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Abstract

This thesis discusses memory effects in open quantum systems with an em-
phasis on the Breuer, Laine, Piilo (BLP) measure of non-Markovianity. It
is shown how the calculation of the measure can be simplified and how
quantum information protocols can benefit from memory effects. The su-
perdense coding protocol is used as an example of this. The quantum Zeno
effect will also be studied from the point of view of memory effects. Fi-
nally the geometric ideas used in simplifying the calculation of the BLP
measure are applied in studying the amount of resources needed for de-
tecting bipartite quantum correlations. It is shown that to decide without
prior information if an unknown quantum state is entangled or not, an
informationally complete measurement is required.

The first part of the thesis contains an introduction to the theoretical
ideas such as quantum states, closed and open quantum systems and nec-
essary mathematical tools. The theory is then applied in the second part
of the thesis as the results obtained in the original publications [-VI are
presented and discussed.



Tiivistelma

Tama vaitoskirja kisittelee muisti-ilmioitd avoimissa kvanttisysteemeissa
keskittyen erityisesti Breuer, Laine, Piilo (BLP) ei-markovisuus-mittaan.
TyoOssd osoitetaan, miten mitan laskemista voidaan helpottaa ja miten
kvantti-informaatioprotokollat voisivat hyotyd muistiefekteista. Esi-
merkkind téstd kiytetddn niin sanottua supertihedd koodausta. Myos
Zeno-ilmiota tutkitaan muisti-ilmididen nikokulmasta. Lopuksi mitan
laskemisen helpottamisessa kiytettyjd menetelmia sovelletaan kvanttikor-
relaatioiden olemassaolon osoittamiseen vaadittavien resurssien médrin
tutkimiseen. TyGssd naytetdan, ettd ilman ennakkotietoja tuntemattoman
kvanttitilan kietoutuneisuuden osoittaminen vaatii informatiivisesti téydel-
lisid mittauksia.

Tyon ensimmaéisessd osassa esitellddn teoreettisia kasitteitd kuten kvant-
titiloja, suljettuja ja avoimia kvanttisysteemejé seké tarvittavia matemaat-
tisia tyokaluja. Tyon toisessa osassa osajulkaisuissa [-VI saadut tulokset
esitellddn ja teoriatyokaluja sovelletaan.
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Chapter 1

Introduction

Quantum mechanics is at the heart of our understanding of the inner work-
ings of nature on the small scale. The precision of the predictions is unri-
valled and some of the implications of the theory shape our understanding
about the nature of reality itself. It seems that on the fundamental level,
nature is probabilistic instead of deterministic. In a classical world every-
thing works perfectly deterministically and in principle, someone knowing
all the positions and velocities of all of the particles in the universe, could
predict exactly what happens in the future. All randomness or error would
only be because of lack of knowledge or measurement precision or other
such technical limitations. However, quantum theory tells us that this is
not the case and that nature itself is genuinely probabilistic on the funda-
mental level; a fact that has sparked countless philosophical debates and
confused even Einstein [1].

Quantum phenomena, such as entanglement and superposition of states
are incredibly fragile to outside influences and quickly disappear on size and
time scales of everyday life [2|. Effects such as entanglement manifest as
correlations in measurement statistics unexplainable by classical physics.
This makes it possible to complete tasks classically impossible, such as al-
gorithms that quickly factorize large numbers and makes entanglement a
vital resource for applications of quantum mechanics. Studying and under-
standing the correlations themselves and the dynamics of quantum systems
interacting with their surroundings is then very important for finding, pre-
serving and protecting the quantum properties.

Initially, quantum theory studied closed quantum systems, the dynam-
ics of which are described by the Schrédinger equation [3]. Closed systems
are perfectly isolated from their surroundings and as such do not lose infor-
mation or energy. However, in practice almost all systems are open as they
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cannot be perfectly isolated from their surroundings. The first approaches
to this kinds of systems were microscopical models described by Markovian
master equations [4,5]. Markovian quantum channels describe dynamics
such that the past states of the system are irrelevant for what happens
in the future. The idea is intuitively the same as in a classical, discrete
Markov process where the state of the system depends only on the previ-
ous time step and not on the possible untold numbers of preceding steps. A
general theory of such dynamics was later developed, based on the theory
of semigroups and the most general form of their generators [6,7].

The majority of quantum processes however are non-Markovian, where
the history of the system does affect the present. An example could be
an atom relaxing to a lower energy state by emitting a photon to a very
high quality optical cavity. The photon can return to re-exite the atom at
some later time, making the dynamics of the atom non-Markovian. Such
dynamics cannot be described by Markovian theory and various analytical
and numerical methods have been developed [8-10]. So far no general, all
encompassing theory of non-Markovian quantum dynamics exists. Actually
the very definition of what non-Markovianity means is under discussion
[11,12].

Defining what non-Markovianity means in the quantum regime is not
straightforward and there are many different schools of thought. Some rely
on purely mathematical ideas and some prefer a physical interpretation as
is seen when we introduce these ideas in later chapters. In this thesis we
considered a physically motivated approach called the Breuer, Laine, Piilo
(BLP) measure of non-Markovianity [13]|, which is based on the change
of distinguishability of different quantum states. We studied some of its
properties in detail and showed how the calculation of it can be simplified
greatly. We were also able to clarify the interpretation of it by showing
that it treats all parts of the quantum state space equally.

Other main goals of this thesis were finding applications for non-
Markovianity and considering cases where it could be considered a resource
for accomplishing certain quantum information tasks. Some ideas of taking
advantage of non-Markovianity or noise in general have already been in-
troduced for example in metrology [14], excitation transport [15], probing
other degrees of freedom [16-18|, entanglement distribution [19] and tele-
portation [20]. For applying non-Markovianity in quantum information we
studied the well known superdense coding protocol with different kinds of
noise added. We also studied a well known and established peculiarity of
quantum mechanics called the quantum Zeno effect from the point of view
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of non-Markovianity.

The outline of the thesis is the following. In Chapters 2 and 3 we in-
troduce some of the necessary theoretical tools relevant for our studies.
Chapter 2 describes the idea of a quantum state and some of the structures
of the quantum state space that turned out to be extremely useful for our
work. Chapter 3 discusses a bit more formally what closed and open quan-
tum systems are, discusses non-Markovianity in more detail and introduces
the Breuer, Laine, Piilo measure of non-Markovianity mathematically. In
Chapter 4 we apply the tools of the previous chapters to show how the mea-
sure can be simplified. Chapter 5 contains an introductory overview of our
results in applying non-Markovianity in the superdense coding protocol, a
study of the quantum Zeno effect and tools from Chapter 2 are applied
to studying the resources needed for detecting quantum correlations in a
quantum state. Chapter 6 will conclude and summarize the results of the
thesis and also discuss some ideas for future work.

The reader of this thesis is assumed to be familiar with basic linear
algebra and the very basics of quantum mechanics. We take the Hilbert
space structure of quantum mechanics as an axiom. We will use units such
that A = 1 unless explicitly stated otherwise. We will also take the notion
of quantum measurement for granted. Thus in this thesis, observables
are described by positive operator valued measures A that assign an effect
operator L; to each measurement outcome j and the effect operators satisfy
O<L;<Tand Zj L; = I. For more information and a detailed discussion
we point to |21-23] and the references therein. Of course, none of the
following is meant to be a comprehensive, ground up constructive study in
the subject. Rather, we will introduce various ideas and tools that have
been useful and important in our studies.
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Chapter 2

Quantum state space

Classically, everything one needs to know about a free particle to completely
solve its dynamics, is the position z(ty) and velocity 2(ty) at some instant of
time tyo. Then by using Newton’s equations, one can solve for the trajectory
of the particle and predict where it will be at a later time ¢. In other words
the pair (x(to), Z(to)) defines the state of the classical system |24, 25| at
time ty. The state is something that encodes all there is to know about the
system and can be used to make predictions about the future of the system.
Of course this depends on what one is interested in. In our example we
are interested in the dynamics of the system and do not care for example
about the color of the particle, which of course cannot be solved by knowing
(z(to), & (to))-

In quantum mechanics the state is a similar set of numbers encoding
all information about the system [21-23]. However, the crucial difference
to classical mechanics is that we cannot predict exactly for example the
path taken by a particle in an interferometer. In general we are only able
to give probabilities of different possible outcomes, for example we can say
that the particle takes path A with a probability of 70% and path B with a
probability of 30%. This uncertainty is not due to our lack of knowledge or
experimental limitations but is inherent to quantum theory itself. On the
fundamental level nature seems to be probabilistic and this is described
extremely well by quantum theory. Since the fifth Solvay conference in
1928 there have been and still are countless debates on what the meaning
of quantum theory is or how it should be interpreted and what it tells us
about the nature of physical reality [26]. These questions are far beyond
the scope of this thesis and we will not address them here. For our purposes
it is enough to take Hilbert space quantum mechanics as a set of rules and
computational tools that predict and fit experimental data extremely well.
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2.1 Quantum states

Let the d dimensional Hilbert space of our quantum system be H. We
denote the set of all linear operators on H by L£(H) and the set of all self-
adjoint operators by Lg(#H). Then the set S(H) of all possible states of our
system is

S(H) ={p e Ls(H)[p >0, tr(p) = 1}. (2.1)

This means that the set contains all positive linear operators of unit trace.
These properties are needed for the states to make sense physically. Posi-
tivity guarantees that all measurement outcome probabilities are real and
positive and the trace condition guarantees that the probabilities sum to
one. The trace constraint is linear, but the positivity constraint is not,
which means that S(#H) cannot have the structure of a vector space. A
simple calculation shows that the positivity condition is convex. Let py,
p2 € S(H) be arbitrary and A € [0,1]. Then

([ Ap1 + (1= N)p2|h) = AW|pr|ih) + (1 = A){@[pz|th) =0, (2.2)

by the positivity of p; and p,. As stated above, trace is linear and then
trivially

tr{Ap1 + (1 — AN)p2} = L. (2.3)

The above result means that if p; and p, are states, then their convex com-
bination is also a state. For clarity we only studied the convex combination
of two states, but the above considerations generalize trivially for any fi-
nite convex combination. In other words S(H) is a convex set. One could
think that convex sets cannot be very complicated geometrically, since the
intuition is that they are more or less like deformed circles. For a two di-
mensional quantum system this is true as we will see later, but for higher
dimensions the geometric structure becomes very rich and complicated.

