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Even though a large amount of evidence would suggest that PP2A serine/threonine

protein phosphatase acts as a tumour suppressor the genomics data to support

this claim is limited. We fit a sparse binary Markov random field with individual

sample’s total mutational frequency as an additional covariate to model the

dependencies between the mutations occurring in the PP2A encoding genes. We

utilize the data from recent large scale cancer genomics studies, where the whole

genome from a human tumour biopsy has been analysed.

Our results show a complex network of interactions between the occurrence

of mutations in our twenty examined genes. According to our analysis the muta-

tions occurring in the genes PPP2R1A, PPP2R3A, and PPP2R2B are identified

as the key mutations. These genes form the core of the network of conditional

dependency between the mutations in the investigated twenty genes. Additionally,

we note that the mutations occurring in PPP2R4 seem to be more influential in

samples with higher number of total mutations.

The mutations occurring in the set of genes suggested by our results has

been shown to contribute to the transformation of human cells. We conclude that

our evidence further supports the claim that PP2A acts as a tumour suppressor

and restoring PP2A activity is an appealing therapeutic strategy.

Keywords: Biometry, Cancer, Graphs, Mutations, Biometria, Graafit, Mutaatiot,
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1 Introduction

1.1 Cancer Driver Mutations

Hanahan et al. (2000) present six acquired functional capabilities that cells must

obtain through genetic alterations in order to become cancerous and gain selective

advantage to outgrow competing cells. These traits include evading apoptosis, self-

sufficiency in growth signals, insensitivity to anti-growth signals, tissue invasion and

metastasis, limitless replicative potential, and sustained angiogenesis. By identifying

possible mutations behind obtaining these traits our knowledge of cancer can be

increased and new possible targets for cancer treatments can be discovered. Most

mutations found in tumours are random background mutations, so called passenger

mutations, that have no beneficial effect that would give a cell and its successors

selective advantage in outgrowing other cells (Lawrence et al. 2013). One way to

distinguish the possible meaningful driver mutations from the passenger mutations

is to look for any non-random pattern in the distribution of different mutations

in cancer samples. Conditional dependence structure between mutations can be

explored for evidence on pairs of genes being mutated together less or more often

than would be expected by chance.

A negative link i.e. mutual exclusion between two mutations means that they

appear together less often than would be expected due to both being random back-

ground mutations. This would hint that the mutations give similar benefits for the

cancer and once one of the mutations has happened the other does not offer the

tumour development any more selective advantage and becomes redundant or even

disadvantageous for the tumour. A positive link i.e. co-occurrence means that the

two mutations are more likely to be found together in cancerous cells than sepa-

rately. This gives cause to believe that they have a positive effect on the cancer

cell when occurring together but separately do not affect the cell, or that appearing

together the mutations have a synergistic interaction, that gives the tumour greater

benefit than the effects of the mutations individually.

The data for such an analysis have become available in recent years through

various large scale cancer genomic studies. In this thesis the data used in exploring

dependence structure of cancer mutations is taken from the COSMIC (Catalogue

Of Somatic Mutations In Cancer) database (see Forbes et al. 2014), which is to the

authors knowledge the most comprehensive database of somatic mutations found
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in cancer cells. The current release (v76 February 2016) holds data from nearly

1,192,776 samples taken from 22,844 different papers. For the purposes of this

thesis we utilize only the genome-wide data found in the database. This limits

us to 18,783 samples from 162 studies, but allows a view across the breadth of

cancer genome without any specific biases introduced via literature curation. New

releases of the COSMIC database are made trimonthly adding data on a regular

basis. This large amount of data that has a growing amount of cancer samples

with their whole genome analysed makes it possible to use statistical modelling to

explore possible novel cancer drivers and find additional evidence on significance of

previously discovered drivers.

In recent years different methods to identify cancer drivers through modelling

co-occurrence and mutual exclusion have been proposed in literature. Ciriello et al.

(2012) present a method called Mutual Exclusivity Modules (MEMo) in cancer. This

method uses a Human Reference Network (HRN) derived from existing pathway and

interaction databases to identify gene pairs that are likely to belong into the same

pathway. A graph is formed by drawing an edge between the gene pairs. Separate

regions from this graph form cliques or local clusters that are likely to hold similar

functions. These cliques are then assessed for mutual exclusivity between genomic

alterations by an empiric p-value calculated by comparing the observed alteration

frequency to an expected alteration frequency obtained by randomly permuting the

set of observed mutations. Vandin et al. (2012) introduced an algorithm called De

novo Driver Exclusivity (Dendrix) that searches for subsets of genes that maximize

a weight function that rewards coverage while penalizing for overlap. This means

that in a cancerous cell at least one mutation from the same subset is likely to

be found mutated but if one of the genes in a subset is mutated then the other

genes from the same subset are less likely to be mutated. Szczurek et al. (2014)

proposed a statistical modelling framework for mutual exclusivity (ME) using a

generative model that includes parameters representing pattern coverage, impurity,

false positive rate, and false negative rate.

For this thesis our aim is to explore the mutual exclusivity and co-occurrence of

mutations found in cancer cells in order to find evidence of underlying network of

interactions between occurrence of mutations in the investigated genes. We focus

our analysis on the genes encoding the PP2A subunits in order to distinguish which

mutations occurring in this set of genes drive the cancer forward and which have
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occurred in our tumour samples by chance. A common way to represent the mutual

exclusivity and co-occurrence of mutations in different genes is to use undirected

graphs, where the nodes represent the genes and the edges represent an interaction

in the connected genes being mutated. We have chosen to model these interactions

using a Markov random field, which gives us an estimate for a set of parameters that

can be used directly to encode an undirected graph. Using Markov random fields

we also obtain the added benefit of being able to utilize methods for parameter

estimation, which are not too intensive to be run on a personal computer.

1.2 Sparse Markov Random Fields

The most common and best known Markov random field models consist of contin-

uous variables usually assumed to have a Gaussian distribution. The multivariate

Gaussian distribution has at most pairwise conditional dependencies between the

variables so it is straightforward to interpret it as a Markov random field i.e. a

pairwise undirected graph. For detailed description of representing a multivariate

Gaussian random distribution as a Markov random field see Lauritzen (1996). The

information of the conditional dependencies between the variables is contained in the

inverse covariance matrix. In particular, if an off-diagonal element of the inverse co-

variance is zero then the two corresponding variables are conditionally independent,

given the other variables. If the graph structure is known, the elements correspond-

ing with non-existent edges are constrained to zero and the estimation of the rest of

the parameters is an equality-constrained convex optimization problem. However,

usually estimating the graph structure by distinguishing the existing edges from

non-existent is part of the problem. In recent years many authors have proposed

the use of the L1-regularization to discover the graph structure from the data itself.

Estimating sparse graphs by a lasso penalty applied to the inverse covariance ma-

trix is known as graphical lasso, for proposed implementations see Meinshausen and

Bühlmann (2006) and Friedman et al. (2008).

The multivariate distribution of the variables in the network to be estimated

is not always Gaussian. In this thesis the data consist of binary variables. These

kinds of binary Markov random field networks are also known as Ising models,

especially in the statistical mechanics literature, or Boltzmann machines especially

in the machine learning literature. The Ising model is named after physicist Ernst

Ising, who presented a model for ferromagnetism in statistical mechanics in his
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dissertation published in 1925 (Ising, 1925). In this model atomic spins are presented

as binary variables belonging to set {−1,+1}. Ising presented a solution for a 1-

dimensional chain of such variables and then generalized it onto a 3-dimensional

lattice. For the problem of solving the dependence structure of cancer mutations the

Ising model suits well because the data can be structured in a 2-dimensional lattice

where the columns represent the genes of interest and the rows represent samples

from biopsies taken from the found tumours. The data are binary as each sample

either harbors a mutation in the gene of interest or not. As most alterations in genes

are random background mutations, for most pairs of genes there is no dependency

between having alterations in either of the genes. Therefore, the Ising model needs

to be penalized by adding sparsity to the model. This allows for distinguishing if

mutations happen independently, or if there is a dependency. As the primary goal

of the analysis is to find information on the underlying Markov field graph structure

rather than to estimate connections from a known structure, the problem is quite

different than the one Ising set out to solve with his model. However, the Ising model

can be used as a base and generalized to allow for sparsity. Sparsity means adding a

penalty parameter to the model that penalizes for each parameter estimated as non-

zero. Due to this difference from a situation where the graph structure is known,

methods often used in such situations e.g. Poisson log-linear modelling or Gibbs

sampling are infeasible.

Estimating the graph structure of a pairwise Markov network is not a trivial task

due to the complex nature of the likelihood function. However, multiple methods

have been introduced for tackling this issue. Besag (1975) presented a way to for-

mulate an approximation for the likelihood known as the pseudo-likelihood that can

be maximized for an approximate solution. This is the basis for a method presented

by Höfling & Tibshirani (2009) that starts by maximizing the pseudo-likelihood and

then adjusts the the pseudo-likelihood criterion so that each additional iteration

moves it closer to the exact solution. Lee et al. (2007) propose a method that

maximizes the penalized log-likelihood starting with only a subset of the variables

and then adding new variables into the model with the grafting procedure. This

method will lead to an exact solution when using the junction tree algorithm to cal-

culate the log-partition function of the penalized log-likelihood but the calculation

becomes cumbersome if the amount of variables is not small. The authors implement

a loopy belief propagation algorithm for better performance but approximate infer-
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ence. Wainwright et al. (2006) described an efficient method designed especially

for finding the underlying graph structure by performing separate L1-regularized

logistic regressions on each variable and then symmetrizing the estimated matrix by

taking either the minimum or the maximum of the corresponding estimates.

Cheng et al. (2014) generalized the binary pairwise Markov field by adding

additional covariates to the model and estimate this model with the Wainwright

approach. Adding dependency towards additional covariates to the model is use-

ful because often these peripheral variables are being recorded when collecting the

binary data and the dependency of the binary data to these peripheral variables is

often justified. For example, in the context of the analysis presented in this thesis

the mutational frequency of each biopsy over all possible mutations can be calcu-

lated. This frequency, with a possible range between 1 mutation to roughly 20,000

mutations, is an obvious measure of the mutational tendency of a sample. This

tendency can be argued to have an effect on the probability of mutations of interest

so it can be seen as a useful addition to the model.

The binary pairwise MRFs are known for the computational intractability of the

exact likelihood. This imposes difficulty on assessing the model fit and analysing

the model consistency. The choice of L1-penalty parameter is also difficult. Hastie

et al. (2009) recommend examining solution paths as a function of the penalty

parameter in the multivariate Gaussian case. Same approach could also be used

in the binary setting. Cheng et al. (2014) explore different options via simulation

and find cross-validation to be a reasonable solution to balancing the true positive

and the false positive rate. For assessing the model consistency, in other words

whether the model structure stays the same as the amount of observations grows,

one possible method to consider is bootstrapping (see e.g. Efron and Tibshirani

1998). Bach (2008) uses bootstrap in least-square linear regression with L1-penalty

to mimic having multiple datasets from the same underlying distribution. In theory

Lasso should always select all relevant variables with a strictly positive probability

while irrelevant variables enter the model randomly. This means that intersecting

the non-zero variables from sufficiently many datasets should eliminate irrelevant

variables appearing by chance. This property could be utilized to examine the

consistency of the edges in binary MRFs by evaluating the rate an edge is part of

the final estimate when running multiple analyses with bootstrapped datasets from

the same underlying distribution.
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2 Markov Random Fields

Figure 1: Sample graphs drawn from a Bayesian network and a Markov random field

Markov random fields together with Bayesian networks are the most important

subgroups of a set of models called probabilistic graphical models (see Koller &

Friedman 2009 for details of probabilistic graphical models). Graphical models are

named after their property to effectively represent complex distributions in a com-

pact way as graphs. These graphs consist of two types of elements. The oval shaped

vertices, or nodes, correspond to the different variables within the data, and the

edges between the vertices correspond to the probabilistic interactions between the

variables. Two vertices joined by an edge are called adjacent and multiple vertices

connected by a set of edges are called paths.

The main difference between Bayesian networks and MRFs lies in the nature

of the edges. In Bayesian networks the edges have a target and a direction while

the edges in MRFs are undirected (see Figure 1). The differences in the variable

independence structure and the induced factorization can be seen in Table 1. In

essence, in Bayesian networks the variables form a parent-child hierarchy, where

each variable is conditionally independent of the other variables, given its parent

variables.

