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 Abstract 3 

ABSTRACT 
Human mediated species introductions are often irreversible, represent a world-wide 
problem and are considered one of the threats to marine biodiversity. Invasions can have 
an impact on the native species and communities, but invasions also affect the 
demography, dynamics, and genetic composition of the invading species population. 
Thus, newly introduced species provide a unique opportunity to study different 
ecological and genetic processes associated with invasions, such as invasion dynamics, 
build-up of the spatial and temporal population genetic structure, understanding the roles 
of added or removed functions in an ecosystem and the direct impacts of the invaders. 

In my thesis, I studied population demography, dynamics, and the genetics of a newly 
introduced mud crab, Rhithropanopeus harrisii, in the Archipelago Sea in the northern 
Baltic Sea. In addition, I studied the impacts of this novel invader to the native species 
and tested whether new molecular tools could be used to detect and monitor this newly 
introduced species. 

The results show that R. harrisii has established a relatively stable reproductive population 
in the invaded area, has spread along the coast, and can be found in several habitats that range 
from soft sediments to the macroalga Fucus vesiculosus having negative impacts on the 
abundance, richness, and diversity of its prey species. The abundance of the introduced 
population in the Archipelago Sea is lower than in its native range of North America, 
although the individuals grow substantially larger in the northern Baltic Sea increasing the 
reproductive output. The overall abundance of R. harrisii appeared to follow the boom and 
bust pattern with a rapid initial abundance increase and subsequent decline. The population 
dynamics of R. harrisii was mainly driven by changes in the survival of the reproductive 
females. In addition, environmental variables, such as temperature, was related to the 
recruitment and growth of juveniles, thus indicating that increasing temperature caused by 
climate change could potentially increase juvenile recruitment in the future. There was no 
significant spatial genetic divergence within Finland, which probably reflects the short 
invasion history of the species in the area. However, the presence of a significant temporal 
variation between the cohorts (juvenile vs. adult) indicated a lack of temporal stability in this 
species. Finally, a molecular environmental DNA (eDNA) approach can be used to detect R. 
harrisii from water samples although the detection rate was fairly low. Therefore, more 
studies are needed to optimize the eDNA method and to evaluate its usability in monitoring.  

In conclusion, R. harrisii has established a population in the northern Baltic Sea having 
a negative impact on the native species and communities. However, despite the initial 
population size increase, the population has declined to the similar size where it was at 
the beginning of the six-year monitoring. Although the population size seems to be 
stabilized at the monitoring sites, R. harrisii continues to expand its distribution range, 
and the rapid initial population increase together with the negative impacts, is likely 
occurring at the newly invaded sites. The results of my thesis provide new information 
about the population ecology and genetics of a newly introduced functionally novel 
species that can be used for further research and management purposes in the future. 
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TIIVISTELMÄ 
Ihmistoiminnan aiheuttamat vieraslajien leviämiset ovat peruuttamattomia sekä maailman-
laajuinen ongelma, ja siksi vieraslajeja pidetäänkin yhtenä uhkana merien 
monimuotoisuudelle. Vieraslajit voivat vaikuttaa paikalliseen lajistoon ja yhteisöihin, mutta 
vieraslajien kulkeutuminen vaikuttaa myös vieraslajiin itseensä; sen populaatiorakenteeseen 
ja -dynamiikkaan sekä populaation geneettiseen rakenteeseen. Siksi hiljattain levinneet 
vieraslajit luovat ainutlaatuisen mahdollisuuden tutkia vieraslajien ekologisia ja geneettisiä 
prosesseja, kuten vieraslajien populaatiodynamiikkaa, populaation geneettisen rakenteen 
alueellista ja ajallista muuttumista sekä vieraslajien vaikutuksia paikalliseen lajistoon.  

Väitöskirjassani tutkin Saaristomerellä, pohjoisella Itämerellä, hiljattain havaitun 
vieraslaji liejutaskuravun Rhithropanopeus harrisii populaatiorakennetta, -dynamiikkaa 
ja populaation geneettistä rakennetta. Lisäksi tutkin kyseisen uudenlaisen lajin 
vaikutuksia alueen paikalliseen lajistoon sekä kokeilin sopiiko uusi ympäristö-DNA 
menetelmä vieraslajin havainnointiin ja seurantaan.  