2.1.1 Bloch sphere

The set of quantum states was defined as a convex subset of the real vector
space Lg(H) of all Hermitian operators on the Hilbert space ‘H of dimension
d. These operators can be written in different decompositions in their
matrix representation and some of these decompositions hold a special role
in quantum mechanics. We will study them next.
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Any matrix H € Lg(H) can be written as
1
H = tr(H)al + M, (2.4)

where M = H —tr(H)3I. M is now traceless and Hermitian, which means
that it is in the Lie algebra su(d*> — 1) (given that we use the physics
convention with the factor ¢ in the exponential map that maps elements of
the Lie algebra to elements of the Lie group. Without this the Lie algebra
consists of traceless anti-Hermitian matrices).

Lie algebras and their representation theory have a rich, widely studied
and solved structure and are used in many areas of physics [27-29|. Because
of this, there are many canonical choices for their generators. Being a
generator of an algebra a means that the elements called generators form
the smallest subalgebra of a that contains the whole of a. In the case
of Lie algebras the algebra structure is given by the Lie bracket, or more
familiarly the commutator. This is the mathematical background from
which the familiar commutation relations used in many parts of physics
come from. Now by using some generators {o;} as discussed above we can
write

1 d?—1 1 o
H = (tr(H)I + ; %> = = (n(H) +7-3), (2.5)

where 7; are suitably chosen real coefficients. We see that after fixing the
generators {o;}, a unique set of numbers {r;} is associated to each H.
These numbers can be collected to a vector 7 in R¥~1. In this way we
have defined a vector space isomorphism between Lg(H) and R*~!. The
restriction of this map to the set of quantum states is called the generalized
Bloch representation for d > 2 and the Bloch representation for d = 2. The
vector 7 is called the (generalized) Bloch vector.

The Bloch representation is used very often in quantum physics. So
often in fact that most physicist do not make any distinction between the
state space and its representation in R3. The reason is that in this case the
representation of the state space is a ball of radius 1. This can be seen by
studying how the trace and positivity constraints translate to constraints on
the coefficients r;. We will do this for the two dimensional case by studying
the eigenvalues of the quantum states. Let d = 2, p € S(H) and let the
generators {0y, 09,03} in the Bloch representation be the Pauli matrices

S Y () NPT G PR
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Then a straightforward calculation shows that the eigenvalues of p are

1 1
)\1=§<1—\/7‘%+r§+7"§) Az=§<1+\/r%+r§+?€)- (2.7)

The trace condition is satisfied by construction and it is evident that the
positivity constraint means that the norm of the vector 7" cannot be higher
than 1. On the other hand we see that all vectors ¥ with norm less than
or equal to one correspond to valid quantum states. This means that for
d = 2 the image of S(H) in the Bloch representation is the unit ball in
R3. Unfortunately this property does not generalize. Already for d = 3
and using for example the Gell-Mann matrices as generators, the image
of S(H) is not the whole unit ball in R® anymore but something more
exotic [30]. The pure states still have generalized Bloch vectors of unit
length, so they live on the unit sphere, but not all of the points on the
sphere or inside the unit ball correspond to valid quantum states anymore.
The trace condition is of course always met, but the positivity condition
on the coefficients of the generalized Bloch vector is not so simple anymore
and is broken for many points inside the unit ball.

2.2 Direction in state space

When we speak about direction in everyday life, the intuition we often have
is an arrow pointing somewhere, for example from point A to point B on
a map. This notion generalizes quite naturally to a vector space, where we
can define addition and subtraction of its elements. This is depicted in Fig.
2.1, where we define the direction vector from point A to point B in some
arbitrary vector space.

O C=B-A

Figure 2.1: Direction from point A to point B. O denotes the origin of the
vector space.

As depicted in Fig. 2.2, notice that we can move the vector C' around
by parallel transport anywhere we want and nothing changes about the
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direction it defines. Another way of thinking about this is that there are
infinitely many vectors that give the same C' as their difference. This is
intuitively clear; once we fix a direction vector we are interested in, it does
not matter where we draw it.

Figure 2.2: Parallel transporting does not change the direction vector C'.

On an abstract level, all of the above ideas can be translated to the
level of quantum states. The quantum state space itself does not have
the structure of a vector space, but it is a subset of the vector space of
Hermitian matrices, which means that we can still make sense of addition
and subtraction. Using the intuition above, we can think that for some
arbitrary quantum states p; and ps, the vector p; — ps defines a direction in
the state space, or more precisely in the vector space of Hermitian matrices,
since the difference matrix is not a valid state anymore.

Returning to our previous example, let p; and p, be arbitrary states of
a two dimensional system with Bloch vectors 77 and 5. Then using the
Bloch representation we can write

. . 2
P1—02:§( 1 —T3) - 0. (2.8)

With this in mind we can identify the direction defined by p; and p, with the
direction in R? defined by the corresponding Bloch vectors. This direction
vector can be translated freely like in Fig. 2.2. Thus it is clear that there are
many different choices for p; and p, that give the same difference. Similar
reasoning applies also for higher dimensional examples, which however are
difficult to imagine, since already for a three dimensional quantum system
the generalized Bloch representation is in R® as we saw earlier. On an
abstract level the ideas are nevertheless clear.
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2.3 Distance in state space

In addition to direction, we want to make sense of the notion of distance
in the set of quantum states. For this, we need to define some kind of a
metric. Of course any suitable metric would do, but we choose the trace
distance [23], which is the metric induced by the trace norm. The reason
for our choice is the physical interpretation the trace distance has. We
start by defining the trace norm and then studying and listing some of the
properties of it and the induced metric.

2.3.1 Trace distance
The trace norm of a matrix A is defined as

|| Allsr = tr]A], (2.9)
where |A| = vV ATA. Tt is clear from the definition that for any matrix A, the

trace norm is just the sum of the singular values. For Hermitian matrices
in particular, it is then the sum of the absolute values of the eigenvalues

Al = |Aal. (2.10)
The induced metric, the trace distance of two quantum states p; and ps is

1
D(p1, p2) = S llo1 — pollir- (2.11)
2

Using the triangle inequality and the fact that quantum states are positive
matrices with trace one, we see that for arbitrary p; and ps

0 < D(p1, p2) < S([lpallex + [lp2lfir) = 1. (2.12)

N | —

2.3.2 Jordan-Hahn decomposition

Before continuing further, we will introduce a simple decomposition for
Hermitian matrices which turns out to be an extremely useful tool in our
calculations. The decomposition is a straightforward consequence of the
spectral theorem and is sometimes called the Jordan-Hahn decomposition
[31]. The idea is that we can decompose any Hermitian matrix as the
difference of two positive matrices with orthogonal supports. To see this,
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let A be an arbitrary Hermitian matrix. It follows from the spectral theorem
that we can write

A=) Aaldn)(dnl, (2.13)

which we can further decompose as

Z)\nlﬁbn><¢n| = Z el ) (D] — Z (M@)ol = My — M-, (2.14)

k s.t. [ s.t.
A >0 ;<0

where M, and M_ are positive and orthogonal as desired.

A few useful properties of the decomposition are now immediate from
the definitions. Namely

1. If tr(A) = 0 then tr(M,) = tr(M_).
2. |Al =M, + M_.

3. ||Alltr = tr(My + M_) (direct consequence of property 2).

2.3.3 Trace distance as information

P1 @@

p2 >

Figure 2.3: Two state discrimination problem.

Trace distance also has a physical interpretation as it is closely related to
the optimal probability P;(p1, p2) of discriminating two unknown quantum
states p; and py using a quantum measurement, given a promise that one
of them was prepared [23,32]. This can be seen with the following short
calculation following the presentation in |23].

Let us assume that one of two quantum states p; or p, are prepared,
both with equal probability. As depicted in Fig. 2.3, the task of finding
out which of the states was prepared, can be thought of as having a box
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taking a state as an input, and flashing light 1 or light 2 as an output if it
guesses that the input was p; or po. This box can then be described using a
POVM with two effects L; and Ly = [ — L; corresponding to the outcomes
1 and 2. The error probability for the discrimination problem is then

P..; = P(p; was prepared and guess py) + P(py was prepared and guess p;)

1 1 1 1
= étr(png) + §tr(p2L1) = étr(png) + §tr(p2(l — Lg))

— % (1+tr((pr — p2)L2)) - (2.15)

We see that to minimize P, we need to make tr ((p; — p2)L2) as small as
possible. To do this, we apply the spectral theorem to p; — py and write

tr ((pr — p2)L2) = ZA (Gul Laldn) = =D INel, (2.16)

ksl
where we have used the fact that 0 < (| La|y) <1 for all ¢ € H, because
L, is an element of a POVM. We can achieve the lower bound of equation
(2.16) by choosing Ls to be the projection on the eigenvectors corresponding
to the negative eigenvalues of p; — po, which is

Ly = Z |D1) (Pr- (2.17)

ksl
It is clear that this is also the optimal lower bound, since it maximizes the
contribution of the negative parts to the sum, removes the positive parts
completely and we had that 0 < (| Ls|¢)) < 1 for all ¢ € H. Thus we have
that the minimum error probability is

1
Pa = 5= 3" el) = 51 = Strlpr = pal) = 50— Dlpr, ), (2.18)

ks.t.
A <0

where we have used the Jordan-Hahn decomposition and its properties to
write

1 1
tr(M_) =) |l = S (M- + M) = Strlp — pal. (2.19)

ks.t.
A, <0

We see that if the trace distance goes to one, P, goes to zero and the
states can be perfectly distinguished from each other. If the distance is
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very small, P, is close to % and the discrimination is close to being a coin
toss. By the above, the optimal probability P, is then given as

1
Pa(pr,p2) =1 — Porr = 5(1+D(P17P2)>‘ (2.20)

2.4 Multipartite quantum systems

We have seen that the states of a quantum system S are described by
specific kind of linear operators on a specific Hilbert space Hg. But what
about scenarios where there are for example two separate systems A and
B which could interact, or for some other reason we would like to describe
them as a single system? Each system separately is described by a Hilbert
space H; and it turns out [30] that the correct mathematical description of
the system considered as a whole is the tensor product of the subsystem
Hilbert spaces:

Harp = Ha® Hp. (2.21)

The states pap of the combined system are now described by the positive
operators of trace one on the product space.

Now, if we have a joint system state pap and want to know the corre-
sponding subsystem states, we use the partial trace operation, which taken
over system B isamap trg : L(Harp) = L(Ha), pap — pa and is defined
by the requirement

tr(paM) = tr(papM ® 1), (2.22)

which must hold for all operators M in L(H ) of the system A. If we want
to take the partial trace over A, we exchange B and A in the previous
definition.

