC, previously brain-and-muscle-arntl-like, BMAL), and a 
negative loop, including the proteins cryptochrome (CRY) and period (PER), 
all of which are present in two or more different gene copies in vertebrates 
(Lowrey and Takahashi 2004, McIntosh et al. 2010). In the positive loop, the 
constitutively expressed CLOCK and CYC dimerize and bind to E-box 
elements in DNA, thereby regulating the expression of a variety of genes, 
including Per and Cry. In the negative loop, the PER and CRY proteins 
dimerize, and as they increase in abundance, inhibit the activation of the 
CLOCK-CYC-complex, and consequently their own expression, which 
ultimately allows the positive loop to reinitiate the rhythm (Lowrey and 
Takahashi 2004, McIntosh et al. 2010).  

Circadian oscillators in teleost fish are largely homologous to those in 
mammals, but the number of genes in each component varies across species. 
The genome of teleost fish went through a whole-genome duplication event 
approximately 330-400 Million years ago (Mya) (Hoegg et al. 2004), after 
which the lineages of at least salmonids and cyprinids have experienced 
additional genome duplications, approximately 100 and 10 Mya, respectively 
(Danzmann et al. 2008, Ma et al. 2014, Macqueen and Johnston 2014). An 
analysis on the diversification rate of the clock gene paralogs has found that 
most have gone through significant diversification or have been under relaxed 
purifying selection since the genome duplications, suggesting the encoded 
proteins may have diversified roles in circadian clock regulation (Wang 2008a, 
b, 2009). However, the precise roles of circadian clock gene paralogs in teleost 
fish are relatively well understood only in zebrafish (Vatine et al. 2011). 
Scattered evidence exists regarding the clock components’ expression in other 
species, including goldfish (Carassius auratus), Atlantic salmon (Salmo salar) 
and European seabass (Dicentrarchus labrax) (Velarde et al. 2009, Huang et al. 
2010, Feliciano et al. 2011, McStay et al. 2014). A few genetic studies have 
identified the clock gene as a putative regulator of spawning time and 
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migration, as well as having different alleles across a latitudinal gradient in 
salmonids (Leder et al. 2006, O'Malley and Banks 2008, O'Malley et al. 2014). 
Thus, circadian clock genes appear to be essential for the timing of not only 
circadian rhythms, but also seasonality in fish. 

 
Figure 3. Schematic illustration of the feedback loops regulating circadian gene 
expression in vertebrates. Constitutively expressed CLOCK dimerizes with CYC in the 
nucleus, and binds to E-box elements in the promoter regions of per, cry and clock-
controlled genes (CGGs). PER and CRY dimerize in the cytoplasm and the dimer 
translocates to the nucleus. The accumulation of PER-CRY dimer is partly controlled by 
ubiquitination and degradation of the proteins. In the nucleus, PER and CRY inhibit the 
activity of CLOCK-CYC dimer, eventually allowing the transcriptional cycle to restart. CYC 
expression is also modified by a third transcriptional loop including the proteins ROR-α 
and REV-ERBα (not shown). Modified from Mohawk et al. (2012). 

1.3. Molecular responses to hypoxia 

The aerobic mode of glucose metabolism is preferred to anaerobic 
metabolism by most organisms, since the adenosine triphosphate (ATP) yield 
of anaerobic respiration is only about 6% of the ATP produced aerobically. 
Nevertheless, when oxygen is not available to meet the needs of aerobic ATP 
production, several mechanisms have evolved to facilitate survival in short-
and long-term hypoxic challenges. Besides avoiding environments where 
oxygen demand is not met, reducing oxygen consumption is one of the most 
important strategies for survival during hypoxia and anoxia. It can be 
observed in fish as reduced activity and feeding and, in the long-term, 
disrupted growth (Breitburg 2002).  

From mammals to fish, one transcription factor has been described as a 
master regulator of hypoxia acclimation: the hypoxia-inducible factor 1 (HIF-
1) (Semenza and Wang 1992, Soitamo et al. 2001, Semenza 2004). The 
regulation of HIF-1 is a well-known process. The subunits of HIF-1 are named 
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HIF-1α and aryl hydrocarbon nuclear translocator (ARNT, previously known 
as HIF-1β) (Fig. 4).  

 
Figure 4. Schematic presentation of HIF-1a regulation under hypoxic and normoxic 
conditions. In normoxia, constitutively expressed HIF-1α is hydroxylated by factor-inhibiting-
HIF (FIH) and proline hydroxylase 2 (PHD), followed by ubiquitination and degradation by 
proteasomal complex. In hypoxia, HIF-1α is stabilized by a process including heat shock 
protein 90 (HSP90) (although the precise mechanism is not well known) and transported to 
the nucleus, where it dimerizes with ARNT, forming the active HIF-1 complex. HIF-1 binds to 
DNA in hypoxia-response elements (HREs) upstream from the coding regions of target genes 
and activates gene expression. Modified from McIntosh et al. (2010). 
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estimates of the number of hypoxia-regulated genes (Chowdhury et al. 2008, 
Ortiz-Barahona et al. 2010). Among the most thoroughly studied HIF-1 target 
genes are erythropoietin, vascular endothelial growth factor and lactate 
dehydrogenase, which generate acclimation to hypoxia at the systemic, tissue 
and cellular levels (Semenza 2004, Nikinmaa and Rees 2005). These genes 
encode proteins that increase the number of red blood cells in circulation, the 
growth of blood vessels and the conversion of pyruvate to lactate in 
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is expanding, and more targets are being identified using high-throughput 
methods and studying responses in different species, life-stages and tissues.  

Recently, molecular interactions have been described between HIF-1 and one 
of the circadian clock components, PER1 in zebrafish (Egg et al. 2013). Both 
hif-1α mRNA and protein accumulation were shown to depend on the timing 
of hypoxia exposure in zebrafish, while HIF-1 was also shown to regulate 
oscillation in per1 mRNA (Egg et al. 2013, Pelster and Egg 2015). These 
results suggest firstly that HIF-1 accumulation can be under circadian 
regulation, and secondly that exposure to hypoxia can disrupt the amplitude 
or rhythm of circadian clock gene expression. Yet, little is known of the 
natural circadian variation in enzymes and proteins associated to hypoxia 
response in fish adapted to seasonal habitats. 

1.4. Reactive oxygen species in environmental responses 

Reactive oxygen species (ROS), including hydrogen peroxide H2O2, 
superoxide anion O2•- and others, have recently emerged as a set of cellular 
signaling molecules. They can be produced in several enzyme reactions, and 
are also released in small amounts from the electron transport chain in 
mitochondria during aerobic respiration (Valko et al. 2007). As a signal of the 
metabolic state of cell, ROS level is used in the integration of metabolism and 
other cellular processes, such as circadian rhythms (Rutter et al. 2002, Edgar 
et al. 2012) and immunity (Zhou et al. 2015). When produced in excess, ROS 
cause oxidative stress, which can have negative effects on the integrity of cell 
membranes and proteins (Valko et al. 2007). Thus, ROS are both essential 
and harmful to cellular homeostasis (Dröge 2002). Cells are equipped to 
counter-balance the production of ROS to prevent oxidative damage and 
maintain redox homeostasis by using enzymatic and non-enzymatic 
antioxidants, which catalyze the conversion of ROS to molecular oxygen O2 
via different pathways. 