Tulosteni mukaan liejutaskurapu on vakiinnuttanut paikkansa osana pohjoisen Itämeren 
eliöyhteisöä, levinnyt uusille alueille ja esiintyy useissa erilaisissa elinympäristöissä, 
kuten pehmeillä pohjilla sekä rakkoleväkasvustoissa vähentävän saaliikseen käyttämien 
paikallisten lajien runsautta ja monimuotoisuutta. Pohjoisella Itämerellä liejutaskuravun 
runsaus on alempi kuin lajin alkuperäisellä esiintymisalueella, mutta Itämerellä yksilöt 
kasvavat huomattavasti suuremmiksi. Lisääntymisikäisten naaraiden elossa säilyvyy-
dellä oli suurin vaikutus liejutaskuravun populaatiodynamiikkaan kuusivuotisen 
seurannan aikana. Tämän lisäksi ympäristötekijöistä lämpötila vaikutti poikasten elossa 
säilyvyyteen ja kasvuun. Ilmastonmuutoksen seurauksena aiheutuva lämpötilan nousu 
saattaakin parantaa poikasten elossa säilyvyyttä tulevaisuudessa. Saaristomerellä 
esiintyvillä liejutaskuravuilla ei ollut havaittavissa alueellista geneettistä eriytymistä, 
mikä selittyy Saaristomeren populaation nuorella iällä. Eri ikäpolvien (poikaset vs. 
aikuiset) välillä taasen oli merkitsevää vaihtelua geneettisessä monimuotoisuudessa sekä 
eriytymisessä. Lisäksi totesin, että ympäristö-DNA:han perustavalla menetelmällä 
pystyy havaitsemaan liejutaskurapuja rapulajia, tosin menetelmä ei vaikuta olevan eri- 
tyisen herkkä havaitsemaan pohjalla elävää. Lisätutkimuksia tarvitaankin optimoimaan 
menetelmä sekä arvioimaan sen käytettävyyttä vieraslajien seurannassa.  

Yhteenvetona, liejutaskurapu on vakiinnuttanut paikkansa osana paikallista lajistoa 
pohjoisella Itämerellä ja sillä on haitallisia vaikutuksia paikallisiin lajeihin. Kolonisaation 
alkuvaiheen nopeasta liejutaskurapumäärän kasvusta huolimatta, kuuden vuoden 
seurannan lopulla rapumäärä oli vähentynyt takaisin lähtötasolle. Vaikka 
liejutaskurapumäärä näyttää vähentyneen seurantapaikoilla, liejutaskurapu jatkaa 
leviämistä yhä laajemmalle alueelle pohjoisella Itämerellä ja rapumäärä todennäköisesti 
kasvaa alkuun voimakkaasti uusilla alueilla aiheuttaen haitallisia vaikutuksia paikalliseen 
lajistoon. Tulokseni antavat uutta tietoa hiljattain levinneen vieraslajin populaatioeko-
logiasta ja populaation geneettisestä rakenteesta. Tätä tietoa voidaan tulevaisuudessa 
käyttää tulevien tutkimusten suunnittelussa sekä vieraslajien seurannassa ja torjunnassa. 
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1. INTRODUCTION 
1.1 Introduced marine species 
Human-mediated species introductions are a world-wide problem and considered as one 
of the most important threats to biodiversity, structure, and functioning of coastal 
ecosystems together with overfishing, habitat loss, pollution and climate change (Ruiz 
et al. 1997, 1999; Carlton and Cohen 1998; Grosholz 2002; Bax et al. 2003; Molnar et 
al. 2008; Costello et al. 2010). Introduced species occur outside their native range or the 
range of their dispersal potential and have been introduced by anthropogenic means 
either intentionally or unintentionally (Olenin et al. 2010). Introduced species that have 
negative impacts in the invaded regions and continue to spread further are called invasive 
species (Olenin et al. 2010). Species introductions can be a consequence of a primary or 
a secondary introduction. In the case of primary introduction, the species arrive from the 
native range into a new location, whereas in the secondary introduction, the species 
arrive from an already introduced area into a new location (Minchin et al. 2009).  

Coastal habitats are highly invaded ecosystems due to the multitude of introduction 
pathways together with the natural and anthropogenic disturbances that make coastal 
areas prone to invasions (Carlton and Cohen 1998; Ruiz et al. 1999). The number of 
species introductions have increased in the past decades and continue to increase despite 
growing awareness, national legislation, and international agreements aimed at reducing 
species introductions (Seebens et al. 2017). Shipping is the most common pathway for 
introduced marine species (Carlton and Cohen 1998; Bax et al. 2003; Streftaris et al. 
2005; Molnar et al. 2008), as a wide range of organism are transported over long 
distances in ballast water and/or hull fouling (Carlton and Geller 1993; Gollasch et al. 
2000; Chan et al. 2014). Other common pathways for introduced marine species include 
aquaculture and canal constructions (Bax et al. 2003; Streftaris et al. 2005; Molnar et al. 
2008; Minchin et al. 2009). However, not all species transported by anthropogenic means 
become introduced species. According to the Tens Rule by Williamson and Fitter (1996), 
only about 10% of all species transported are introduced to a new region; ca 10% of 
those can establish a population in the invaded region, and ca 10% of those become 
invasive. Hence, a majority of the transported species die during transportation, or the 
biological and environmental conditions at the introduced region are unfavorable for the 
population establishment. 