Physically the idea behind the definition of the partial trace is the fol-
lowing. Alice has a particle in her lab in Turku and Bob also has a particle
in his lab in Helsinki such that the joint state of the particles is p45. Then,
of course Alice can perform measurements on her particle, described by
the operators M. Equally well we can think this as a measurement being
performed on the combined system such that M is measured on Alice’s side
and nothing measured on Bob’s side. The reduced state p4 obtained by
the partial trace must be compatible with this, independent of the mea-
surement performed.



23

2.4.1 Correlations

As a consequence of the mathematical structure of tensor products, pap
is in general not determined by knowing p4 and pp alone. Thus in a
sense, a joint system in quantum mechanics is more than the sum of its
parts. As a consequence of the mathematical structure, measurements
performed by Alice and Bob on their parts of the joint system can exhibit
correlations that are not explainable by classical physics. This phenomenon
called entanglement is so much different than what our intuition tells us,
that it even made Einstein believe that something about the theory is
incomplete [33]. However experiments have shown one after another [34-
37], that entanglement is real and the results of the experiments cannot be
explained by local hidden variables. The existence of such hidden variables
would mean that the observed non-local features of quantum mechanics
would only seem non-local because of our lack of knowledge of some features
of nature. The experiments say otherwise and it seems that nature really
is non-local.

The states exhibiting these non classical correlations can be divided into
many different classes and we will now give a few examples. In general any
matrix psp in the tensor product space can be written as

pap =Y i) (5] © [ne) (ml, (2.23)

i?j7k7l

where {|¢;)} is a basis of Ha, {|nx)} a basis of Hp and c¢;j; some complex
numbers. If it happens that pap can be written as

pAB = pA @ pp, (2.24)

where p4 and pp are quantum states, it is called factorizable. If the sum
can be expressed as a convex combination of factorizable states, it is called
separable. If it is not separable, it is called entangled. Entanglement has
a huge number of applications that are impossible to realize by classical
resources. These include superdense coding [38] also studied later in this
thesis, teleportation [39] and quantum computing [40-42] with all of its
applications just to name a few. The vast amount of applications makes
entanglement a desired property to have and a lot of effort has been made
in measuring and detecting it [43,44].

Separable states are not entangled, but can still exhibit correlations
not explainable in classical terms [45]. States that cannot be written as a
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convex combination of the form

PAB = Z Aipi @ [6) (i, (2.25)

are called (left) discordant. Right discordant states are defined by exchang-
ing the parts of the tensor product above. Discordant states have also been
shown to have various applications, in which they outperform purely clas-
sical resources [46-50].

As it probably is intuitive, even when given a psp in the general form
of equation (2.23), it is a difficult problem to find out with certainty if it
can be written in for example one of the forms introduced above [51,52].
The problem becomes even more difficult if there is no knowledge of the
form of pap. One could imagine, that if for example one is not interested
in anything else except the fact if a state is entangled or not, one would not
necessarily need to know everything about the state itself. In the case of
having the prior information that the unknown state is pure, this actually
holds and it can be decided if the state is entangled or not without uniquely
defining the state itself [53,54|. However, as we see later in the case of no
prior information, it happens that so much needs to be known about the
state that this information can be used to identify the state uniquely.
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Chapter 3

Open quantum systems

The concept of closed and open quantum systems goes hand in hand with
the dynamics of the systems and how that is described. We start by looking
at closed quantum systems, after which it is simple to move to the ideas of
open systems.

3.1 Closed systems

The time evolution of a closed quantum system starting from a state p(0)
at time ¢t = 0 due to a time independent Hamiltonian operator H is unitary
and given by the equation

p(t) = U)p(0)U'(1), (3.1)

where U(t) = e”®, By formally taking the derivative, invoking the chain
rule and using the fact that any matrix commutes with its own exponential,
we can write equation 3.1 in differential form

d

dt

This equation is called the Liouville-von Neumann equation and it is the

fundamental equation of motion describing the time evolution of a quantum

system. It is the density matrix counterpart of and also equivalent to the

famous Schrédinger equation, which describes the time evolution of pure
states.

Starting from the form of unitary dynamics and then going backwards

to see the corresponding differential equation might seem strange. FEs-

pecially when thinking in terms of canonical quantization, which derives

(t) = —iHp(t) +ip(t)H = —ilH, p(t)]. (3.2)
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the Louville-von Neumann equation by starting with classical Hamiltonian
mechanics and replaces the Poisson bracket with the Lie bracket and pro-
motes classical variables to operators. However, as it seems that nature is
fundamentally quantum, it would be more natural to start with quantum
mechanics and obtain classical mechanics as some kind of a limit. For a
step to this direction, we observe that from the definition of U(t) it is clear
that the dynamics is causal, meaning that the state of the system at time
t > 0 is completely determined (with fixed U(t)) from the state at time
t = 0. It is also clear that the dynamics is reversible, since

Ut(t) = U(—t) = U (). (3.3)

The map ¢ — U(t) is clearly continuous, meaning that if the change in time
t is small, then so is the change in U(t). By taking these three properties
(causality, reversibility and continuity) as the defining characteristics of
the dynamics of a closed system in the context of Hilbert space quantum
mechanics, the form of the time evolution can be derived [22]. This means
that if we accept the Hilbert space formalism as an axiom, or arrive to it
by starting from a set of some other axioms, for example with the quantum
logic approach [55,56], the form of the time evolution of a closed system is
fixed by these three requirements. The requirements have a clear physical
meaning and seem much more natural than just postulating an abstract
equation as the form of the dynamics. This is the whole idea of operational
axiomatic approaches to the foundations of quantum mechanics. The goal
is to define a set of operationally clear and meaningful axioms from which
quantum mechanics can then be constructed. These kinds of studies are
beyond the scope of this thesis and we will not go into more detail but turn
our attention to open quantum systems.

3.2 Open systems

A closed quantum system can be big, for example it could be a system
of 1000 interacting two level systems or it could be the polarization of
a photon interacting with the frequency, a continuous degree of freedom.
Many times though we are interested in only a small part of the whole
system, for example only about the polarization of a photon and not so
much about the frequency distribution. The part we are interested in, is
called the system of interest or the open system and denoted by S. The
rest is called the environment denoted by E as in Fig. 3.1. We assume that
the open system can be described with some Hilbert space Hg and the
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9;j

Figure 3.1: An environment F consisting of many different levels indexed by
J is coupled to a two level system S such that every level of the environment
has a coupling constant of its own.

environment with some Hilbert space Hg. The combined bipartite system
formed by S and E is assumed closed and described by the tensor product
space Hg p. It is also assumed that initially the open system S and the
environment E are uncorrelated, meaning that the state of the bipartite
system at time 0 is

ps+e(0) = ps(0) ® pg(0). (3.4)

Because the bipartite system is closed, the time evolution is unitary, given
by some U(t). We discard the uninteresting environmental degrees of free-
dom by taking the partial trace and arrive at the state of the open system
at time ¢

ps(t) = trp{U(t)ps(0) @ pp(0)UT (1)} (3.5)

As can be seen form the form of the equation, different initial states pg(0)
of the environment can result in different reduced dynamics. We could
interpret the above equation as three transformations we do to the initial
open system state pg(0) in sequence:

1. Calculate the tensor product with the state of the environment.
2. Evolve the product unitarily.

3. Take the partial trace over the environment.
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All of the above are examples of completely positive (CP) trace preserving
(TP) transformations [23]. A completely positive trace preserving map ®
is defined as

(CP) ® ®I", is a positive map for all n € N . I" is the identity map on
the operators of the Hilbert space of dimension n

(TP) tr{®(p)} = tr{p} for all p € L(H).

Positive maps map positive matrices to positive matrices, which combined
with the TP condition seems sufficient to guarantee that states are mapped
to states. This is not true however, because one needs to be able to consider
the system of interest as a part of an arbitrary larger system. Theory must
allow for considering for example the polarization of a photon in a lab in
Turku together with a helium particle on the dark side of the moon. Then
the combined system state of these two must evolve to a physically sensible
state if nothing happens on the moon and the polarization is manipulated
in Turku. The complete positivity criterion guarantees this for all possible
scenarios such as that. This would not be guaranteed by only positive
maps, since for example the partial transposition is a map that is positive,
but not completely positive [23]. Completely positive trace preserving maps
are usually called quantum channels, channels, CPT maps or CPTP maps
in the context of quantum mechanics. These names will also be used in the
rest of this thesis. Using the above notions, we rewrite the dynamics of an
open system as

ps(t) = Potps(0), (3.6)

where ®(, is a CPTP map or in other words a quantum channel and the
subscripts emphasize that it evolves the state from initial time 0 to a later
time ¢t > 0. If ¢ = 0 then ®(( = I, which is the identity operation.

Notice that according to the above discussion, the map ®(, is a channel
for each fixed value of t. Of course there are infinitely many different
values of ¢t between for example ¢ = 0 and ¢ = 1, so a formula for &g,
actually defines a continuous family of channels parametrized by t. Usually,
especially in the open quantum systems community the words channel,
family of channels and dynamical map are used interchangeably and the
meaning is clear from the context.

Now, if we forgot the previous discussion and would only state that
the most general form of sensible dynamics for an open quantum system
is a channel, we could actually derive equation (3.5). The Stinespring
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dilation theorem [57] states that all possible CPTP maps ® can be written
in the form of equation (3.5). See also [23,58] for a more approachable
explanation. Thus any quantum channel can be at least simulated by some
environment and unitary evolution followed by a partial trace.

In practice, solving the form of the dynamics of the open system can be
daunting, for example because of the large number of degrees of freedom of
the environment, which we are not interested in anyway. Different kinds of
analytical and numerical approaches to this have been developed [13,59-69].
In this thesis we will not go into detail in how the different methods work or
how the dynamics can be solved, but will introduce some of the very basic
mathematical structures and ideas. These are always in the background,
no matter how the dynamics is solved.