The main antioxidant enzymes are highly conserved across taxa, and include 
superoxide dismutase (SOD), catalase (CAT) and several enzymes that 
maintain the redox status of glutathione, such as glutathione peroxidase 
(GPx). Glutathione is a tripeptide that is used as the main antioxidant in the 
cytosol and mitochondria and as a cofactor of the GpX enzyme (Valko et al. 
2007). SOD enzymes convert the superoxide anion to hydrogen peroxide 
(Deby and Goutier 1990), which is thereafter converted to water by CAT 
enzymes and GPx, which is more sensitive to H2O2 than CAT (Deby and 
Goutier 1990, Mates 2000, Limon-Pacheco and Gonsebatt 2009). The activity 
of antioxidant enzymes can be measured by spectrophotometry, and an 
increase in their activity usually indicates an increase in ROS levels, which is 
a signal of oxidative stress (Lushchak 2011). 
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The association of ROS and hypoxia has been under intense research since 
the mid-1990s. ROS has been shown to increase during the re-oxygenation 
period after hypoxia exposure (Bickler and Buck 2007). Since some fish were 
found to increase antioxidant enzyme activity during hypoxia, this was 
interpreted as an anticipatory response to re-oxygenation, as hypoxia is 
generally expected to decrease ROS. However, this response was found to be 
largely tissue-specific (Lushchak et al. 2005, Lushchak and Bagnyukova 
2006, Lushchak 2011). Recently, it was proposed that ROS formation induces 
antioxidant enzyme activities at a specific oxygen level during the early 
stages of hypoxia, prior to anoxia and similarly during re-oxygenation, and 
that the critical oxygen level is species and tissue-dependent (Hermes-Lima 
et al. 2015). Variation in the critical oxygen level at which ROS formation is 
increased could explain why no consistent changes in antioxidant activities 
were found in many studies on moderately to highly hypoxia tolerant species, 
e.g., (Lushchak et al. 2005, Lushchak and Bagnyukova 2006, Leveelahti et al. 
2014, Hermes-Lima et al. 2015). 

During hypoxia, antioxidants can help maintain a reducing environment in 
the cytoplasm, which is important for the stability of several transcription 
factors, including HIF-1α (Nikinmaa et al. 2004, Trachootham et al. 2008). 
Pollutants can also lead to increased ROS and have effects on cellular 
reduced/oxidized (redox) status (Lushchak 2011), which can in turn affect 
the responses of organisms to hypoxia (Nikinmaa et al. 2004). Furthermore, 
cellular redox status has been linked to circadian rhythm signaling; they do 
share their evolutionary history ever since the Great Oxygenation Event, 
approximately 2.5 billion years ago (Milev and Reddy 2015). Circadian 
rhythms in metabolism generate oscillations in the cellular redox status, 
which can be sensed and adjusted by core circadian clock genes (Milev and 
Reddy 2015). Even though circadian rhythms have been described for some 
antioxidants in rodents (Belanger et al. 1991, NeuschwanderTetri and Rozin 
1996), we know very little of the relationship between antioxidant enzymes 
and the circadian oscillation in ROS during normoxic and hypoxic conditions 
in other species. Nevertheless, due to the numerous connections between 
circadian rhythms, redox status and environmental responses, it is clear that 
a delicate control in generation and elimination of ROS is essential for 
organisms. 

1.5. Micropollutants in aquatic environments and their effects 
on fish 

Aquatic ecosystems collect traces of all chemicals that can be dissolved in 
water or bound to particles carried in effluent water, agricultural run-off or 
rainfall. Fish are susceptible to pollutants, as dissolved compounds can enter 
their circulation through gills, skin or ingested food. The detoxification 
mechanisms in different tissues of fish are efficient in removing lipophilic 



 Introduction 19 

 

compounds, and different enzymatic and non-enzymatic repair mechanisms 
and antioxidants aim to minimize adverse effects on tissue function and 
homeostasis. Despite these efforts, negative effects on tissue function, 
reproduction and behavior, as well as increased cancer incidence have been 
reported in wild populations of fish in polluted areas (Vos et al. 2000, 
Vethaak et al. 2009, Floehr et al. 2015). Furthermore, aquatic pollution can 
be a driver of natural selection in the wild; long-term effects of pollution have 
been associated with falling trout population sizes in Lake Ontario (Cook et 
al. 2003), and populations of killifish (Fundulus heteroclitus) show adaptation 
to polluted environments in their DNA sequence and gene expression levels 
(Williams and Oleksiak 2008, Whitehead et al. 2010). 

Micropollutants is a term that encompasses a wide range of emerging 
pollutants that are found in the environment in low, nanogram to microgram 
per L concentrations (Luo et al. 2014). These are usually compounds that are 
used as pharmaceuticals, plasticizers, insecticides or personal care products. 
Pharmaceuticals are transmitted into the environment through 
inappropriate disposal and urine, as our bodies generally metabolize roughly 
only 50% of pharmaceuticals before excretion (Lienert et al. 2007). Where 
available, wastewater treatment plants remove varying amounts of 
pharmaceuticals from the incoming water, and flooding events and heavy 
rainfall can further weaken the removal (Daughton and Ternes 1999). 
Consequently, a high number of pharmaceutical substances have been 
detected in both wastewater effluent and surface waters, (e.g., Tixier et al. 
(2003), Loos et al. (2013) and Kleywegt et al. (2011)). To make 
environmental risks worse, pharmaceuticals have been designed to target 
specific biological pathways in very low concentrations and be resistant to 
biological degradation —both of which are desired qualities for a therapeutic 
agent, but can increase the risk of harmful effects in non-target species 
(Daughton and Ternes 1999). 

Non-steroidal anti-inflammatory drugs (NSAIDs) are some of the most 
frequently encountered pharmaceuticals in wastewater effluent. Their use 
for human veterinary care is increasingly common around the world. Among 
the most commonly consumed NSAIDs are ibuprofen, acetaminophen and 
diclofenac (Luo et al. 2014). Of these, diclofenac has raised the most concern 
regarding environmental effects, since it has been shown to accumulate in 
the bile of wild fish and have histopathological effects at low, 1−5 μg/L 
concentrations in rainbow trout and brown trout (Salmo trutta fario) 
(Schwaiger et al. 2004, Triebskorn et al. 2004, Hoeger et al. 2005, Brozinski 
et al. 2013). In 2013, The European Union (EU) selected diclofenac as one of 
the watch list substances to be potentially included in the water framework 
directive with the goal of preventing harmful effects in aquatic wildlife 
(Ribeiro et al. 2015). Diclofenac has been frequently measured in wastewater 
effluent at approximately 1-μg/L concentrations (Scheurell et al. 2009, 
Stasinakis et al. 2012, Luo et al. 2014). 
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Oxidative stress can contribute to the toxicity of NSAIDs in humans (Amacher 
2006), and recently increased oxidative damage and activities of antioxidant 
enzymes after diclofenac exposure were described in the common carp 
(Cyprinus carpio) (Saucedo-Vence et al. 2015). Another study has shown 
effects on hepatic cytochrome P450 1A (cyp1a) and cyclooxygenase (cox, a.k.a 
prostaglandin-endoperoxide synthase), transcription by diclofenac in rainbow 
trout (Mehinto et al. 2010). CYP1A is a mixed function oxidase enzyme that 
detoxifies dioxin- and polycyclic aromatic hydrocarbon-like compounds 
(Celander 2011). Its expression is transcriptionally regulated via the aryl 
hydrocarbon receptor (AHR), which is a member of the PAS-protein family 
(Schmidt and Bradfield 1996). Cox1 and cox2 are inhibited by most NSAIDs, 
leading to decreased prostaglandin synthesis, which decreases inflammation 
and pain. 

A number of micropollutants can affect the hormonal system of non-target 
species acting as endocrine disrupters. For instance, xeno-estrogens can 
induce feminization in male fish through estrogen receptors (Laenge et al. 
2001, Van den Belt et al. 2001, Rajapakse et al. 2002, Grist et al. 2003, Balch 
et al. 2004), while anti-androgens, including several plasticizers and solvents, 
can induce feminization by inhibiting androgen receptor activity and 
testosterone synthesis (Kelce and Wilson 1997, Shultz et al. 2001). One of the 
most widespread xeno-estrogens in the environment is 17α ethinyl-
oestradiol (EE2), which has been widely used in hormonal contraceptives. In 
fish, the no-observed-effect concentrations (NOEC) for chronic EE2 exposure 
are as low as 1 ng/L (Länge et al. 2001, Grist et al. 2003). The most common 
physiological effects of EE2 include inhibition of testosterone-producing 
enzymes and decreased levels of testosterone (Martyniuk et al. 2006, Filby et 
al. 2007, Garcia-Reyero et al. 2009, Reyhanian et al. 2011, Doyle et al. 2013). 
EE2 and other natural and synthetic estrogens have repeatedly been 
measured in WWTP effluent around the world at several ng/L concentrations 
(Ternes et al. 1999, Martin et al. 2012, Eugenia Valdes et al. 2015). 

