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Abstract

Recently, there has been an occurrence of new kinds of high-
throughput measurement techniques enabling biological research
to focus on fundamental building blocks of living organisms such as
genes, proteins, and lipids. In sync with the new type of data that is
referred to as the omics data, modern data analysis techniques have
emerged. Much of such research is focusing on finding biomarkers
for detection of abnormalities in the health status of a person as well
as on learning unobservable network structures representing func-
tional associations of biological regulatory systems. The omics data
have certain specific qualities such as left-censored observations due
to the limitations of the measurement instruments, missing data,
non-normal observations and very large dimensionality, and the
interest often lies in the connections between the large number of
variables.

There are two major aims in this thesis. First is to provide efficient
methodology for dealing with various types of missing or censored
omics data that can be used for visualisation and biomarker discov-
ery based on, for example, regularised regression techniques. Max-
imum likelihood based covariance estimation method for data with
censored values is developed and the algorithms are described in
detail. Second major aim is to develop novel approaches for detect-
ing interactions displaying functional associations from large-scale
observations. For more complicated data connections, a technique
based on partial least squares regression is investigated. The tech-
nique is applied for network construction as well as for differential
network analyses both on multiple imputed censored data and next-
generation sequencing count data.
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Tiivistelmä

Uudet mittausteknologiat ovat mahdollistaneet kokonaisvaltaisen
ymmärryksen lisäämisen elollisten organismien molekyylitason
prosesseista. Niin kutsutut omiikka-teknologiat, kuten geno-
miikka, proteomiikka ja lipidomiikka, kykenevät tuottamaan valtavia
määriä mittausdataa yksittäisten geenien, proteiinien ja lipi-
dien ekspressio- tai konsentraatiotasoista ennennäkemättömällä
tarkkuudella. Samanaikaisesti tarve uusien analyysimenetelmien
kehittämiselle on kasvanut. Kiinnostuksen kohteena ovat olleet eri-
tyisesti tiettyjen sairauksien riskiä tai prognoosia ennustavien merkki-
aineiden tunnistaminen sekä biologisten verkkojen rekonstruointi.

Omiikka-aineistoilla on useita erityisominaisuuksia, jotka rajoit-
tavat tavanomaisten menetelmien suoraa ja tehokasta soveltamista.
Näistä tärkeimpiä ovat vasemmalta sensuroidut ja puuttuvat havain-
not, sekä havaittujen muuttujien suuri lukumäärä. Tämän väitöskir-
jan ensimmäisenä tavoitteena on tarjota räätälöityjä analyysime-
netelmiä epätäydellisten omiikka-aineistojen visualisointiin ja mal-
lin valintaan käyttäen esimerkiksi regularisoituja regressiomal-
leja. Kuvailemme myös sensuroidulle aineistolle sopivan suu-
rimman uskottavuuden estimaattorin kovarianssimatriisille. Toi-
sena tavoitteena on kehittää uusia menetelmiä omiikka-aineistojen
assosiaatiorakenteiden tarkasteluun. Monimutkaisempien raken-
teiden tarkasteluun, visualisoimiseen ja vertailuun esitetään eri-
laisia variaatioita osittaisen pienimmän neliösumman menetel-
mään pohjautuvasta algoritmista, jonka avulla voidaan rekonstru-
oida assosiaatioverkkoja sekä multi-imputoidulle sensuroidulle että
lukumääräaineistoille.
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CHAPTER 1
Introduction

1 The omics revolution

As long as there has been data, there has been a challenge to trans-
form the data into a meaningful information. Data, in its different
forms such as figures, signals, RNA sequences, time series, videos,
or functions, is examined for patterns which are seen as informa-
tion and can be further refined to knowledge. During the most of
the twentieth century, science has been based on a reductionistic
approach, aiming at understanding complex phenomena by redu-
cing them to smaller, simpler or more fundamental fragments, such
as individual genes or proteins. However, during the first decade
of the twenty-first century, several omics disciplines have emerged,
aiming at analysing a living organism in its entirety: genomics to
sequence, assemble, and understand the functions and structure of
whole genomes and genes, [93], proteomics to study the structures
and functions of proteins produced in a cell [164], and metabolomics
to study the chemical processed involving metabolites [35], to name
a few. This development has been enabled by the advancements in
the modern measuring technology, such as DNA sequencing and
quantitative mass spectrometry.

The name “omics” has become a common term referring to a col-
lection of studies of entities [155]. As seen in Figure 1, the explosion
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Figure 1: Number of omics-related publications found by Web of
Knowledge topic search for the past twenty years. For 2016,
the number of publications indicates papers published be-
fore March 19, 2016.

of the omics research has led to the rapid increase of the collected
data. At the same time, the data is becoming more complex. Data
complexity appears as non-linearities, high dimensionality, miss-
ing or censored values, non-normality of the measured variables, or
dependencies between observational units. Even though the vast
amount of data holds a potential to approach research questions
systematically and on a grand scale, it poses a huge challenge to stat-
isticians as the tools to understand and make efficient use of these
data are not developing at the same pace. The research presented in
this thesis aims at developing efficient methodology for multivari-
ate data sets with dependent and/or incomplete observations. The
theoretical development is motivated by biomedical applications in
genomics and lipidomics.
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2 Genomics data

2.1 The blueprint for life

Three fundamental macromolecules being essential to all living or-
ganisms currently known, are 1) deoxyribonucleic acid (DNA) along
ribonucleic acid (RNA) for storing and decoding genetic instructions,
2) proteins formed by chains of amino acid residues for performing
and catalysing various vital functions such as metabolic reactions
and DNA replication, and 3) carbohydrates for energy storage and
as structural components. From these three, DNA, carried almost in
every cell of human body, is the blueprint for performing actions that
make things living: how to maintain a constant state, how to trans-
form energy, how to grow, how to adapt, how to respond to stimuli,
and how to reproduce [84].

All the information stored in DNA is coded by four different nitro-
genous bases: adenine (A), guanine (G), cytosine (C), and thymine
(T). The order of the bases determines the information needed for
building and maintaining an organism. When the bases are attached
together with sugar and phosphate molecules, they form a nucle-
otide. Further, the bases pair up with each other, A with T and C with
G, resulting in a ladder like structure that forms a spiral called double
helix. DNA is divided into different regions, genes, that are the basic
physical and functional units of heredity. Each gene encodes a func-
tional product, such as RNA or protein. Even though large parts of
the genome are shared between individuals of the same organism,
there may be multiple variants (alleles) of any given gene, leading
to polymorphism. These small differences in genome contribute to
each individual’s unique physical features, the phenotype.

Approximately only two percent of the human genome includes pro-
tein coding genes [1]. However, when studying hereditary diseases
they are usually targets of the greatest interest, as mutations in them
are easily detectable. Even a change as small as one nucleic acid be-
ing replaced by another can change one amino acid to another one
and that changes the whole end product protein. However, many
disease-related mutations also happen in the regions that do not
directly encode proteins but rather regulate how the genes behave.
Identifying portions of the genome that do and do not code pro-
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teins and attaching biological information to these regions is called
genome annotation. This process sums up the fundamental pur-
suit of genetics: determining the genotypes giving rise to different
phenotypes.

2.2 Gene regulation and expression

All the information needed to determine the properties and functions
of each single cell is encoded in DNA. Regardless of nearly every cell
in an organism containing the same set of genes, in a given cell, only a
small portion of these genes are active at a given time. During an early
development of an organism, cells start to take on specific functions,
for which they find the instructions from the blueprint stored in
their nucleus, DNA. This carefully controlled pattern is guided by
gene regulation, which gives a cell the control over the structure and
function, by turning on appropriate genes on and off at proper times.
Gene regulation is what makes a liver cell different from a skin cell,
and a healthy cell different from a cancer cell. By gene regulation, an
organism can also respond and adapt to its environment.

When a gene is turned on, the information it contains is delivered
through a two-step course, the transcription into RNA or messenger
RNA (mRNA), and the translation of the resulting RNA into proteins
[5]. This process is called gene expression and it reflects the activity
of a given gene and the rate it passes information to carry its function.
Thus, it is the most fundamental level at which genotype revises
the observable trait, in other words, the phenotype. By observing
changes in gene expression and activity, researchers can potentially
identify previously unknown, molecularly characterised diseases and
discover biomarkers that predict the risk of a specific condition or
response to a given treatment. Eventually, the results of the genome-
based research could be implemented as highly effective diagnostic
tools, personalised medicine or targeted lifestyle interventions. An
interesting question remains to be determined by the researchers
aiming at understanding the complex mechanisms behind some
specific conditions of interest: which genes are turned on and when?
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2.3 Detecting gene expression

The central dogma of molecular biology, first described by Francis
Crick [29, 30], is often formulated as follows: “DNA is transcribed
into RNA and RNA is translated into proteins in the ribosomes”. In
this form, the dogma hypothesises that transferring the sequential
information stored in DNA is a one way process. Even though excep-
tions to this central flow are numerous, this basic principle provides
a way to get a snapshot of the state of a cell at a specific time, devel-
opmental stage or under different environmental conditions. The
array of RNA reflects the expression levels of the related genes and
provides a measure of gene activity [44].