1.2 Species establishment and invasion success 
The establishment of an introduced species is dependent on the environmental suitability 
of the introduced site, propagule pressure, and the resistance of the native community 
(Elton 1958; Stachowicz et al. 1999; Kolar and Lodge 2001; Lockwood et al. 2005; 
Simberloff 2009; Britton and Gozlan 2013). Propagule pressure consists of propagule 
size (the number of arriving individuals) and propagule number (the number of arrival 
events per time unit) (Simberloff 2009). Large propagule pressure increases 
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establishment success of a population, as it decreases the effects of demographic and 
environmental stochasticity and Allee effects (Lockwood et al. 2005; Simberloff 2009; 
Goodsman et al. 2016). Allee effect occurs in small or sparse populations where 
population growth is reduced at low densities due to reduced individual fitness, e.g. 
failure to find a mate in low densities (Allee 1931; Stephens et al. 1999).  

Native communities can prevent the establishment of an invader. According to the biotic 
resistance hypothesis, high biodiversity communities are more resistant to invaders than 
low biodiversity communities are (Elton 1958; Stachowicz et al. 1999, 2002). In a high 
diversity community, resources are effectively shared by native species thereby leaving 
fewer available resources for the invaders (Elton 1958; Stachowicz et al. 1999, 2002). 
However, some studies have reported that the number of introduced species may actually 
increase with increasing native species richness (Levine and Antonio 1999; Stohlgren et 
al. 1999; Zaiko et al. 2007). Recent studies have concluded that the relation of native 
species richness to the invasibility of a community seems to depend on the studied scale 
(Byers and Noonburg 2003; Fridley et al. 2007). In small spatial-scale, species richness 
prevents species invasions due to the lack of available resources, while in larger spatial-
scale, native species richness positively correlates with the number of invasions because 
heterogeneous habitats can support higher species richness including introduced species 
(Byers and Noonburg 2003; Fridley et al. 2007).  

During both introduction and establishment, introduced species may experience genetic 
bottleneck and/or the founder effect (Roman and Darling 2007; Bock et al. 2015; 
Dlugosch et al. 2015). These effects can reduce the genetic diversity of the invader and 
thus potentially decrease invasion success, as genetic characteristics of the invader 
determine the adaptability and plasticity of the species. However, in many cases, 
introduced species thrive in the new environment, despite the low genetic diversity 
(Bock et al. 2015; Dlugosch et al. 2015), and for many species no apparent reduction of 
genetic diversity is even observed (Roman and Darling 2007; Dlugosch and Parker 
2008). Multiple introductions from genetically different source populations can abate the 
loss of genetic diversity during the invasion (Simon-Bouhet et al. 2006; Roman and 
Darling 2007; Dlugosch and Parker 2008; Gillis et al. 2009). Thus, occasionally the 
genetic diversity of an introduced population is higher than that for a native population 
due to multiple introductions from different source populations (Kolbe et al. 2004; 
Simon-Bouhet et al. 2006; Gillis et al. 2009). Furthermore, drastic loss of genetic 
diversity is observed only when the founding population size is small (Uller and Leimu 
2011). Taken all together, as subsequent introductions affect the genetic diversity of 
already-established introduced populations and these organisms are exposed to new 
selection pressures, the introduced species offer a unique opportunity to study the 
evolutionary processes that are affecting population genetic divergence, connectivity, 
and diversity.  

Successful introduced marine species, especially those that become invasive, share 
multiple characteristics. They often have high fecundity, a planktonic larval stage, a wide 
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tolerance range for temperature, salinity, oxygen levels, and anthropogenic disturbance 
as well as generalist feeding habits (Ricciardi and Rasmussen 1998; Kolar and Lodge 
2001; Streftaris et al. 2005; Hänfling et al. 2011). In addition, according to the enemy 
release hypothesis, many successful introduced species have escaped from native 
predators and parasites that constrain the growth and abundance of the species in the 
native range (Elton 1958; Torchin et al. 2001, 2003; Parker et al. 2013; Jeschke 2014; 
Prior et al. 2015). Of all the marine species groups, crustaceans and crabs among them 
are the most successful introduced species worldwide (Carlton and Cohen 1998; Molnar 
et al. 2008; Vilà et al. 2010), as they possess many of the characteristics of a successful 
invader (Hänfling et al. 2011).  