The MRFs have no hierarchy between variables, and the absence of an edge

between two vertices indicates the two variables being conditionally independent,
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Bayesian networks Markov random fields

Independences:
(B ⊥⊥ C|A)

(E ⊥⊥ A|B,C)

(D ⊥⊥ A,C,E|B)

(A ⊥⊥ C|B,D)

(B ⊥⊥ D|A,C)

Factorization:
P (A,B,C,D,E) =

P (A)P (B|A)P (C|A)

P (D|B)P (E|B,C)

P (A,B,C,D) =
1
Ψ
φ1(A,B)φ2(B,C)φ3(C,D)

φ4(D,A)

Table 1: Independences and factorization of the Bayesian network and MRF pre-

sented in Figure 1. The functions φ are clique potential functions as defined in

Equation (1).

given the other variables. If all paths connecting two subgraphs G1,G2 intersect

vertice A then A is said to separate G1 and G2. The separators break the graph

into conditionally independent pieces. This property is known as the global Markov

property. A clique is a fully connected subset of the set of vertices. This means

that each pair of nodes within a clique (s, t) ∈ c also defines an edge in the graph

edge set (s, t) ∈ E. A clique is maximal if no new vertices can be added to it

still yielding a clique. For example, the MRF in Figure 1 has 4 maximal cliques:

{A,B}, {B,C}, {C,D}, {A,D}. Any single variable is in itself a clique. However, it

is a maximal clique only if it is completely isolated, in other words, it participates

in no edges in the edge set.

Regarding notation, we write x = (x1, . . . , xp) ∈ X for a single observation of p

variables. A clique of size k can then be identified by an ordered set of indices

c = (i1, ..., ik), 1 ≤ i1 < . . . < ik ≤ p,

which defines the set of variables in clique c as

xc = (xi1 , ..., xik) ∈ Xc.

Bayesian networks are parametrized by utilizing the conditional probability dis-

tributions. However, because the interactions in Markov random fields are not di-

rected, a different, symmetric approach needs to be taken as we need to capture
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the affinities between the related variables. For this, a non negative function called

clique potential or factor is defined as a function (1) of values that a set of random

variables XS can take.

φ : XS 7→ R+ (1)

As an example, take variables X1 and X2. The higher the value of the potential

for some occurrence φ(x1, x2), the more compatible these two values are. Let us

assume that X1 and X2 are both binary variables. Then one possible choice of the

potential function is

φ1(X1, X2) =


20, if X1 = 0 ∧X2 = 0

5, if X1 = 1 ∧X2 = 0

10, if X1 = 0 ∧X2 = 1

40, if X1 = 1 ∧X2 = 1

.

With this choice for φ it can be noted that it is more likely for X1 and X2 to share the

same value, with more weight on the case that the shared value is 1. This realization

of the potential function also has the property that φ1(X1 = 0, X2 = 1) > φ1(X1 =

1, X2 = 0). It is more likely to have X1 = 0, if the variables do not share the same

value.

To define a global model for the whole graph, the local models described by the

clique potentials are combined by multiplication. The potential functions are not in

general density functions, in the exemplary φ1 none of the entries are even in [0, 1].

Therefore, the result of the multiplication cannot be guaranteed to be a probability

density. To obtain a legal distribution the end result needs to be normalized so that

the sum of probabilities is bound to 1.

Let the joint probability function of all variables in the undirected graph be

f(x1 . . . xp) =
1

Ψ

∏
c∈C

φc(xc), (2)

where C is a set of cliques, φc(xc) is the value of the potential function when the value

of the random variables Xc in the clique is the observed xc and Ψ is the normalizing

constant. Specifically,

Ψ =
∑
x∈X

∏
c∈C

φc(xc). (3)

This normalizing constant is known as the partition function. The name stems from

the fact that Ψ is a function of the model potentials. This dependency is the key

source of difficulty associated with estimating the model parameters.
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The joint probability distribution of the graph is defined by factoring together the

potential functions of cliques, which by definition include only the totally connected

variables. The result of this is a tight connection between the factorization of the

distribution and its independence properties. Let’s consider a network with three

variables X1, X2, X3. Then,

P (X1, X2, X3) |= (X1 ⊥⊥ X2|X3)⇔ P (X1, X2, X3) =
1

Ψ
φ1(X1, X3)φ2(X2, X3), (4)

to put it otherwise, X1 and X2 can be considered independent given X3, if and only

if, the joint probability distribution function can be factored without a potential

function for (X1, X2). This connection makes sense intuitively, as we only want

direct interactions between the variables to be represented in the graph structure.

The left side of equivalence (4) can be interpreted as a graph lacking an edge potential

between X1 and X2 being able to fully represent the probability measure function

P .

The factorization of a graph is not uniquely specified. The number of potential

functions factored can be reduced by allowing functions only for maximal cliques.

A fully connected graph with potentials for every pair of the variables is a single

large maximal clique containing all of the variables. Associating a single potential

function with this clique captures the between-variable dependence completely, but

yields an amount of potentials that is exponentially large compared to the amount

of the original variables (2p − 1 parameters).

A more practical and often used factorization specifies only at most second-order

dependence. This subclass of Markov random fields, known as pairwise Markov

fields, reduces the amount of potentials by restricting the potential functions fac-

toring graph G to node potentials: {φ(Xi) : i = 1 . . . n} and edge potentials:

{φ(Xi, Xj) : (Xi, Xj) ∈ G}. This factorization can be used to obtain joint prob-

ability distributions of exactly similar graph structures as factorization with more

complex potential functions. All the edges found in graph G are now assumed to

be defined by the two nodes connected by the edge, all interactions with the other

nodes are assumed to be contained within the other edges leading to the two nodes.

For a fully connected graph this reduces the number of potentials needed to n+ (n
2
).

As an example take the fully connected 3-node graph in Figure 2. This graph
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Figure 2: A fully connected graph with 3 nodes.

could represent the dependence structure from either of the distributions

P
(2)
Φ (a, b, c) =

1

Ψ
φ(a, b)φ(b, c)φ(a, c), or

P
(3)
Φ (a, b, c) =

1

Ψ
φ(a, b, c).

The pairwise model P
(2)
Φ (a, b, c) has six potentials: three for each node and three for

the edges between the nodes. The second model P
(3)
Φ (a, b, c), based on the maximal

clique with all three nodes, has in total seven potentials. Six of them are shared

with the pairwise model, the last one being the interaction potential for all of the

three variables.

For the remainder of this thesis the Markov random fields being covered are con-

sidered pairwise. Restricting the models to at most the pairs of variables in the edge

set of the graph makes working with the models easier by giving the benefit of hav-

ing a cost-effective number of potentials, thus giving the model minimal complexity

implied by the graph structure.

3 Gaussian Markov Random Fields

If the variables represented by an undirected graph are continuous, they are most of-

ten assumed to be from a multivariate Gaussian distribution. The multivariate Gaus-

sian distribution over random variables X1, . . . , Xp has two possible parametrizations

with distinct properties. The density function in the moment form, parametrized

by a mean vector µ and a symmetric p× p covariance matrix, can be written in the
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familiar form of

fx(x1, . . . , xp) =
1

(2π)p/2|Σ|1/2
exp(−1

2
(x− µ)′Σ−1(x− µ)). (5)

In order for the equation (5) to induce a well-defined density, the covariance matrix

Σ needs to be positive definite. Because positive definite matrices can be inverted,

we derive another representation for (5) by defining the distribution with the inverse

of the covariance matrix Θ = Σ−1. Taking the expression in the exponent of (5)

−1

2
(x− µ)′Σ−1(x− µ) = −1

2
(x− µ)′Θ(x− µ)

= −1

2
(x′Θx− 2x′Θµ+ µ′Θµ)

The last term is a constant. We write

fx(x1, . . . , xp) ∝ exp(−1

2
x′Θx+ x′ν), (6)

where ν = Θµ is known as the potential vector and the inverted covariance matrix

Θ is the Fisher information matrix. Hence, the formulation is called information

form.

In order to express the multivariate Gaussian distribution as a Markov random

field, the expression in the exponent of the information form (6) of the distribution

needs to be separated into two types of terms: those involving single variables Xi

(7), and those involving pairs of variables (Xi, Xj) (8).

Terms involving single variables Xi: −
1

2
Θi,ix

2
i + xiνi (7)

Terms involving pairs of variables (Xi, Xj): −
1

2
(Θi,jxixj + Θj,ixjxi) (8)

=−Θi,jxixj

Here, the simplification in (8) is based on the symmetry of the information matrix.

The separation of terms in (7) and (8) directly induces a pairwise Markov random

field. The node potentials are derived from the potential vector and the diagonal

of the information matrix, and the edge potentials from the off-diagonal elements

of the information matrix. Also, due to the independence properties of multivariate

Gaussian distributions zero-valued off-diagonal elements of the information matrix Θ

imply conditional independence, given all of the other variables, which corresponds

the lack of an edge in the MRF graph representation. Thus, any multivariate Gaus-

sian distribution can be represented as a pairwise Markov random field.
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3.1 Gaussian MRF with Known Graph Structure

Let x1 . . . xn be a random sample from a multivariate Gaussian distribution Np(µ,Σ).

In order to estimate the node and the edge potentials of a saturated model with all

the possible edges present, start with the empirical covariance matrix S

S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′, (9)

known to be the maximum likelihood estimator of Σ, where x̄ is the sample mean

vector.

The logarithm of the multivariate Gaussian density function (5) is of the form

ln(fx(x1, . . . , xp)) = −p ln(2π)/2− ln |Σ|/2− (x− µ)′Σ−1(x− µ)/2. (10)

Thus, from (10) we get the log-likelihood of the n-sized sample

`(µ,Θ) = −np
2

ln(2π)− n

2
ln |Θ|−1 −

n∑
i=1

(xi − µ)′Θ(xi − µ)

= −np
2

ln(2π)− n

2
ln |Θ|−1 −

n∑
i=1

(xi − x̄)′Θ(xi − x̄)− n(x̄− µ)′Θ(x̄− µ).

This can be further simplified via the cyclicity of the trace and using (9)

−np
2

ln(2π)− n

2
ln |Θ|−1 − n

2
Tr(SΘ)− n

2
(x̄− µ)′Θ(x̄− µ).

By excluding the constants, one sets

ln |Θ| − Tr(SΘ)− (x̄− µ)′Θ(x̄− µ).

Finally, replacing µ with the maximum likelihood estimator µ̂ = x̄ we write the

log-likelihood for Θ excluding constants as

`(Θ) ∝ ln |Θ| − Tr(SΘ), (11)

which is a concave function of Θ. Setting the gradient of (11) as zero, we find the

maximum likelihood estimator of Θ to be S−1.

However, the model of interest in most cases is not saturated like the one pro-

posed by (11). Non-existence of an edge between two nodes in the graph represen-

tation implies that the corresponding entry in Θ is zero. For this reason we need to

constrain a subset of parameters to zero while maximizing (11).
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To provide this constriction, Lagrange constants are added to the log-likelihood

(11).

`C(Θ) = ln |Θ| − Tr(SΘ)−
∑

(j,k)/∈E

γjkθjk. (12)

Setting the gradient of (12) as zero, we write the maximizing equation as

Θ−1 − S − Γ = 0, (13)

where Γ is a matrix of Lagrange parameters with non-zero entries corresponding to

non-existent edges.

It can be shown that regression can be used to solve for Θ and its inverse, marked

here with W . This approach is chosen because it relates with the methods in the

following sections of this thesis. For the reasoning Hastie et al. (2009) are followed.

For simplicity the focus is on the last row and column. Starting with the upper

right block of equation (13), we write it as

w12 − s12 − γ12 = 0. (14)

Here the matrices are partitioned into two parts: the first p − 1 rows and columns

and the final pth row and column. Partitioning Θ and its inverse W in a similar

fashion we get [
W11 w12

wT12 w22

][
Θ11 θ12

θT12 θ22

]
=

[
I 0

0T 1

]
. (15)

By using the standard formulas for partitioned inverse matrices we find that

w12 = −W11θ12/θ22

= W11β, (16)

where β = −θ12/θ22. Now substituting w12 in (14), we write

W11β − s12 − γ12 = 0. (17)

The equation (17) corresponds to p−1 estimating equations for the regression of Xp

on the other variables, but replacing the observed mean cross-products matrix S11

with the current estimated covariance matrix W11. We can solve (17) with subset

regression. Suppose that γ12 has p − q non-zero entries, which represent the p − q
edges constrained to be zero. Thus, the corresponding rows carry no information
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and are left out. Likewise, β is reduced to β∗ by leaving out the p− q zero elements.