The most precise estimate of the gene expression would be achieved
by detecting the final gene product, but it is often easier to quantify
some of the precursors, typically mRNA, and estimate the true ex-
pression from these measurements. Measuring the abundance of
RNA in a cell or tissue utilises an important exception to the direc-
tion of the genetic information flow in the Crick’s central dogma: an
RNA template can be transcripted to complementary DNA (cDNA)
by reverse transcription polymerase chain reaction (RT-PCR) [46] .
When combined with real-time polymerase chain reaction (qPCR),
which is used to measure the amplification of DNA using fluorescent
probes, RT-PCR can be also used to quantify the relative abundance
of RNA being present in a cell and thus, describe gene expression
by a single number, expression level [107]. Compared to other RNA
quantification methods, such DNA microarrays [61] or northern blots
[19], the RT-PCR is considered to be the most efficient and sensitive.

2.4 Next-generation sequencing

Through all years available in Web of Knowledge databases (1900 on-
wards), the keyword “genomics” gives a first hit for a paper published
in 1988. In the early years, genetics research focused on individual
or a small subset of genes at a time, formulating hypotheses from
existing descriptive theories and testing them through wet lab experi-
ments. While producing valuable information, such methods are gen-
erally time-consuming. The project aiming at sequencing the whole
human genome, launched in 1990, both accelerated and relied on the
advances in new, affordable technologies, from fast sequencing tech-
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niques to computing methods handling enormous amounts of data.
The Human Genome Project was announced completed in April 2003
[76] and only a year later, in 2004, the so-called next-generation se-
quencing (NGS) instruments being capable of producing millions of
DNA sequence reads in a single run became commercially available
[98].

RNA profiling methodologies based on NGS technologies, usually re-
ferred as RNA-seq, typically involve isolating and randomly fragment-
ing mRNA, translating mRNA to cDNA by reverse transcription and
preparing cDNA for sequencing [152]. Sequencing means identifying
the nucleotides of a given DNA molecule and converting the result
into a read consisting of a sequence of letters A, T, C, and G. The frag-
ments of cDNA are simultaneously sequenced to produce hundreds
of millions of short reads. The most commonly used NGS sequencing
technology solution is the Illumina sequencer (www.illumina.com)
[15]. To infer gene expression, the RNA-reads are aligned to a known
reference genome sequence. Quantitative measures of gene expres-
sion levels are then achieved by counting the number of the reads
aligned between the beginning and the end of each region in the
genome annotation (genes) [44].

The NGS techniques quickly changed the field of genomics by ex-
panding the genomic studies from previously focused readouts to
genome-wide scale, by accumulating unprecedented amounts of
data and enabling the study of gene-protein interactions, mutation
mapping, polymorphism and noncoding RNA discoveries [96]. These
techniques have had a major impact on exploring and answering
genome-wide biological questions: Figure 2 shows the increasing
number of NGS related publications since 2004, as given by the Web
of Knowledge topic search. The development of the technology is
reflected in the number of publications, as is the decrease in costs.
According to the data provided by National Human Genome Research
Institute (www.genome.gov/sequencingcosts), in 2004 the cost of se-
quencing on human genome was on the scale of tens of millions of
US dollars, as today, in 2016, we are approaching the limit of one thou-
sand US dollars. The fast sequencing technologies have not only led
to a huge increase in genetic information but also placed bioinform-
atics and biostatistics at the leading edge of the novel pipeline devel-
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Figure 2: Number of NGS related publications found by Web of Know-
ledge topic search, since 2004. For 2016, the number of pub-
lications indicates papers published before March 19, 2016.

opment for storing, analysing, interpreting and visualising petabyte-
scale datasets [96].

2.5 Characteristics of RNA-seq data

One main feature uniting all omics data, including RNA-seq data, is
the high dimensionality. Since the discovery of the protein-coding
genes, the estimates of their number have been shrinking. However,
an RNA-seq data originating from human genome can still contain
approximately 19,000-20,500 genes [41, 28], usually measured from a
relatively low number of biological replicates. Valid statistical infer-
ence requires enough replicates to estimate error [45]. Thus, RNA-seq
experiments should include at least three biological replicates per
comparison group [10].

The previous golden standard method to detect gene expression,
DNA microarrays, generated continuous measurements that rep-
resented the concentration of the mRNA molecules detected in the
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mRNA assay. Whereas the log ratio expression values from microarray
data are typically assumed to be normally distributed, same assump-
tions can not be made for RNA-seq data that measures the expression
levels with positive integers, counts. Count data is often analysed us-
ing methods based on Poisson distribution. However, many studies
have shown that the variance grows faster than the mean in RNA-seq
data, a phenomenon known as overdispersion.

In the extensive literature of statistical methods for RNA-seq data,
some sort of data pre-processing, often referred to as normalisation,
is required [37, 23]. Normalising data aims at ensuring that the gene
expression levels are comparable within and across samples. Differ-
ent sequencing depths, represented by varying total read counts per
sample (library sizes), are one of the most apparent factor causing
the read counts of the samples being measured on different scales,
and thus incomparable. In other words, two genes having similar
expression can have very different read count values depending on
the gene length, as a longer transcript will have more reads mapping
to it [111]. The most common solution is to transform the read count
to reads per kilobase per million mapped reads (RPKB) scale [104].

3 Lipidomics data

3.1 Lipid species beyond total cholesterol

Human plasma is composed of nucleic acids, amino acids (mainly in
the form of proteins), carbohydrates (sugars), and lipids (fats, waxes,
sterols, fat-soluble vitamins) [119]. The first three components are
widely studied, whereas lipids stand out due to their structural di-
versity, function, and a vast number of individual molecular species.
Estimates on the number of different lipid species vary from a few
thousand up to hundred thousand lipid species [129]. On April 2,
2015, over 40, 000 individual lipid structures were indexed in the most
comprehensive lipid database, LIPID MAPS [142]. Individual lipid
species are divided into lipid classes sharing similar structures and
biological functions. They hold vital roles in biological physiology
not only as energy storagers but as well as signaling molecules and
structural components of cell membranes [140]. In terms of mass,
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lipids are the most important constituent of the human brain, and
the second most important of all other soft tissues [105].

Overall, lipids are considered as metabolites, and hence, lipidomics
belongs to the general field of metabolomics. Nevertheless, lipidom-
ics is regarded as a distinct discipline due to the uniqueness and
functional specificity of lipids relative to other metabolites. In con-
trast to proteins, there are no genes coding for lipids as such. Lipids
are obtained for example from our diet and they are further modified
by gene coded enzymes. Similarly to the end products of molecular
pathways initiated at genomic, transcriptomic and proteomic levels,
lipids serve as valuable indicators of both genetic and environmental
factors. Therefore, lipids have been proposed to be as important for
life as proteins and genes and their importance for life and health
has been recognised [119, 129].

As the rich spectrum of individual lipid species all have defined roles
in the support and sustenance of cellular functions of human body,
it is only natural that lipid metabolism has been related to several
human diseases, such as diabetes [101, 87], cancer [173, 103, 162],
cardiovascular disease [135, 134], brain injuries [132], and Alzheimer’s
disease [161, 118]. As a consequence, the exploration of lipid profiles
holds the potential to provide a readout of biomarkers for an early
detection of a disease [163, 66].

Drugs targeted against lipid-metabolising enzymes are not new to the
pharmaceutical industry: statins, the cholesterol-lowering agents,
are a multibillion business solely in the United States [144]. However,
detailed analyses of lipid profiles are also expected to reveal informa-
tion that will stretch beyond the knowledge obtained with the current
routine clinical lipidology tools, such as total triglyceride levels and
high-density lipoprotein (HDL) and low-density lipoprotein (LDL)
cholesterol [86]. This has inspired the emergence of a new field of
omics research, lipidomics.

3.2 Emerging field of lipidomics

The rapidly expanding field of lipidomics complements the break-
throughs made in genomics and proteomics [34, 156]. Despite the
fact that lipidomics is considered yet another omics technology, it

9



delivers novel type of data and information. A distinguishing charac-
teristic of lipidomic data is that lipids can be considered as interme-
diate phenotypes providing much more detailed information about
the state of an organism determined by a combination of genetic
regulation, functionality of protein machinery, and environmental
factors, compared to, for example, genetic information alone [86].

After completing the sequencing of the human genome, research has
expanded to postgenomic technologies, including metabolomics [66].
The Web of Knowledge topic search with keyword “metabolomics”
gave the first three hits for year 2000, as seen in Figure 3. During the
same year, approximately three genomics and one proteomics related
papers were published every day. The early metabolomics studies
predominantly focused on metabolites that were easier to detect and
quantify. Lipids gained less attention as their comprehensive analysis
was hindered by the sheer complexity of the lipidome with tens of
thousands of different lipid species, requiring different instruments
to examine the lipidome, and leading to labor-intensive workflows.
Thus, in comparison to other omics technologies, the emergence of
lipidomics has been slower, as reflected in the limited number of pub-
lications in Figure 3. The first hit for keyword “lipidomics” appeared
in 2002, but the first article providing an in-depth description of the
human lipidome was published in 2010 [119]. Still in 2015, only 13.4%
of all metabolomics-related publications concerned lipidomics, as
seen in Figure 3.

Novel analytical technologies, especially liquid chromatography and
mass spectrometry, and the more widespread availability of regents
and tools, such as synthetic lipid standards, analogues of natural lip-
ids, and lipid affinity probes, have spurred the study of lipid metabol-
ism and enabled conducting analyses in a high-throughput format
[54, 58, 156]. Lipidomics can be expected to contribute in various
areas of biomedical research, with various applications in drug and
biomarker development, and support in inferring structure and func-
tion of biological systems.