3.3 Markovian open systems

As with closed systems, where we had the generic form for the unitary
U(t) = e (3.7)

we could hope to find something generic for the dynamical map ®(,;. Equa-
tion (3.5) is a start, but it depends on the environment, which we want to
avoid. In general it can be shown [70] that every CP map ® can be written
in what is called the Kraus form as

p) =D KipK]. (3.8)

Further requiring that ) KJ K; = I also guarantees the TP property. For
d-dimensional Hilbert spaces n can always be chosen to be less than or
equal to d?. The operators K; encode all the information of the channel
and describe the effect of the environment on the open system. However,
this is just an equivalent form for the channel and we would like to have
something analogous to the Schrédinger equation, which can be used to
solve for the form of the channel. A standard approach is to impose some
general structure on the dynamical map besides the CPTP property and
work from there. One fundamental structure is the semigroup property

Poty1t, = Pot, Poty - (3.9)
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For a semigroup of CPTP maps, there exists a generator £ meaning that
the semigroup is a solution to the equation

< pslt) = Losli), (3.10)

where the generator can always be put to a general form [6,7]
. 1
Lps = —ilH,ps]+ > _ 7i(AipsAl — 5{14114“ ps})- (3.11)

Combining equations (3.10) and (3.11) we get the famous Gorini-
Kossakowski-Sudarshan-Lindblad equation

ps(0) = ~ilH, ps()] + 3l Aips()A] - (Al A5, (312

where H is the Hamiltonian describing the unitary part of the evolution
due to the system of interest alone with some possible effects caused by the
environmnent. The operators A; describe the open part of the evolution.
Notice that they also act only on the system and do not explicitly depend
on the environmental degrees of freedom. The non-unitary effect of the
environment has been encoded into the operators A;. This equation is
sometimes also called the Markovian master equation and can approximate
many different physical scenarios. However, the semigroup requirement is
quite stringent and there are many cases where the dynamics is such that
it cannot be captured by such equations. For these kinds of cases there
are many different approaches, but so far no general, all encompassing
form such as equation (3.12). In fact, there is no consensus on what non-
Markovian dynamics actually means! This is what we will consider next.

3.4 Non-Markovian open systems

The most obvious generalization moving away from the semigroup structure
is to require a property called CP divisibility from the quantum channel.
This means that given a channel ®¢, for all ¢, 5 s.t. £; <ty there exist a
CPTP map ¥, 4, such that

DPoti+ts = Yyt Poty - (3.13)

This is still quite similar to the semigroup property, but the form of the map
connecting the time points ¢; and ¢, is now arbitrary. In fact, for reasons
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to follow, maps with this property are still usually considered Markovian
and one popular idea is to define everything not divisible as non-Markovian
[71,72]|.

3.5 Defining non-Markovianity

Equating non-divisibility with non-Markovianity is mathematically very
pleasing but lacked a concrete physical interpretation, until some proposals
were made very recently [73]. In addition to divisibility, many different
physically motivated approaches to defining non-Markovianity have been
introduced. Typically, the idea behind them is choosing some more or less
physically relevant quantity that tends to decrease under CPTP maps, or
in other words, under the action of quantum channels. An increase in
the quantity on some time interval is then considered a signature of non-
Markovian behaviour. These increases are then added up and the number
obtained like this is optimized subject to some fixed conditions to define
it uniquely. The magnitude of this number then describes the amount
of non-Markovianity in the system, or put differently, the magnitude of
the memory effects. Some examples include a measure based on channel
capacities [74], change of volumes in state space [75] and entanglement or
other correlations with an ancilla [72,76] just to name a few. An interesting
one is also a measure characterizing the degree of non-divisibility not based
on the dynamics of some physical quantity but on the form of the channel
itself |72

Still, so far no consensus has been reached on what would be the quan-
tity that best captures the relevant information about the memory effects.
Rather, it seems that the different measures are useful in different scenarios
and describe different aspects of non-Markovianity. We will now look more
closely at a measure based on trace distance and see in detail some of its
properties that will be used later in this work.

3.5.1 BLP measure

One of the first and most widely used measures of non-Markovianity is the
Breuer, Laine, Piilo (BLP) measure [13]. It is based on trace distance,
which we already studied in section 2.3.

In addition to the physical interpretation as kind of information, the
trace distance has another desirable property. It is monotonic under pos-
itive, trace preserving maps. In other words positive and trace preserving
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maps are contractions in terms of the trace distance metric. This can be
seen with a straightforward calculation [77]. Let ® be positive and trace
preserving, and let p; and p, be arbitrary Hermitian matrices. Using the
ideas introduced in section 2.3 we see that

D(®(p1), ®(p2)) = [|P(p1 — p2)llir = [| (M — M_)||is (3.14)
< (M) e + [| (M) i
= tr|®(M4)| + tr|P(M_)|
=tr(My+ M_) =tr|M; — M_|
= [lp1 = p2llir = D(p1, p2)-

This means that positive and trace preserving maps always decrease or
don’t change the trace distance of quantum states. In particular this then
holds for CPTP maps.

We conclude that trace distance has the desired properties to be used as
a quantity for measuring non-Markovianity. It is monotonic under CPTP
maps and it has a physical interpretation as kind of information that enables
us to distinguish different quantum states from each other. A decrease in
it is interpreted as information flowing out of the system and a possible
increase as information flowing back into the system. The corresponding
non-Markovianity measure is defined as

Nowe = s [ o(pi(t), pp(®)dt,  (3.15)
p1(0),p2(0) Jo(p1(t),p2(t))>0
where
dD(p1(t), po(t
(o (1), o)) = LD 20) (3.16)

The measure is built by adding up the increases in the trace distance be-
tween a pair of states during the evolution. This number is then maximized
over all possible choices for the initial states to get a quantity which charac-
terises only the properties of the channel. Specifically, whenever Ngrp > 0,
the channel is defined as non-Markovian. As we see from the definition, if
a channel has the semigroup or CP-divisibility property, the trace distance
between any two states is always decreasing under its action and the chan-
nel is Markovian in terms of the BLP measure. Notice that this does not
hold in the other direction, as there exist channels that are not divisible,
but still decrease trace distance |78].
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Chapter 4

Optimizing the BLP measure

We will now consider the problem of the maximization included in the
BLP measure. The purpose of it is finding a pair of states for which the
net increase in the trace distance is largest. This is a very difficult task
already for relatively small systems, since it seems to require to search over
all possible pairs of states. Fortunately, this can be simplified quite a lot.

The first idea we got is based on linearity of quantum channels. This
means that in a sense lines are mapped into lines in the quantum state
space. This together with the convex structure of the state space ultimately
leads to the result that the maximizing pair must consist of states that lie
on the boundary of the state space.

The interior of the state space can be characterized as states that are
not singular, in other words they are full rank. The boundary then consists
of states with at least one zero in the spectrum. Now, let p; and py be such
states that at least one of them, say p, does not belong to the boundary.
Then by continuity of eigenvalues we can form a third state ps (see Fig.
4.1) such that

p3=(1L—=XN)p1+Apa, A>1, (4.1)

with A suitably close to, but larger than one. So we extend the line con-
necting p; and py a little so that it goes a bit further from p; than ps. The
idea is to do this until we cannot do it anymore, which is when the other
end of the line hits the boundary. Now, by linearity of quantum channels,
the time evolution given by some channel @, is

p3(t) = (L= N)pi(t) + Apa(t), (4.2)

from which we see that
p1(t) = ps(t) = Apu(t) — p2(t)). (4.3)
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Figure 4.1: Lines are mapped into lines and the extension of the convex
combination.

Then it immediately follows that

D(p1(t), ps(t)) = AD(p1(t), p2(1)), (4.4)
by which it is clear that

/ (pr(t) ) dt = [ o(pr(t), ) dt. (45)
o(p1(t),p3(t))>0

a(p1(t),p2(t))>0

Because A > 1 this means that the pair (p;, p3) necessarily gives a higher
value for the BLP measure than the pair (p1, p2). We conclude that the
maximizing pair must lie on the boundary of the state space, because oth-
erwise one can always do the extension like above and get a higher value
for the integral.

It is now clear that the maximization can be restricted to the boundary
of the state space, but that is still quite a challenge and we can do better.
First we again use the spectral theorem to see that any difference of states
p1 and py can be written as

pr—pa =My —M_, (4.6)
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for some positive, orthogonal matrices M, and M_. Since p; and p, are
states and thus of unit trace, the trace of the difference is zero, which
implies that

tr(M,) =tr(M_) =c. (4.7)
Using the properties of the trace norm, we see that
lp1 = pallee = tr(My) + tr(M-) = 2, (4.8)

which is equivalent to D(py, p2) = ¢. Thus we can normalize both M, and
M_ with the same constant ¢ to make them orthogonal quantum states.
The constant c is equal to the trace distance of the states p; and p; and
thus less than or equal to 1. Defining py, = 1M, and py = +M_ we find
that

D(pn,, pr_) = %D(Ph p2)- (4.9)
Because the constant % is greater than or equal to 1, it follows as in the
line extension argument that the pair (par,, pa) gives a larger or at least
equal value for the BLP measure as the pair (p1, p2). Since p; and py were
arbitrary, we conclude that the maximizing pair must consist of orthogonal
states.

We see that the orthogonality condition is the strongest as it implies
that the maximizing pair must lie on the boundary of the state space.
This is because the orthogonality is defined via the Hilbert-Schmidt inner
product, which in turn means that we are interested in the orthogonality of
the supports of the matrices. As all states belonging to the interior of S(H)
are positive and have full rank, they cannot have orthogonal supports. So
it must hold that the states are not of full rank and thus belong to the
boundary. In particular it follows that the maximizing pair consists of pure
states for a qubit system as the boundary of the state space consists only
of pure states in that case [23].

4.1 BLP measure and direction in state space

We have now confined the maximization needed in calculating the BLP
measure to the set of pairs of orthogonal states. Still, we are maximizing
over two states and as dimension grows this becomes increasingly difficult.
Also, it seems like we need to look ”all over” this set in state space for the
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maximizing pair. Some more careful consideration shows that this is not
needed.

Using the ideas presented in section 2.2 about the concept of direction in
state space and the definition of the BLP measure we come to the following
conclusion. The state pairs enter the measure only as their difference, from
which we immediately recognize that the important concept for the BLP
measure are not the pairs themselves but the directions defined by them
and as we discussed, it does not matter where this direction is defined.
We will now demonstrate how the BLP maximization can be performed in
any part of the state space and by fixing a reference state, which is then
surrounded by a surface such that all possible directions can be defined by
picking the reference state and a point from the surface.