Phthalate esters are widely used plasticizers and solvents in cosmetics and 
other consumer products (Berge et al. 2013). Severe endocrine effects by 
phthalates have been reported in rats (van den Driesche et al. 2012) and 
indication of anti-androgenicity by di-n-butyl phthalate (DBP) has been 
described in three-spined sticklebacks (Aoki et al. 2011). However, the 
mechanisms behind the anti-androgenic effects of DBP are not understood 
(Mankidy et al. 2013). Different phthalates, mostly di-2-ethylhexyl phthalate 
and DBP, have been frequently found in wastewater effluent, sludge, soil, 
sediments and surface waters, at up to several microgram per liter 
concentrations (Fromme et al. 2002, Roslev et al. 2007, Berge et al. 2013, 
Benjamin et al. 2015).  

In addition to direct effects through detoxification and endocrine disruption, 
xenobiotics can have indirect effects on organisms through disturbances in 
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circadian rhythms or responses to other stressors. Biomedical studies have 
revealed that circadian rhythms have major effects on drug metabolism in 
humans, and vice versa, that certain drugs can disturb circadian oscillators 
(Claudel et al. 2007). In mangrove killifish (Kryptolebias marmoratus), 
circadian clock gene mRNA levels were disrupted by exposure to endocrine 
disrupting chemicals (Rhee et al. 2014). Likewise, co-exposures to pollutants 
and hypoxia were shown to induce distinct effects on oxidative damage and 
antioxidant enzymes compared to single exposures in pacu (Piaractus 
mesopotamicus) and orange-spotted grouper (Epinephelus coioides) 
(Sampaio et al. 2008, Yu et al. 2008). No studies thus far have simultaneously 
addressed the potential interactions of hypoxia responses, chemical 
detoxification and the circadian clock in fish, which is a major gap in our 
understanding of dynamics behind environmental responses in aquatic 
species. 

1.6. The interrelationship of temperature and light at high 
latitudes 

At high latitudes, seasonal changes in temperature are coupled to variation 
in the light-dark cycle. In the polar regions, the light-dark cycle is 
undetectable for approximately one third of the year, but many species in 
these habitats have persistent circadian rhythms despite the lack of 
environmental cues (Williams et al. 2015). Others, instead, lose observable 
circadian rhythms in activity or circadian clock gene expression during the 
polar day (Lu et al. 2010, Kobelkova et al. 2015, Williams et al. 2015). During 
fall and spring, the light-dark rhythm acts as a cue for seasonal changes in 
ambient temperature, which affects for example food abundance and, for 
ectotherms, also metabolic rate (Clarke and Johnston 1999). Climate change 
is now creating a mismatch between the observed day-length and anticipated 
temperature, which poses a challenge for survival in species living in highly 
seasonal habitats (Stevenson et al. 2015). For species adapted to cold, the 
challenge is inflated with the negative effects related to facing temperatures 
at their upper temperature limits (Somero 2010, Stevenson et al. 2015). 

Fish are characterized as eurythermal or stenothermal based on whether 
they tolerate large or narrow variations in temperature (Logan and Buckley 
2015). Eurythermal fish respond to changes in ambient temperatures with a 
multitude of physiological responses ranging from cardiac output to 
transcriptional regulation (see, e.g., Lee et al. 2003, Franklin et al. 2007, Smith 
et al. 2013, Anttila et al. 2014 and Schulte 2015). In cold-adapted 
stenothermal fish from polar regions, temperature responses can be distinct 
from eurythermal fish (Logan and Buckley 2015). For instance, Antarctic fish 
express heat-shock proteins constitutively, possibly to cope with severe cold 
(Hofmann et al. 2000, Place et al. 2004). It is therefore urgent to understand 
how and which processes show variation in response to temperature and 
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light rhythm in species adapted to seasonal environments. Particularly Arctic 
fish require research on this front, as little is known of the physiology behind 
their seasonality, yet the climate is warming especially rapidly in their 
habitat (Jørgensen and Johnsen 2014, Marshall et al. 2014). Fortunately, with 
novel genomics tools, unraveling the molecular components behind thermal 
acclimation as well as circadian and seasonal rhythms is finally becoming 
achievable. 

1.7. Study species 

The group of teleost fish (Teleostei) is the largest group in the class ray-
finned fishes (Actinopterygii), and the most species-rich vertebrate group 
with roughly 27 000 species (Nelson, 2006). Many teleost species are farmed 
for human food production or used as models for developmental and 
evolutionary biology. The three-spined stickleback (Gasterosteus aculeatus 
L.) is a small teleost fish from the family Gasterosteidae, distributed around 
the Northern Hemisphere (Fig. 5). It has experienced repeated adaptive 
radiations from the saline environment to fresh water, as several populations 
were confined to lakes following the retracting ice after the last glaciation ca. 
10 000 years ago. Sticklebacks have become a model for behavioral ecology 
and genetics (Wund et al. 2015), ecotoxicology (Andersson et al. 2010, 
Katsiadaki et al. 2010) and evolutionary genetics (Viitaniemi and Leder 2011, 
Leinonen et al. 2012, McCairns and Bernatchez 2012), and their genome was 
sequenced by the BROAD institute in 2007. The success of the stickleback as 
a model species for several research fields has also been facilitated by the 
ease of maintaining and breeding them in laboratory conditions and being 
able to catch the fish from different habitats. Moreover, three-spined 
stickleback is a great model species for ecotoxicologists due to its annual 
breeding cycle, similar to the majority of teleost fish in human-impacted 
habitats.  

The Arctic char (Salvelinus alpinus L.) is a cold-adapted salmonid and the 
world’s northernmost freshwater species (Fig. 5). Its preferred temperatures 
are in the range of 10−12°C (Jensen et al. 2014, Siikavuopio et al. 2014). As 
with the stickleback, the Arctic char are found in diverged life-history 
(anadromous, resident) and morphological forms (Skoglund et al. 2015). Its 
distribution is circumpolar, but confined to the Arctic, with the exception of 
few land-locked populations found south of the Arctic Circle. Many of the lake 
populations have become extremely endangered. In Vuoksi water system in 
Eastern Finland the Arctic char was present in almost a 4500 km2 area at the 
end of the 19th century, but presently viable stocks remain only in a 79 km2 
area (Hyytinen et al. 2006). The cold and seasonal habitat of the Arctic char 
explains its higher hypoxia tolerance but lower temperature tolerance 
compared to the Atlantic salmon (Anttila et al. 2015). The adaptive radiation 
of Arctic char to various cold environments makes it an interesting target for 
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research on the potential adaptations of Arctic species during the 
accelerating climate warming in the next decades.  

Figure 5. Study species, three-spined stickleback (left, photo by Oskari Härmä) and Arctic 
char (right, photo courtesy of Natural Resources Institute Finland (Luke)). 
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1.8. Aims of the thesis 

This thesis aims at characterizing environmental responses in fish from the 
levels of individual enzymes to the transcriptome as a whole, in order to 
better understand the effects of on-going environmental changes on natural 
populations. The questions I ask in each study are the following: 

I. How do metabolic responses to hypoxia and diclofenac interact in the 
liver? How do circadian rhythms affect the metabolic responses? How 
do hypoxia and diclofenac affect circadian clock genes? 

II. Is diel variation observed in antioxidant enzyme activities? How do 
antioxidant responses to diclofenac and hypoxia interact in the gills? 

III. Which genes and predicted pathways does DBP affect in the testes? 
Are the responses to a xeno-estrogen and DBP similar? 