3.3 Quantification of lipid concentrations

Quantifying lipid concentrations from an aliquot of serum typically
starts by adding constant amounts of chemical substances called

10
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Figure 3: The number of lipidomics-related publications found by
Web of Knowledge topic search since the first hit in 2002 (bot-
tom). For 2016, the number of publications indicates papers
published before March 19, 2016. The pie charts (top) show
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bolomics publications from all omics publications in 2015.
During that year, still only 13.4% of all metabolomics-related
publications concerned lipidomics.
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internal standards to serum samples. The internal standard is selec-
ted to match the lipids analysed so that it produces a signal similar
to the signal of lipids, but still, different enough for the measuring
instrument to be able to separate the two. The serum lipid concentra-
tions can then be derived from a calibration curve by comparing the
signals originating from the lipids to the signal originating from the
internal standard. After adding the internal standard, the small mo-
lecule metabolome, including lipids, are extracted from the insoluble
material (proteins).

Rapid advances in technologies such as mass spectrometry (MS) con-
tribute significantly to the research of lipidomics as the structures
and functions of the lipids on a molecule level can nowadays be effi-
ciently identified and quantified [157, 18, 81, 91]. MS is an analytical
technology that determines the mass-to-charge ratio of individual
analytes. The samples introduced to mass spectrometer are first
ionised in the ion source and then detected after being separated
according to their mass-to-charge ratios by the mass analyser system.
The detected signals are finally displayed in a mass spectrum, a plot
of ion intensity versus the mass-to-charge ratio. The intensities of
individual ions are achieved from the mass spectrum [57].

Comprehensive lipidomic studies demanded a repertoire of many
different analytical platforms [86]. For each platform containing a set
of samples, a stringent cut-off is applied for separating background
noise from actual lipid peaks in the mass spectrum. This cut-off
value is called a lower limit of detection (LLOD). Acquired mass spec-
trometry data is processed using bioinformatic tools that convert
masses and counts of detected peaks into corresponding lipid names
and abbreviations, usually assigned according to Lipid MAPS nomen-
lecture [42]. Quality control samples are also included to monitor the
overall quality of the lipid extraction and MS analyses by removing
technical outliers and lipid species that were detected below the lipid
class based LLOD.

3.4 Characteristics of lipidomic data

New technologies are producing vast amounts of lipidomic data and
thus, have created a great demand for sophisticated tools for statisti-
cal analysis and inference. Similarly to other omics data, lipidomics
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data is characterised by a substantial number of individual lipid spe-
cies analysed from relatively few samples or biological replicates. A
feature specific for lipidomics data is that the measured lipids com-
prise small groups called lipid classes. Since lipids belonging to the
same class and even different classes of lipids share similar biological
functions and structure, typically, there exists high co-regulation
across different lipids [106]. In lipidomics data, this is reflected by
groups of mutually correlated lipids. Therefore, the correlation struc-
ture of the lipidomics data should be considered when analysing and
visualising the data.

During the start of the research projects summarised in this thesis, at
the beginning of 2011, comprehensive lipidomic studies demanded
a repertoire of many different analytical platforms. Combined with
sample handling and analytical accuracy, there might be variability
between plates of samples analysed on different platforms that does
not reflect true biological differences. To eliminate these systematic
sources of variation, some sort of pre-processing or normalisation of
the data should be considered.

As explained in Section 3.3, each platform has a specific limit of
quantification, under which true signals can not be separated from
the background noise. Thus, low-abundant lipid species are not often
detected at all, and other species may include a set of censored values,
that are low-level concentrations considered to be too imprecise to
be reported as a single number. These so called left-censored values
are a commonplace phenomena for proteomic, metabolomic, and
lipidomic data from mass spectrometry platforms. Often, in the final
dataset, left-censored values are notated by “< LLOD”, where LLOD
is some positive real number. This notation describes the property
that left-censored values are known to be somewhere between zero
and LLOD. Finding a proper way to account for left-censored values
in the statistical analyses is crucial as the simple exclusion of them
produces an upward bias in subsequent measures of location, such
as means and medians.
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4 Types of omics studies

4.1 Differential expression

Both NGS and lipidomics data are typically collected under an ex-
perimental design, where one is interested in comparing the ex-
pression or concentration levels of genes or lipids between two
groups of samples exposed to different conditions, to understand
molecular basis of phenotypic variation in biology. For example,
to understand an effect a certain drug is having, it is interesting to
compare diseased and control groups, consisting typically of min-
imum three replicates, which genes or lipids are up regulated (in-
creased in expression/concentration) or down regulated (decreased
in expression/concentration). This is called differential expression
[99, 36, 112].

For continuous expression or concentration measurements, such as
DNA microarray or lipidomics data, the group expression or concen-
tration level can be summarised by the mean expression level of the
replicates. Thus, the problem is fundamentally comparison of the
means. With two comparison groups, differential expression prob-
lem can be solved by conducting a t-test, if one can assume that the
data is normally distributed, or a non-parametric Mann-Whitney U-
test [31]. With more than two comparison groups, one can conduct a
variance analysis or the non-parametric equivalent, Kruskall-Wallis’
test.

On a whole genome- or lipidome-wide scale, the goal of the differ-
ential expression analysis is to generate a list of all genes or lipids
that are differentially expressed. Thus, thousands of hypotheses are
tested simultaneously, causing a problem of multiple comparisons.
To avoid numerous false positive discoveries, some sort of multiple
comparison correction, such as Bonferroni correction, is usually ap-
plied. An other approach is to control the expected proportion of
falsely rejected null hypotheses. This so-called false discovery rate
(FDR), first introduced by Benjamini and Hochberg [14], provides a
less rigorous control of type I error in comparison to multiple com-
parison correction. The theory of FDR relies on null hypothesis tail
areas (p-values), and as such, is an extension of conventional fre-
quentist hypothesis testing to simultaneous inference.
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Identifying differentially expressed genes from RNA-seq data requires
methods beyond elementary statistics due to high-dimensionality,
different sequencing depths, count format and non-normal distri-
butional features of the data. Also, the efficiency of an elementary
one-gene-at-a-time analysis is questionable in cases where the num-
ber of replicates remains small. A thorough review of differential
expression for RNA-seq data is given by [131]. A number of software
packages have been developed to conduct differential expression
analysis for RNA-seq data [122, 123, 8].

4.2 Biomarker discovery

High-throughput studies of biological systems are accumulating
omics-scale data at an unprecedented rate, and the datasets are ex-
panding both in the number of variables measures as samples ana-
lysed, as for example some bacteria samples collected in hospitals is
already being sequenced routinely. These data, when collected from
different groups of samples under different biological conditions,
provide new understanding on how diseases should be managed and
how new drugs and tests could be developed and used, and thus,
enable the identification of genetic and molecular biomarkers for
disease processes [110].

A biomarker is a biological characteristic that can be used as an indic-
ator of normal biological processes, pathogenic processes, or phar-
macologic responses to a therapeutic intervention [17]. In context of
omics data, these features can be, for example, individual genes or
molecules, a bigger set of genes and/or molecules, a relation of two
lipid concentrations, or a whole lipidomic profile. One example of a
successful genomic biomarker discovery and further development
into a multiparameter gene test is given by [113]. The test helps to
determine which early stage breast cancer patients are at higher risk
of recurrence and thus may be more likely to benefit from chemother-
apy. Thus it allows women at lower risk to safely forgo chemotherapy,
avoiding toxicities, cost, and quality-of-life issues associated with
treatment.

Simultaneously, the deluge of data has complicated the extraction
of meaningful molecular fingerprints of biological processes from
these complex datasets. From the statistical point of view, a quest for
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biomarker discovery is a model selection or a binary classification
problem. Due to the high dimensionality of the data, and relatively
low number of samples, the use of conventional statistical models is
not possible, as there are too many parameters to estimate, with not
enough information to do it. Instead, analysis approaches reducing
the dimensionality of the data, or performing variable selection and
regularisation in order to identify only a small fraction of molecules
giving the best prediction accuracy, could be used.

4.3 Interaction studies and pathway discovery

High-throughput experimental methods produce a great volume
of complex, interconnected data. Often the initial goal in many
omics studies is to find a set of co-regulated genes or a set of
molecules that share a related expression pattern in a certain
phenotype, disease model or human disease, or in response to a
drug treatment. Thus, it is often more meaningful to consider all
genes/molecules simultaneously, than compare expression levels of
individual genes/molecules between two or more biological condi-
tions. Visualisation of these complex systems as pathways (graphs
that show overall changes in state) or networks (graphs that do not
necessarily show state changes but describe the association and co-
expression structure) has been found useful in creating understand-
ing of biological systems [51].

Biological association and interaction networks provide information
about the essential processes behind different conditions, and help
to recognise the important distinguishing molecules, for example
for therapeutic purposes. Here, between-molecule association de-
scribes the similarity of the concentration levels of two molecules
and how they change together. The core of a network analysis is
a connectivity score that represents the strength of the association
between two particles. At its simplest, the connectivity can be rep-
resented with a correlation coefficient. Further, differential network
analysis provides a formal statistical method capable of inferential
analysis to examine differences in network structures under two or
more biological conditions [53]. It also guides in identifying potential
relationships requiring further biological investigation.