This yields a reduced system of q × q equations

W ∗
11β
∗ − s∗12 = 0, (18)

which is solved for an estimate of β∗

β̂∗ = W ∗−1
11 s∗12. (19)

Augmenting β̂∗ with the p − q zeroes we get an estimate for β. Looking at the

equation (16) it seems that θ12 can only be estimated up to a scaling factor 1/θ22.

However, using formulas for partitioned inverse matrices on (15) we show that

1

θ22

= w22 − wT12β, (20)

and from (13) we observe that w22 = s22, because the diagonal elements of Γ are

zero. Thus, after solving for β̂, we find θ̂12 from

θ̂12 = −β̂θ̂22, (21)

where
1

θ̂22

= s22 − wT12β̂. (22)

3.2 Gaussian MRF with Unknown Graph Structure

It is not often the case that we know the graph structure a priori. Rather, discovering

the structure of the graph from the obtained data is often among the main goals

of the analysis. To discover the structure of a graph we can take advantage of the

parsimonious property of Lasso regression. Continuing to follow Hastie et al. (2009),

we begin with the addition of L1 penalty to the profile log-likelihood (11)

`Lasso(Θ) ∝ ln |Θ| − Tr(SΘ)− λ||Θ||1. (23)

Here, ||Θ||1 =
∑p

i=1

∑p
j=1 |θij| is the L1 norm. Analogous to (13), we take the

gradient of (23) and set to zero

Θ−1 − S − λ sign∗(Θ) = 0, (24)

where sign∗(θij) = sign(θij) if θij 6= 0 and some value in the range of [−1, 1] otherwise,

using the sub-gradient notation due to the derivative of absolute value function being

in-determined at zero.
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Continuing to follow the reasoning in the previous section, we similarly to (17)

represent the upper right block of (24) as

W11β − s12 + λ sign∗(β) = 0, (25)

which can be shown to be of a similar form with the gradient of a common lasso

regression. Thus, we use lasso regression to find Θ̂ by regressing each Xk on the other

variables and updating W until convergence, then during the final cycle transforming

estimated β̂(k) vector using (21) and (22) for each k ∈ [1, p]. This method is known as

the graphical lasso (Friedman et al. 2008). It has achieved popularity due to being

fast and efficient, and therefore being utilizable with moderately sparse graphs with

a large number of nodes.

4 Binary Markov Random Fields

In many scenarios the variables representing the nodes in our graph cannot be de-

fined as continuous. This prevents taking advantage of the useful properties of the

multivariate Gaussian distribution introduced in the previous sections, essentially

providing more difficulty into the process. In the following sections the focus is in

graphs having nodes with a binary set {0, 1} of possible values, but for the most

part results presented could be generalized to apply for graphs having nodes with

more complex discrete sets of values.

We start with the joint probability function for a graph with p binary variables.

Let X = (X1, . . . , Xp) be a random vector, where each Xs takes values in set {0, 1}.
Let a graph with p nodes each corresponding to a variable in X be denoted by

G = (V,E). We find the joint probability by defining a potential function (1) for

each node in V and each edge in E. The Ising model defines the joint probability

function (2) as

PΘ(X) =
1

Ψ(Θ)
exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt

 . (26)

Because the edges in E are undirected, we set similarly to (8) that θst = θts for all

s > t. Now, conditioning Xs on the remaining variables X\s we write the conditional

log-odds for Xs as

ln

(
P (xs = 1|x\s)

1− P (xs = 1|x\s)

)
= θs +

∑
s:s 6=t

θstxt. (27)
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Solving (27) for probability P (xs = 1|x\s) we find that

P (xs = 1|x\s) =
1

1 + exp(−θs −
∑

s:s 6=t θstxt)
, (28)

which can be recognized as logistic regression.

This suggests that logistic regression can be used to estimate the model param-

eters. The usefulness of this notion becomes apparent when we take a look at the

partition function

Ψ(Θ) =
∑

x∈{0,1}p
exp(

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt). (29)

As can be seen from (29), maximizing the joint likelihood directly is cumbersome

due to requiring the summation of 2p terms for each data point. Thus, using separate

logistic regressions (28) maximizing the conditional log-likelihood of each Xs given

X\s instead of maximizing the joint likelihood is a very lucrative option.

Given input data in the form of {x, y}, where y is a binary response and x is a

p−1 dimensional vector of covariates, logistic regression is solved by minimizing the

negative log-likelihood of n observations

`(θ;x) = − 1

n

n∑
i=1

ln(1 + exp(θ0 +

p−1∑
j=1

θjxij))− yi(θ0 +

p−1∑
j=1

θjxij). (30)

Estimating the parameter matrix Θ via the connection to logistic regression (28)

yields a collection of separate regression problems (30), where each variable Xs is

in turn regressed onto the remaining variables sharing the same data across all p

problems. The p dimensional vector of parameters corresponding to intercept terms

θ
(1)
0 , . . . , θ

(p)
0 gained from the p regressions forms the diagonal of the Θ̂ matrix, so

that the sth element of the diagonal of Θ̂ corresponds to the bias term of variable

Xs. The off diagonal elements of Θ̂ are the parameters describing the size of the

conditional effect of the particular predictor on the variable being regressed, so that

θ̂st is the main effect of xs on the conditional log-odds of xt.

In practice, formulating the problem as separate logistic regressions simplifies

solving the problem by a great deal as logistic regression is a widely used method with

efficient implementations found throughout respectable statistical software packages.

However, simply iterating through the p logistic regressions and stacking the esti-

mated parameter vectors θ̂(1) . . . θ̂(p) into a common matrix where the intercept is
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placed on the diagonal, does not produce a valid estimate of Θ̂. The problem stems

from the fact that, as the edges are presumed to be undirected, the matrix Θ should

be symmetrical with respect to the main diagonal. Using separate regressions does

not guarantee this symmetricity, rather as θ̂st and θ̂ts are estimated from the sth

and tth regression, respectively, having either Xs or Xt as the regressed variable and

the other as one of the predictors, the supposedly equal estimates will most likely

differ by some degree.

To symmetrize the final estimated matrix, the corresponding initial estimates

need to be combined by some function. One possibility would be to take the mean

of the two initial estimates as the final estimate. Although it does combine the infor-

mation from both initial estimates into the final estimates, this approach will cause

problems when the problem is expanded to the estimation of the graph structure.

If one of the two parameter estimates is zero and the other non-zero, the mean of

the two values cannot be seen as describing the true parameter. Two more suitable

approaches following Meinshausen and Bühlmann (2006) use either the minimum or

the maximum of the initial estimates.

separate-min: θ̂st = θ̂ts = θ̂init
st I(|θ̂initst |<|θ̂initts |)

+ θ̂init
ts I(|θ̂initts |<|θ̂initst |)

(31)

separate-max: θ̂st = θ̂st = θ̂init
st I(|θ̂initst |>|θ̂initts |)

+ θ̂init
ts I(|θ̂initts |>|θ̂initst |)

(32)

Using the separate-min approach, if one of the initial estimates is zero then the

final estimate will be zero. Thus, the separate-min is more conservative of the two

approaches providing a greater amount of zero estimates compared to the separate-

max approach.

4.1 Binary MRF with Unknown Graph Structure

Similarly to when the Markov random field is comprised of continuous variables,

often the structure of the graph containing binary variables is not known a priori.

Thus, one of the main goals of the analysis is to use the data to estimate, which

of all the possible edges between the pairs of nodes are included in the edge set

of the graph. That is using data to distinguish the pairs of variables that are

dependent on each other from the pairs that are independent of each other, given

all the remaining variables. The approach described is similar to the graphical lasso

described in section 3.2 in the sense that L1 regularization is used to add sparsity

corresponding to non-existent edges. However, unlike in the graphical lasso, where
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the whole parameter matrix is estimated simultaneously by updating the estimated

inverse of the parameter matrix by iterating through regressions on each of the nodes,

completely separate logistic regressions on each of the nodes is used to obtain the

initial estimates to be post-processed by either the separate-min or the separate-max

approach.

Due to the elements of the diagonal of the parameter matrix Θ having the in-

terpretation of being the bias terms for the nodes, the regularization added to the

negative log-likelihood (30) should only account for the non-intercept parameters.

That is, only the parameters corresponding to the edges of the graph should be

susceptible to being estimated as zero due to the L1 constraint. Regressing each

variable Xs onto the remaining variables X\s, sharing the same data across the

problems leads to the collection of p problems, one for each node

θ̂s,λ = arg min
θ∈Rp

{
`s(θs;X) + λ||θ\0||1

}
, (33)

where

`s(θs;X) = − 1

n

n∑
i=1

ln(1 + exp(θ0 +
∑
j 6=s

θjxj))− xs(θ0 +
∑
j 6=s

θjxj), (34)

and s ∈ V i.e. the set of nodes. The estimated θ̂s,λt can be seen as a penalized

conditional likelihood estimate for θst.

The main focus of the analysis being the estimation of the structure of the

graph G, and estimating the magnitudes of individual parameters only a secondary

concern, we write the estimation on the node level as

N̂(s) = {t ∈ V, t 6= s : θ̂s,λt 6= 0}. (35)

Otherwise put, for each node s, the neighbourhood N(s) of s is estimated by esti-

mating which of the parameters associated with the other variables are non-zero.

This method presented, proposed by Wainwright et al. (2006), has been shown to

consistently estimate the neighbourhood of every node in the graph simultaneously

even for increasing amount of nodes p and maximum number of edges d per single

node as long as the amount of observations n = Ω(d3 ln p), where f(n) = Ω(g(n))

if f(n) ≥ Kg(n) for some constant K > 0 (see Wainwright et al. 2008). Although

the magnitudes of the parameters are only a secondary concern with this method,

comparisons by Höfling et al. (2009) show that the method also produces accurate

estimations of the magnitudes of parameters, when compared to competing methods.
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4.2 Adding Additional Covariates

In many real life applications the structure of the graph cannot be assumed to be

dependent only on the random variables represented by the graph’s nodes. Ad-

ditional covariates with possible relations to the node variables are in many cases

being collected together with the binary variables. The possible dependence of the

graph structure on these additional covariates found on collected datasets motivated

Cheng et al. (2014) to propose a method to study both the conditional dependency

within the binary data and the effect of additional covariates.

Supposing we have additional covariate information, the data consist of n inde-

pendent and identically distributed data points {(x(1), z(1)), . . . , (x(n), z(n))}, where

x(s) ∈ {1, 0}p, and z(s) ∈ Rq. Similarly to (33), x now represents the p binary

variables belonging to the set of nodes in our graph. We use z to represent the q

covariates. The data are assumed to follow the Ising distribution (26) given by

PΘ(X|Z) =
1

Ψ(Θ)
exp

∑
s∈V

θs(z)xs +
∑

(s,t)∈E

θst(z)xsxt

 . (36)

Similarly to the definition (35) of the model without additional covariates, variables

xs and xt are conditionally independent given all of the remaining node variables

and covariates z if θst(z) = 0.

To model θst(z), it is parametrized as a linear function of z. Specifically, we

define

θst(z) = θst0 + θTstz, where θTst = (θst1, . . . , θstq) (37)

θst(z) = θts(z), ∀s > t.

Expressed in terms of this expanded parametrization, the model can be written as

PΘ(X|Z) =
1

Ψ(Θ)
exp

 p∑
s=1

(θss0 + θTssz)xs +
∑
(t>s)

(θst0 + θTstz)xsxt

 , (38)

and the conditional log-odds (27) for an individual node becomes

ln

(
P (xs = 1|x\s, z)

1− P (xs = 1|x\s, z)

)
= θss0 + θTssz +

∑
t:t6=s

(θst0 + θTstz)xt. (39)

We estimate the parameters through a similar collection of regression problems

as in (33), where the additional covariates are simply included as new predictors to
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the regressions. The criterion for solving the regression problem for each node s is

then of the form

min
θs∈Rp(q+1)

− 1

n

n∑
i=1

ln(1 + exp(θss0 + θTsszi
∑
j 6=s

θjxj))− xs(θ0 +
∑
j 6=s

θjxj). (40)

As can be seen from (39), the amount of parameters for each node s is increased

from p to p(q+1). Thus, the amount of unique parameters for a full model increases

from p(1 + p)/2 to (q + 1)p(p+ 1)/2.