1.3 Detection of introduced marine species 
Species introductions are often irreversible (Bax et al. 2003; Thresher and Kuris 2004), 
as introduced species are usually observed only after they have established a population 
in the invaded area (Crooks 2005). Both detection and monitoring of introduced species, 
especially in the early phase of the invasion, are uncommon (Lehtiniemi et al. 2015). 
Conventionally, introduced species have been detected either during monitoring 
programs not targeted on introduced species detection or by chance. Traditional 
detection and monitoring methods are laborious, time consuming, expensive, need 
taxonomic identification skills, and are usually targeted toward only certain species, 
species groups or habitats (Lehtiniemi et al. 2015). To overcome some of the limitations 
of the traditional detection methods, a new molecular approach that uses environmental 
DNA (eDNA) to detect and monitor aquatic species has been developed (Ficetola et al. 
2008).  

In the eDNA approach, the species identification is achieved by detecting DNA 
fragments that the animals excrete and release in the water. DNA in the water may 
originate from various sources, including feces, skin cells, epidermal mucus, urine, and 
saliva. With this eDNA approach, detection and monitoring can be targeted toward a 
single species (Ficetola et al. 2008; Dejean et al. 2012; Tréguier et al. 2014) or 
simultaneously detect multiple species from different species groups (Deiner et al. 2015; 
Port et al. 2016; Evans et al. 2016). During recent years, eDNA has been successfully 
used to assess the occurrence of a wide range of introduced species, including various 
amphibians, fish, and molluscan species (Ficetola et al. 2008; Nathan et al. 2014; Smart 
et al. 2015; Brown et al. 2016). 

1.4 Introduced marine species in new communities 
Established introduced species often perform better in the introduced range than in the 
native range (Parker et al. 2013). In the introduced range, the individuals tend to often 
grow faster and larger, and to have higher survival and reproductive success (Grosholz 
and Ruiz 2003; Parker et al. 2013; Sargent and Lodge 2014). This enhanced performance 
of an introduced species seems contradictory, as introduced species are expected to be 
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adapted to their native rather than to a new environment. However, this observed 
enhanced performance in the introduced range is believed to be related to the availability 
of more resources and the absence of predators and/or parasites (Grosholz and Ruiz 
2003; Torchin et al. 2003). In addition, several environmental and community level 
factors such as water temperature and/or salinity, and intraspecific competition can alter 
the survival and reproductive success of an introduced species. 

Some introduced species undergo a lag time after the establishment during which the 
initial population growth is slow, then followed by a rapid population increase and range 
expansion (Crooks 2005). Some introduced species, however, undergo the so-called 
boom and bust pattern wherein a rapid increase phase is often followed by a decline of 
population abundance that stabilizes at a lower level (Simberloff and Gibbons 2004). 
Occasionally established populations collapse drastically and even go locally extinct 
(Simberloff and Gibbons 2004; Lester and Gruber 2016). These declines after an initial 
increase phase and the population collapses are thought to be caused by intra- and inter-
specific competition, the exhaustion of resources and/or the appearance of parasites, 
pathogens or other unknown causes (Simberloff and Gibbons 2004). Sometimes, native 
species can regulate the population growth of the invader through predation (Hunt and 
Behrens Yamada 2003; de Rivera et al. 2005; Jensen et al. 2007), thus decreasing the 
impacts of the invader as well as the rate of spread and long-term population stability.  

Introduced marine species can have various impacts on the local species and 
communities. The impacts are often pronounced at higher abundances (Grosholz et al. 
2000; Ricciardi 2003; Jackson et al. 2015) although the opposite pattern is also observed 
where these impacts are diminished by the intraspecific competition at high densities 
(Kornis et al. 2014). The impacts of an introduced species can range from single- and 
multiple-species impacts to trophic- and ecosystem-level impacts (Grosholz et al. 2000; 
Grosholz 2002; Hänfling et al. 2011). Introduced species can substantially decrease the 
abundance and diversity of native species or replace the native species through 
interspecific competition, predation, or by introducing a new parasite or pathogen to the 
area (Grosholz et al. 2000; Hänfling et al. 2011; Gallardo et al. 2016). These effects can 
alter trophic interactions and cascade to both higher and lower trophic levels (Byrnes et 
al. 2007; Thomsen et al. 2014). Often, the introduced consumers have stronger effects 
on the native prey/plant species than the native consumers do (Salo et al. 2007; Paolucci 
et al. 2013). This effect could be due to a lack of co-evolutionary history of the 
introduced and native species causing prey naïveté i.e. a lack of predator recognition and 
anti-predator responses by the native species (Cox and Lima 2006; Sih et al. 2010; 
Carthey and Banks 2014; Gérard et al. 2014).  