16



5 Setup and aims

The classical statistical methods rely mostly on complete data vec-
tors measured on all samples. However, this assumption is not often
met due to reasons varying from technical obstacles or limitations to
nonresponse. Missing data may have a significant effect on the con-
clusions drawn from the data. Thus proper handling of the remaining
data is crucial. By selecting only the samples with fully observed vari-
able profiles can lead to a great reduction of the sample size and
hence to a serious loss of precision. Thus, one of the main themes
carried through the research conducted in this thesis is to provide
efficient methodology for various types of missing or censored omics
data.

In omics data, expression or concentration values can be missing for
various reasons and in various amounts. In DNA microarray data,
typically 1�10% of measurements are missing, affecting up to 95%
of the genes [21]. Gene expression values in microarray assays can be
filtered out due to low spot pixel frequencies, occurrence of technical
errors during the hybridization, low fluorescent intensities, or due
to presence of dust, scratches, and systematic errors on the slides
[21]. Due to the nature of next generation technologies, RNA-seq
data does not include missing count values. If no read is aligned on a
specific gene, and gene expression “is missing”, the value is recorded
as a zero. Data generated on mass-spectrometry platforms contains
typically a large number of missing values accounting for 10�40%
of data and affecting up to 80% of all variables [71, 55]. Also, most of
the missing values do not occur randomly but rather as a function
of signal intensity. Some values are missing as the relating molecule
is absent in a given sample, whereas some molecules are detected,
but in such a low abundances, that their concentrations fall below
a set lower limit of detection [22], and thus can possibly be mixed
with noise. These values are known as left-censored concentrations
or non-detects. In addition, values may not be measured properly
owing to a technical problem. Depending on their origins, missing
values should be considered differently and dealt with in suitable
ways. For example, if data containing left-censored values is analysed
using only the completely observed data, the means of the concentra-
tions would be overestimated and the standard deviations would be
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underestimated. Consequently, any related test statistic or estimate
would be biased.

To review how widely missing data analysis methods are acknow-
ledged in published omics studies, a Web of Knowledge topic search
with the following search phrase was conducted:

TS=genomics AND
(TS="missing data analysis" OR
TS="missing value imputation" OR
TS="multiple imputation" OR
TS="imputation of missing values" OR
TS="imputing missing values" OR
TS="missing values").

The word “genomics” was replaced with proteomics and lipidomics
in the subsequent searches. The results show, that after 15 years
since the first applications of imputation methods to gene expression
data, the rate of publications on missing data analysis on omics data
is not slowing down (see Figure 4). New and improved methods are
published at a steady rate. The processing and efficient use of miss-
ing values provides a rich source of appealing research questions,
especially when considering application-specific modifications
exploiting information sources relevant to the missing data problem.

The need for proper handling of missing data has previously been
recognised in the analysis of DNA microarray data [148], in gel-based
proteomics data (a method to separate proteins prior to mass spec-
trometric analysis) [6], and in metabolomics data [71]. Studies have
been conducted to evaluate how missing values effect the estimation
of statistical parameters [148], how they influence univariate data
analysis [127] and multivariate [115] data analysis, and to give recom-
mendations on optimal methods for their imputation [80, 149, 9].
Web of Knowledge search for missing data analysis methods spe-
cifically for lipidomics data refers only to two publications included
in this thesis, [P1] and [P3]. Thus, there is still demand for develop-
ment of solid statistical analysis procedures combining missing or
censored values with high-dimensional data.

With the recent accumulation of high throughput data, the analysis of
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Figure 4: Number of missing data analysis related publications during
the past two decades in the fields of genomics, proteomics,
and metabolomics found by Web of Knowledge topic search.
For 2016, the number of publications indicates papers pub-
lished before March 19, 2016.

biological networks has gained significant interest. Biological associ-
ation or interaction networks provide information about the essential
processes behind different conditions, such as healthy and diseased
statuses, and help to recognise the important distinguishing features.
Existing network reconstruction methods are primarily developed
for continuous and complete data. Thus, the research conducted
in this thesis, aims at providing methodology to augment network
reconstruction on incomplete and count data. Besides learning the
association structures within a condition, an interesting problem is
to compare the network structures between different conditions. For
the most parts, previous work on this so-called differential network
analysis has been based on complete case analysis, that is, including
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only those samples for which all measurements have been detected.
Thus, in this thesis, also the differential network analysis is expanded
such that it can be implemented on left-censored multiple imputed
data.
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CHAPTER 2
Regression analyses on
incomplete omics data

1 On the missing data terminology

Missing data are a common occurrence in omics data and thus un-
derstanding the reasons behind missing values is necessary when
analysing the remaining data. Simply omitting the missing values in
the analyses can lead to a severe loss of the effective sample size, may
cause bias and a loss of precision. According to a classification ori-
ginally presented by Rubin [124], missing values can be divided into
three subgroups. These are missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR).

The partition of the missing values into these categories is based on
the probability of an observation being missing. If this probability
does not depend on observed or unobserved measurements then the
observation is MCAR and the analyses performed on the complete
data are unbiased, although some information is usually lost. If the
missingness mechanism can be expressed solely using the observed
data, the values are MAR. This is the most general condition under
which the data can be analysed using the observed data only and
no information about the missing value mechanism is needed to
be incorporated in the analysis. Thus, in the likelihood setting, a
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term ignobility is often used to refer to MAR mechanism. However,
it is important to note that only the mechanism is ignorable, not
the missing values themselves. This is due to the property, that the
analysis methods based on likelihood are valid under MAR, whereas
non-likelihood methods, such as the ones based on generalised es-
timating equations, will lead to biased results unless adjusted ex-
ternally. Such proposed adjustments include for example multiple
imputation before data analysis, or inverse probability weighting. To
summarise, with likelihood-based methods in their standard form,
inference based on both complete data and missing data mechanism
models would be the same if inference was based on complete data
only.

Finally, an observation is MNAR if, even accounting for all the avail-
able observed information, the probability of a value being missing
depends on the value itself or other unobserved reasons. The phe-
nomenon is also known as non-ignorable nonresponse. In general,
this is a very challenging to handle, but in particular cases, valid infer-
ence is achieved using a joint model of both data and the missingness
mechanism: with censored data, a subset of values are unobservable
due to some censoring mechanism. If this mechanism is known, it
can be modelled and hence the censored observations can be used to
improve the inference. These kind of informative missing values were
present in Publications [P1], [P2], and [P3], where analysis methods
were adjusted to efficiently incorporate left-censored values (non-
detects). Due to the fact that censored values are a specific trait of
the omics data, two censored data inference methods are reviewed
in detail in the following sections.

2 Censored data analysis approaches

Hewett and Ganser [65] divide censored data analysis methods into
four categories: substitution methods, log-probit regression, max-
imum likelihood (ML) estimation methods, and non-parametric
methods. None of the methods has been recommended to be the
ideal solution in all different scenarios. The recommendation de-
pends on the sample size, the divergence from log-normal distribu-
tion or the degree of censoring. However, due to its many desirable
statistical properties, ML estimation is often considered the gold
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standard provided the data is well-described by some parametric
probability distribution [62, 83, 172]. In Publications [P1] and [P3],
left-censored and MAR missing values were multiple imputed, while
in Publication [P2], ML estimation techniques were employed. Under
identical assumptions, both approaches produce estimates that are
consistent, efficient and asymptotically normal.

2.1 Maximum likelihood based approach

The ultimate aim of the missing data analysis is never to predict the
exact values themselves, but rather to facilitate revealing the most
important findings from an incompletely observed data at hand as
precisely as possible. Thus, methods that can handle missing values
without any pre-processing procedures, are ideal. An approach that
fulfils this property, is to analyse an incomplete data set using ML
estimation. As ML estimation can be used to estimate the paramet-
ers of a statistical model given data, it requires an assumption on
the distributional properties of given variables. This method does
not impute any data, but rather uses observed data to compute ML
estimates, that are particular values of the parameters that make the
observed data the most probable given the model.

With or without missing data, the first step of the ML estimation is
to construct a general likelihood function. Let n be the number of
samples, i = 1, . . . , n and p the number of variables xi 1, . . . , xi p whose
expression levels or concentrations are measured. The likelihood
function is then defined as

L (✓ ) =
nY

i=1

f (xi 1, . . . , xi p ;✓ ),

where f is the probability density function of the assumed distribu-
tion relating to variables xi 1, . . . , xi p , and ✓ is a set of parameters to
be estimated. To achieve the ML estimates, this likelihood function
is maximised. Often, the likelihood is presented in the mathemat-
ically convenient log-scale as a sum of the logarithms of likelihood
contributions of each sample,

l (✓ ) = log L (✓ ) = log
nY

i=1

f (xi 1, . . . , xi p ;✓ ) =
nX

i=1

log f (xi 1, . . . , xi p ;✓ ).
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If for sample i , say, the values of two first variables x1 and x2 are
missing, and the missing data mechanism is assumed to be ignorable,
the likelihood contribution of this particular sample is

li (✓ ) =
Z Z

log f (x1, . . . , xp ;✓ )d x1d x2.

Essentially, ML approach to incorporate missing values in the ana-
lysis is done by integrating over all possible values for samples in-
cluding missing data. When a sample has left-censored values, the
integrals are taken over the observation space that is not observeble
and that is defined by LLODs. If a sample includes both MAR or
MCAR values and left-censored values, the likelihood contribution
can be partitioned further, as was done in Publication [P2].