As using a linear parametrization (37) for θst(z) does not interfere with the

conclusion that logistic regression can be used to model the conditional dependency

of an individual node, we can argue that interpretation for the parameters in our

model conforms with logistic regression. That is, each parameter describes the

size of the conditional effect of that particular predictor. Specifically, let zk be a

continuous variable, now the corresponding parameter θstk describes the effect of zk

on the conditional log-odds of xs when xt = 1. The parameter θst0 describes main

effect of xt on xs. To determine whether an edge exists between two nodes, the whole

vector of corresponding variables needs to be examined. That is, all entries in the

vector (θst0, θ
T
st) being zero implies that the sth and tth variables are conditionally

independent given any z and the remaining node variables.

Similarly as before, sparsity is achieved by adopting the L1 regularization as a

part of the estimation. Specifically, the criterion for each individual regression (40)

is expanded by adding the regularization parameter, giving the resulting criterion

for each node s in the same form as (33). The difference lies only within the negative

conditional log-likelihood, in which the additional covariates are added. Similarly

as before, every variable except the intercept term is penalized, including all of the

additional covariates.

This method lets us expand our Ising graphical model via addition of extraneous

factors in the form of new covariates. Thus, we have subject-specific graphical mod-

els, where the strength of an edge varies smoothly with the values of the introduced

covariates. The introduced covariates can be either continuous or categorical, but

as a consequence of continuity, if all introduced covariates are continuous, the value

of the covariate changing does not change the graph structure, instead it can only

have an effect on the strengths of edges. However, with categorical new covariates

we can have a different graph structure for each possible level of the covariates.

20



4.3 Value of the Regularization Parameter

The addition of the L1 regularization enables us to have sparsity in our model by

forcing some of the parameters to be estimated as zero. We are able to influence

the number of zero and non-zero values in our final estimate through the choice of

the value for the regularization parameter. A higher value strengthens the penalty

and we obtain less non-zero estimates, and vice versa, a lower value lets us have a

greater amount of non-zero values in our final estimate.

The regularization has a strong influence on our estimation, as our final estimate

can range from having a non-zero estimate only for the intercept terms of each node

to having (q+ 1)p(p+ 1)/2 non-zero terms, including the second degree interactions

between nodes and between nodes and additional variables. Because the value of

the regularization parameter has such a strong impact on our estimation and ulti-

mately the conclusions we can draw from our results, the choice of the value for the

parameter deserves to be one of the key points in the analysis.

Hastie et al. (2009) state that in practice it is often informative to run the analysis

multiple times with different values for the regularization parameter and then to

explore the set of solutions. Increasing the value of the regularization parameter and

observing which edges of the graph remain while others are excluded, can provide

insight on which interactions are the most meaningful in the phenomenon producing

the studied data.

However, in the context of this study we advocate the view that simply exploring

the different obtained solutions is not sufficient and instead we should pursue finding

an optimal value for the regularization parameter. Cheng et al. (2014) compare

different methods for finding the optimal value for the parameter. According to

their simulations they conclude that cross-validation is the preferred option, when

compared to validating the conditional likelihood on a separate dataset of the same

size, using AIC, or using BIC.

There are multiple approaches for conducting a cross-validation but for our pur-

poses we propose using a 10-fold cross-validation optimizing for the positive predic-

tive value (41) in single mutations. Specifically, we divide our data into ten partitions

of equal sizes. Each of these partitions is in turn used as a test set, while the re-

maining nine partitions are used as a training set which is used to estimate model

parameters. Using the solution estimated from the training set we calculate the

linear predictors for each node variable observation in the test set. A positive linear
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predictor means that, according to our model, we predict that it is more likely to

encounter an event(=1) in the observation in question. We then compare predicted

values of nodes with the actual values in our training set to find how the model

performed with the tested regularization parameter.

The most common way to conduct cross-validation in a binary setting is try-

ing to minimize the misclassification rate. However, for this thesis we consider a

regularization parameter to be optimal when we maximize the positive predictive

value while minimizing the amount of non-zero parameters. This is mainly due to

the nature of our data where the number of non-events(=0) outweighs the events

in our node variables. Thus, we consider a model which is able to correctly predict

relatively rare events to capture the underlying phenomenon well without overfit-

ting on sample specific attributes. Minimizing the amount of non-zero parameters

translates in this scenario to finding the greatest value of λ with acceptable positive

predictive value.

PPV =
number of true positives

number of true positives + number of false positives
(41)

4.4 Bootstrapping Edges

It is known that the L1 regularization or LASSO selects all the variables that should

enter the model with probability tending to one exponentially fast, while selecting

the other variables with strictly positive probability. In order to evaluate the results

of our estimation, specifically whether a non-zero parameter estimate corresponding

to an edge between two nodes in our graph is reliable, we run our estimation several

times using data re-sampled with replacement from our original sample. By re-

sampling our original sample and then running the estimation on these bootstrap

samples, we estimate the probability of having a zero result on a parameter with

multiple datasets from the same underlying distribution.

Let Pij be the probability that θ̂ij = 0, or not having an edge between the ith

and jth node in our estimated graph. We find the bootstrap estimate of Pij by

taking M bootstrap samples and running our estimation on each of these samples,

yielding in total M estimates for θij: θ̂
(1)
ij . . . θ̂

(M)
ij .

Taking into account bias introduced from finite sampling, P̂ is given by

P̂ij =
1

M + 1

M∑
k=1

(I
(θ̂

(k)
ij =0)

) + 1 (42)
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We use P̂ to evaluate which edges are unlikely to have been observed due to random

chance by comparing corresponding values of P̂ to a cut-off value of 5%. That is,

we consider edges estimated as non-zero in 95% or more of the bootstrap samples

to be reliable evidence of interaction between the two variables given all the other

variables.

5 Modelling Graph Structure in Cancer Mutation

Data

Our goal is to analyse the mutations discovered in biopsies of cancerous tumours

in order to find pairs of genes, which are mutated together less frequently than

expected. Finding such pairs can be a sign of the two mutations giving similar

benefit for the cancer in question. As our data source we use the COSMIC database

(Forbes et al. 2014), which holds data from over 18,000 tumour samples that have

had their whole genomes analysed. Recent large scale cancer genomics studies have

enabled researchers to utilize mathematical methods to find mutational patterns,

which may lead to discovering novel driver mutations.

However, as the results gained from analysing the data from these databases are

being interpreted, one needs to also consider the potential problems associated with

this form of data. Only a portion of the data has been compared to genome from

healthy cells of the same individual. Thus, the data can be expected to contain false

positive mutations, caused by the differences in individual genotypes. The selection

bias involved with the original studies used as the source for the database will also

influence the pooled data. We additionally note that, while these sort of databases

often contain records of either presence or absence of a genomic alteration, despite

modern experimental methodologies we are not yet able to identify alterations with

complete certainty. The used data can be presumed to contain both false negative

and positive records due to measurement noise and uncertainty in mutation calling

and interpretation. Thus, the possible evidence for mutational patterns found should

be mainly considered as indicating the involved genes for further investigations to

establish biological proof of involvement in cancer pathogenesis.
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5.1 Data Specifications and Reformatting

The most current iteration of the COSMIC database at the time of writing is v76

(available for download from https://cancer.sanger.ac.uk/cosmic). The downloaded

data is in long format, where each individual mutation is represented by a row in the

data. In total we start with 4,247,063 rows of data, from which we choose to keep

only observations where the whole genome is screened. We reduce the data further

by dropping silent mutations, which have no effect on the amino acid sequence of

the protein when the altered mRNA is translated.

For our study, we focus on a set of genes known to code the enzyme protein

phosphatase 2A (PP2A). We further narrow our set of data by selecting only the

variant with the highest number of mutations for each gene, corresponding with

the gene names: PPP2R1A, PPP2R3C, PPP2R2A ENST00000380737, PPP2R5D,

PPP2R5E, PPP2R3A, PPP2R5A, PPP2R2D ENST00000455566, PPP2R3B,

PPP2R4, PPP2R2B, PPP2R1B, PPP2CA, PPP2R5B, PPP2R5C, PPP2R2C,

PPP2CB, STRN, STRN3, and STRN4 in the data.

After these steps, we have data with 1,772 records of mutations, with the PP2A

encoding genes distributed as shown in Figure 3.

We transpose the data so that each row now represents an individual tumour

from which a sample has been collected. Each one of our 20 genes of interest is

represented by a column, with a binary set of possible values. For each sampled

tumour, a mutation in the corresponding gene either is present (1) or not (0). We

now have a data with 1,218 individual records from tumours with at least one of

the 20 mutations mutated. From Figure 4 we observe that a clear majority of our

sampled tumours have only one mutation of interest and the maximum amount of

mutations of interest found in an individual tumour is eleven.

Hanahan et al. (2011) define genome instability and mutation as one of the en-

abling characteristics of cancer. Indeed, conditions that increase the mutation fre-

quency or genome instability, such as a loss of function in one or several components

of the genomic maintenance machinery, often contribute to onset and progression

of various cancers. Thus, in some tumour samples we find a cumulated mutational

load of several orders of magnitude greater than in other tumour samples. These

hypermutated tumour samples can be expected to have a greater amount of muta-

tions also in the PP2A encoding genes, as can be seen from Figure 5, where the

curve represents a Poisson regression fit of number of PP2A mutations regressed on
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Figure 3: Distribution of mutations in PP2A encoding genes.

the logarithm of total number of mutations in a tumour sample.

In order to take into account the effect of the mutational load of each tumour

sample in our analysis, we merge into the data a column representing the logarithm

of total number of mutations for each tumour sample.

5.2 R functions used in the Analysis

We propose a binary Markov Random Field model with additional covariates as pre-

sented in section 4.2 to model the inherent dependencies between mutations in genes

encoding the PP2A enzyme. Following the method of estimation by Cheng et al.

(2014) also presented in section 4.2 we developed a function called BinaryMRFwith-

Cov with the R programming language. The program code is listed in Appendix A.

We also developed functions PredictBMRF (Appendix C) and CvBMRF (Appendix
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Figure 4: Distribution of mutations in PP2A enconding genes.

D) in order to evaluate the positive predictive value of the model with different

values of the regularization parameter.

Additionally, we developed function BootstrapEdges (see Appendix B) with func-

tionality as described in section 4.4 in order to further investigate the degree of belief

we can account for the found edges by investigating the matrix ρ calculated from

the bootstrap samples.

The functions are developed under R version 3.2.0 (2015-04-16) ”Full of Ingre-

dients”. In order to calculate the individual L1 regulated logistic regressions, our

functions depend on the function penalized, from the package penalized. We also

utilize the package parallel in order to save run time by calculating multiple regres-

sion estimations in parallel on systems with multiple cores. We utilize the function

createFolds from the package caret to divide our data into folds to be used in cross-

validation.
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Figure 5: Mutations in PP2A encoding genes v. Total number of mutations in a

tumour sample.

The function BinaryMRFwithCov returns a list including a matrix of numeric

values named graph. This is the weights matrix of our MRF model which holds

the final post-processed estimates of the main effect edge parameters. Multiple

packages have been developed for producing visual representations of graphs given

their weights matrices. For this thesis we have used the qgraph package to produce

the visual output from our estimated weights matrices. For other plots we utilized

the package ggplot2 by Hadley Wickham (2009).
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5.3 Statistical Analysis

5.3.1 Optimal Regularization Parameter

We begin by running the 10-fold cross-validation multiple times on our PP2A muta-

tion dataset using different values of the regularization parameter λ. Our goal is to

find a value, which produces a model that captures the nature of the underlying phe-

nomenon as accurately as possible, while minimizing the number of used parameters.