However, not all introduced species have negative impacts on the receiving community 
but sometimes the receiving community benefits from the invader. An introduced 
species can become the main food source for a native predator, thus increasing the 
abundance of the predator (Marchowski et al. 2015; Pintor and Byers 2015; Cattau et al. 
2016), although sometimes the quality of introduced species as a food source might be 
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lower than that of the native species (Felline et al. 2014; Pintor and Byers 2015). One 
example of beneficial introduction comes from New England where the introduced 
European green crab Carcinus maenas facilitated the recovery of cordgrass Spartina 
alterniflora by reducing the intense herbivory of herbivorous crab Saserma reticulatum, 
thereby compensating for the depletion of native predators (Bertness and Coverdale 
2013). Another example comes from the Baltic Sea where the introduced polychaeta 
Marenzelleria spp. digs deep holes in the bottom sediment, oxidizing an otherwise 
anoxic seabed by bioturbation (Wallentinus and Nyberg 2007). 

1.5 Introduced species in the Baltic Sea  
The Baltic Sea is a young non-tidal brackish-water sea that has steep gradients of 
temperature (yearly average SST <0–20ºC) and salinity (2–25) (Leppäranta and 
Myrberg 2009). Both the average temperature and salinity decrease when moving from 
south to north and from west to east. The Baltic Sea consists of species-poor 
communities, simple food webs and low functional diversity (Bonsdorff and Blomqvist 
1993; Elmgren and Hill 1997). The species in the Baltic Sea are mainly euryhaline, and 
many species live in the margins of their distribution range due to the low salinity for 
marine species and the high salinity for freshwater species. Many species groups, such 
as krill and starfish, are thus absent in the Baltic Sea. The Baltic Sea is heavily impacted 
by anthropogenic stress, such as eutrophication, over-fishing, and anthropogenic 
hazardous substances, due to a large drainage basin area (4 × the sea area) and a dense 
surrounding population (~85 million). The low macroscopic species diversity, brackish-
water, intense shipping and high anthropogenic stress makes the Baltic Sea particularly 
prone to species invasions (Leppäkoski et al. 2002; Paavola et al. 2005).  

As in many sea areas around the world, the number of introduction events have also 
increased in the Baltic Sea during the past decades (Leppäkoski et al. 2002; Paavola et 
al. 2005; Gollasch 2006; Ojaveer et al. 2017). A total of ~130 introduced species have 
been observed in the Baltic Sea and ~80 of those have established a population (Ojaveer 
et al. 2017) meaning that 2% of all the macroscopic species in the Baltic Sea are 
introduced species (Costello et al. 2010). The most common pathway for introductions 
to the Baltic Sea is shipping followed by aquaculture (Leppäkoski et al. 2002; Paavola 
et al. 2005; Gollasch 2006; Ojaveer et al. 2017). The most important source areas for the 
Baltic Sea invasions are the Ponto-Caspian region, the East coast of North America and 
Southeast Asia which are connected to the Baltic Sea by shipping or manmade canals 
(Leppäkoski et al. 2002; Paavola et al. 2005). Many introduced species in the Baltic Sea 
are a consequence of secondary introduction from neighboring regions, and after 
entering the Baltic Sea, many of these species have spread within the region (Leppäkoski 
et al. 2002; Ojaveer et al. 2017). Introduced species, especially in a species poor 
community such as the Baltic Sea, provide a unique opportunity and an excellent natural 
experiment for studying the evolutionary processes that are affecting population genetic 
divergence, connectivity and diversity, the population dynamics of invasions, roles of 
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added and removed functions in the ecosystem and both direct and indirect effects of the 
invaders. 

1.6 Aims of the thesis 
The aim of this thesis was to study the different aspects of the marine invasions by 
covering the detection, population genetic composition, population abundance and 
structure as well as the impacts of a recently introduced species in the northern Baltic 
Sea. One such recently introduced species is the mud crab Rhithropanopeus harrisii, 
which is a novel species in the northern Baltic Sea, first observed in 2009 from an area 
where no native crab species occur and the native benthic communities are naturally low 
in diversity.  