We already saw above that any direction defined by a pair of quantum
states can also be defined by a pair of orthogonal quantum states. Actually,
the same reasoning applies to any possible direction. In other words, by
exactly the same arguments, any nonzero traceless Hermitian matrix A can
be written as

A = pjwJr — PM_, (410)

where A is some suitably chosen real constant (we identify all real scalar
multiples of A as the same direction). We define the set of all directions in

S(H) as
Eo(H)={A#0, A= AT tr(A) =0}. (4.11)

Now, let us fix a state py from the interior of the state space. Then a set
OU(po) C S(H) is called an enclosing surface of the state py if and only if
for all A € & (H) there exists a A > 0 such that

po + AA € dU (py). (4.12)

Notice that by definition py does not belong to 0U(py) and that every
interior point of S(H) has at least one enclosing surface, an e-ball being an
example. Notice also that the shape of an enclosing surface is not restricted
in any particular way. It does not need to be a sphere or anything even
resembling a sphere nor does py need to be in the centre as demonstrated
in Fig. 4.2.

To see how the maximization can be simplified, let p € 9U(py) be
arbitrary. Then by the same argument as used in the previous section,
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(a) (b)

Figure 4.2: Examples of different enclosing surfaces for py.

there exists orthogonal quantum states p; and py such that

p1—p2 = ﬁ(ﬂo —p). (4.13)

Po, P

Thus for any pair (pg,p) there exists a corresponding orthogonal pair
(p1,p2). Now on the other hand, for any orthogonal pair (pi, p2) we have
by definition that there exist a A > 0 such that

po + Alpr — p2) € OU(po), (4.14)

which means that there exists a p € U (pg) such that

p— po = Ap1 — p2). (4.15)

Since p; and ps are orthogonal, we have D(py, p2) = 1, which implies that
A = D(po, p).- We see that for every pair of orthogonal states (p1, p2) there
exists a state p € OU(py) such that

p1—p2 = ﬁ(p — po)- (4.16)

Po, P

This shows the other direction and we can conclude that the value of the
BLP measure can be found by

1. Choosing a reference state py from the interior of the state space
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2. Surrounding py with an enclosing surface OU (py)

3. Calculating the BLP integral for a pair (po, p), where p € OU (po)
4. Normalizing the result with 1/D(po, p)

5. Repeating for all p € OU (py).

This result brings great simplifications to the maximization problem and
besides that also has some physical implications. Because pq is arbitrary,
the above shows that the memory effects in the BLP sense are universal
in the sense that they can equally well be witnessed in any part of the
state space. This can be highly beneficial for example when the dynamics
is such that it has a fixed point in the interior of S(#). Then this point
can be chosen as the reference and then only the sampled states evolve in
time! Also, the freedom in choosing many different shapes for OU(py) can
be useful in experiments. If some states are difficult to prepare, it might
be possible to do the maximization over an enclosing surface that does not
contain these problematic states at all. The universality also supports the
idea that BLP non-Markovianity is an intrinsic property of the channel ®,
itself even though the measure is defined via the effect on the states alone.
In fact, to experimentally evaluate the measure, one does not even need
to know the form of the channel. In other words the time evolution of
the states could be given by a black box, the inner workings of which are
unknown and only the effects of which could be observed.

4.1.1 Experimental demonstration

To verify the implications of the above theorem, a photonic experiment was
carried out by our collaborators in the University of Science and Technology
of China. In the experiment the polarization degree of freedom of the
photon was used as the system of interest and the frequency degree of
freedom as the environment.

The experimental setup is depicted in the left panel of Fig. 4.3. An
entangled pair of photons is created, one photon put through a setup real-
izing a non-Markovian channel and the other used as a trigger for detection.
Different aspects and details of the experimental realization are discussed
in |[79-82|, but the basic idea is simple. First, any desired pure polariza-
tion state and frequency state are prepared. Then the polarization and
frequency degrees are coupled causing noise to the polarization state. The
type of noise depends on the frequency distribution used. In our case we
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Figure 4.3: The experimental setup and the growth of the trace distance
over one period of oscillation of the decay rate for pure states (column
a) and two different reference states (columns (b) and (c¢)). The different
rows correspond to different environments correspondig to two different

non-Markovian channels (1)-(2) and a Markovian channel (3).

realize a non-Markovian noise channel to demonstrate the maximization

procedure.

The maximization is done with two different reference states

Figure 4.4: The Bloch sphere (blue), the two reference states (isolated blue
dots) and the two enclosing surfaces (red and green).

and enclosing surfaces as depicted in Fig. 4.4. One is chosen from the
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equatorial plane and the other from the northern hemisphere, close to the
surface of the Bloch sphere. The maximization is then done using the
method just introduced. Since the measure is not an observable, we must
perform state tomography. This means that the desired state is prepared,
put through the channel with some fixed time parameter value ¢ and full
tomography is performed. Then the parameter value, meaning the length
of the noise is increased and the process is repeated. The measure is then
calculated from the states obtained by the tomography and the results are
shown graphically in the right panel of Fig. 4.3 and numerically in Table
4.1. As expected from theory, the maximizing directions in all of the cases
are the ones orthogonal to the line connecting the north and the south
poles. We clearly see how this is captured by the reference states and en-
closing surfaces as red rings in Fig. 4.3. We also clearly see from the table,
that the values for the measure we get from the experiment are very close
to the ones calculated theoretically.

Mheo Ma) -/\/(b) MC)
(1) | 0.59 0.59 £0.01 0.59 £0.02 0.59 £0.02
(2) | 0.21 0.21 £0.01 0.21 £0.02 0.21 £0.02
(3) 0 0.001 £0.013 | —0.005 £ 0.008 | —0.0002 £ 0.0015

Table 4.1: The numerical values of the BLP measure obtained from the
experimental realization.
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Chapter 5

Non-Markovianity and quantum
information

Entanglement is at the heart of most quantum information tasks. In this
section we will introduce one application, namely the superdense coding
(SDC) protocol and look at what happens if some or all of the initial en-
tanglement required is lost. We find a scenario where the entanglement on
the system level is temporarily lost to the environment or to the correla-
tions between the system and the environment, but can later be retrieved
and used for performing the SDC protocol with high fidelity. This serves
as a proof of principle example of the possibility of using non-Markovianity
as a resource in quantum information.

We will also study the quantum Zeno effect from the point of view of
BLP non-Markovianity. The effect is about how frequent measurements
or a strong coupling to an external system can greatly effect, even stop
the time evolution of a quantum system. We find that especially the strong
coupling version of the Zeno effect gives a good test for the information flow
interpretation of the BLP measure and also exemplifies how the information
can flow into the correlations between the system and the environment even
when the state of the environment does not change in time.

5.1 Superdense coding

The purpose of the superdense coding protocol is to send a message from
Alice to Bob by exploiting quantum entanglement [38|. The idea is that
Alice can encode a message the joint state of her and Bob’s qubits by a
local operation and send her qubit to Bob who measures the joint state
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and decodes the message as described in Fig. 5.1. The trick is that Alice
and Bob first share a maximally entangled state of two qubits, which Alice
can manipulate locally to four orthogonal, thus perfectly distinguishable
quantum states. Of course Alice and Bob need to have decided beforehand
what the used encoding is. One example could be

(W) (P | = 7007
|\IJ_ <\II_| — 770177
| ) (D[ =710
D) (P_| =7117, (5.1)

where the quantum states are the different Bell states, which expressed in
the basis {|H),|V)} are

02) = < (HH) £ |VV)) (-2
1

V2

We see that the information Bob ends up with uniquely determines a state
of two classical bits. We conclude that by receiving just one qubit from
Alice, Bob has ended up with two bits of classical information, which is
where the name of the protocol comes from.

V) = —=([HV) + [V H)). (5.3)

Alice |
).
Bob i\_ B M)

oF)

Figure 5.1: The idea of the superdense coding protocol. |®,) is one of the
Bell states and o; is one of the Pauli matrices or the identity matrix oy.

The only way to perform the superdense coding protocol and success-
fully send two bits of classical information is to use a set of four orthogonal,
maximally entangled states, which implies that entanglement is a crucial
resource for such an operation. However, entanglement alone is not enough,
since without having Alice’s qubit, Bob cannot learn anything about the
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joint state, because locally his state is just trajce(|]P)(®4|) = 17, the max-
imally mixed state! Like in [83], we write a heuristic relation that describes
the relationship between these resources and classical information

1 entaglement bit 4+ 1 qubit > 2 classical bits, (5.4)

where the >= is used to emphasize that the relation between these quantities
is quite special. As stated above, just sharing a bit of entanglement does
not allow Alice and Bob to communicate at all; a qubit must be sent for
information to travel. Also, just sending a qubit without any entanglement
involved does not give any advantage over classical communication. We
will now study what happens if some or all of the entanglement is lost.

5.1.1 Noisy superdense coding with non-local memory
effects

The intuition from the previous section is that if some or all of the entan-
glement between Alice and Bob is lost, the amount of information Alice is
able to send to Bob should decrease. This idea has been formalized and
the protocol generalised for an arbitrary (not necessarily maximally) en-
tangled state pap shared between Alice and Bob [84] and also to many
users [85]. The capacity C, in other words the maximal amount of classical
information that can be transmitted by Alice to Bob by maximizing over
all possible encoding strategies, using a shared state psp and assuming a
noiseless channel in the transmission of the qubit, was proven to take the
simple form [84]

C(pa) =logyd+ S(ps) — S(pan), (5.5)

where d is the dimension of Alice’s system, pp is Bob’s reduced density
operator, and S(p) = —tr(plogp) the von Neumann entropy.

To give a concrete example, we will first theoretically study and then
comment on the experimental side of a photonic realization of the SDC
protocol schematically depicted in Fig. 5.2. As qubits we will use photon
polarization, which can conveniently be prepared to a maximally entangled

state using parametric down-conversion. The initial state that Alice and
Bob share is

@) = —=(HH) +[VV)). (5:6)
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Figure 5.2: SDC with noise on Alice’s qubit before encoding and noise on
Bob’s qubit after encoding.

Alice and Bob could use this state for the SDC protocol as described in
the previous section. However, we now introduce noise to the system by
coupling it to an environment. For the environment degree of freedom
we choose the frequency of the photons. The initial two-photon frequency
state, in general, can be written as

rx>=(/}deng@wthnwAan» (5.7)

where g(wa,wp) is the joint probability amplitude and the corresponding
joint probability distribution is P(wa,wp) = |g(wa,wp)|?. The unitary op-
erator describing the local coupling between the polarization and frequency
degrees of freedom of each photon j = A, B (Alice, Bob) is

U(t) = [ dul (@ V)V 4 e 0 ) ] (58)

where w; is the frequency of photon j and n{/ (nﬁ) the index of refraction of
its polarization component V (H). We assume that nf —n{t = n8 —nf =
An. Notice how a non-zero An is necessary for anything interesting to
happen on the system side.