IV. How does temperature affect diel rhythms in transcription in Arctic 
char liver? Which genes are robustly affected by temperature?  
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2. Material and Methods 

2.1. Fish husbandry and experimental design 

2.1.1. Studies I and II 

Three-spined sticklebacks were caught using nets from the freshwater 
stream Ottersbek in Hamburg, Germany (53.576°N, 9.965°E) in October, 
2012. Hence, the age, sex and disease prevalence in the fish was unknown. 
Fish were acclimated to laboratory conditions (temperature 10°C, light:dark 
12:12) for one month prior to the experiment and fed once daily with frozen 
bloodworms at the start of the light period. 

After acclimation period, the fish were exposed to sodium salt of diclofenac 
and hypoxia alone or in combination. The exposure level for diclofenac was 
selected based on previous reports of wastewater effluent and surface water 
levels and studies focusing on biomarker responses, and was set to 1 µg/L, 
while the hypoxia exposure level was set to a relatively severe 2.0 ± 0.2 mg/L 
level, which corresponds to approximately 10 % of atmospheric oxygen level. 
A previous study has shown a northern Baltic Sea population of three-spined 
sticklebacks to be moderately sensitive to hypoxia with pronounced effects 
at approximately 24 % air-saturation level (Leveelahti et al. 2011).  

The duration of diclofenac exposure was 14 d. On the last day of diclofenac 
exposure, half of the diclofenac-exposed fish were additionally exposed to 
hypoxia. A separate group of fish was also exposed to hypoxia without 
previous diclofenac exposure. During the hypoxia exposures and the last day 
of diclofenac exposure, nine fish from each treatment were sampled at three 
time points: 6, 11 and 24 hours after the onset of light period (indicated by 
ZT6, ZT11 and ZT24). Simultaneously, six fish from no-treatment control 
tanks were sampled at each time point. The liver and gill tissues were divided 
in half, and one half of each was stored in RNAlater for gene expression 
analyses, and the other half snap frozen on dry ice for the enzyme assays. 

2.1.2. Study III 

Nine-month-old laboratory-reared three-spined sticklebacks were 
maintained in 10 L tanks, 10 individuals (mixed sex) per tank (18 ± 1°C, L:D 
12:12). Fish had been bred in the laboratory over 13 generations, eliminating 
environmental complications such as unknown chemical exposures or 
disease presence. The fish were exposed to two endocrine disrupters, EE2 
and DBP, at single nominal concentrations of 40 ng/L for EE2 and 35 µg/L for 
DBP. The concentrations were selected at the high-end of reported 
environmental concentrations for two reasons: first, to be confident that the 
EE2 level would be high enough to cause inhibition of steroidogenesis during 
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the four-day exposure, and second, to use a concentration where previous 
studies had shown potential anti-androgenic effects by DBP in fish. Each 
compound was diluted using 0.08 mg/L dimethyl sulfoxide (DMSO), hence, 
as the control group we used a solvent control group exposed only to the 
same level of DMSO as the treatments. After the four-day exposure, fish were 
anesthetized, measured, weighed, sexed, and their gonads dissected and snap 
frozen in liquid nitrogen. The experiment took place at Cefas laboratory, 
Weymouth, UK, in January 2013. The fish were not in reproductive state 
during the experiment.  

2.1.3. Study IV 

Arctic char juveniles (1 year-old) were collected from the aquaculture facility 
of Natural Resources Institute in Enonkoski, Finland, at the beginning of July 
2013. Fish were divided into two flow-through tanks in a similar size-
distribution. One of the tanks was gradually heated to 15°C over the course 
of seven days from the ambient temperature that was ca. 8°C, after which the 
temperatures and oxygen levels were maintained constant for one month. 
After the acclimation period, fish from each temperature were sampled for 
liver tissue at three time points during the day: middle of the light period at 
12:30, prior to the dark period at 20:30 and at the middle of dark period at 
01:30, hereafter referred to as day, evening and night. These time points were 
chosen because dusk is known to be associated to major transcriptional 
changes in other species (Doherty and Kay 2010).  

2.2. Gene expression analyses 

2.2.1. RNA extraction 

In studies I and II, the tissue samples were stored submerged in RNAlater at 
−20°C prior to RNA extraction. Liver tissue RNA was extracted at the 
University of Turku, while gill RNA was extracted at Hamburg University. 
From liver tissue, approximately 3−5 mg piece was homogenized with a 
plastic pestle in Tri Reagent (Molecular Research Center). RNA was isolated 
with bromochloropropane according to the Tri Reagent manufacturer’s 
protocol, after which the extraction was finished with RNeasy Micro Kit 
(Qiagen, Austin, Texas), including an on-column DNase I treatment. The gill 
RNA was isolated using the peqGOLD TRIfastTM kit (Peqlab, Erlangen, 
Germany) in combination with the innuPREP RNA Mini kit (Analytic Jena, 
Jena, Germany), including an on-column DNase treatment. RNA was 
quantified using a NanoDrop 1000 spectrophotometer. RNA integrity was 
confirmed using agarose gel electrophoresis (gills) or 2100 Bioanalyzer by 
Agilent (liver). Complementary DNA (cDNA) was synthesized from 1 μg of 
RNA. The cDNA samples were stored at −20°C until used in qPCR. 
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In studies III and IV, RNA was extracted from flash-frozen tissue using Tri-
reagent following the manufacturer’s protocol (Sigma Aldrich and Molecular 
Research Center), including a DNase I treatment. The tissues were 
homogenized using TissueLyser at 30 Hz speed. RNA was quantified using 
NanoDrop 1000 or NanoDrop 2000 spectrophotometer and its integrity 
confirmed using 2100 Bioanalyzer.  

2.2.2. Measuring candidate gene mRNA levels using qPCR 

The target genes in study I included two genes from core circadian clock 
(per1 and clock), two genes associated to chemical detoxification (cyp1a and 
ahr) and two genes expected to be hypoxia responsive (ldha and eno). 18S 
ribosomal RNA gene (18S) was used as a reference gene. Primers and 
fluorescent probes spanning at least one intronic junction were designed to 
be specific for each gene of interest. qPCR was performed at the Centre of 
Biotechnology in the University of Turku using a QuantStudio 12 K Flex Real-
Time PCR system (ThermoFisher Scientific, Waltham, MA, USA). Raw 
fluorescence values were grouped by genes and analyzed using LinRegPCR 
software (Ruijter et al. 2009, Tuomi et al. 2010, Ruijter et al. 2013).  

In study II, the qPCR assays were performed in Hamburg University. The 
assays were done on a total of fifteen genes, which are putatively involved in 
either the diclofenac metabolism, antioxidant defense or hypoxia response. 
Ribosomal protein large P0-like protein (Rplp0) was included as a reference 
gene. All products were verified by sequencing using a commercial service 
(GATC, Konstanz, Germany). The cDNA products were amplified in triplicates 
run on 96-well microplates using an ABI 7500 Real-Time PCR system 
(Applied Biosystems, Darmstadt, Germany). The specificity of primer and 
amplification was evaluated using dissociation curves with a temperature 
range from 60°C to 95°C. Absolute mRNA copies were calculated with the 
7500 System Sequence Detection Software 2.0.6 by means of the standard 
curve method by using 10-fold dilutions (108 to 102) of recombinant 
plasmids.  

2.2.3. Tissue homogenization and enzyme activity assays 

Flash-frozen liver and gill tissues were homogenized in a buffer with 100 mM 
KH2PO4, 150 mM KCl, pH 7.4, using a TissueLyser (Qiagen, Austin, USA). 
Homogenate protein concentration was measured following the Bradford 
method (Bradford 1976), using BioRad stock diluted with dH2O (1:5) and 
standards prepared from bovine serum albumin (1 mg/mL). Measurements 
were made at 595nm using an EnVision 2103 Multilaber Reader 
(PerkinElmer, Wallac, Turku, Finland).  
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EROD (Ethoxy-resorufin O-de-ethylase) activity is an assay of CYP1A enzyme 
activity, measuring the efficiency of conversion of the CYP1A substrate 7-
ethoxy resorufin to resorufin, which can be detected with a fluorometer 
(Andersson and Förlin 1992). The assay was performed according to Burke 
and Mayer (1974), with adaptations for a 384-well microplate.  