2.2 Multiple imputation approach

One commonly used approach is to substitute the left-censored val-
ues with a suitable constant and then analyse the resulting data as
it was complete. Potential substitution values include the sample
mean or median of the uncensored values for the corresponding
variable, zero, LLOD/2, or a minimum of the observed values. These
alternative approaches have been investigated in previous studies
[43, 40, 141]. All of them are more or less biased, but they are still
used despite the criticism [63, 64].

For metabolomics and microarray data, more advanced substitution
method has been recommended: the substitution value is computed
by finding k metabolites or genes most similar in terms of their in-
tensity profiles across all samples, identified based on the Euclidean
distance similarity measure. The substitution value is then estimated
as a weighted average of the k metabolites, weights given by their
similarity [138, 148]. Also, [108] suggested an imputation approach
consisting of three stages, principal component regression, Bayesian
estimation and the expectation-maximisation repetitive algorithm.
The missing values were then replaced with the expectation of the
estimated posterior distribution. However, the two latter approaches
assume that missing values occur randomly and independently of
other features, which does not hold for the left-censored values.
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No matter how advanced the substitution method, single imputa-
tion does not reflect the full uncertainty created by missing data.
This issue has served as a motivation for multiple imputation (MI), a
statistical technique reflecting the uncertainty that arises when data
remains unobserved. In contrast to ML approach where everything
is done under a single model, MI approach requires separate models
for imputation and analysis. The key idea of MI is to use the condi-
tional distribution on the observed data to generate a set of plausible
imputations for the missing data. In practice, the draws are based on
an appropriate posterior distribution [25]. Imputations are repeated
M times, creating multiple data sets, which are analysed individually
as if they were complete, resulting in a set of parameter estimates.
Finally, the results are combined across all multiple imputed data
sets by averaging them, and the standard errors of the estimates
are computed as a combination of within-imputation and between-
imputation variances, by so-called Rubin’s rules [125]. These rules
incorporate the imputation related uncertainty into the analysis.

MI is widely used with various omics datasets [80, 133, 2, 88, 16].
The origin of missing values can be caused by different reasons and
depending on these origins missing values should be considered
differently and dealt with in different ways. Especially, left-censored
values should be multiple imputed with caution. The MI methods
for left-censored data are appealing due to their relatively simple
computational algorithms. The literature includes applications in
univariate [12, 73], bivariate [26] and multivariate settings [69, 27].

MI was implemented in Publications [P1] and [P3]with a technique
called MI by chained equations [120, 150]. In this approach, the
imputation model, specifying the dependence of the conditional
distribution of the missing data on the observed data, is constructed
through a set of univariate conditional regressions, once for each
incomplete variable. The choice of the model is flexible depend-
ing on the type of the variable to be imputed, for example, linear
regression for the continuous variables, and logistic regression for
the binary variables. In practice, the imputation is carried out using
an acceptance-rejection sampling principle. For the left-censored
values, draws from the conditional distribution are accepted only
if they fall below the observed LLOD. If a candidate value does not
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meet this condition, it is rejected, and a new candidate is drawn suffi-
ciently many times until acceptance. For missing values originating
for other reasons than left-censoring, all draws are accepted.

2.3 ML or MI?

In an ideal situation, ML approach is simple to implement, as
everything is done under a single model which produces a determin-
istic result, and the approach has optimal statistical properties, if the
underlying assumptions are met. In contrast, MI method gives a dif-
ferent result every time it is run due to the random draws as a part of
the imputation process. However, in some situations proper substitu-
tion of the censored values, using for example multiple imputation, is
computationally more feasible. For example in Publication [P2], the
evaluation of likelihood function to be maximised is computationally
very demanding, partly due to numerical integration of the multivari-
ate normal cumulative distributions, and to be usable in practice, an
approximation of the ML results is provided. While combining the
results achieved from multiple imputed data sets takes some effort,
the imputation of a high dimensional data multiple times is usually
faster than solving the high dimensional optimisation problem in ML
approach. At the moment, the software available for implementing
ML approach are rather limited, whereas a big attraction of MI is that
once the imputed data sets are generated, any chosen software or
method can be used to analyse the datasets.

3 Regularised regression

High throughput omics data includes often large number of variables
p measured in relatively small number of patients n . A single data
set may contain expression profiles for over 20, 000 genes, measured
over a range of time points and experimental conditions, so that
determining which genes are potentially relevant to the studied prob-
lem requires an extensive search through a large amount of often
noisy, multivariate data. In general, common statistical techniques
cannot be employed in such situations without very specific hypo-
theses about important variables to be included in the models. An
attempt to fit an ordinary least squares regression model on a data
set with more variables than observations would lead to a saturated
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model. Therefore there has been interest in applying methods that
automatically select important variables in some fashion.

One possible solution could be stepwise regression where the choice
of predictive variables is carried out by an automatic procedure [67].
The stepwise model selection has received severe criticism, stating,
for example, that the p-values are too low due to multiple comparis-
ons and are difficult to correct, the standard errors of the parameter
estimates are too small, and the parameter estimates are unstable
when the number of variables is relatively large and variables are
highly correlated [59].

Several alternatives to classical variable selection techniques have
been suggested where regression coefficients are constrained in some
manner, for example, by setting L1- or L2-penalties, or a combination
of both. Such methods are generally called regularised regression
models and their use in analysing omics data has become a common
procedure [143]. Regularised regression techniques can be used,
for example, to identify the variables giving a best classification in
biomarker discovery problems as was done in Publication [P1] or
to select edges when reconstructing association networks, as was
briefly tested in Publication [P3].

A general log-likelihood penalised by L2-norm, also known as ridge
penalty [68] or Tikhonov regularisation, is formulated as

l (✓ )��
pX

j=1

✓ 2
j ,

where � is a tuning parameter controlling the effect of the penalisa-
tion. Ridge penalty shrinks all directions, but sets a larger shrinkage
on low-variance directions. Ideally, � is large enough to shrink the
parameter estimates relating to unimportant variables close to zero,
but keeping the important ones non-zeros.

The least absolute shrinkage and selection operator (lasso) penalty
[146]maximises the objective function

l (✓ )��
pX

j=1

|✓ j |.
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An attractive property of lasso is that it shrinks parameter estimates
relating to unimportant variables exactly to zero, making the resulting
models easy to interpret. However, lasso is able to select at most n
observations before it saturates, a property that is not ideal in p >> n -
situations. Also, in the presence of high degree of collinearity between
the predictive variables, lasso occasionally produces poor results
where as ridge performs better [146].

Elastic net regularisation [174] combines both of the ridge and lasso
methods, and thus maximises the objective function

l (✓ )��1

pX

j=1

✓ 2
j ��2

pX

j=1

|✓ j |.

By blending the two penalties, elastic net performs at worst as well
as lasso or ridge, an in certain mentioned conditions, outperforms
both.

These penalised regression methods can be implemented on missing
data using both approaches presented in Sections 2.1 and 2.2. The
penalisation term can substracted from the partitioned likelihood
functions presented in Section 2.1 or then penalised regression mod-
els can be fitted on multiple imputed datasets. However, the latter
approach can result in divergent sets of selected variables between
imputed datasets. In Publication [P1], this problem was solved build-
ing on the ideas presented by [160, 151]. The imputed datasets were
stacked and then a selected regularised regression model was fitted to
the resulting large dataset with weights proportional to the number
of observed values on each sample.

Alternatively, regularised regression can be implemented in MI data
using an approach called MI-lasso, suggested by Chen and Wang
[27]. Their method treats the parameters relating to a particular
variable across all imputed datasets as a group and applies a group
lasso penalty [166]. As a results, the parameter estimates of the same
covariate are either all zero or nonzero leading to consistent variable
selection across MI datasets.
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4 Dimension reduction techniques

Various dimension reduction methods are also useful tools when
analysing high-dimensional, complex data. In these approaches,
the data matrix is linearly transformed to a set of derived variables
whose number is smaller than or equal to the rank of the data mat-
rix. The derived variables can then be used in a chosen regression
model instead of the original variables. Examples of such derived
variables are principal components (PCs) and partial least squares
(PLS) components.

Principal component analysis (PCA) converts, using an orthogonal
transformation, a set of possibly mutually correlated variables into
a set of not linearly dependent PCs. This transformation is defined
so that the first PC captures as much of the variability in the data as
possible and each of the subsequent components has the highest
variance possible conditioned on being orthogonal to the preceding
components. In short, PCA selects the M largest varying directions
and discards the rest. The number of PCs M is usually smaller than
the number of original variables, making it attempting to use espe-
cially in context of high-dimensional data. PCA is used mostly for
exploratory data analysis and predictive modelling (PC regression)
[79]. Often, it can be thought as method to reveal the internal struc-
ture of the data in a way that best explains the variance in the data.
One disadvantage of PCA is that the PCs are weighted combination
of all original variables. Sparse PCA [175] defeats this limitation by
shrinking some of the weights to zeros, and thus producing PCs being
a combination of only a subset of the original variables. This eases the
interpretation of the PCs, especially in extremely high-dimensional
cases, and provides a way to identify the most interesting variables
for further experiments.

Similar to PCA, PLS components are constructed as a set of linear
combinations of the original variables which compress the informa-
tion into a lower dimension. While PCA seeks directions with the
highest variation, PLS seeks directions having both high variance and
high correlation with the response, in other words, maximises the
covariance between the two sets of variables. PLS has been found to
be a versatile tool for the analysis of high-dimensional omics data,
employed for example in tumour classification from transcriptome
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data, identification of relevant genes, survival analysis and model-
ling of association networks and transcription factor activities [20].
Also, a sparse version of PLS has been suggested to conduct variable
selection for high-dimensional datasets [100].