In our scenario the state on Alice’s side is coupled to the environment,
which causes the Bell state shared by Alice and Bob to decohere and thus
lose entanglement. We will show how this is detrimental for the perfor-
mance of the SDC protocol. By following the ideas presented in [20,86,87]
in harnessing the so called non-local memory effects, we will also show how
correlations present in the initial state of the environment can allow Bob
to repair the broken entanglement on the system side by adding more noise
to the system!

Initially, the joint state of the polarization and frequency degrees of
freedom is a tensor product of the state defined in equations (5.6) and
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(5.7). Then the unitary coupling defined in equation (5.8) is turned on on
Alice’s side for time t4. Tracing over the frequency degree of freedom, the
joint polarization state shared by Alice and Bob becomes

pap(ta) =%(|HH><HH| +ra(ta)[HH)(VV] (5.9)
+ w5 (E)|[VVIHH] + [VVVV]), (5.10)

where k4 is called the decoherence function and is caused by the coupling
to the frequency degree of freedom. It is calculated as

Ka(ta) = /dedeeitA“’AA”]g(wA,wB)\z. (5.11)

As it is apparent from the form of x4 (¢ 4), the distribution |g(w4,wps)|* of
the environment modes completely determines what happens to our system.
For this example, we choose that it has a joint Gaussian form where the
marginals have equal mean values (wa) = (wp) = wp/2 and variances
Caa = (W) — (wa)? = Cpp. The correlation coefficient between the two
frequencies is K = ({(wawp) — (wa){wp))/Caa. This represents the case,
where the entangled photons are created in a parametric down-conversion
process as explained later.

Assuming that there is no noise on Bob’s side and no noise in the trans-
mission, the capacity of the protocol is given by equation (5.5) with pap(ta)
given by the expression above, namely

(5.12)

Clpap(ta)) =2—H (M) 7

where H(z) = —xlogyz — (1 — x)log,(1 — x) is the binary entropy func-
tion. It is clear that the capacity is 1, when |k4(t4)| = 0 (worst possible
decoherence) and 2 when |k (t4)| = 1 (no decoherence at all). This reflects
the fact that if there was no noise on Alice’s side, the protocol would be
just the ordinary SDC, and if there is maximal amount of decohorence,
meaning that the coherence terms are completely removed from equation
(5.9), there is no entanglement to use, thus nothing extra can be gained
with the SDC protocol.

Alice now applies one of the local unitary operations {I,0,,0,,0.} to
encode her message to the decohered state (5.9). Without loss of generality,
let us assume that Alice applies o,. Now Bob applies local noise to his
qubit for the duration tg, which he can freely choose. After this step the
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two-qubit state is

pan(ta,ts) = 5 V)V H| + h(ta, ta)]V H)(HV]
+ W (ta, t)|HV)(VH| + |HV)(HV]], (5.13)

where the decoherence function, with the specific choice tg = t4 and by
using the fact that the we chose |g(wa,wp)|? to have the specific Gaussian
form, becomes

h(ta,ta) = giwoAnta o =Caath (1+K) (5.14)
The absolute value is then just
[A(ta,ta)] = e Cantalie k), (5.15)

from which we see, that in the case of perfect anticorrelations (K = —1) in
the frequency distribution, the absolute value is equal to one. What this
means, is that up to a phase factor, Bob cancels the effect of the noise added
on Alice’s qubit by adding the exact same amount of noise to the system.
The phase factor is irrelevant for the performance of the protocol, since it
can be accounted for in the encoding operation. This fact is also reflected
by the equation for the capacity, which only depends on the absolute value
of the decoherence function.

The reason this approach works is, that locally what the noise can be
thought of as giving random phase kicks to the system, the randomness
coming from the distribution of the environment modes. So locally the
noise seems random both to Alice and Bob, but if there are perfect anti-
correlations, the kick on Alice’s qubit are always exactly counteracted by
kicks on Bob’s qubit. Put more precisely, the net effect, the integral over
all of the kicks, is that nothing happens.

What makes this interesting is that such anticorrelations in the fre-
quency distributions are easily made in the lab. If the pump laser used in
the down-conversion process had an infinitely narrow frequency distribu-
tions, the down converted photons would have perfect frequency anticorre-
lations. Experimentally however the pump frequency distribution is not a
delta function at some specific frequency wpymp, but described by a Gaus-
sian centered at wpymp. This means that there is randomness in the sum
of the frequencies wa + wp of the created, polarization entangled photons.
The amount of randomness depends on the width of the pump frequency
distribution. In the case of infinitely narrow distribution we recover the
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ideal case of perfect anticorrelations, which get worse and worse as the
width is increased.

As it probably is clear, the memory effect does not depend on when
the noise is added on Bob’s side. The same calculations would hold if
Bob added the noise before, during or after what happens on Alice’s side.
What makes this a bit unintuitive is the following. Assume that Bob adds
the noise after he has already received Alice’s qubit. Thus at the time of
encoding the amount of entanglement in the joint state could be almost
arbitrarily small, meaning a small value of |k4(t4)|. Then Alice performs
the encoding and sends her qubit to Bob. Were Bob now to measure
the joint state, he couldn’t learn much. So where is the information? It
is somehow spread into the environment or the correlations between the
system and the environment and is not accessible to Bob directly. However,
as we saw above, if Bob now adds noise to his qubit he cancels the effect of
Alice’s noise and brings the information back into the polarization degree
of freedom.

20
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Figure 5.3: Mutual information vs. magnitude of Alice’s decoherence func-
tion |k4|. The blue solid line corresponds to noise on Alice’s side and no
noise on Bob’s side with four-state encoding. The dots correspond to the
measured capacities reached measured in terms of mutual information. The
red lines are theoretical fits to the data. The lower line corresponds to the
case where we used three-state encoding and the upper line the case of
four-state encoding.

The above theoretical consideration was realized experimentally with
our collaborators in USTC, China. Fig. 5.3 shows our results. Because of
limitations of linear optics, a full Bell state measurement cannot be accom-
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plished. This means that there is no way to experimentally distinguish all
of the four Bell states from each other. For this reason a modified SDC pro-
tocol is used, where only three different Bell states are used for the sending
the messages. This of course lowers the maximum amount of classical infor-
mation that can be sent. In the case of four state encoding, the limitation
of linear optics was overcome by sending the same message many times,
which made it possible to distinguish between four different ones. This of
course does not count as genuine superdense coding. Nevertheless it shows
that Bob has been able to cancel the effect of Alice’s noise by adding noise
of his own, and in principle, near perfect SDC could be performed.

5.1.2 Noisy superdense coding with local noise

We have also studied the case where there are no correlations between the
frequencies of Alice’s and Bob’s photons and the noise is not necessarily
identical on both sides anymore. In that case Bob cannot directly cancel
the effect of Alice’s noise, but it turned out that it is more beneficial to have
a non-Markovian channel on Alice’s side and a Markovian one on Bob’s side
than the other way around.

Perhaps the most interesting effect in this study was that Alice could
use an effect similar to the spin echo to cancel some noise from her qubit.
If there is identical noise on Alice’s side before and after encoding, then
the capacity does not drop below 1.5. This can be explained by observing
what the net effect of the noise-encoding-noise is on the combined system
level. Using the equations (5.6), (5.7) and (5.8) we see that the combined
system state after the noise interactions and encoding is

Ua(ta)oi @ TUa(ta)|®4)]x)- (5.16)

A straightforward calculation shows that for ¢ = 0 and ¢ = z the above can
be written as

UA(tA>O'0 (024 ]UA(tA) =00 ® ]UA(QtA) (517)
UA(tA)O'Z@[UA(tA):UZ®[UA(2tA), (518)

whereas for ¢+ = x and ¢+ = y it becomes
Un(ta)ow @ TU(ts) = 0, / duac ATl o) (5.19)

UA(tA)O'y X IUA(tA) = Oy X /deeiwA(n{}—&-nf_})tA|wA> <WA|. (520)
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Thus we see that if Alice decides to send the message |®,) or |®_), the
message states will have suffered from noise for a duration of 2¢4. If she
decides to send |¥,) or |W_), they will only have a global phase factor.
Notice that |®1) decohered by this particular noise remain orthogonal to
|, ) but not to each other. This means that three different messages can
be sent with this noise scenario by choosing |¥.) and one of |®.) as the
encoding states. This then explains the lower bound of 1.5 for the capacity.

5.2 Zeno effect

Zeno of Elea, not to be confused with Zeno of Citium [88], the founder of
the Stoic school of philosophy, is best known for his many paradoxes or
apparent paradoxes, like Achilles chasing a tortoise and the arrow paradox,
which is, as put by Aristotle [89]:

"If everything when it occupies an equal space is at rest, and
if that which is in locomotion is always occupying such a space
at any moment, the flying arrow is therefore motionless”.

So how can a flying arrow be moving, if at any instant of time when it is
observed, it is seen in some place and stationary? Of course we now know
how to take limits and observe that flying arrows indeed move, and as
Newton realized, keep on moving if no external force is applied. However,
about two thousand years after Zeno, von Neumann’s reduction postulate
[90] laid the foundation for a quantum version of the paradox, which has also
been experimentally verified! Namely, if a quantum measurement collapses
the state of a quantum system to a state in the measurement basis, this
process is repeated N times a second and N is let to tend to infinity,
the motion of the system is prevented. This phenomenon was named the
quantum Zeno effect in [91] and has also been studied in many earlier
works [92-98]

Besides frequent measurements, a strong coupling to an external system
can also prevent the original system of interest from evolving in time [99,
100]. Loosely speaking the external system is continuously measuring or
gazing at the system of interest and thereby preventing its dynamics. This
effect is called dominated evolution or the watchdog effect and is the one
that we studied from the point of view of non-Markovianity.
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Figure 5.4: We study a two level system interacting with a zero-temperature
bosonic environment and an external level. By controlling the coupling
strength ¢, the external level is used to control the dynamics caused by the
environment.