My first aim was to assess the occurrence and habitat use of the newly observed R. 
harrisii population in the northern Baltic Sea and then compare the population 
demography of the northern Baltic Sea population to an earlier introduced and native 
population in Poland and the U.S., respectively (I). Second, my aim was to test the 
suitability of the environmental DNA (eDNA) approach for detecting and monitoring 
introduced mud crab species (R. harrisii) in a brackish-water environment to see whether 
this approach could be used for detection and monitoring of this introduced species in 
the near future (II). Third, I wanted to study the genetic structuring and divergence of 
introduced populations in the Baltic Sea and to explore the effects of invasion on the 
genetic composition of the introduced species. To achieve this I characterized the genetic 
diversity, structure and divergence of R. harrisii in the Baltic Sea populations at different 
spatial scales and tested the presence of temporal genetic variation among the cohorts in 
the northern Baltic Sea by screening 1013 SNP markers (III). Fourth, my aim was to 
study the population dynamics, demography and the persistence of R. harrisii in the 
northern Baltic Sea with demographic data collected over a six-year monitoring period 
(IV). Finally, I wanted to reveal the potential impacts of this novel predator to the native 
species and community associated with the habitat forming keystone macroalga Fucus 
vesiculosus using both laboratory and field experiments (V). 
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2. MATERIALS AND METHODS 
2.1 Study species 
North American white-fingered mud crab Rhithropanopeus harrisii (Fig. 1) originates 
from the east coast of North America, and its distribution area extends from Veracruz in 
the Gulf of Mexico to the southern parts of the Gulf of Saint Lawrence in Canada 
(Williams 1984). R. harrisii is a highly successful brachyuran crab species, and the 
invaded area currently extends to two oceans, 10 seas and freshwater inland reservoirs 
covering 28 countries (D’Incao and Martins 1998; Rodríguez and Suárez 2001; Iseda et 
al. 2007; Roche and Torchin 2007; Bacevičius and Gasiunaite 2008; Kotta and Ojaveer 
2012; HELCOM 2015; I). R. harrisii has several characteristics that have likely 
facilitated its invasion success. It has a wide tolerance range to water temperature and 
salinity, high fecundity, a planktonic larval stage, and omnivorous feeding habits 
(Turoboyski 1973; Laughlin and French 1989a; Hegele-Drywa and Normant 2009).  

 
Figure 1. The study species Rhithropanopeus harrisii and collector crate. Photographs by T. 
Forsström. 

The continuous breeding season of R. harrisii lasts from three to five months (Ryan et 
al. 1956; Turoboyski 1973; Gonçalves et al. 1995a). Females are able to produce eggs 
multiple times after copulation (Morgan et al. 1983), although, in the invaded areas this 
multiple oviposition is rarely observed (Turoboyski 1973). R. harrisii has a planktonic 
larval stage and both the survival and duration of the planktonic period are dependent on 
water temperature and salinity (Costlow et al. 1966; Laughlin and French 1989b; 
Gonçalves et al. 1995b). In general, higher survival and shorter periods are found in 
warmer water and higher salinity (Costlow et al. 1966; Laughlin and French 1989a, b; 
Gonçalves et al. 1995b). The effects of temperature and salinity on the survival and 
duration of the larval period varies depending on location, as larval adaptations to local 
environmental conditions have been observed (Laughlin and French 1989a). The larvae 
have a retention mechanism that prevents the planktonic larvae from drifting away from 
the hatching sites i.e., the parental population (Cronin 1982; Cronin and Forward 1986). 
R. harrisii is omnivorous (Turoboyski 1973; Hegele-Drywa and Normant 2009), and 
based on the stable isotopic analyses done in the northern Baltic Sea, adult individuals 
are secondary consumers (Aarnio et al. 2015).   
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In Europe, R. harrisii was first observed in the Netherlands in 1874. Since then, it has 
spread to several locations around the North Sea and the Baltic Sea. In 1936, it was 
observed in the Kiel Canal in Germany (Schubert 1936). In the southern Baltic Sea, R. 
harrisii individuals were first reported in 1951 from Poland (Demel 1953) and 1953 from 
Denmark (Wolff 1954). After an initial introduction to the Baltic Sea, the spread of R. 
harrisii appeared to cease for almost 50 years, after which the spread continued toward the 
northern Baltic Sea. In 2000, R. harrisii was observed in Lithuania (Bacevičius and 
Gasiunaite 2008), then in 2009 in Finland (Karhilahti 2010), in 2011 in Estonia (Kotta and 
Ojaveer 2012) and most recently in 2013 in Latvia (HELCOM 2015). According to genetic 
studies using mitochondrial DNA data, R. harrisii populations in Europe do not form a 
single panmictic population (Projecto-Garcia et al. 2010) and even on a small geographical 
scale, they sometimes exhibit significant genetic structuring (Hegele-Drywa et al. 2015).  