PCA is also related to canonical correlation analysis (CCA). CCA is
a general procedure for exploring the linear relationships between
two sets of variables measured on the same individual. While PCA
defines new orthogonal components to describe variance in a single
dataset, CCA defines components that optimally describe the cov-
ariance structure across two datasets. In other words, CCA defines
what is common amongst the two sets. In the context of omics data,
CCA could be used to explore, for example, relationships between
lipidomic profiles and various phenotypic measurements. As for PCA
and PLS, also a sparse version of CCA has been proposed to increase
the biological plausibility and interpretability of the results achieved
from the analysis of high dimensional data [159].

As the multivariate statistical methods discussed above often rely
on a sample covariance matrix, estimation of the sample covariance
matrix in the presence of left-censored values provides an interesting
challenge. Conventional estimators of the covariance matrix require
complete data matrix, leading to either filtering out the observations
or variables with incomplete measurements, or to impute the miss-
ing values. Either of these approaches changes the structure of the
data and the resulting inferences from the used multivariate method.
There are guidelines to conduct PCA in the presence of missing data
[75, 50], but only recently PCA was considered in the presence of left-
censored data [154]. Extensive literature exists regarding univariate
and bivariate ML-based methods for estimating the measures of cent-
rality and variability in the presence of the left-censored values, such
as [94, 95, 158]. The extensions of ML-based estimation techniques
to the multivariate setting are fewer. In this thesis, Publication [P2]
addresses the same issue, but provides a more general solution by es-
timating the covariance matrix, which can then be used as a basis for
any statistical method, such as PCA. The resulting lower-dimensional
representations can then be used for visualisation, clustering, or clas-
sification of the data.
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5 Models for non-continuous responses

So far, all the models considered in this thesis have had continuous
responses. However, often the responses in the omics data prob-
lems are either discrete numeric such as count data generated on
NGS platforms, or nominal, for example, when predicting the class
generating the data. Generalised linear models provide a flexible
framework for analysing various types of data.

5.1 Models for count data

When analysing NGS data, assuming that the read counts, or more
specifically, the expected number of read counts within a given re-
gion of the transcriptome from a given experiment, follow a negative
binomial distribution has been shown to satisfactorily capture both
biological and technical variability [8, 123, 36]. The negative bino-
mial distribution is especially useful for discrete data consisting of
positive integers, whose sample variance exceeds the sample mean.
The choice of the negative binomial distribution can be justified by
the following. The process, where one takes an RNA transcriptome
and chooses a location at random to produce a read, is a Poisson
process. But when the selected depth of the sequence is considered,
the process will be Poisson distributed. However, the inability of Pois-
son distribution to model unequal mean and variance for the read
counts makes it a poor model for explaining the variability between
biological replicates. The dispersion parameter of the negative bi-
nomial distribution allows us to model this variation. When there is
no biological variation between the replicates, the negative binomial
distribution reduces to Poisson. Thus, in some NGS applications,
technical variation can be treated as Poisson, on top of which the
biological variation is represented by the overdispersion parameter
of the negative binomial distribution.

Negative binomial regression is a generalised linear model where
the dependent variable, say Y is a count of the number of times an
event occurs. A convenient parametrisation of the negative binomial
distribution is given as

P (Y = y ) =
� (y +1/↵)
� (y +1)� (1/↵)

Ä 1
1+↵µ

ä1/↵Ä ↵µ
1+↵µ

äy
,
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where µ > 0 is the mean of Y and ↵ > 0 is the heterogeneity para-
meter. In generalised linear models, the relationship between the
mean (or some other parameter of interest) and the predictive vari-
ables x1, . . . , xp is defined via link function. In the case of negative
binomial model, the link function is natural logarithm, and the neg-
ative binomial regression model is designated as

logµ=�0+�1 x1+�2 x2+ . . .+�p xp ,

where� = (�1, . . . ,�p )T are the regression coefficients to be estimated.
The corresponding likelihood function is then defined as a product
of the probabilities above with µ replaced by the exponent of the
linear predictor.

In Publication [P4] the negative binomial regression model was em-
ployed in estimating the associations between large number of genes.
There, each gene at time were set as a dependent variable yi , and
the dependent variables xi were PLS-components constructed on
the remaining genes. It is worth noting, that also negative binomial
regression models could be fitted via penalised maximum likelihood
resulting some of the constructed association scores shrinking to
zero.

5.2 Regularised generalised linear models

In biomarker discovery, the designs are often either prospective,
matched case-control designs or sets of cases and controls without
matching. Generalised linear models, such as logistic regression
and conditional logistic regression, are useful in analysing such data.
However, fitting a full logistic regression model resulting in a large
vector of regression coefficients is not very easy to interpret or to ad-
opt to clinical practice as a risk indicator. A researcher would almost
always prefer a considerably reduced model with the most relevant
variables related to a given disease. In addition, fitting a full model
to high-dimensional data is obviously not always possible.

In a binary classification problem, the study design postulates the
likelihood. In a prospective design, if for each sample i , i = 1, . . . , n ,
one observes a dependent variable yi and a set of predictive variables
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xi = (xi 1, . . . , xi p ), the likelihood function of the logistic regression
model is

l (� ) =
nX

i=1

yi log pi + (1� yi ) log(1�pi ),

where

pi = P (yi = 1) =
e xi�

1+ e xi�
.

Variable selection can be performed by regularising this likelihood
function with a chosen penalty term. In a case-control matched
study, the stratification of the patients needs to be taken into account.
This leads to conditional logistic regression model and gives a log-
likelihood

l (� ) =
mX

i=1

log
Ä 1

1+ e �zi�

ä
,

where m is the number of samples in a case group and
zi = xi ,case � xi ,control is a vector of the differences between a case-
control pair. Such regularised generalised linear models were em-
ployed in Publicaton [P1] when exploring a combination of lipid
concentrations giving a best prediction of case/control statuses of
cardiovascular disease patients.
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CHAPTER 3
Association networks and

differential network analysis

1 From differential expression to differential
networking

Thousands of biomolecules with different chemical structures and
functions have an impact on biological regulatory systems. These
complex systems are often represented as networks, where the com-
ponents interact with each other directly or indirectly through other
components [13]. Examples of such networks include metabolic net-
works [77], protein-interaction networks [136] and transcriptional
regulatory networks [11]. Despite the fact that networks are just hy-
pothetical representations of regulatory systems, they enable the
studying of the systems as whole. For example, human metabolism
is a vital cellular process, that is determined by genome, environ-
ment, and diet. Understanding metabolic genotype-phenotype asso-
ciations requires combining information from genome, protein and
metabolite levels. A metabolic network can then be used in visual-
ising the observed patterns, showing interactions between enzymes
and metabolites, and test how removing one node effects the rest of
the network. Computational tools are needed to model and under-
stand these complex and dynamic life processes and to gain to deeper
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understanding of a working cell. Networks provide understanding
about the whole system instead of just reporting a list of individual
parts. In statistical terms, differential expression analysis aims at
identifying changes in first-order moments, means, whereas differ-
ential co-expression explores changes in second-order moments,
covariances.

Interest in the study of networks has increased in pursuance of the ad-
vances in measuring technologies, bioinformatics and biostatistics,
as well as high-throughput data available in public databases [147].
Genomic co-expression studies have been conducted already for over
fifteen years [24, 139]. Despite the important findings achieved by
differential expression studies, much of the information contained
in omics data is ignored when genes or other components are con-
sidered individually. For example, known pathogen genes are often
not differentially expressed in between diseased and healthy samples
as mutations in the coding region of can affect the function of the
gene without affecting its expression level [33]. Moreover, a variety
of post-translational modifications can effect regulatory functions
of a gene product regardless of its expression level. The ability to ex-
amine biological systems on a genome, proteome, and metabolome
scale has revolutionised the study of diseases by allowing to consider
the effect and associations of thousands of genes/lipids/proteins
simultaneously. The identification of disease related biomolecules
requires the studying of these molecules as a part of the regulatory
systems, not as individual factors [82].

2 Extracting meaning from network structures

The concepts and properties from graph theory are useful for describ-
ing, inferring and visualising relationships between biomolecules as
part of larger biological systems [72]. Formally, a network consists
of collection of nodes, representing the components of the network,
such as genes, proteins or lipids, and their interactions, given by a set
of edges (Figure 1). Biological networks have often a modular struc-
ture where components belonging to different clusters have a weak
or no connection between them, while within a cluster components
are connected by short paths with strong connections. Components
sharing similar structures or functions can be hypothesised to belong
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Figure 1: A hypothetical network consisting of twelve nodes (black
circles) and twelve edges between them. Two of the edges
are directed (black arrows). The network is consisted of two
modules: the one on the left including nodes 1-8 and the one
on the right including nodes 9-12. The node 3 is so-called
hub node, that is densely connected to its surroundings.

to a same module [109]. In an unsupervised study, one goal of the
network analysis is to identify such modular structures [60].