For each point of regularization parameter λ tested we obtain ten positive predictive

values (41), one for each fold, which we average in order to find the mean positive

predictive value for the tested value of the parameter. In Figure 6 we have plotted

the results of multiple cross-validations performed with λ in range of [0.1, 1.175]. We

have fitted a line with LOESS local regression to analyse the expected behaviour of

PPV with different values of λ.

Figure 6: Mean Positive Predictive Values v. λ
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Using our LOESS fit we find that the expected positive predictive value plateaus

when the value of the λ parameter is 0.737. Thus, even if new parameters are

added to the model with lower values of λ, the model does not perform better at

predicting mutations. Setting λ at 0.737 our estimation will produce a model fit

that be expected to be correct 73.5% of times when predicting a gene to be found

mutated based on the status of the other 19 genes and the sample specific mutation

rate with the minimal amount of parameters. Additionally, continuing to use cross-

validation, we observe that at λ = 0.737 we obtain a negative predictive value of

94% with total accuracy of 94%.

Based on cross-validation we choose 0.737 as the value for our regularization

parameter. Judging from our analysis we concur that we can obtain a solution with

approximately 74% positive and 94% negative predictive values, which would suggest

that the graph obtained with this value for the parameter captures the connections

between occurrence of mutations in PP2A encoding genes. A lower value would

introduce a greater amount of non-zero parameters, while not improving predictive

performance, thus complicating the solution in vain. However, a greater value of λ

would produce a fit that can be expected to fail in capturing the essential information

in the data, as the expected positive predictive value decreases sharply when λ is

greater than 0.737.

5.3.2 Estimation of Graph Structure and Parameters

We run our estimation on the mutation data of PP2A encoding genes using the

value 0.737 as the value for the regularization parameter. We use the separate-max

(32) to post-process the estimates due to superior performance when compared to

the separate-min (31) according to simulations carried out by Cheng et al. (2014).

We use a binary Markov random field model with the additional covariates as

described in section 4.2, where each individual gene is one of the node variables. We

have added the logarithm of the total amount of mutations in each sample as an

additional variable to take into account the strong interaction between the number

of PP2A mutations and the total number of mutations found in a sample (Figure

5).

Our main interest lies in the parameters representing the main effect interactions

between the different genes. As these represent the dependence of the odds of

certain genes being mutated depending on the mutational status of other genes,
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while the effect of an individual sample’s mutational load is taken into account, we

can interpret negative parameter values as a sign of the tendency for the two genes

of not being mutated together in the cancerous cells.

Table 2 holds the first set of estimated parameters: the intercept terms, and

the main effect terms of the logarithm of mutational load. These parameters are

represented in the model (38) by θss0 and θss, respectively, and they determine the

individual occurrence rate of the mutations.

As can be expected, the signs and the magnitudes of the intercept parameters

resemble the distribution of mutations in our data as seen from Figure 3. The

positive terms in θss correspond with our notion from Figure 5 that, in a sample

with higher overall mutational frequency, also multiple PP2A mutations are more

likely. However, it is interesting to see that this does not seem to apply for all of the

Gene name θss0 θss

PPP2CA -2.77 -0.14

PPP2CB -3.32 0.00

PPP2R1A 1.08 -0.11

PPP2R1B -1.68 -0.10

PPP2R2A ENST00000380737 -3.32 0.17

PPP2R2B -0.24 -0.08

PPP2R2C -4.45 0.46

PPP2R2D ENST00000455566 -3.32 0.17

PPP2R3A 0.90 -0.14

PPP2R3B -9.54 1.13

PPP2R3C -3.32 0.22

PPP2R4 -2.03 0.13

PPP2R5A -3.79 0.26

PPP2R5B -0.83 0.00

PPP2R5C -4.53 0.41

PPP2R5D -0.26 -0.13

PPP2R5E -4.88 0.37

STRN -1.55 0.10

STRN3 -1.85 0.14

STRN4 -2.60 0.21

Table 2: Parameters of individual occurrence of mutations
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genes in our set. For example, a mutation in the gene PPP2R1A seems to be less

likely in the samples with higher mutational load. Also, the mutation in PPP2CB,

which is the second rarest mutation in our set, has its parameter regularized to zero.

Thus, according to our model the overall mutational rate does not have an individual

effect on the likeliness of a mutation in the PPP2CB gene.

In Figure 7 we have the graphical representation of the estimated interaction

parameters θ̂st0. The estimates can be found in numeric form in the matrix in Ap-

pendix E. The edges drawn between different genes correspond to the non-zero θ̂st0

estimates. We observe that the genes form a rather complex network of interactions.

PPP2R3B and PPP2CB seem to be separated from the rest of the network. Fur-

thest from the core, PPP2R3B is neighbours with just four other genes. PPP2R1A,

PPP2R3A, PPP2R2B, and PPP2R5B stand out as the most influential genes form-

ing a hub at the centre of the graph, each of the four genes having an effect on all

of the other nineteen nodes. Having estimated such a complex network of depen-

dencies between mutations in the twenty investigated genes our model suggests that

the mutations in these genes are unlikely to occur independently. Thus, we can find

support for our notion that the mutations in PP2A encoding genes contribute to the

fitness of a cancer cell.

In the Appendix F we have the matrix of estimates for the parameters θst, which

correspond to the effect of mutational load on the network of mutations. Figure

7 corresponds to the situation, where the variable ln(Mutational load) equals zero

i.e. there is only a single mutation. In order to examine how the accumulation of a

greater number of mutations affects our graph’s appearance, we have visualized three

additional graphical representations. From the COSMIC database we calculated

quartiles for the distribution of the total amount of mutations to be q1: 152, median:

682, and q3: 3055. The estimated network structure in these quartiles of the total

amount of mutations is pictured in the Figure 8.

As the total amount of mutations cumulates higher, the network of interactions

changes. In Figure 8a we can find that, with 152 total mutations the graph has

a greater number of edges compared to Figure 7. This is due to the interactions

between some genes being present in the estimates θ̂st while being constrained to

zero in the estimation of θst0 parameters. However, the form of the graph in Figure

8a is rather similar to the form in the first graph in Figure 7. The key mutations

PPP2R1A, PPP2R3A, PPP2R2B, and PPP2R5B continue to form the core of the
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Figure 7: Graphical representation of estimates for θst0 parameters
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network. PPP2R3B has shifted from being a clear outlier towards the outer rim of

the network.

With 682 total mutations in Figure 8b, the graph has become more balanced in

the relative strengths of interactions. The edges connecting (PPP2R4, PPP2R1B)
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Figure 8: Interactions between mutations in PP2A encoding mutations at first quar-

tile, median, and third quartile
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and (PPP2R4, PPP2R2C) stand out as two stronger signals of negative bilateral

effect between the probability of a mutation in the two genes. PPP2R1A continues to

find its place at the core of the graph being surrounded by the previously mentioned

PPP2R3A, PPP2R2B, and PPP2R5B.

Finally, with 3055 total mutations pictured in Figure 8c the interactions between

mutations in the twenty investigated genes appear to be rather diluted compared

to Figure 7. The previously identified key mutations PPP2R3A, PPP2R2B, and

PPP2R5B no longer form the core of the network. However, the longest and most

mutated gene PPP2R1A can still be found located at the centre of our network. The

mutational status of the gene PPP2R4 seems to have moved towards the core, having

a strong effect on the gene PPP2CB as well as the previously identified stronger

interactions with PPP2R1B and PPP2R2C. It is also of interest that PPP2R3B,

while identified as an outlier in the graphs with lower total mutational rates, is no

longer on the outer rim of the network and holds a strong interaction with gene

PPP2CB.

The networks at median and third quartile of total mutations include also some

positive connections, which can be interpreted as a sign of co-occurrence between

these mutations. That is, combinations such as (PPP2CA, PPP2R3B) or (PPP2CA,

PPP2CB) are more likely to appear mutated together in samples with high total

mutational rate.

5.3.3 Evaluation of the Graph Structure by Bootstrapping

In order to evaluate whether the estimates we obtained for parameters θst0 presented

by the edges in Figure 7 were due to random chance or actual properties of an

underlying network of interactions between the mutations, we ran a bootstrapping

scheme introduced in section 4.4. By running the analysis one thousand times on

bootstrap samples of the original data we obtained the matrix of P̂ij estimates

presented in Appendix G. In Figure 9 we have drawn a graph corresponding to

Figure 7 but with the original set of edges replaced by edges where P̂ is less than

5%.

We have previously identified mutations in genes PPP2R1A, PPP2R3A,

PPP2R2B, and PPP2R5B as key cancer mutations. According to our bootstrap

analysis, the high number of interactions involving PPP2R1A, PPP2R3A, and

PPP2R2B is reliable, each having 16, 18, and 15 interactions with P̂ less than
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Figure 9: θ̂st0 edges with P̂ less than 5%
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5%, respectively. The gene PPP2R5B had only seven edges that appeared over 95%

of times in the fits using bootstrapped samples.

Thus, our analysis suggests that PPP2R1A, PPP2R3A, and PPP2R2B can be

considered as the genes in which occurring mutations have the most influence on the

mutation of the other genes under analysis. For PPP2R5B, we cannot find evidence

of having as profound effect as the nineteen edges in our θ̂st0 estimate would suggest.

Gene PPP2R3B, which was an outlier in our graph in Figure 7, does not have an

edge with P̂ value of less than 5% with any other gene. Thus, bootstrapping supports

our observation that PPP2R3B is not meaningful in the network of mutations in

PP2A encoding genes.

6 Conclusions

The purpose of this study was to explore the network of interactions behind muta-

tions in PP2A encoding genes by using a sparse binary Markov random field on a

data set of mutations found in tumour biopsies. By revealing the underlying network

of interactions we can find evidence of specific mutations acting as driver mutations.

This notion is based on natural selection, where mutations that benefit the cancer-

ous cells to grow are likely to help the cells outgrow competing cell populations and

appear in the mutational profile of the investigated tumour. However, if multiple

mutations provide similar benefits to the cancer cell, only one needs to happen for

the cell to benefit. Thus, mutual exclusivity, or a certain gene being less likely to be

found mutated together with another gene, can be used as evidence for both of the

mutations benefiting the cancer in a similar fashion.

Through our analysis we found that there is a complex network of interactions

behind mutations in genes encoding the PP2A enzyme in humans. Thus, we can

say that the probability of a gene being found to be mutated in a tumour sample

is not dependent only on the individual mutational tendency of each gene and the

overall mutational rate of the investigated tumour sample, but in most cases also

depending on the mutational status of the other nineteen PP2A encoding genes. We

identified the genes PPP2R1A, PPP2R3A, and PPP2R2B as forming the core of the

network of mutations. PPP2R4 was also identified as a possibly being an influential

mutation in highly mutated samples.

Our aim was to provide a subset of genes in the group encoding PP2A enzyme,
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which could be used as a prime candidate for further biological research on defining

the tumour suppressor functions of PP2A. It is of interest to note that the suppres-

sion of the four genes that stand out in our analysis have been shown to contribute

to the transformation of normal human cells. For PPP2R1A see Chen et al. (2005),

for PPP2R2B see Tan et al. (2010), and for PPP2R3A and PPP2R4 see Sablina et

al. (2010).