In Finland, R. harrisii was first observed near the Naantali port in 2009 (Karhilahti 2010). 
After the initial introduction to Finland, R. harrisii has spread rapidly along the southwestern 
coast of Finland, and the distribution area currently extends to the southern Bothnian Sea 
(Fig. 2) thereby being the northernmost known R. harrisii population. In Finland, fish species 
such as four-horned sculpins (Myoxocephalus quadricornis), perch (Perca fluviatilis), and 
roach (Rutilus rutilus) are reported feeding on R. harrisii (Puntila 2016).  

 
Figure 2. The range expansion of Rhithropanopeus harrisii in the Archipelago Sea, the northern 
Baltic Sea. The distribution area is based on the public observations reported to the Finnish 
Biodiversity Information Facility (FinBIF) and www.vieraslajit.fi, accessed 10.4.2017. 
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2.2 Study area 
These studies were conducted in the Archipelago Sea in the southwestern Finland (Fig. 
3), an area characterized by mosaic landscape with over 50,000 islands, low salinity, low 
species richness, and strong seasonality. In general, the salinity in the study area is ~ 6, 
and surface water temperature varies from <0 to 20ºC with the high probability of ice 
cover during the winter months (Leppäranta and Myrberg 2009). The food webs tend to 
be simple and consist mainly of the most common species, as the lowest species richness 
of macroscopic organisms in brackish waters occurs in salinity of 5–7 (Remane 1934). 
The Archipelago Sea consists of a patchy mixture of soft-bottom and hard-bottom 
habitats with extensive shallow soft-bottom habitats in the inner Archipelago and deeper 
hard-bottom habitats more commonly in the outer Archipelago. The keystone species in 
the northern Baltic Sea is considered to be the bladderwrack Fucus vesiculosus as it 
creates a habitat for several invertebrate and vertebrate species, including gammarids, 
isopods, snail, mussels, and juvenile fish (Kautsky et al. 1992). In the Archipelago Sea, 
there are no native crab species (Bonsdorff 2006), and prior to the invasion of R. harrisii, 
other introduced crab species were only occasionally encountered with Eriocheir 
sinensis infrequently and Carcinus maenas only twice (Finnish Biodiversity Information 
Facility) but neither of them are established in Finland. 

 
Figure 3. Map of the sampling sites in the Archipelago Sea in Finland, in Estonia and in the 
southern Baltic Sea. The Roman numerals refer to the chapters of this thesis. 
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I collected R. harrisii individuals for chapters I, III, IV, and V from three sites (Kaarina, 
Lapila and Naantali) in the Archipelago Sea (Fig. 3). These sites were selected from the 
area where R. harrisii were known to occur before the sampling started in 2011 (Fig. 2). 
All sampling sites are soft sediment habitats with the common reed, Phragmites 
australis, growing on the shoreline. The R. harrisii were collected using plastic crates 
(30 x 30 x 30 cm, Fig. 1) containing autoclaved oyster shells. The crates provides a 
habitat for both juvenile and adult R. harrisii, and the individuals could freely move in 
and out of the crates. The same sampling method was successfully used in previous R. 
harrisii studies by Roche et al. (2009). For chapter I, data from other introduced 
populations in Poland (Vistula lagoon and Gdynia; Fig. 3) and a native population from 
Louisiana in the U.S were collected using the same collection method.  

For chapter I, the data on occurrence based on the public observations of R. harrisii were 
obtained from a web site www.vieraslajit.fi created by the Finnish Game and Fisheries 
Research Institute and Finnish Environment Institute. In addition, an additional 
occurrence sampling was conducted in 19 locations in the northern Archipelago Sea in 
2011 and 2012. For chapter II, I collected water samples from 16 locations in the 
Archipelago Sea and one additional control sample from Lake Littoinen (Fig. 3). For 
chapter III, in addition to the individuals collected from Finland, I received R. harrisii 
individuals collected from Pärnu Bay in Estonia, the Gulf of Gdańsk in Poland, and 
Denmark (Fig. 3) as well as samples from one native population from the Ashley River 
in Charleston, South Carolina, US (III). The laboratory and field experiments for 
chapters II and V I conducted in the Archipelago Research Institute on Seili Island (Fig. 
3). 

2.3 Methodological approaches  
To study the different aspects of species invasions, I used several approaches that range 
from basic ecological sample collection and experimental work to molecular approaches 
(Table 1). To study the occurrence and spread of Rhithropanopeus harrisii in a newly 
invaded area, I used citizen science data in a form of public observations (I). To obtain 
demographic data, I collected monitoring data over six years from three monitoring 
locations (IV). This type of data is rarely collected although it provides fundamental 
knowledge of the invasion dynamics that is important for evaluating the impacts, 
interactions and range expansion of the invader. In addition, I used an experimental 
approach by conducting both laboratory and field experiments to study the potential 
impacts of the novel species on the native species (V). 