The edges of a network represent functional, causal or physical inter-
actions between the nodes. Edges can be directed (arrows in Figure
1), indicating an effect heading from a source node to a target node,
or undirected (straight lines in Figure 1), indicating symmetrical in-
teraction. Here, between-component interaction (or association)
describes the similarity of the expression or concentration levels of
two components and how they change together. Edges can also be
weighted to reflect the strength of an association.

One of the most general observations on biological networks is the
tendency to form scale-free structures. A scale-free network has an
overall sparse connectivity, where few nodes tend to be densely con-
nected whereas the majority of the nodes have only a few connections
[7]. Basic network topology properties, such as network hubs and
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modules can reveal information about the biological significance of
network components. Hub components are highly connected nodes
that are often central to the network structure [13, 3] and are believed
to be biologically important as they represent tightly regulated pro-
cesses. In proteomics, it has been shown that hub proteins tend to be
essential for survival in lower organisms, such as yeast [4, 78]. Some
have argued that it is critical to rather focus on intramodular hubs
instead of whole network hubs, at least in applications concerning
co-expression networks [168]. In Publication [P3], one specific lipid
belonging to class of ceramics had an important role in connecting
different sphingolipid species together, thus it was recognised as
an hub lipid. Earlier studies had identified the same lipid as a key
metabolite for increased cardiovascular outcome risk.

3 Reconstruction of the association network

The goal of all network reconstruction and inference based on the
network is the detection of the unobserved association structure of a
given set of biological components based on the measured expres-
sion or concentration levels. Various strategies for recovering the
underlying structure of the system have been proposed, and below,
short reviews of the most common ones are provided. Often, the per-
formance of the construction algorithms is assessed by simulations,
as no complete biological interaction database exists to objectively
evaluate the results obtained for the real data.

3.1 Correlation networks

The core of a network analysis is a defined connectivity score that
represents the strength of the association or interaction between two
components. At its simplest, the connectivity can be represented
with a correlation coefficient. Thus, the most straightforward ap-
proach to network reconstruction is to estimate a sample covariance
matrix using Pearson’s correlation for continuous omics data and
Spearman’s correlation for count data. As a downside, correlation
approach considers only direct pairwise association between all pos-
sible pairs of components. Such pairwise analyses of association are
prone to Simpson’s paradox [130]which can lead to inclusion of false
associations. To avoid this, conventional estimates of correlation
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could thus be replaced with partial correlations, that measures the
association between two components, with the effect of a selected set
of controlling components removed. However, a multiple compari-
son problem is encountered, when the inclusion or exclusion of each
potential association is based on testing the significance of pairwise
correlation coefficients. The inevitable correction for this problem
decreases the statistical power to detect the true associations as the
number of components in a network increases. The inclusion criteria
for associations can be also done without testing, using so-called
hard thresholding, referring to selection of a single threshold correla-
tion value, such as 0.5, above which all associations are included in
the network.

To avoid the multiple comparison problem and the coarseness of
hard thresholding, [168] introduced weighted gene co-expression
network analysis (WGCNA) that also uses a sample correlation mat-
rix, but selects the associations of the network by soft thresholding.
The absolute values of the pairwise correlations are raised to a power
of � , where � is an integer, selected based on a scale-free topology
criteria [168]. As � increases, smaller correlations, corresponding to
“no interaction present” -cases, approach zero. Thus, pairwise associ-
ations corresponding to correlations approaching zero are excluded
from the network. Various correlation-based co-expression network
reconstruction have been widely used in the context of omics data
[147, 170, 137, 165, 74, 82].

3.2 Bayesian networks

Bayesian framework can also be used to as a basis for generating net-
works [114] and have also been applied to gene expression data [49].
Bayesian network, or belief network, is a graphical representation of
the joint probability distribution of the nodes that are considered as
random variables. This structure is commonly referred to as directed
acyclic graph (DAG), in which the lack of an edge between node 1
and node 2 within the graph denotes a conditional independence of
node 1 from node 2 given the nodes that do have a connection to the
node 1. Bayesian networks have the benefit of clear interpretation
of the type of connection (dependence/independence) and can be
flexibly applied to different stochastic observation models.
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The construction of the Bayesian network is generally an optimisa-
tion problem, and considering all the possible connections between
large number of nodes, the problem is computationally demanding.
However, efficient search algorithms have been constructed and are
widely available as ready implementations [97, 48].

3.3 Gaussian graphical models

Gaussian graphical models are a group of models using graphs to
present dependencies among variables, while assuming that the
variables follow a multivariate normal distribution with a particular
structure of the inverse of the covariance matrix [167]. For Gaussian
graphical models, it is usually assumed that the patterns of variation
in expression or concentration for a given component can be pre-
dicted by those of a small subset of other components, leading to
sparsity in the inverse covariance matrix.

Graphical lasso (glasso) is the most widely used Gaussian graphical
model that estimates, using a lasso penalty applied to the inverse
covariance matrix, a graph from a given data [47, 102]. The elements
of the estimated inverse covariance matrix can be interpreted, sim-
ilar to partial correlations, as pairwise measures of association in the
presence of all other components. If two components are condition-
ally independent (conditional on all other components present), the
corresponding element of the inverse covariance matrix is shrunk to
zero.

In general, a challenging problem in sparse estimation of the graph-
ical models is the selection of the regularisation parameter. Two
commonly used criteria are highly efficient rotation information
selection criterion [171] and a stability approach to regularization
selection (stars) which selects the optimal graph by variability of
subsamplings [92]. After selecting the optimal value for the regular-
isation parameter, the associations corresponding to the non-zero
elements of the estimated inverse covariance matrix, are included in
the network.

Graphical lasso, along other gaussian graphical models, has been
used to model the sparse network structure especially in the context
of genomics data [126, 128, 89, 116].
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3.4 Model based approaches

Estimating the between-component association by a statistical
model provides, not only a way to estimate the association in the
presence of all other components, but enables also to adjusting
of the associations for additional covariates, such as age, smoking
status or use of statins. However, as noted in Chapter 2, the high-
dimensionality sets some requirements on the model fitting on omics
data. One convenient way to avoid the curse of dimensionality is
to transform the variables to a smaller set of linear combinations of
original variables. Using this property, [32] showed that in the con-
text of microarray data PLS regression is a powerful tool for exploring
relationships which also translate into biologically meaningful asso-
ciations. Later, [117] proposed a more systematic approach to the
PLS-based network reconstruction and showed that PLS based net-
works outperformed those reconstructed with simple correlations or
partial correlations.

In practice, a chosen regression model is fitted for each variable as
a response at a time, with the remaining p � 1 variables and addi-
tional covariates as predictors. When using PLS-regression, first the
PLS components are estimated, and then used predictors in a sub-
sequent model fitting step. The score measuring the association
strength between components j and k is then computed in a sym-
metrised form revising the roles of j and k as the average of the re-
gression coefficients from the respective models. For PLS-regression,
the association score between j and k is computed as a sum over a
chosen number of PLS components of products of respective PLS
component coefficient (from the first estimation step) and regression
coefficient (from the second estimation step). If the models are ad-
justed for additional covariates, the regression coefficients relating to
the additional covariates are not used in computing the connectivity
score. Publication [P4] generalises the model PLS-approach for count
data generated on NGS platforms, whereas Publication [P3] uses the
approach suggested by [117] for multiple imputed lipidomic data.

Also, PCs could be used instead of PLS-components. Then, the net-
work reconstruction for left-censored omics data could be based for
a covariance matrix estimated as suggested in Publication [P2]. An
attempting approach would also be the use a regularised regression

41



model, such as lasso or elastic net. Regularised regression would
result in a sparse vector of estimated regression coefficients, and
consequently a portion of the computed association scores would
be zeros or close to zero and thus would result in a sparse network
structure without additional decision making steps.

3.5 Edge selection

One challenge especially in model-based network reconstruction is
establishing a threshold for each edge to be included in the network.
Formally, we need to test multiple hypotheses

H0 : sj k = 0, H1 : sj k 6= 0, j = 1, . . . , p , k = 1, . . . , p , j 6= k

where sj k are the computed population association scores. The mul-
tiple hypothesis problem is even more severe than in the context of
differential expression setting, as network includes p (p �1)/2 edges
to test.

The local false discovery rate methodology [39], a continuum for
Benjamini-Hockberg’s FDR, operates edge selection with a minimum
of modelling assumptions. Intuitively, tail area-based FDR is simply
a P-value corrected for multiplicity, whereas local FDR is a corres-
ponding probability value. In Efron’s formulation, it is assumed that
an association score ŝ j k comes from a mixture distribution

f (s ) = p0 f0(s ) +p1 f1(s ),

where p0 and p1 are the mixing proportions, f0(s ) is the density cor-
responding to the “no association present” -scores (null distribution),
and f1(s ) is the density corresponding to the “association present”
-scores. The ratio f0(ŝ j k )/ f (ŝ j k ) represents an upper bound on the
posterior probability of ŝ j k coming from the distribution f0(s ) (no
association between genes j and k ). In practice, the mixture density
f (s ) can be empirically estimated by fitting a smooth density curve
to the histogram of observed ŝ j k . As for f0(s ), one can parametrically
estimate the distribution by assuming normal distribution with the
estimate of the expected value ave(ŝ j k ) and sample variance var(ŝ j k ).
Thus, by evaluating the value of the ratio for each ŝ j k , we get a like-
lihood for ŝ j k coming from the null distribution, and by comparing
it to the selected value q (the maximum false discovery rate that we
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are ready to accept), the network structure can be inferred. If ŝ j k < q ,
an edge between genes j and k is added to the network.