5.2.1 Model and dynamics

Our system is schematically described in Fig. 5.4. The idea is to consider
the levels a and b as the system of interest, which decoheres due to the
coupling to the bosonic environment E. We studied two different cases for
E that we call the good and the bad cavity limits. If not interfered with,
the good cavity is such that it causes non-Markovian and the bad cavity
Markovian dynamics to the system. The name comes from the idea, that
experimentally the environment is often realized by an optical cavity, which
can for example leak out photons (bad cavity) or efficiently store photons
without losing them (good cavity). The third level m then is coherently
coupled to level b and works as a watchdog inducing the Zeno effect on levels
a and b. The force of this can be controlled by varying the coupling strength
g. We then study what happens to the system from the point of view of the
information flow in sense of the BLP measure of non-Markovianity. It turns
out that the gaze of the watchdog first introduces a mechanism that makes
the evolution of the two level system more non-Markovian, but this effect
then asymptotically goes to zero as the gaze gets stronger with increasing
g, freezing the dynamics due to the Zeno effect.

Put more precisely, the total Hamiltonian describing the whole system
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in the rotating wave approximation can be written as

Hyp = Hs+ Hp + Hipy + He, (5.21)
where
Hs = wgla)(a| + wp|b) (b] + wp|m)(m], (5.22)
HE = ZWJ‘CL;CL]‘, (523)
Hip = Zg]|b |a; +gj|a><b|aj7 (5'24)
He = 9(|b><ml6m1t + Jm) (ble™"21"), (5.25)

where a; and a; are the bosonic creation and annihilation operators, g; and
g the coupling strength to the jth mode of the environment and the level
|m) respectively, w,, wp, wp, the frequencies of the levels |a), |b), |m), w; are
the frequencies of the environment modes and

Ay = wg — Wy

Al = Wy — Wh. (5.26)
Notice that the level |m) is neither directly coupled with the environment
nor with level |a), but still it can be used to freeze the dynamics of the two
level system as we will soon see. From here on, we will work in the interac-

tion picture defined by the free Hamiltonian. The interaction Hamiltonian
becomes

ZQJ (blaje il 7A0)t+9;‘b><a‘a;€i(wrm)t

+ g(\b><m\ + |m) (bl)- (5.27)

To study the dynamics, we consider for simplicity only initial states with
one excitation in the system and empty environment modes. This means
that the initial state can be written as

|4(0)) = (@la) + Bolb) + polm)) @ [{0}). (5.28)

Because the excitation number is conserved, the state at any later time is
[0(8)) =(a(t)|a) + B(t)[b) + u(t)|m)) @ [{0})

+Y B0 e L)+ Y LG 1), (529
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where |1;) = a}]{O}) means an excitation in the jth mode in the environ-
ment. From this we get the density matrix describing the three level system
by tracing out the environment

e (t) a(t)pe () at)p(t)
@A) IBOP+ N8O B ) + 320805 (t)
ar(t)u(t) BT )ut) + 32, B;Oui(t) (O + X [ (1)

(5.30)

The form of the coefficients we obtain by solving the Schrodinger equation
for the whole system, which can be done with lengthy but straightforward
calculations which we omit here. In the solution, we approximate the en-
vironment with a spectral density function, which has a Lorentzian form

A
(w—A¢)2 4+ A2)’

J(w) = Qgﬂ (5.31)

where Q2 = % The form of the spectral density function could be al-
most anything, but this choice makes the calculations fairly simple and the
Lorentzian spectral density is also physically relevant [101]. By controlling
the parameters v and A, which are basically the height and width of the
Lorentzian, we can control whether the environment behaves like a bad or a
good cavity, causing Markovian or non-Markovian dynamics to the system.

Using this, we get the solutions for the coefficients without indices

1+ AP+ e, (2 H A+
(s1— s2)(s1 — s3) (s2 = s1)(s2 — s3)
(83 + ) +g° 683t)
(53 —51)(s3 — 52)
B(t) = Bocos(gt) — iposin(gt) (5.33)
1i(t) = po cos(gt) — iPo sin(gt), (5.34)

a(t) = ao(
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where s1, s9 and sz are some constants. For the other coefficients we get

t t
S ms(F = [t [ e -tlagt)a @)
j 0 0

x sin(g(t — 1)) sin(g(t — t2)) (5.35)

S 16,0 m/%/&ﬂhﬁ@(@
x cos(g(t —t1)) cos(g(t — ta)) (5.36)

S w50 =04 [ dt [ a0 Satn)a ()
X cos(g(t — t1)) sin(g(t — t2)). (5.37)

5.2.2 Non-Markovianity

Once we have the solution for the dynamics, we can start to calculate the
values of the BLP measure. We do this by sampling random initial states
using the direction argument. Because the only purpose of the external
level |m) is to control the levels |a) and |b) that we are actually interested
in, we restrict the maximization to initial states where |m) is empty. This
means that we are interested in initial states with po = 0, which in turn
means that the states are described by the parameters oy and Sy alone.
This enables a Bloch sphere representation of the initial sates in the form
1 Lo

5(00 +7-0), (5.38)
where ||7]| < 1 and o; are the Pauli matrices. The matrix describing the
actual state of our system is of the form pg above, appropriately padded
with zeros making it a 3x3 matrix. With this convention we can do the
maximization using the direction argument in the following way. We ran-
domly pick a point from the Bloch sphere and its antipodal point. These
then form the pair of initial states and are evolved for a fixed time t. The
value of the BLP integral is calculated and this is repeated many times.
This gives an approximate idea on what the maximizing pair among the
ones studied is. It turned out that for this system the maximizing pair was
the north and south pole, in other words the states |a)(a| and |b)(b| in all
but one of the studied cases. In the one exception, which was the good
cavity with zero coupling g to the external level, the maximizing pair could
have been taken as any pair from the equator.

Po =
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Figure 5.5: The BLP measure as a function of the coupling strength g
to the external level. The blue line is for the good cavity regime (y =
10)), while purple refers to the bad cavity case (y = Z;). The left inset
displays the population of the excited state as a function of time with
g = 10X, 20\, 50\, 100\ (from bottom to top) in the good cavity case. The
right inset gives the same in the bad cavity case with g = A, 2,5\, 10\

(from bottom to top).

As seen from Fig. 5.5, increasing the coupling ¢ first sharply increases
the non-Markovianity of the system and after some critical value, the non-
Markovianity starts to decrease with increasing g. This can be explained
by a mechanism, the effect of which can be seen in Fig. 5.6. In panel (a) we
have the good cavity case and the coupling g is relatively small. The pop-
ulation of the excited state |a) quickly reaches zero and shows oscillations
typically seen in non-Markovian systems. The populations of the levels
|b) and |m) oscillate with a large amplitude and small frequency. Then,
moving to panel (b), the coupling g is increased and we see that the Zeno
effect starts to influence the population of the excited state, as it decreases
much slower. Also, the amplitudes of the oscillations of the levels |b) and
|m) are much smaller and the frequencies much higher than in the previous
case. The cases (c¢) and (d) correspond to the bad cavity limit and are
quantitatively similar, but with the population of the excited state always
monotonically decreasing. Still, as seen form Fig. 5.5, non-zero values of g
give a non-zero value for the measure, signalling non-Markovian behaviour.
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Figure 5.6: Population of the excited state (blue), ground state (yellow)
and the external level (purple) in the good (a-b) (7 = 10A) and bad (c-d)

cavity (y = %) case. In (a) we have used ¢ = A and in (b) g = 10\.
Similarly in (c) g = 4 and in (d) g = A. In all of these cases, we took an

initially excited system prepared in |a).

The oscillatory behaviour observed persists even though the excited state
population has decreased to zero and is also reflected as oscillations in the
trace distance between the initial states |a) and |b). This might seem pecu-
liar, since the excited state is the only thing connecting the system to the
environment and it seems that after this coupling is switched off, all that
remains is unitary dynamics. This is not true however, since it matters how
the oscillations between the lower levels start. An intuitive picture could
be that if all of the excitation is initially in the level |a), it has to drop
down to |b) before it can start oscillating between |b) and |m). This means
that the oscillations get a "slow start” as compared to the case where all
of it is initially in the level |b). In this way the system remembers where
the oscillating population came from and it matters where it was initially.
This is depicted in Fig. 5.7, where we see how the initial state |a) ends up
going around an ellipse trajectory in the system formed by the levels |b)
and |m). We can also see that the trajectories that the states |a) and |b)
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Figure 5.7: The trajectories of the initial state |b) (yellow great circle) and
la) (blue ellipse) in the Bloch sphere representation corresponding to the
levels |b) and |m) until time A\t = 20 with parameter values v = 10\ and
g = A. Notice that since all of the population starting from level |a) is
not initially in the system formed by |b) and |m), the blue points near the
origin (early times) do not correspond to normalized states. The spiral like
behavior describes how population enters the system and eventually starts
the oscillations that last forever.

end up in are in perpendicular planes.

The idea of the BLP measure is to quantify the flow of information
between the system and the environment. Even though Fig. 5.7 gives an
explanation for changing trace distance for the initial states |a) and |b), how
can information still flow in the case where the system has been isolated
from the influence of the environment by depleting all the population from
the level |a)? Let us consider the case where the initial state was such
that only |a) was initially populated and has now depleted. Thus we set
po = Bo = 0 and time ¢ sufficiently large so that a(t) = 0 in equation (5.29)
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to get
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The density matrix pio(t) describing the total system state can be written
using this as

pot) =3 (Bk(t)ﬁl:(t) 5k(t>ﬂl;(t§) L)L (5.40)

>\ (057 (1) )i (o
Tracing out the system, we get the state of the environment

pe(t) = > (Be(D)B7 () + ()i ()| L) (L], (5.41)

k.l

where the coefficients Sy (¢) 5] (t) + px(t) 1 () simplify to the form

t t
_gk:gl*/ / ei(wl_wo)t2_i(wk_wo)tlCOS(g(tQ — tl))a*(tl)&(tg)dtldt27 (542)
0 JO

which clearly does not change in ¢ after t is such that a(t) = 0. So we
see that the state of the environment does not change after the time at
which the level |a) has depleted. Still, obviously the different terms in
the state of the total system (5.40) do change in time. The change in the
coherence terms of the total system state show how correlations between
the system and the environment can still change in time even though the
state of the environment does not change anymore. This now explains the
non-Markovianity in the system in terms of the BLP information flow. The
information does not go to the change in the state of the environment, but
it goes to the correlations between the system and the environment. The
change is of course induced by the coupling between |b) and |m), which
is switched on forever. Notice that the correlations in the total system
state cannot be created without some coupling between the system and
the environment at some point, which explains the different behavior for
the initial state where there is no initial population in the level |a). This
difference in the long time limit causes the trace distance of the initial
states |a) and |b) to oscillate forever. To get a finite value for the measure
with different coupling strengths as plotted in Fig. 5.5, we use a finite
integration time At = 20 in the integral.
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5.3 Deciding entanglement of bipartite states

As stated in previous sections, quantum entanglement is a vital resource
for quantum information purposes. Because of this, finding out if a given
state is entangled or not, is an important problem in quantum mechanics.
Many of the existing methods like entanglement witnesses [102, 103] can
detect the entanglement of specific kinds of states. In other words, the
methods are either probabilistic or they rely on prior information about the
state. For example measuring witnesses can be thought of as slicing the
state space with hyperplanes. The intuition is then, that if the boundary
of separable states is somehow "round” somewhere, an infinite amount of
hyperplanes (witnesses) are needed to carve such shape out of the state
space. As it turned out in our study, the shape of the set of states with
a given property dictates the minimum amount of information needed to
decide if a completely unknown state has this property or not.