LDH enzyme, responsible for the conversion of pyruvate and NADH to NAD+ 
and lactate, was expected to have higher activity during hypoxia exposure, as 
decreased oxygen availability leads to decreased incorporation of pyruvate 
into the citric acid cycle and increased conversion to lactate. LDH activity was 
measured following the protocol of Dalziel et al. (2012) measuring NADH 
absorbance at 340 nm with adaptations for a 384-well microplate. 
Conversion rate was detected for three replicates of each sample and 
subtracted from the conversion rate of a control well without pyruvate 
(Dalziel et al. 2012). 

The activities of antioxidant enzymes were analyzed in triplicates on either 
96- (CAT) or 384-well (SOD, GPx) microplates using commercially available 
kits: SOD assay kit-WST, Catalase Assay kit and Glutathione peroxidase 
cellular activity assay kit (Sigma-Aldrich, St. Louis, USA). Only gill samples 
were measured for antioxidant activities. Sample and reagent volumes of the 
kits were adjusted for 96- or 384-well microplates. 

2.2.4. Preparation of microarrays from testis RNA 

The microarray analysis of extracted RNA samples was conducted at the 
Centre of Biotechnology, University of Turku. The RNA samples from testis 
tissue were amplified and labeled with Cy3 or Cy5 dyes. On each Agilent 
custom array, modified from Leder et al. (2009), 300 ng of Cy3 and Cy5 
labeled sample were hybridized together. To account for the dye-bias caused 
by differential binding of the dyes, equal numbers of solvent control and each 
treatment group samples were hybridized with each dye. We used the same 
solvent control individuals in comparisons to both EE2 and DBP treatments 
to minimize variation due to individual differences in the controls. Solvent 
control and EE2 or DBP exposed samples were run on two different chips 
each carrying eight hybridizations. 

2.2.5. Library preparation and RNA sequencing using Illumina HiSeq 

Library preparation and sequencing were conducted at the Beijing Genomics 
Institute (BGI, Hong Kong) using TruSeq RNA Sample Prep Kit v2 (Illumina, 
San Diego, CA, USA). To perform strand-specific sequencing, the protocol 
included digestion of the second strand of cDNA using Uracil-N-Glycosylase 
enzyme. The libraries were assessed for quality and quantity using two 
methods: checking the distribution of the fragments size using the Agilent 
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2100 bioanalyzer instrument (Agilent DNA 1000 Reagents) and quantifying 
the library using qPCR with a TaqMan Probe. Prior to sequencing, all samples 
were pooled and distributed across four lanes. Additional sequencing for the 
assembly construction was performed from the same samples pooled across 
two lanes. 

2.3. Statistical and bioinformatic analyses 

2.3.1. Studies I and II 

For the relative abundance of target genes compared to the reference genes 
and the activities of measured enzymes, the significance of differences 
between control and treatment groups and between time points was 
analyzed via linear mixed-effects modeling using Markov Chain Monte Carlo 
Sampler for Generalized Linear Mixed Model (MCMCglmm) using default 
priors (Hadfield 2010) in R (R Core Team). Based on MCMCglmm, the 
predicted means and interquartile ranges of each response variable were 
calculated after conditioning for the random effects. Probability (p) values 
were derived by profiling the distributions of a 1000 posterior estimates 
sampled from the Markov Chain —in all models we used control group 
sampled at ZT6 time point (middle of light period) as the default contrast. 
Statistical significance was defined as p<0.05. Models were checked for 
mixing and convergence by visually inspecting trace and density plots, as 
well as autocorrelation plots of random effects. The results were visualized 
using package ggplot2 (Wickham 2009). 

2.3.2. Study III 

The results, extracted using Agilent’s Feature extraction software, were 
analyzed using limma package (Smyth 2005, Ritchie et al. 2015) in R, version 
3.1.0. Data were filtered from low-expression probes and technical outliers, 
and normalized using cyclic-loess normalization. Differentially expressed 
genes were analyzed via linear model, including normalization factors for the 
dye-bias of probes and differences in array quality. We defined differential 
expression with quality criteria (absolute fold-change ≥1.5) combined to 
statistical significance based on uncorrected p-values (p<0.05). This 
approach was selected on the basis that hardly any genes could be selected 
as differentially expressed when using the p-values after multiple correction, 
and since previous reports have shown high false-negative rates in such 
analysis for microarray data (Cole et al. 2003). Moreover, for a successful 
exploratory analysis it is necessary to find all genes showing putatively 
differential expression in each treatment.  

Previously collected annotations were used for the microarray probes and 
supplemented by a human-stickleback comparison of peptide sequences 
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using BLASTp. Out of the 21 000 probes on the array, human ortholog Entrez 
IDs were available for 17 842. Since not all differentially expressed (DE) 
genes could be annotated, and the teleost-specific genome duplication has 
doubled the number of many paralogous genes in the stickleback, we 
searched for annotations for the missing DE genes manually by using the 
probes Ensembl IDs. When available, the human Entrez IDs were used in an 
enrichment analysis of the DE genes, to define whether there were Gene 
Ontology terms (GO terms) significantly enriched in the lists of up- and 
downregulated genes in each treatment. Importantly, the enrichment 
analysis assumes the functions of human and stickleback gene products are 
conserved, which is known generally to be the case for many conserved genes 
(Ashburner et al. 2000). The enrichment analysis was performed with 
ClueGO (Bindea et al. 2009), a plugin for Cytoscape software, which groups 
the enriched GO terms based on similarity using Kappa score, whereby it is 
possible to examine the GO terms sharing similar sets of genes, which may 
encode proteins with similar functions. 

2.3.3. Study IV 

Since no genome sequence was available for Arctic char, a de novo 
transcriptome assembly was generated from the quality-trimmed paired-end 
(PE) reads. Due to challenges posed by accurately determining transcripts in 
a polymorphic, pseudotetraploid species, the transcriptome assembly was 
built in three steps. At first, the data from all individuals was combined and 
assembled using Trinity software. The reads were aligned back to the 
transcriptome using Bowtie2 allowing for a maximum of 40 multiple 
alignments when no unique alignment could be determined, and the 
alignment files analyzed with Corset software, which estimates the read 
counts at the gene level (Davidson and Oshlack 2014). Corset estimates gene 
abundances based on sequence and expression level similarity, filtering out 
low-count transcripts that were likely artifacts in the de novo assembly.  

The read counts per cluster -data were used to determine which samples 
covered the most variation in expression levels by determining the distance 
of samples based on all transcripts using DeSeq2 package in R. The distance 
was largest between samples from cold acclimation and evening time point 
in the warm acclimated fish. Thus, the samples with the highest number of 
reads from each of these groups were chosen for the generation of the final 
assembly. Reads from the selected two samples were run with Trinity. 
Alignment of the two samples to the assembly revealed that the ratios of 
unique and multiple aligned reads were similar to the first de novo assembly.  

To improve the completeness of the assembly, the reads that were not 
concordantly aligned were used to generate a third assembly using Trinity. 
Finally, before the third assembly was combined to the second assembly, 
transcripts generated by both of these assemblies were filtered after a BLAST 
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search between them to reduce redundancy. The transcripts from third 
assembly that had less than 98% similarity to those present in the second 
assembly and were longer than 100 bp were appended to the second 
assembly, thus producing a final de novo assembly with 209 537 transcripts. 
The trimmed PE reads from all samples were then aligned against the final 
assembly using Bowtie2, and the alignments analyzed for gene-level counts 
with Corset.  

The counts data generated by Corset was used in a DE analysis to find genes 
showing temporal and temperature-induced changes in mRNA levels. The 
packages edgeR and limma in R (Smyth 2005, Ritchie et al. 2015) were used 
for the DE analysis. Transcript clusters showing negligible expression were 
excluded based on criteria of >3 counts per million reads in at least three 
samples, and data normalized per library sizes. The voom method was 
applied to obtain precision weight for mean-variance relationship of cluster 
expression levels (Law et al. 2014) and the weights included in limma 
empirical Bayes analysis pipeline.  