In Publication [P4], the edges of the genomic networks were selec-
ted using local FDR. For the empirical local false discovery rate to
perform satisfactorily, it is assumed that the mixing proportion p0 is
close to one (majority of the scores represent no association present).
Also, the distribution of the observed scores should be approximately
normal. For the PLS-based scores, used in Publications [P3] and [P4],
the latter holds true while the sample size is relatively large. When
these conditions are not met, filtering out some non-interesting or
unreliable genes (such as genes with only little variation or genes
including zero read counts) prior analysis can help to improve the
behaviour of the associations scores and reduce the false positive rate.
In Publication [P3], where the main interest was to compare network
structures under two biological conditions, the modular structures
of the networks (and thus inclusion or exclusion of the edges) were
identified as a part of the statistical test using a connectivity threshold
parameter ".

Also, other modifications of FDR based inference have been sugges-
ted. In the contact of differential expression analysis, Genovese et al.
[52] and more recently, in the context of genomic associaltion net-
work construction, Gui et al. [56] assigned weights, representing the
strength of existing evidence, for each p-value and then conducted
the Benjamini-Hochberg FDR as usual. Futhermore, Li et al. [90]
proposed a new method for estimating FDR for RNA sequencing data,
based on a novel permutation plug-in approach.

4 Differential network analysis

Whereas differential expression describes a state where the mean
expression levels of a given component is significantly different
between two biological conditions (such as healthy and diseased
states), differential co-expression (or differential network structure)
denotes that the association between the expression levels of a given
set of components is significantly different between two biological
conditions. Comparing the structures of two or more networks
provides insight into condition specific alternations in the regulatory
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systems underlying the reconstructed association patterns. Explor-
ing changes in connectivity patterns can help to identify condition-
related nodes and thus potentially improve diagnosis and prognosis
of condition outcome.

Kostka and Spang [85] proposed a first method to investigate dif-
ferentially co-expressed groups of genes using a score based on an
additive model followed by a heuristic algorithm to find high-scoring
sets of genes displaying the characteristic pattern under examination.
The proposed score measures the mutual correlation of a group of
genes, but in contrast to standard correlation, one can explore how
including or excluding a single candidate gene will affect the score
without refitting the model. An ideal target set of genes would be
such with low scores expressed in the samples belonging to group A,
but not in samples belonging to group B.

Since then, many other approached have been suggested. Changes
in the connectivity patterns can also be studied by comparing dif-
ferences in topological properties across sparse, group-specific net-
works, summarised using network concepts, such as whole network
connectivity, intramodular connectivity, topological overlap, and the
clustering coefficient [169, 70, 38]. Alternatively, weighted condition-
specific networks, for example such reconstructed by WGCNA, could
be compared by computing a dissimilarity measure (function of the
edge-specific weight differences) and then implementing a chosen
clustering technique to identify modules [145]. This method groups
together genes, whose correlations to the same sets of genes change
between different conditions. Instead of working with edge-specific
differential co-expression, one can also focus on exploring sets of
genes and identifying which covariance patterns differ between con-
ditions [121, 153].

An approach implemented in Publication [P3], with adjustments to
fit the left-censored data, is the one proposed by Gill et al. [53]. Un-
like previous approaches, they construct formal statistical tests on
differential connectivities and modular structures based on the con-
nectivity scores collected in the adjacency matrix. The formulated
tests are based on permutations and thus provide a robust way to test
differential network structures without any distributional assump-
tions. In their approach, three different interesting scenarios can be
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tested: 1) whether the modular structures of two or more networks
are different, 2) whether the connectivity of a single selected lipid
is different between two or more networks, and 3) whether the con-
nectivities of a selected interesting set of genes is different between
two or more networks. While the tests are not tied to any specific
type of association score, they are applicable on any omics data, with
an association score best fitting to a data set analysed.
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CHAPTER 4
Conclusions

The research conducted in this thesis contributes on developing
statistical analysis methods for modern omics data, concentrating
especially on lipidomics and NGS data. Two common themes are car-
ried through the research papers: to efficiently incorporate missing
or censored values in the analyses and to customise and develop ana-
lysis methods suitable for high-dimensional omics data measured
either on continuous or count scale.

In addition to high dimensionality, one major challenge in perform-
ing valid inference on omics data is the presence of numerous missing
and censored values. The research presented in this thesis solves
the problem by relying both on MI of the censored values as well
as on ML approach. Both approaches are operable when data in-
cludes left-censored values. Often the main criticism against MI of
the left-censored values is that the censored values are not MCAR or
MAR. However, the left-censoring mechanism is informative and can
be implemented in the imputation model. Even though considered
as the golden standard of censored data analysis methods, ML ap-
proaches can be computationally demanding. This was also noted
in Publication [P2], where an approximation for the proposed ML
estimator was derived. This approach succeeded in decreasing the
computation times substantially and still produced accurate estim-
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ates. Similar solutions were implemented in the literature, where ML
function were approximated for example using pseudo-likelihoods.

Another statistically efficient and computationally fast alternative
could be to regularise the sample covariance matrix or its inverse
by making it sparse by setting some of the covariance elements to
zero. This shrinkage estimation of the covariance matrix is closely
related to lasso and ridge regressions. The shrinkage approach is pro-
posed mainly for inferring large-scale covariance matrices in high-
dimensions, such as clustering genes using data from a microarray
experiment or building association networks. Combining shrinkage
with ML estimation could provide an efficient estimator of the cov-
ariance matrix also in the presence of left-censored data. One could
add a penalty term to the likelihood function and force some of the
covariance elements to zero or close to zero producing interpretable
estimates.

A major challenge of high-throughput omics data is to detect in-
teractions from large-scale observations. By identifying co-varying
components and significant relationships, it is possible to display
conditional dependencies among the considered particles and dis-
cover the underlying network structure representing biological path-
ways. Many existing methods, especially in context of metabolomics
and NGS data, were based on conventional correlation matrices.
However, expressions of thousands of genes, for example, are of-
ten measured from relatively few samples. In small sample sizes,
the sample correlation coefficient is a fairly unstable and inaccurate
estimate of the true correlation. Thus, the association network recon-
struction methods implemented both in Publication [P3] and [P4]
were based on modelling the pairwise associations in the presence
of all other variables. In this approach, the models can also be adjus-
ted for additional covariates. As an alternative to the PLS regression
implemented in Publications [P3] and [P4], the network construction
could be employed using penalised regression models such as elastic
net. This approach was only briefly tested in Publication [P3] and
could be employed further in future studies.
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Summaries of the Original
Publications

P1 In this paper, our objective was to identify an efficient statisti-
cal methodology for the analysis of lipidomics data - especially
in finding interpretable and predictive biomarkers useful for
clinical practice. In two case studies, the need for data prepro-
cessing was addressed prior to fitting a regression model of a
binary response. The preprocessing steps include 1) a normal-
isation step, in order to remove experimental variability, and 2)
a multiple imputation step, to make the full use of the incom-
pletely observed data with potentially informative missingness.
We then present and suggest the use of a permutation based
test for a global test of association between full lipid profile and
the outcome. Finally, by cross-validation, we compare stepwise
variable selection to L1- and L2-penalised regression models
on stacked multiple imputed data sets.

P2 The conventional estimators of a covariance matrix rely on
complete data vectors on all subjects - an assumption that is
rarely met. For example, data generated on mass spectrometry
platforms is filtered to separate the actual signals from back-
ground noise. These left-censored values are considered too
imprecise to be reported by a single number but known to exist
somewhere between zero and a set lower limit of detection. We
consider a maximum likelihood based estimator that handles
the left-censored values without any pre-processing of the data.
The presented estimator efficiently uses all the information
available and thus, based on our simulation studies, produces
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the least biased estimates compared to often used competing
estimators. As the estimation problem can be solved fast only
in low dimensions, we also suggest an element-wise approxim-
ation which then adjusted to nearest positive-definite matrix
to meet the properties of a covariance matrix. It is shown by
a simulation study that the suggested estimator and its ap-
proximation accomplish in decreasing the computation times
substantially while still producing accurate estimates.

P3 Following the recent advances in mass spectrometry tech-
niques for lipid profiling and increasing amounts of data avail-
able, the analysis of lipidomic networks, enabling studying
the biological systems as a whole, has gained significant in-
terest. Differential network analysis provides a formal statisti-
cal method for inferential analysis when the goal is to examine
differences in lipid network structures under two biological
conditions, to identify lipids and lipid classes that interact with
each other, and to recognise the most important differentially
expressed lipids between two subgroups. In this paper, we
provided a recipe to combine differential network analysis with
state of the art multiple imputation techniques, particularly
paying attention to the left-censored values typical for a wide
range of data sets in life sciences. As a case study, we analyse
lipid profiles from two groups of coronary artery disease pa-
tients rom the LUdwigshafen RIsk and Cardiovascular Health
study.

P4 A new algorithm to construct an association network for high-
dimensional count data, called cPLS, is presented. The sug-
gested approach is applicable to the raw counts data, without
requiring any further pre- processing steps. The predictions
for the associations are estimated using PLS regression model
based approach. In the first step of the algorithm, the vari-
ation of the count data is compressed into a small number of
PLS-components and in the second step, these components
are used as predictors in a negative binomial model. In the
settings investigated, the cPLS-algorithm outperformed the
two comparative methods, glasso and WGCNA.
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