We have studied this problem using the idea of direction in state space,
much like in optimizing the BLP measure. We have shown that with no
prior information about the state, an informationally complete measure-
ment is required to decide with certainty if the state is entangled or not.
This means that so much information about the state is required that it
can be used to identify the state uniquely. This might have been an ex-
pected result, but so far lacked a rigorous proof, which we provided based
on simple geometrical arguments.

The problem can be formulated as a membership problem, because we
can split the state space into the set of entangled states P and states that
are not entangled P¢. The problem is then to decide, purely based on
measurement statistics, if the state belongs to P or P¢. Notice that if some
states p; and ps give the same statistics for a measurement described by a
POVM A, we have that tr ((p; — p2)L;) = 0 for all L;. Thus the direction
p1 — po is orthogonal to the vector space spanned by the POVM elements
L;. In other words p; — p2 belongs to the vector space

Xy ={A|tr(AL;) =0 for all j}, (5.43)

which consists of all the directions orthogonal to all the POVM elements
L;. This forms the main geometric idea of our proof. We see that a
measurement, of A determines if a state belongs to P, if and only if the
subspace X4 has the property that no direction A € X4 can be decomposed
as A = A(p1 — 02) with g1 € P and g, € P¢ and some scalar A. This way
X4 characterizes the distinguishing power of a POVM, the extreme case
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being X4 = {0}, corresponding to an informationally complete POVM,
which can distinguish between any two states. Such measurements must
always have at least dim(#)? elements L;, meaning that they are the most
demanding in terms of required resources. This is intuitive of course, since
an informationally complete measurement gives all the information about a
state density matrix, meaning that it would be pointless to measure more,
since there is nothing new to learn.

The dimension of X4 depends on the number dim(A) of linearly inde-
pendent elements of {L;} by the relation

dim(H)? = dim(X,4) + dim(A), (5.44)

which follows from the fact that the real vector space of all Hermitian
matrices acting on H can be decomposed as a direct sum of the span of
{L;} and X4. Thus to optimize the amount of measurement resources used
to decide if a state belongs to P or P¢ we look for the largest X4 such that
the corresponding POVM can still answer the question with certainty.

5.3.1 Geometric characterization

To summarize the previous discussion, we have that for a given property P
and a POVM A, the relevant question is if any A € X4 can be decomposed
as

A= Ap1 — p2),
with p; € P and py, € P¢. Solving for

pr=p2+ A,

we arrive at the following observation: a POVM A can not be used to verify
a property P if it is possible to draw a line segment from P to P¢ which
is parallel to X4. Conversely, A can be used for the task if there does not
exist a line parallel to X4 which intersects both P and P¢.

It is immediate that if P is contained in the interior of S(#), it has
an enclosing surface (defined in section 4.1), meaning that for any given
direction, one can find a parallel line intersecting P and P¢. Thus to ver-
ify the corresponding property with certainty, an informationally complete
measurement is required. However, we are interested in entanglement and
we know that there are entangled states also on the boundary of S(H),
which makes the problem more intricate. Notice also that if the property
is such that it can be verified without informational completeness, there
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are implications regarding the shape of the corresponding sets in RP*-1,
Indeed, this means that there exists at least one preferred direction such
that no line parallel to it crosses the boundary between P and P¢, making
the boundary flat in that direction. Similarly, if there are several preferred
directions which corresponds to one being able to verify the property P
with fewer POVM elements (measurement outcomes), then the boundary
is flat in all of these directions.

5.3.2 Results

We did the previous analysis for various choices of the set P. These were
non-positive partial transpose (NPT) states, entangled states, left discor-
dant states and non-classical states, which are the complement of the in-
tersection of left discordant and right discordant states. The calculations
were lengthy, but basically straightforward linear algebra. For example in
the case of entanglement, we showed that for every direction A we can take
a separable isotropic state

1
where WU is some maximally entangled state and find a corresponding p1,
which we showed to be entangled using the NPT criterion. The results
are tabulated in Table 5.1. As we see, the only set that does not require
an informationally complete measurement, is the set of discordant states.
This might seem odd, since for example the states that are not discordant
and thus can be written in the form ), \;p; ® i) (| are contained in the set
of separable states, but this just neatly demonstrates how the size of the
subset is not important for the verification problem. The only thing that
matters is the shape of subset.
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Property Informational | Minimal number
to be verified completeness of outcomes
NPT 4 D?
ENTANGLED 4 D?

LEFT DISCORDANT X D>—D+1
NON-CLASSICAL 4 D?

Table 5.1: Summary of the main results. For the various properties of
bipartite states, we indicate whether or not their verification requires an
informationally complete measurement, as well as the minimal number of
measurement outcomes needed for succeeding in the task. D = d? is the
dimension of the bipartite system’s Hilbert space.
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Chapter 6

Conclusions

In this thesis we have discussed the mathematical ideas behind quantifying
quantum memory effects and some applications of them with a special em-
phasis on the Breuer, Laine, Piilo (BLP) measure of non-Markovianity and
various questions related to it. How can we calculate the measure easier?
What is the essential ingredient making the measure what it is? Could there
be useful applications of non-Markovianity? Can we find interesting inter-
pretations of well known quantum effects in terms of non-Markovianity? An
application for a tool used in studying non-Markovianity was also found in
studying the correlations in quantum states and the resources needed for
detecting them.

In Chapter 2 the notion of a quantum state was introduced and we
explored some of the notions describing the set of all possible states of a
quantum system. We also introduced the notion of multipartite quantum
states and reviewed some of the mathematical consequences of the tensor
product structure, which include the notion of correlations that make a
multipartite state more than the sum of its parts. We also introduced the
ideas of direction and distance within this set, tools which turned out to be
very useful in studying non-Markovianity and also quantum correlations.

Chapter 3 continued our investigations of the theoretical background
necessary for this thesis. We started by introducing the notions of closed
and open quantum systems and their dynamics. We also came across the
fact that many systems behave in a non-Markovian way, and such dynam-
ics lack a general, all encompassing theory. To study the notion of non-
Markovianity we discussed on a general level different ideas for quantifying
it and then focused on one such idea, the BLP measure, which is based on
the notion of distance in state space defined by the trace distance metric.

In Chapter 4 we presented our results on how the calculation of the
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BLP measure can be optimized. We showed that the maximization over
all quantum states can be restricted to orthogonal pairs of quantum states.
We further showed how the state pairs themselves are not important, but
the essential idea is the direction defined by them. This makes an enormous
simplification to the calculation of the measure and also gives a new insight
to the interpretation of memory effects in the BLP sense. These effects
manifest in the same way in all parts of the state space, making it possible
to learn everything about the measure with access only to a small part of
the whole space.

Chapter 5 introduced an idea how non-Markovianity could be useful in
quantum information. We studied the superdense coding protocol where
the state used for encoding is decohered by noise on Alice’s side before the
encoding operation. It turned out that the protocol can be performed with
almost perfect fidelity even with the decohered state. This was due to the
non-local memory effects that Bob can use to recohere the joint state by
adding noise to his part of it. This was based on perfect anticorrelations in
the joint environment state of the original joint state shared by Alice and
Bob. This protocol was also demonstrated experimentally, which acted as
a proof of principle test showing that non-Markovianity could be a resource
for quantum information tasks. We also studied the quantum Zeno effect
from the point of view of non-Markovianity. We found that Zeno dynamics
caused by a strong coupling to an external level serves as a good exam-
ple on how information of the system state can flow to the correlations in
the total system plus environment state without the environmental state
changing at all. Finally, we showed how the notion of direction in quantum
state space can be used to study the amount of resources needed for decid-
ing if an unknown quantum state has some specific property, for example
entanglement. So far only partial results have existed and we were able
to rigorously show, that deciding with certainty if a completely unknown
quantum state is entangled or not, an informationally complete measure-
ment is needed. Our analysis worked on such a general level that it can
be applied to any such binary membership problem for quantum states.
We also showed that the amount of resources needed depends only on the
shape of the set of interest.

Future directions in the study of non-Markovian dynamics could include
more work on the interpretation of the different measures and comparison
between them. As many of the measures study the net increase of some
quantity of interest in time, more emphasis could be put on the interpre-
tation of what the numerical value actually means. Is a system with one
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big increase in trace distance as non-Markovian as another system that
has many small increases that add up to the same net increase? Another
interesting direction would be constructing examples that are more sophis-
ticated. Now many models like the ones studied in this thesis are such that
the state itself does a loop in the state space during its evolution. Thus it is
quite clear that if one calculates a number based on the state, it must also
do some kind of a loop and thus exhibit non-monotonic behaviour. More
non-trivial examples could also shed more light on the differences between
the different measures of non-Markovianity.

As a possible further application of non-Markovian dynamics could be
something in quantum cryptography. With photons the interactions and
the initial states are very controllable and adding specially tailored non-
Markovian noise to a system to hide its state could be of some use in the
future. The possible non-Markovian character of the interactions could be
used to recover the hidden state with an interaction unknown to a malicious
third party.

For deciding the entanglement content of unknown quantum states, fur-
ther studies based on the geometry of the set of entangled or separable
states could be made. It is known [104] that the set of separable states is a
semialgebraic set and as such can be described by a finite number of poly-
nomial inequalities. These inequalities can then be checked with collective
measurements (simultaneous measurement on many copies of the state) but
there are no known bounds on the number of inequalities needed for general
systems. As entanglement is possibly the most valuable resource in quan-
tum information, such studies giving bounds on the number of inequalities
and thus the usefulness of collective measurements in entanglement detec-
tion, could be extremely valuable.
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