Differences in read counts were tested with a contrast matrix, including the 
contrasts of: time points within temperatures, temperatures within time 
points, the average temperature effect and the interactions between time 
points across temperatures. The p-values were corrected for multiple 
corrections in each contrast using Benjamini-Hochberg method, and adjusted 
p-value <0.01 used as a significance criteria.  

Transcripts of genes defined as expressed were included in the annotated 
transcriptome assembly. Predicted open reading frames’ (ORFs) peptide 
sequences were obtained using Transdecoder software, and annotated using 
a stepwise procedure: all sequences were annotated with a reciprocal 
BLASTp hit approach using e-value cutoff 1x10-5, first with proteins from 
zebrafish genome (downloaded from Ensembl) and second with proteins 
from salmon genome (NCBI Salmo salar Annotation Release 100). Finally the 
remaining un-annotated ORFs were annotated with NCBI non-redundant 
protein database, which contains single copies of unique protein sequences 
across species. Only annotations below e-value cutoff 1x10-5 and with >50% 
length match to the database proteins were included in the transcriptome 
annotation. 
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3. Main Results and Discussion 

3.1. Diel variation in responses to diclofenac and hypoxia in the 
liver and gills (I & II) 

The effects of different environmental changes on organisms are often 
studied in isolation, despite the fact that multiple, unrelated stressors are 
present simultaneously in the natural environment. The occurrence of 
concurrent hypoxia and pollution is likely in human-impacted environments 
that can be both eutrophic and receive wastewater effluent, where NSAIDs 
are among the most commonly detected pharmaceuticals. In particular 
diclofenac has been shown to accumulate in the tissues of wild and 
experimentally exposed fish indicating it can have persistent effects on the 
health of wild populations (Schwaiger et al. 2004, Brown et al. 2007, Mehinto 
et al. 2010, Brozinski et al. 2013). Thus, this experiment studied the effects of 
both diclofenac and hypoxia on metabolic responses in the liver and on 
antioxidant responses in the gills.  

In the liver, which metabolizes the majority of xenobiotic substances, co-
exposure to diclofenac and hypoxia increased the activity of the 
detoxification enzyme CYP1A, as measured by EROD activity, at the first and 
second time point during hypoxia (Fig. 6b). Temporal variation in CYP1A 
activity was also observed in the control fish, which had higher activity in the 
morning than in the day.  

In a previous study using rainbow trout, an especially sensitive species, 
diclofenac was found to induce cyp1a transcription in both gills and liver 
(Mehinto et al. 2010), which was partly confirmed in the liver, where all 
treatments, most of all hypoxia, induced cyp1a transcription at ZT11. In the 
gills, there was a significant decrease in cyp1a by co-exposure, insignificant 
decrease by hypoxia and no effect by diclofenac, which suggests decreased 
DNA binding of AHR in the gills took place mostly due to the hypoxia 
treatment. Hypoxic inhibition of AHR activity has also been described in a 
previous in vitro study (Nie et al. 2001), while hypoxic induction of cyp1a has 
been shown in the liver of three-spined sticleback (Leveelahti et al. 2011). 
Thus, depending on tissue, AHR can be either inhibited or activated by 
hypoxia. The weak induction of cyp1a by diclofenac in the liver can indicate 
that diclofenac is a weak agonist for AHR, or AHR is not sensitive to low levels 
of exposure to NSAIDs. 
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Figure 6. Effects of diclofenac, hypoxia and co-exposure to both on LDH activity (a) and 
EROD activity (b) in three-spined sticklebacks. Liver tissue samples were taken at 
zeitgeber time (ZT) 13:30 (ZT6, 5.5 h hypoxia), 18:00 (ZT11, 10.5 h hypoxia), and 7:30 
(ZT0, 24 h hypoxia). The dark phase from 19:00 to 7:00 is shaded in grey. Values are 
means conditioned by random effects ± interquartile range, n = 5–13 fish per treatment 
and time point in EROD activity and n = 6–10 (except control ZT0 n = 18) in LDH activity. 
Significant differences between treatments and control within each time point are 
indicated by * (p = 0.01–0.05), colours indicating treatments. 

Similar to CYP1A activity, responses of the anaerobic enzyme LDH to hypoxia 
were time-dependent. In the liver, its activity was increased after 10.5 h of 
hypoxia compared to control, but not in the other time points (Fig. 6a). The 
lack of a similar response in the co-exposure treatment suggests a 
disturbance of hypoxia response due to diclofenac exposure. This finding was 
supported by decreased LDH activity in the diclofenac treatment compared 
to control in the morning (Fig. 6a). In addition, diclofenac has been found to 
inhibit LDH activity in murine tumor cells (Chirasani et al. 2013). Such an 
effect may negatively affect wild populations in polluted, eutrophic 
environments. However, contrasting effects were observed in the gills, where 
diclofenac and co-exposure treatments increased LDH activity between ZT6 
and ZT11, which may indicate a disruption in the ability of gills to uptake 
oxygen.  

Another goal of study I was to measure the effects of diclofenac and hypoxia 
exposures on circadian clock gene expression. The circadian clock 
transcriptional loop optimizes the timing of tissue-specific functions. In 
mammals, disruptions in circadian clock are associated with carcinogenic 
effects and advanced ageing (Yu and Weaver 2011), but circadian rhythms 
have not been studied in relation to fitness in wild populations, and little is 
known of their responsiveness to environmental stress. Transcription in the 
circadian clock genes clock and per1 was increased by all treatments at ZT11, 
and decreased in per1 by hypoxia at ZT0. In the control fish, both clock and 
per1 transcription decreased from ZT6 to ZT11, but this was not evident in 
the other treatments. A previous study has demonstrated an interaction 
between HIF-1 and PER1 in zebrafish, where HIF-1 was able to bind directly 
to the E-box elements in the per1 promoter region (Egg et al. 2013). Since 
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transcription in the HIF-1 target gene ldh was also increased from ZT6 to 
ZT11, it is possible that HIF-1 was responsible for the dampened oscillations 
of per1 in hypoxia and co-exposure treatments. How diclofenac treatment 
caused a higher increase than hypoxia in both clock and per1 transcription 
compared to control is not well understood. One explanation for the effect 
may have been revealed by the antioxidant enzyme activities measured in the 
gill tissue. Gill GPx activity was significantly increased between ZT6 and ZT11 
in the diclofenac treatment, which suggests increased production of ROS 
during this time period (Fig. 7). Since circadian clock genes are able to 
respond to and regulate cellular ROS level (Hirayama et al. 2007, 
Gyoengyoesi et al. 2013), it remains a possibility that if ROS accumulation 
occurred also in the liver, it may have contributed to the regulation of clock 
and per1 transcription. 

CAT activity increased in hypoxia and in the co-exposure treatment from ZT6 
to ZT11, which supports the GPx results regarding ROS accumulation during 
this time period. SOD, on the other hand, showed no response to any of the 
treatments at any time point, suggesting its activity is constitutively high and 
sufficient to deal with a possible increase in superoxide anion. Overall, the 
antioxidant responses in gill tissue are compatible with other studies 
demonstrating that multiple enzymes often do not respond to increased ROS 
simultaneously, but may instead compensate for each other, as suggested by 
Leveelahti et al. (2014). 

 
Figure 7. The effects of diclofenac and hypoxia on GPx activity in three-spined stickleback 
gills. Gill tissue samples were taken at 13:00 (5.5 h hypoxia), 18:00 (10.5 h hypoxia), and 
7:30 (24 h hypoxia). The dark phase from 19:00 to 7:00 is shaded in grey. Values are 
means conditioned by random effects ± interquartile range. Differences between 13:00 
and 18:00 in diclofenac and co-exposure treatments were significant (p<0.05). Treatment 
symbols and colours explained in Figure 6. 
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Transcriptional responses to hypoxia and diclofenac in the gills at ZT0 were 
modest, with many genes having high individual variation. However, 
diclofenac and hypoxia exposures decreased transcription in cox2, which 
supports the hypothesis of conserved responses to diclofenac in humans and 
fish. Cox1 and cox2 inhibition by diclofenac has been described in rainbow 
trout (Mehinto et al. 2010), but in the present study cox1 transcription was 
not affected.  