Although multiple lines of evidence suggest that PP2A is a tumour suppressor

serving as a regulator of cell growth, proliferation, and survival, the genomics data

to support this claim is limited. This thesis provides novel genomic evidence by

revealing the interdependencies of the mutations in different subunits, which suggests

that the mutations occurring in PP2A genes contribute to cancer cell fitness and

further highlight restoring the PP2A activity as an appealing therapeutic strategy.
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Appendices

A BinaryMRFwithCov

BinaryMRFwithCov <−
function (data , lambda = 1 , separate min = FALSE,

bs run = FALSE, l a s t graph param = ncol (data ) ) {
#

# Est imate s pa r s e Markov Random F i e l d s t r u c t u r e g i v en

# a s e t o f b ina ry data and a d d i t i o n a l c o v a r i a t e s

#

# Author : Oscar L indberg

# Args :

# data : The inpu t data in a data . frame , where t h e

# p l e f tm o s t v a r i a b l e s are t h e b ina ry v a r i a b l e s

# to be r e p r e s en t e d by nodes in t h e f i n a l graph

# lambda : A s i n g l e numeric va lue ,

# to be used as l1−r e g u l a r i z a t i o n parameter

# s epa r a t e min : I f TRUE, use t h e minimum o f co r r e spond ing

# parameter e s t ima t e s as t h e e s t ima t ed

# va l u e in t h e f i n a l symmetric po s t p r o c e s s ed matr ix

# o f e s t ima t e s . E l s e use maximum . De f au l t i s FALSE.

# bs run : I f TRUE, on l y r e t u rn s t h e graph matr ix to

# conse rve memory when the f un c t i o n i s ran

# mu l t i p l e t imes due to b o o t s t r a p p i n g .

# E l s e r e t u rn s as d e s c r i b e d be low . De f au l t i s FALSE

# l a s t graph param : A s i n g l e i n t e g e r , index o f l a s t

# column in data which i s r e p r e s en t e d by

# nodes in t h e f i n a l graph . Columns wi th index

# g r e a t e r than l a s t graph param are taken

# as a d d i t i o n a l parameters . De f au l t i s number o f

# columns in data , co r r e spond ing to no

# a d d i t i o n a l c o v a r i a t e s .

#

# Returns :

# A l i s t c on t a i n i n g :

# graph : Es t imated parameter matr ix o f edge s

# t r e s h o l d : Es t imated parameter v e c t o r o f i n t e r c e p t s

# r e s u l t s : L i s t o f r e s u l t s o f i n d i v i d u a l l o g i s t i c

# r e g r e s s i o n s w i th LASSO pena l t y

# add i t . param : Est imated parameter matr ix f o r

# a d d i t i o n a l c o v a r i a t e s e f f e c t s on edge s

# add i t . p . t r e s h o l d : Es t imated parameter v e c t o r f o r

# a d d i t i o n a l c o v a r i a t e s e f f e c t s on i n t e r c e p t s

#

# Dependencies :

# Package : p ena l i z e d , v e r s i o n 0.9−45

# by J e l l e Goeman , Rosa Mei jer and Nimisha Chaturved i

# Package : p a r a l l e l , v e r s i o n 3 . 2 . 0

# by R Core Team

#

# node v a r i a b l e names

c r names <−
colnames (data [ , 1 : l a s t graph param ] )

# ad d i t i o n a l v a r i a b l e names

c a names <−
c ( )

# amount o f node v a r i a b l e s ,

# each w i l l a c t as r e sponse v a r i a b l e in r e g r e s s i o n s

p <−
l a s t graph param

# amount o f a d d i t . v a r i a b l e s

q <−
ncol (data ) − l a s t graph param
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# Transform data by add ing new columns

# from mu l t i p l i c a t i o n o f b ina ry node data

# wi th t h e e x t e r n a l v a r i a b l e s

data1 <−
data [ , 1 : l a s t graph param ]

data a <−
data

# i f e x t e r n a l v a r i a b l e s e x i s t then do t r an s f o rma t i on

i f ( l a s t graph param < ncol (data ) ) {
# loop through th e e x t e r n a l v a r i a b l e s

for ( i in ( l a s t graph param + 1 ) : ncol (data ) ) {
# mu l t i p l y node v a r i a b l e s by t h i s e x t e r n a l var

data tmp <− data1 ∗ data [ , i ]

# name new var s by e x t e r n a l v a r i a b l e w i th s u f f i x

colnames (data tmp) <−
paste (colnames (data ) [ i ] , colnames ( data1 ) , sep = ” ”)

c a names <− c (c a names , colnames (data tmp) )

# jo i n to common matr ix w i th node v a r i a b l e s

data a <−
cbind (data a , data tmp)

}
}

# Use f un c t i o n p e n a l i z e d from package

# p en a l i z e d f o r s e p a r a t e l o g i s t i c r e g r e s s i o n s w i th

# LASSO pena l t y f o r each parameter e x c e p t i n t e r c e p t

Res <−
mclapply ( seq l en (p ) , function ( i )

pena l i z ed (

response = data a [ , i ] ,

p ena l i z ed = data a [ ,−c ( i , ncol (data ) + i ) ] ,

lambda1 = lambda , lambda2 = 0 , s t ep s = 1 ,

model = ” l o g i s t i c ” ,

s tandard i z e = FALSE

) )

Coefs <− lapply (Res , coef , ” a l l ”)

addit cov <− NULL

i f ( l a s t graph param < ncol (data ) ) {
addit cov <−

lapply ( Coefs , function ( i ) {
i [ ( l a s t graph param + 1 ) : length ( i ) ]

}) # parameters f o r a d d i t i o n a l c o v a r i a t e s

Coefs <−
lapply ( Coefs , function ( i ) {

head ( i , l a s t graph param)

}) # Theta w i t hou t parameters f o r a d d i t i o n a l c o v a r i a t e s

}

# Symmetrize c o e f f i c i e n t ma t r i c e s

Net <− matrix (0 , p , p)

for ( i in seq l en (p ) ) {
Net [ i ,− i ] <− Coefs [ [ i ] ] [ −1 ]

Net [ i , i ] <− Coefs [ [ i ] ] [ 1 ]

}

i f (q > 0){
Net2 <− lapply ( 1 :q , function (add . param){

mat <− matrix (0 , p , p)

for ( i in seq l en (p ) ) {
mat [ i ,− i ] <−

addit cov [ [ i ] ] [ ( q+(add . param−1)∗p+1):(q+(add . param−1)∗p+p−1)]

mat [ i , i ] <−
addit cov [ [ i ] ] [ add . param ]

}
mat

}
)

}
# Symmetrize matr ix by separa t e−min or separa t e−max
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symmetr <− function (Net ) {
Net .upper <− Net [upper . t r i (Net ) ]

Net . lower <− t (Net ) [ upper . t r i (Net ) ]

i f ( s eparate min) {
Net .upper .new <−

i f e l s e (abs (Net .upper ) < abs (Net . lower ) ,

Net .upper , Net . lower )

} else {
Net .upper .new <−

i f e l s e (abs (Net .upper ) > abs (Net . lower ) ,

Net .upper , Net . lower )

}
Net . sym <− matrix (0 , p , p)

t r e sho ld <− diag (Net )

Net . sym [upper . t r i (Net . sym ) ] <− Net .upper .new

Net . sym <− t (Net . sym)

Net . sym [upper . t r i (Net . sym ) ] <− Net .upper .new

l i s t (Net . sym , t r e sho ld )

}
Net . sym <− symmetr (Net )

dimnames(Net . sym [ [ 1 ] ] ) [ [ 1 ] ] <−
dimnames(Net . sym [ [ 1 ] ] ) [ [ 2 ] ] <− c r names

i f (q > 0){
Net2 . sym <− lapply ( 1 : length (Net2 ) ,

function ( x ){
add . par .mat <− Net2 [ [ x ] ]

sym <− symmetr (add . par .mat)

dimnames(sym [ [ 1 ] ] ) [ [ 1 ] ] <−
dimnames(sym [ [ 1 ] ] ) [ [ 2 ] ] <−
c a names [ ( ( x−1)∗p+1) : ( ( x−1)∗p+p ) ]

sym

}
)

} else {
Net2 . sym = l i s t ( )

}
# For b o o t s t r a p p i n g : r e t u rn on l y graph matr ix to

# conse rve memory

# El s e r e t u rn a l i s t as d e s c r i b e d in program header

i f ( bs run ) {
return ( l i s t ( graph = Net . sym [ [ 1 ] ] ) )

} else {
return (

l i s t (

graph = Net . sym [ [ 1 ] ] ,

t r e sho ld = Net . sym [ [ 2 ] ] ,

r e s u l t s = Res ,

addit . param = Net2 . sym ,

data a = data a

)

)

}
}
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B BootstrapEdges

BootstrapEdges <− function (data ,

bs sample n ,

sample seed ,

lambda ,

s epara te min = FALSE,

l a s t graph param) {
#

# Ca l c u l a t e matr ix rho by app l y i n g BinaryMRFwithCov

# f un c t i o n on boo t s t r a p p e d samples o f t h e o r i g i n a l

# data and c a l c u l a t i n g t h e p r opo r t i on o f z e ro e s t ima t e s

# f o r each edge parameter

#

# Author : Oscar L indberg

# Args :

# data : The inpu t data in a data . frame , where t h e

# p l e f tm o s t v a r i a b l e s are t h e b ina ry v a r i a b l e s

# to be r e p r e s en t e d by nodes in t h e f i n a l graph

# bs sample n : A s i n g l e i n t e g e r va lue , w i l l be used as

# the t o t a l amount o f b o o t s t r a p samples

# sample seed : A s i n g l e numeric va lue , w i l l be used as

# the seed va l u e f o r bs sampl ing

# lambda : A s i n g l e numeric va lue ,

# to be used as l1−r e g u l a r i z a t i o n parameter

# s epa r a t e min : I f TRUE, use t h e minimum o f co r r e spond ing

# parameter e s t ima t e s as t h e e s t ima t ed

# va l u e in t h e f i n a l symmetric po s t p r o c e s s ed matr ix

# o f e s t ima t e s . E l s e use maximum . De f au l t i s FALSE.

# l a s t graph param : A s i n g l e i n t e g e r , index o f l a s t

# column in data which i s r e p r e s en t e d by

# nodes in t h e f i n a l graph . Columns wi th index

# g r e a t e r than l a s t graph param are taken

# as a d d i t i o n a l parameters . De f au l t i s number o f

# columns in data , co r r e spond ing to no

# a d d i t i o n a l c o v a r i a t e s .

#

# Returns :

# A data . frame o f same s i z e as data c on t a i n i n g

# the p r opo r t i on o f t imes t h e co r r e spond ing

# edge parameter i s e s t ima t ed as z e ro

#

# Dependencies :

# Funct ion : BinaryMRFwithCov

#

bs samp <− vector ( ” l i s t ” , bs sample n)

i f ( i s .matrix (data ) ) {
data <− as . data . frame (data )

}
# boo t s t r a p sample from data

set . seed (sample seed )

sample data <− function ( empty ) {
sample n(data , nrow(data ) , TRUE)

}

bs samp <− lapply ( bs samp , sample data )

bs e s t imate s <− lapply ( bs samp ,

BinaryMRFwithCov ,

lambda ,

s epara te min ,

l a s t graph param ,

bs run = TRUE)

bs e s t imate s <− lapply ( bs est imates , getElement , ’ graph ’ )

# how many ze ro e s t ima t e s

count zero <− function (x , y ) {
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e s t imate s in xy <−
unlist ( lapply ( bs est imates , ‘ [ ‘ , x , y ) )

zero n <− sum( equa l s ( e s t imate s in xy , 0 ) )

# co r r e c t e d f o r f i n i t e samp l ing

(1 + zero n)/ (1 + bs sample n)

}

n <− nrow( bs e s t imate s [ [ 1 ] ] )

bs matrix <− matrix (0 , n , n)

for ( i in seq l en (n−1)) {
for ( j in seq ( i +1, n ) ) {

bs matrix [ i , j ] <− count zero ( i , j )

}
}

bs matrix [ lower . t r i ( bs matrix ) ] <−
t ( bs matrix ) [ lower . t r i ( bs matrix ) ]

rownames( bs matrix ) <−
rownames( bs e s t imate s [ [ 1 ] ] )

colnames ( bs matrix ) <−
colnames ( bs e s t imate s [ [ 1 ] ] )

return ( as . data . frame ( bs matrix ) )

}
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C PredictBMRF

PredictBMRF <− function (data ,

estim ,

l a s t graph param = ncol (data ) ) {
#

# Ca l c u l a t e t h e l i n e a r p r e d i c t o r f o r a node v a r i a b l e

# from es t ima t ed model u s ing t h e o t h e r node v a r i a b l e s

# and a d d i t i o n a l c o v a r i a t e s

#

# Author : Oscar L indberg

# Args :

# data : The inpu t data in a data . frame , where t h e

# p l e f tm o s t v a r i a b l e s are t h e b ina ry v a r i a b l e s

# to be r e p r e s en t e d by nodes in t h e f i n a l graph

# es t im : A l i s t , g ene ra t ed by f un c t i o n BinaryRMFwithCov

# con ta ined th e e s t ima t ed s o l u t i o n

# l a s t graph param : A s i n g l e i n t e g e r , index o f l a s t

# column in data which i s r e p r e s en t e d by

# nodes in t h e f i n a l graph . Columns wi th index

# g r e a t e r than l a s t graph param are taken

# as a d d i t i o n a l parameters . De f au l t i s number o f

# columns in data , co r r e spond ing to no

# a d d i t i o n a l c o v a r i a t e s .

#

# Returns :

# A l i s t c on t a i n i n g :

# pred . v a l u e s : Data . frame con t a i n i n g t h e p r e d i c t e d

# va l u e s f o r node v a r i a b l e o b s e r v a t i o n s in data

# l i n . pred : Data . frame con t a i n i n g t h e l i n e a r p r e d i c t o r

# va l u e s f o r node v a r i a b l e o b s e r v a t i o n s in data

# node v a r i a b l e names

c r names <−
colnames (data [ , 1 : l a s t graph param ] )