The effects observed at the enzyme activity level were partly in agreement 
with those observed at the mRNA level. In the liver, CYP1A activity was 
induced in the co-exposure treatment before its transcription was affected, 
but by ZT11, both were increased. In contrast, the decrease in LDH activity 
by diclofenac at ZT0 was not observed at the mRNA level. In the gills, mRNA 
data were only available for ZT0, where GPx activity tended to have similar 
responses as the mRNA, and neither the mRNA level nor the enzyme activity 
of LDH, CAT and SOD changed significantly. Nevertheless, the results 
obtained from the liver indicate that post-transcriptional modifications can 
be used to rapidly enhance enzyme activity when environmental conditions 
change unexpectedly. The responses in liver and gills were highly tissue-
specific, but disruptions in either tissue can have systemic negative effects on 
fish; liver is important not only for detoxifying xenobiotic compounds, but 
also as an energy storage, fueling both anaerobic and aerobic metabolism, 
while gills are the main site for gas and ion exchange and acid-base regulation 
in fish (Perry 1997). 

3.2. Distinct transcriptional responses to endocrine disrupters 
in the testes (III) 

Head kidneys and gonads are important sites for steroid hormone synthesis 
in fish and therefore likely to be involved in endocrine disruption by effluent 
chemicals. However, the anti-androgenic effects induced by phthalate ester 
DBP in males are poorly understood. Thus, in this study the genome-wide 
transcriptional effects of DBP in fish testes were investigated after a short, 4-
d exposure, and compared to the effects of a xeno-estrogen, EE2. DBP did not 
affect similar genes as EE2, and is therefore unlikely to act as a xeno-estrogen. 
Overall, the effects of DBP were small compared to those of EE2, which 
caused increased or decreased expression in nearly 200 genes in three-
spined stickleback testes at >1.5 absolute fold-change, while DBP affected 
transcription, mostly decreasing it, in 72 genes. The GO terms that were 
significantly enriched among genes downregulated by DBP in comparison to 
all annotated genes present on the microarray are illustrated in Fig. 8. Based 
on the results, DBP is expected to have potentially negative effects on retinoid 
metabolism, creatine kinase activity and cell adhesion in fish testes. Earlier 
studies have reported DBP to induce morphological alterations and 
abnormal sperm cell aggregation in rodents (Alam et al. 2010, Jobling et al. 
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2011). Disrupted expression in genes associated with cell adhesion mediated 
by integrin pathway could contribute to the abnormalities. Likewise, sperm 
motility and concentration may be affected by genes associated with creatine 
kinase pathway, as similar effects were found in the mummichog, F. 
heteroclitus by exposure to tributyltin (Mochida et al. 2007). 

 
Figure 8. Network of significantly enriched GO terms in genes decreased by 4-d exposure 
to DBP in three-spined stickleback testes. GO terms sharing similar genes are connected 
by similar colors and lines, and the most significant terms are named. The size of the 
circles refers to statistical significance of the enrichment, larger = more significant.  

The microarray analysis gave new insight into the potentially fish-specific 
effects of EE2 and DBP. DBP increased expression in cytochrome P450 17a2 
(cyp17a2), which is a paralog of cytochrome P450 17a1 not found in 
mammals, by more than four-fold. The protein encoded by cyp17a2 has 
previously been shown to possess 17α-hydroxylase but not 17α-lyase 
activity in medaka (Oryzias latipes) and tilapia (Oreochromis spp.) (Zhou et 
al. 2007a). In these species, CYP17A2 is expected to be important for cortisol 
synthesis and maturation of oocytes (Zhou et al. 2007a, Zhou et al. 2007b). 
Increased activity in the enzyme is thus expected to increase cortisol 
synthesis in fish exposed to DBP. In addition, expression in FK506 binding 
protein 5 (fkbp5, also known as fkbp51) was decreased by the exposure to 
EE2 and DBP, although the effect was smaller in EE2-treated fish (on average 
30% vs. 60% decrease compared to solvent control). In humans, FKBP5 
functions as a glucocorticoid-induced negative regulator of the 
glucocorticoid receptor as well as an inhibitor of a variety of other steroid 
receptors, with the exception of the androgen receptor, which activity it can 
enhance (Stechschulte and Sanchez 2011). Due to all the connections FKBP5 
has to multiple pathways and the finding that its expression can be inhibited 
by endocrine disrupters, it is relevant to investigate its potential role in 
endocrine signaling in fish further. 
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In EE2-exposed fish, as expected, expression in multiple genes important for 
steroid biosynthesis in the gonads was decreased, including cytochrome P450 
17a1 and cytochrome P450 11a1, hydroxy-delta-5- steroid dehydrogenase, 3 
beta- and steroid delta-isomerase 2 and steroidogenic acute regulatory 
protein. Decreases in the synthesis of these enzymes could lead to inhibition 
of several steps in steroid biosynthesis, including the transfer of cholesterol 
over the mitochondrial membranes, the conversion of cholesterol to 
pregnenolone, the conversion of pregnenolone to progesterone and the 
conversion of pregnenolone and progesterone to androstenedione (Hsu et al. 
2009, Kocerha et al. 2010, Tokarz et al. 2013). Notably, very low overall 
expression was observed in hydroxysteroid (17- beta) dehydrogenase 3, which 
is a key enzyme in testosterone synthesis in mammals, but has slightly 
differentiated roles in zebrafish with higher expression in the liver than in 
the testis (Mindnich et al. 2005).  

In summary, transcriptional responses were observed after 4-d exposures to 
EE2 and DBP at concentrations that were higher than most measured 
environmental levels but can be encountered by populations inhabiting areas 
in the proximity of wastewater release sites. The treatments revealed a 
number of genes that had no previous record of expression in the testes of 
fish were regulated, thereby supporting future research in the reproductive 
biology of fish. Since the effects of chemicals on organisms are dependent on 
several factors, including the studied species, tissue type, developmental 
stage, and the concentration and duration of the exposure (Lam and Gray 
2001), emphasis on future studies should also be on determining a 
concentration-response curve for DBP at environmentally relevant levels 
and in chronic exposures. This information will be useful for generating 
safety limits for DBP exposure in humans and in wild populations. In 
conclusion, this study adds an important contribution to the understanding 
of the initial mechanisms by which effluent chemicals can affect reproductive 
processes in fish. 

3.3. Temperature-dependent diel rhythms in transcription in 
Arctic char (IV) 

Circadian clocks regulate transcription of hundreds of genes in numerous 
species and tissues and mediate the signal of day-length to peripheral clocks 
via the central clock. The mechanism behind the effects of peripheral 
circadian rhythms on gene regulation in fish, especially in species adapted to 
highly seasonal variation in photoperiod, is currently poorly understood 
(Jørgensen and Johnsen 2014). High temperature has been shown to 
decrease the amplitude of melatonin rhythm, which in turn can delay 
maturation in salmon (Porter et al. 1999, Porter et al. 2001), but little is 
known as to how these rhythmic responses are reflected at gene regulation 
level. Attempting to answer such questions, Arctic char liver tissue 
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transcriptomes were compared between three time points after two 
temperature acclimations in late summer, under naturally decreasing day-
length.  

Significant variation in gene expression was found between time points only 
within the warm acclimation temperature, while no genes showed temporal 
variation within the cold acclimation temperature. This result was 
remarkable considering that photoperiod is considered as one of the main 
zeitgebers of circadian gene expression (Hirota and Fukada 2004). The 
complete arrhythmia in cold-acclimated fish indicates a lack of light 
responsiveness and rhythmic endocrine signaling, and not merely decreased 
amplitude in rhythmic expression. In the wild, Arctic char seek cool 
temperatures during the summer, but frequently forage also in slightly 
warmer waters, and in the fish hatchery the rearing temperature is 
maintained below 13°C throughout the summer (personal communication). 
Long-day photoperiods are known to initiate preparations for spawning, 
while short-day photoperiods induce the final maturation of gametes in 
Arctic char (Jørgensen and Johnsen 2014). The uncoupling of photoperiod 
signals and gene expression regulation could enable the fish to avoid 
spawning in conditions when sufficient growth to prepare for reproduction 
and overwintering is not possible due to low metabolic rate. In agreement 
with this hypothesis, one of the genes most significantly increased by cold 
acclimation was the ortholog of zona pellucida glycoprotein 2, which is 
predicted to be associated with increased estrogen levels and thus, inhibition 
of sexual maturation in male fish (Westerlund et al. 2001, Genovese et al. 
2012). 

Within the warm acclimation, samples collected during the day were more 
similar to samples collected at night than to samples collected in the evening 
(Fig. 9). The direction of change from day to evening or night was for the most 
part increased expression with higher than two-fold change. The larger 
differences between day and evening samples than between the day and 
night samples suggest that the physiological changes associated with the 
dark period are more likely to be shown at the transcriptional level prior to 
the dark period than during it. Previous studies have also found the 
preparation for the dark period to be associated with major functional 
changes in mouse and Drosophila melanogaster (Doherty and Kay 2010). 
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Figure 9. Multidimensional scaling (MDS) plot generated based on 2000 genes with 
highest pairwise fold-change differences between samples. Samples collected after 
warm (W, 15°C) and cold (C, 8°C) acclimations at day, evening and night are indicated by 
1, 2 or 3, respectively. 

A GO analysis revealed most of the genes with increasing expression between 
the day and the evening to be related to metabolism (Fig. 10). In the statistical 
overrepresentation analysis, protein methylation was the most significant 
pathway among genes more expressed in the evening than day with four 
genes. In addition, seven GO terms related to RNA metabolism and 
transcription and three GO terms related to translation were 
overrepresented at a slightly higher p-level. It thus appears that shifts in 
metabolism and in the transcription-translation machinery are involved in 
the transition between the light and dark periods. These findings are 
compatible with the expectation that many of the genes under rhythmic 
regulation are regulated at epigenetic, transcriptional and translational 
levels (Harms et al. 2004, Ripperger and Merrow 2011, Kojima et al. 2012). 
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Figure 10. Biological processes associated with zebrafish gene orthologs that were 
differentially expressed between the day and evening in warm acclimated Arctic char. 
Many more genes were increased than decreased in the evening compared to the day, 
most of which were related to metabolic processes. 

There were more genes with higher expression in the cold-acclimated fish 
than in the warm-acclimated fish (2 237 vs. 1 149, respectively). In cold 
acclimation, transcription in several genes related to cold tolerance and 
pathways associated to apoptotic processes and lipid metabolism was 
increased. In contrast, the glycolysis pathway was significantly 
overrepresented in genes more expressed in the warm-acclimated fish. 
Together, these results are compatible with the hypothesis that a shift from 
glucose to lipid metabolism is associated with cold acclimation, which has 
been previously described in hibernating mammals and teleost fish (Schultz 
and Conover 1997, Dark 2005). The results also corroborate previous studies 
suggesting cold-inducible RNA-binding protein (cirbp) can mediate responses 
to cold acclimation in fish and mammals (Nishiyama et al. 1997, Gracey et al. 
2004, Sano et al. 2015). CIRBP has also been shown to modulate circadian 
clock gene expression post-transcriptionally in human cells (Morf et al. 
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2012). Hence, whether CIRBP regulates seasonal variation in clock gene 
responsiveness to day-length should be investigated further.  

The Arctic char is known not only for its sensitivity to high temperatures but 
also for its remarkable morphological and life-history plasticity (Jørgensen 
and Johnsen 2014, Kapralova et al. 2015). Since high phenotypic plasticity, 
the ability of the same genotype to produce multiple phenotypes across 
different environments, can promote adaptive divergence of populations 
under changing environmental conditions (Aubin-Horth and Renn 2009, 
Morris et al. 2014, Dayan et al. 2015), this may allow Arctic char to adapt in 
novel thermal environments, and the sensitivity of the biological clock to 
temperature could be one mechanism to achieve this. For instance, 
temperature regulation could enable the fish to avoid spawning when the 
temperature is not optimal even though the photoperiod would signal 
spawning season. The results also suggest that direct temperature regulation 
of the clock can mediate the impact of abnormal seasonal temperatures and 
extreme weather events, which may lead to disrupted seasonal changes in 
the physiology of Arctic fish. 
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4. Conclusions 

In the present era, characterized by human dominance on the planet, abiotic 
conditions and species composition in ecosystems are changing rapidly. In 
one hundred years, the natural world will be in many unexpected ways 
different to the current one. Do humans have the knowledge to secure 
sustainable food production for the growing population? How can we 
prevent ecological disasters? Can we establish colonies on other planets? A 
thorough understanding of biological processes will be instrumental in 
creating a new relationship with the natural world, one that is not based on 
exploitation and eradication but knowledge and sustainability. In this thesis 
I have addressed questions on the impacts of the present-day environmental 
challenges on gene expression in two species of teleost fish. Since gene 
expression is the process that links genome information to the physiological 
response, which in turn modifies behaviour, the results of the thesis can lead 
to a better understanding of reproduction, biological rhythms and adaptation 
to climate change in fish. 

My results show how the effects of circadian rhythms are visible in numerous 
genes at both the enzyme and mRNA levels during environmental stress, but 
also in the absence of stressors. I found the strongest responses to the 
painkiller diclofenac and hypoxia in both the liver and gill tissue in the 
evening. Similarly, I observed the majority of thermal effects on transcription 
occurred in the evening in the liver tissue of Arctic char. Since diel rhythms 
in environmental responses have been neglected in most ecophysiological 
studies, it is not known how widespread this phenomenon is, but supporting 
my findings, chronobiologists have shown that dusk and dawn are associated 
with large changes in transcription in mammalian and insect model species 
(Doherty and Kay 2010). This pattern is counterintuitive considering that 
behavior and physiology can be expected to be more different between night 
and day than between the evening and the day. However, protein synthesis 
can be a time-consuming process, and post-transcriptional regulation can be 
used to adjust its timing differently from the mRNAs’ oscillation. Thus far, 
numerous studies have demonstrated how these mechanisms regulate the 
timing of protein oscillations (Alvarez-Saavedra et al. 2011, Shende et al. 
2011, Xue et al. 2014), and the topic will undoubtedly receive increasing 
attention in the future. Likewise, the roles of non-coding RNAs in the 
regulation of hypoxia responses are starting to emerge (Ivan et al. 2008). 

The ecological risks associated to human-introduced chemicals in the 
environment have been taken into consideration since Rachel Carson 
revealed the correlation between the pesticide dichlorodiphenyl-
trichloroethane (DDT) and the loss of bird populations in North America in 
her novel Silent Spring in 1962. DDT and a number of other compounds have 
been banned in developed countries and wastewater clean-up is advancing, 
but the use of chemicals in agriculture and defects in wastewater purification 
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still present serious risks in large parts of the world. Besides finding 
resources to minimize pollution around the globe, we must try to understand 
whether the increasing release of pharmaceuticals, plasticizers and other 
micropollutants in purified wastewater is posing a risk to wildlife. In my 
thesis, I showed diclofenac, EE2 and DBP have effects on gene expression in 
fish, while earlier studies have reported their organismal effects (Van den 
Belt et al. 2001, Mehinto et al. 2010, Saaristo et al. 2010, Chen et al. 2014, Xu 
et al. 2014) indicating they could decrease fitness or survival of wild 
populations. Consequently, there is a need to decrease the presence of these 
compounds in wastewater. Increasing awareness of the public regarding the 
risks of these substances and implementing new procedures from 
pharmacies to industry and wastewater treatment will be important means 
for reaching the goals to this end.  
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