# ad d i t i o n a l v a r i a b l e names

c a names <−
c ( )

# amount o f node v a r i a b l e s ,

# each w i l l a c t as a v a r i a b l e to be

# p r e d i c t e d

p <−
l a s t graph param

# amount o f a d d i t . v a r i a b l e s

q <−
ncol (data ) − l a s t graph param

# Transform data by add ing new columns

# from mu l t i p l i c a t i o n o f b ina ry node data

# wi th t h e e x t e r n a l v a r i a b l e s

data1 <−
data [ , 1 : l a s t graph param ]

data a <−
data

# i f e x t e r n a l v a r i a b l e s e x i s t then do t r an s f o rma t i on

i f ( l a s t graph param < ncol (data ) ) {
# loop through th e e x t e r n a l v a r i a b l e s

for ( i in ( l a s t graph param + 1 ) : ncol (data ) ) {
# mu l t i p l y node v a r i a b l e s by t h i s e x t e r n a l var

data tmp <− data1 ∗ data [ , i ]

# name new var s by e x t e r n a l v a r i a b l e w i th s u f f i x

colnames (data tmp) <−
paste (colnames (data ) [ i ] , colnames ( data1 ) , sep = ” ”)

c a names <− c (c a names , colnames (data tmp) )

# jo i n to common matr ix w i th node v a r i a b l e s

data a <−
cbind (data a , data tmp)

}
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}

pred var <− function ( i ) {
i n t <− est im$ t r e sho ld [ i ]

i f ( l a s t graph param < ncol (data ) ){
i n t .add <−

apply ( unlist ( lapply (

lapply ( est im$addit . param , ’ [ [ ’ , 2 ) , ’ [ ’ , i

) ) ∗
data[−c ( 1 : l a s t graph param ) ] , 1 , sum)

}
edg1 <− matrix (nrow = nrow( data1 [ ,− i ] ) ,

ncol = ncol ( data1 [ ,− i ] ) )

for (m in 1 : ncol ( edg1 ) ) {
edg1 [ ,m] <− ( est im$graph [ i ,− i ] [m] ∗ data1 [ ,− i ] [m] ) [ , 1 ]

}
edg2 <− rowSums( edg1 )

i f ( l a s t graph param < ncol (data ) ){
add . edg . 1 <−

lapply ( lapply ( lapply ( est im$addit . param , ’ [ [ ’ , 1 ) , ’ [ ’ , i ,− i ) ,

function ( x ) {
rbind ( x ) [ rep (1 , nrow(data ) ) , ]

})
add . edg . 2 <− lapply ( 1 : length (add . edg . 1 ) ,

function ( k ) {
x <− add . edg . 1 [ [ k ] ]

for ( j in 1 : ncol ( x ) ) {
x [ , j ] <−

x [ , j ] ∗
data [ ,−c ( 1 : l a s t graph param ) ,

drop = FALSE ] [ , k ]

}
x

})
add . edg . 3 <−

matrix (1 , ncol = ncol (add . edg . 2 [ [ 1 ] ] ) ,

nrow = nrow(add . edg . 2 [ [ 1 ] ] ) )

lapply (add . edg . 2 , function ( x ) {
add . edg . 3 <<− add . edg . 3 ∗ x

})
add . edg . 4 <− add . edg . 3 ∗ data1 [ ,− i ]

}
i f ( l a s t graph param < ncol (data ) ){

rowSums(data . frame ( int , i n t .add , edg2 , add . edg . 4 ) )

} else i f ( l a s t graph param == ncol (data ) ){
rowSums(data . frame ( int , edg2 ) )

}
}
output <− NULL

for ( node . var in 1 : length (c r names ) ) {
output <− cbind ( output , pred var ( node . var ) )

colnames ( output ) [ node . var ] <− c r names [ node . var ]

}
l i s t ( pred . va lues = as . data . frame ( i f e l s e ( output <= 0 , 0 , 1 ) ) ,

l i n . pred = as . data . frame ( output ) )

}
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D CvBMRF

CvBMRF <− function (data ,

low . bound ,

high . bound ,

by ,

s epara te min = FALSE,

l a s t graph param = ncol (data ) ) {
#

# Ca l c u l a t e t h e mean p o s i t i v e p r e d i c t i v e v a l u e and mean

# ne g a t i v e p r e d i c t i v e v a l u e from 5 f o l d cross−v a l i d a t i o n

# f o r o p t im i s i n g t h e r e g u l a r i z a t i o n parameter

#

# Author : Oscar L indberg

# Args :

# data : The inpu t data in a data . frame , where t h e

# p l e f tm o s t v a r i a b l e s are t h e b ina ry v a r i a b l e s

# to be r e p r e s en t e d by nodes in t h e f i n a l graph

# low . bound : Numeric , l ow e s t v a l u e t e s t e d f o r lambda

# h i gh . bound : Numeric , h i g h e s t v a l u e t e s t e d f o r lambda

# by : Numeric , increment o f t h e sequence

# s epa r a t e min : I f TRUE, use t h e minimum o f co r r e spond ing

# parameter e s t ima t e s as t h e e s t ima t ed

# va l u e in t h e f i n a l symmetric po s t p r o c e s s ed matr ix

# o f e s t ima t e s . E l s e use maximum . De f au l t i s FALSE.

# l a s t graph param : A s i n g l e i n t e g e r , index o f l a s t

# column in data which i s r e p r e s en t e d by

# nodes in t h e f i n a l graph . Columns wi th index

# g r e a t e r than l a s t graph param are taken

# as a d d i t i o n a l parameters . De f au l t i s number o f

# columns in data , co r r e spond ing to no

# a d d i t i o n a l c o v a r i a t e s .

#

# Returns :

# A l i s t c on t a i n i n g :

# mean . pos . pred : Numeric v a l u e o f average PPV

# mean . neg . pred : Numeric v a l u e o f average NPV

# pos . pred : Vector o f PPV

# neg . pred : Vector o f NPV

#

# Dependencies :

# Funct ion : c r ea t eFo l d s , from package care t , Vers ion 6.0−52

# by Max Kuhn

f o l d s <− c r ea t eFo ld s (data [ , 1 ] , 5)

lambda . seq <− seq ( low . bound , high . bound , by)

cv <− lapply ( lambda . seq , function ( l ) {
pos . pred <− c ( )

neg . pred <− c ( )

for ( k in 1 : length ( f o l d s ) ) {
t r a i n i n g <− data[− f o l d s [ [ k ] ] , ]

t e s t <− data [ f o l d s [ [ k ] ] , ]

MRFfit <−
BinaryMRFwithCov (

data = tra in ing ,

lambda = l ,

s epara te min = separate min ,

bs run = FALSE,

l a s t graph param = l a s t graph param)

MRFpred <− PredictBMRF(

data = tes t ,

est im = MRFfit ,

l a s t graph param = l a s t graph param)
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t rue . pos <−
f a l s . pos <−
t rue . neg <−
f a l s . neg <−
matrix (NA, ncol = ncol (MRFpred [ [ 1 ] ] ) ,

nrow = nrow(MRFpred [ [ 1 ] ] ) )

for ( i in 1 :nrow( t rue . pos ) ) {
for ( j in 1 : ncol ( t rue . pos ) ) {

t rue . pos [ i , j ] <−
isTRUE( a l l . equal (MRFpred [ [ 1 ] ] [ i , j ] , t e s t [ i , j ] ) ) &

isTRUE( a l l . equal (MRFpred [ [ 1 ] ] [ i , j ] , 1 ) )

f a l s . pos [ i , j ] <−
! isTRUE( a l l . equal (MRFpred [ [ 1 ] ] [ i , j ] , t e s t [ i , j ] ) ) &

isTRUE( a l l . equal (MRFpred [ [ 1 ] ] [ i , j ] , 1 ) )

t rue . neg [ i , j ] <−
isTRUE( a l l . equal (MRFpred [ [ 1 ] ] [ i , j ] , t e s t [ i , j ] ) ) &

isTRUE( a l l . equal (MRFpred [ [ 1 ] ] [ i , j ] , 0 ) )

f a l s . neg [ i , j ] <−
! isTRUE( a l l . equal (MRFpred [ [ 1 ] ] [ i , j ] , t e s t [ i , j ] ) ) &

isTRUE( a l l . equal (MRFpred [ [ 1 ] ] [ i , j ] , 0 ) )

}
}
pos . pred <− c (pos . pred ,

sum( t rue .pos , na .rm = TRUE) /

(sum( t rue .pos , na .rm = TRUE) + sum( f a l s .pos , na .rm = TRUE) ) )

neg . pred <− c ( neg . pred ,

sum( t rue . neg , na .rm = TRUE) /

(sum( t rue . neg , na .rm = TRUE) + sum( f a l s . neg , na .rm = TRUE) ) )

}
l i s t (mean . pos . pred = mean(pos . pred , na .rm = TRUE) ,

mean . neg . pred = mean( neg . pred , na .rm = TRUE) ,

pos . pred = pos . pred , neg . pred = neg . pred )

}
)

cv

}
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E Estimated Graph Weight Matrix

PPP2CA PPP2CB PPP2R1A PPP2R1B PPP2R2A* PPP2R2B PPP2R2C PPP2R2D** PPP2R3A PPP2R3B PPP2R3C PPP2R4 PPP2R5A PPP2R5B PPP2R5C PPP2R5D PPP2R5E STRN STRN3 STRN4

PPP2CA 0.00 0.00 -4.59 -0.33 -0.03 -4.88 -0.82 -0.74 -4.52 0.00 -2.58 -3.28 -0.59 -3.87 0.00 -1.45 0.00 -2.45 -3.97 -1.59

PPP2CB 0.00 0.00 -4.32 0.00 0.00 -1.72 0.00 0.00 -3.61 0.00 -0.07 -1.57 -0.01 -1.91 -0.30 -1.21 -0.68 -2.82 -1.37 -0.70

PPP2R1A -4.59 -4.32 0.00 -4.95 -8.44 -8.16 -7.96 -5.44 -7.98 -1.22 -8.21 -6.54 -5.76 -9.04 -7.01 -8.33 -4.73 -7.90 -7.83 -7.79

PPP2R1B -0.33 0.00 -4.95 0.00 -2.21 -3.33 0.00 -1.91 -4.28 0.00 -4.78 0.00 -1.50 -2.65 0.00 -2.98 0.00 -2.74 -1.75 -4.87

PPP2R2A* -0.03 0.00 -8.44 -2.21 0.00 -6.92 -4.59 -0.60 -10.28 0.00 -4.56 -1.08 -0.05 -4.83 -0.77 -5.39 -1.40 -3.25 -5.61 -1.84

PPP2R2B -4.88 -1.72 -8.16 -3.33 -6.92 0.00 -2.01 -3.18 -7.89 -0.70 -3.91 -5.04 -5.69 -6.58 -4.71 -6.75 -3.97 -6.06 -7.13 -6.28

PPP2R2C -0.82 0.00 -7.96 0.00 -4.59 -2.01 0.00 -0.27 -5.42 0.00 -2.75 0.00 -1.55 -2.02 -0.93 -3.85 0.00 -1.11 -2.56 -1.71

PPP2R2D** -0.74 0.00 -5.44 -1.91 -0.60 -3.18 -0.27 0.00 -6.55 0.00 -0.49 -1.99 0.00 -1.49 -0.60 -3.00 0.00 -4.71 -2.41 -0.56

PPP2R3A -4.52 -3.61 -7.98 -4.28 -10.28 -7.89 -5.42 -6.55 0.00 -1.74 -5.12 -6.86 -7.06 -10.14 -5.58 -7.44 -6.21 -3.17 -7.22 -4.09

PPP2R3B 0.00 0.00 -1.22 0.00 0.00 -0.70 0.00 0.00 -1.74 0.00 0.00 0.00 0.00 -0.37 0.00 0.00 0.00 0.00 0.00 0.00

PPP2R3C -2.58 -0.07 -8.21 -4.78 -4.56 -3.91 -2.75 -0.49 -5.12 0.00 0.00 0.00 -0.69 -5.02 -0.79 -4.54 -0.62 -2.78 -4.98 0.00

PPP2R4 -3.28 -1.57 -6.54 0.00 -1.08 -5.04 0.00 -1.99 -6.86 0.00 0.00 0.00 -2.48 -2.75 -0.49 -6.38 -1.41 -3.06 -3.05 -1.70

PPP2R5A -0.59 -0.01 -5.76 -1.50 -0.05 -5.69 -1.55 0.00 -7.06 0.00 -0.69 -2.48 0.00 -4.59 0.00 -0.90 -2.03 -3.91 -5.67 -2.45

PPP2R5B -3.87 -1.91 -9.04 -2.65 -4.83 -6.58 -2.02 -1.49 -10.14 -0.37 -5.02 -2.75 -4.59 0.00 -1.90 -8.40 -3.58 -2.25 -2.50 -0.34

PPP2R5C 0.00 -0.30 -7.01 0.00 -0.77 -4.71 -0.93 -0.60 -5.58 0.00 -0.79 -0.49 0.00 -1.90 0.00 -1.77 -0.54 -2.26 -3.66 0.00

PPP2R5D -1.45 -1.21 -8.33 -2.98 -5.39 -6.75 -3.85 -3.00 -7.44 0.00 -4.54 -6.38 -0.90 -8.40 -1.77 0.00 -4.40 -4.41 -6.13 -1.75

PPP2R5E 0.00 -0.68 -4.73 0.00 -1.40 -3.97 0.00 0.00 -6.21 0.00 -0.62 -1.41 -2.03 -3.58 -0.54 -4.40 0.00 -6.09 -2.41 -1.12

STRN -2.45 -2.82 -7.90 -2.74 -3.25 -6.06 -1.11 -4.71 -3.17 0.00 -2.78 -3.06 -3.91 -2.25 -2.26 -4.41 -6.09 0.00 -5.10 -3.40

STRN3 -3.97 -1.37 -7.83 -1.75 -5.61 -7.13 -2.56 -2.41 -7.22 0.00 -4.98 -3.05 -5.67 -2.50 -3.66 -6.13 -2.41 -5.10 0.00 -2.16

STRN4 -1.59 -0.70 -7.79 -4.87 -1.84 -6.28 -1.71 -0.56 -4.09 0.00 0.00 -1.70 -2.45 -0.34 0.00 -1.75 -1.12 -3.40 -2.16 0.00

* ENST00000380737, ** ENST00000455566



F Estimated Effect of Mutational Frequency Matrix

PPP2CA PPP2CB PPP2R1A PPP2R1B PPP2R2A* PPP2R2B PPP2R2C PPP2R2D** PPP2R3A PPP2R3B PPP2R3C PPP2R4 PPP2R5A PPP2R5B PPP2R5C PPP2R5D PPP2R5E STRN STRN3 STRN4

PPP2CA 0.00 0.17 0.31 0.03 0.02 0.60 0.08 0.14 0.51 0.06 0.43 0.48 0.09 0.42 0.05 -0.15 -0.12 0.19 0.49 0.16

PPP2CB 0.17 0.00 0.39 -0.59 -0.09 -0.18 -0.04 -0.08 0.30 -0.52 0.09 0.12 0.11 -0.11 0.18 -0.06 0.29 0.29 -0.03 0.05

PPP2R1A 0.31 0.39 0.00 0.61 1.01 0.84 0.82 0.50 0.84 -0.25 0.87 0.63 0.53 0.98 0.68 0.89 0.33 0.84 0.78 0.84

PPP2R1B 0.03 -0.59 0.61 0.00 0.30 0.31 -0.28 0.30 0.37 -0.24 0.77 -0.82 0.17 0.20 -0.21 0.22 -0.12 0.42 0.11 0.73

PPP2R2A* 0.02 -0.09 1.01 0.30 0.00 0.87 0.64 0.00 1.20 -0.18 0.60 -0.14 0.00 0.55 -0.03 0.61 0.18 0.32 0.64 0.16

PPP2R2B 0.60 -0.18 0.84 0.31 0.87 0.00 -0.13 0.33 0.93 -0.10 0.42 0.51 0.67 0.66 0.55 0.83 0.39 0.70 0.78 0.81

PPP2R2C 0.08 -0.04 0.82 -0.28 0.64 -0.13 0.00 -0.07 0.53 -0.23 0.28 -0.82 0.13 0.00 -0.10 0.45 -0.21 0.00 0.18 0.15

PPP2R2D** 0.14 -0.08 0.50 0.30 0.00 0.33 -0.07 0.00 0.77 -0.14 -0.06 0.10 -0.04 0.06 -0.01 0.27 -0.06 0.63 0.21 -0.18

PPP2R3A 0.51 0.30 0.84 0.37 1.20 0.93 0.53 0.77 0.00 0.01 0.42 0.82 0.85 1.23 0.56 0.72 0.69 0.11 0.77 0.29

PPP2R3B 0.06 -0.52 -0.25 -0.24 -0.18 -0.10 -0.23 -0.14 0.01 0.00 0.03 -0.29 -0.03 -0.14 -0.12 -0.12 -0.08 -0.14 -0.12 -0.12

PPP2R3C 0.43 0.09 0.87 0.77 0.60 0.42 0.28 -0.06 0.42 0.03 0.00 -0.35 0.00 0.54 -0.01 0.49 -0.07 0.19 0.52 -0.37

PPP2R4 0.48 0.12 0.63 -0.82 -0.14 0.51 -0.82 0.10 0.82 -0.29 -0.35 0.00 0.16 0.12 -0.15 0.84 -0.13 0.21 0.22 0.00

PPP2R5A 0.09 0.11 0.53 0.17 0.00 0.67 0.13 -0.04 0.85 -0.03 0.00 0.16 0.00 0.52 -0.19 -0.27 0.25 0.44 0.67 0.24

PPP2R5B 0.42 -0.11 0.98 0.20 0.55 0.66 0.00 0.06 1.23 -0.14 0.54 0.12 0.52 0.00 0.11 0.99 0.32 0.14 0.08 -0.32

PPP2R5C 0.05 0.18 0.68 -0.21 -0.03 0.55 -0.10 -0.01 0.56 -0.12 -0.01 -0.15 -0.19 0.11 0.00 -0.11 -0.08 0.14 0.41 -0.34

PPP2R5D -0.15 -0.06 0.89 0.22 0.61 0.83 0.45 0.27 0.72 -0.12 0.49 0.84 -0.27 0.99 -0.11 0.00 0.57 0.53 0.74 -0.03

PPP2R5E -0.12 0.29 0.33 -0.12 0.18 0.39 -0.21 -0.06 0.69 -0.08 -0.07 -0.13 0.25 0.32 -0.08 0.57 0.00 0.79 0.17 -0.06

STRN 0.19 0.29 0.84 0.42 0.32 0.70 0.00 0.63 0.11 -0.14 0.19 0.21 0.44 0.14 0.14 0.53 0.79 0.00 0.63 0.34

STRN3 0.49 -0.03 0.78 0.11 0.64 0.78 0.18 0.21 0.77 -0.12 0.52 0.22 0.67 0.08 0.41 0.74 0.17 0.63 0.00 0.00

STRN4 0.16 0.05 0.84 0.73 0.16 0.81 0.15 -0.18 0.29 -0.12 -0.37 0.00 0.24 -0.32 -0.34 -0.03 -0.06 0.34 0.00 0.00
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G Bootstrapped P̂ Values of Graph Weight Matrix

PPP2CA PPP2CB PPP2R1A PPP2R1B PPP2R2A* PPP2R2B PPP2R2C PPP2R2D** PPP2R3A PPP2R3B PPP2R3C PPP2R4 PPP2R5A PPP2R5B PPP2R5C PPP2R5D PPP2R5E STRN STRN3 STRN4

PPP2CA 0.00 0.58 0.15 0.30 0.44 0.02 0.33 0.23 0.01 0.88 0.09 0.17 0.25 0.16 0.47 0.42 0.92 0.15 0.03 0.23

PPP2CB 0.58 0.00 0.03 0.88 0.51 0.35 0.53 0.80 0.02 1.00 0.45 0.21 0.31 0.33 0.32 0.30 0.29 0.07 0.24 0.23

PPP2R1A 0.15 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.03 0.01 0.00 0.03 0.00 0.06 0.00 0.00 0.00

PPP2R1B 0.30 0.88 0.00 0.00 0.12 0.01 0.72 0.07 0.04 0.98 0.01 1.00 0.10 0.09 0.85 0.14 0.66 0.02 0.11 0.00

PPP2R2A* 0.44 0.51 0.00 0.12 0.00 0.00 0.01 0.19 0.00 1.00 0.03 0.45 0.18 0.01 0.25 0.02 0.09 0.03 0.01 0.12

PPP2R2B 0.02 0.35 0.00 0.01 0.00 0.00 0.20 0.00 0.00 0.49 0.01 0.09 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.00

PPP2R2C 0.33 0.53 0.00 0.72 0.01 0.20 0.00 0.28 0.00 0.97 0.11 1.00 0.15 0.20 0.36 0.04 0.81 0.18 0.04 0.07

PPP2R2D** 0.23 0.80 0.00 0.07 0.19 0.00 0.28 0.00 0.00 0.92 0.34 0.22 0.33 0.06 0.34 0.05 0.61 0.00 0.02 0.42

PPP2R3A 0.01 0.02 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.14 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.02

PPP2R3B 0.88 1.00 0.38 0.98 1.00 0.49 0.97 0.92 0.14 0.00 0.92 0.98 0.78 0.58 1.00 0.69 0.92 0.81 0.91 0.84

PPP2R3C 0.09 0.45 0.00 0.01 0.03 0.01 0.11 0.34 0.01 0.92 0.00 0.88 0.24 0.05 0.37 0.04 0.48 0.08 0.03 0.94

PPP2R4 0.17 0.21 0.03 1.00 0.45 0.09 1.00 0.22 0.00 0.98 0.88 0.00 0.23 0.14 0.49 0.03 0.36 0.16 0.13 0.31

PPP2R5A 0.25 0.31 0.01 0.10 0.18 0.00 0.15 0.33 0.00 0.78 0.24 0.23 0.00 0.03 0.77 0.48 0.10 0.01 0.01 0.08

PPP2R5B 0.16 0.33 0.00 0.09 0.01 0.02 0.20 0.06 0.00 0.58 0.05 0.14 0.03 0.00 0.08 0.02 0.08 0.04 0.09 0.55

PPP2R5C 0.47 0.32 0.03 0.85 0.25 0.01 0.36 0.34 0.01 1.00 0.37 0.49 0.77 0.08 0.00 0.32 0.32 0.13 0.01 0.73

PPP2R5D 0.42 0.30 0.00 0.14 0.02 0.00 0.04 0.05 0.01 0.69 0.04 0.03 0.48 0.02 0.32 0.00 0.02 0.00 0.00 0.23

PPP2R5E 0.92 0.29 0.06 0.66 0.09 0.01 0.81 0.61 0.00 0.92 0.48 0.36 0.10 0.08 0.32 0.02 0.00 0.00 0.08 0.27

STRN 0.15 0.07 0.00 0.02 0.03 0.00 0.18 0.00 0.01 0.81 0.08 0.16 0.01 0.04 0.13 0.00 0.00 0.00 0.00 0.01

STRN3 0.03 0.24 0.00 0.11 0.01 0.00 0.04 0.02 0.00 0.91 0.03 0.13 0.01 0.09 0.01 0.00 0.08 0.00 0.00 0.24

STRN4 0.23 0.23 0.00 0.00 0.12 0.00 0.07 0.42 0.02 0.84 0.94 0.31 0.08 0.55 0.73 0.23 0.27 0.01 0.24 0.00
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