I also used two different molecular approaches: environmental DNA (II) and 
genotyping-by-sequencing (III). Environmental DNA is rapidly increasing research area 
and expected to be a powerful tool for detect and monitor species in the near future. 
Another modern molecular approach increasingly used utilizes next-generation 
sequencing (NGS) technologies to study the genetics of a species. With these 
genotyping-by-sequencing approaches, in my case restriction-site associated DNA 



 Materials and Methods 17 

(RAD) sequencing, prior knowledge of the studied species’ genome is not needed. In 
addition, the approaches allow for simultaneous screening of thousands of loci, thus 
enabling the detection of weak genetic differentiation and loci under selection (Baird et 
al. 2008; Davey et al. 2011; Sherman et al. 2016). 

Table 1. Methodological approaches used in this thesis to study different aspects of species 
invasions.  

Chapter Approach Studied factor Extent of sampling 

I 
Public observations, 
demographic data 
collection 

Occurrence, 
habitat use, 
demographic 
comparisons 

Three locations sampled 
2011–2012, 
other three locations 
sampled 2011 

II Environmental DNA Detection of species 
17 locations, 
experimental and field 
samples 

III 
Genotyping-by-
sequencing (RAD-
sequencing) 

Population genetic 
structure, divergence 
and loci under divergent 
selection 

7 locations and two cohorts 

IV Demographic data 
collection 

Abundance, 
demography 

Three locations sampled 
2011–2016 twice per year 

V Experimental Impacts of a novel 
invader 

Aquarium and field 
experiments 

 

2.4 Population ecology and demography 
To obtain demographic data for chapters I and IV, I sexed the collected Rhithropanopeus 
harrisii individuals (Table 1, I, IV) based on abdomen width and the number of pleopods 
(Barnes 1980). For chapter I, I counted the number of individuals per crate and measured 
the carapace width (CW) of each individual with electronic calipers to an accuracy of 
0.01 mm. These data were used to compare the demographic data of R. harrisii in the 
northern Baltic Sea to the data collected from introduced populations in the southern 
Baltic Sea and a native population from the U.S (I).  

For chapter IV, I counted the total number of R. harrisii per crate as well as the number 
of females, males, juveniles, ovigerous females in summer, and eggs that each ovigerous 
female carried (the latter occurred only in 2012, 2014, and 2015). In addition, I measured 
the CW of each individual with electronic calipers to an accuracy of 0.01 mm. To assess 
the number of juveniles (young-of-year) in the fall sampling, I determined the cut-off 
size of the juvenile cohort individually for each site in each year according to the size 
distribution of the population (IV). The maximum size of juveniles ranged between 4.0 
and 7.5 mm CW. All individuals in the summer sampling were assigned as adults, as the 
young-of-year cohort appears later in the summer; therefore, there were no juveniles 
present at the time of the summer sampling (personal observation; Turoboyski 1973). 
The collected data were used to determine whether there were changes in the abundance 
and different demographic characteristics during the six-year monitoring period (IV). In 
addition, I also examined individuals for the presence of an external form of the 
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rhizocephalan parasite, Loxothylacus panopei (Gissler 1884; Van Engel et al. 1966) for 
chapters I and IV. 

To assess the importance of the different life history stages for the population growth 
rate and to examine the persistence of R. harrisii population in the northern Baltic Sea, 
I constructed a single sex stage-structured matrix model (Caswell 2000) using the 
population data collected from the Kaarina and Lapila sites combined in years 2012–
2016 (IV). In the matrix model, only female individuals were used as the sex ratio of R. 
harrisii is close to 1:1 (Turoboyski 1973; Hegele-Drywa et al. 2014). Hence, it is 
expected that fertilization of females is not limited by the lack of males. The individuals 
were divided into three size classes according to CW: juveniles (the same maximum size 
as described above), young-females (< 9 mm) and reproductive females (≥ 9 mm). 
Young-females represent small, non-reproductive females, as all ovigerous females 
collected throughout the six-year monitoring were ≥ 9 mm with two exceptions (CW of 
7.5 and 8.74 mm). I used the constructed matrices to estimate the proportional 
contribution of each life history stage with deterministic and stochastic elasticity values 
(Caswell 2000) and simulated a stochastic quasi-extinction probability to study the 
persistence of the R. harrisii population in the northern Baltic Sea over the next 50 years 
(IV).  

2.5 Using environmental DNA to detect introduced crab species 
I tested the suitability of the environmental DNA approach for detecting marine, benthic, 
introduced mud crab species in a brackish-water environment. First, I designed species-
specific quantitative real-time PCR (qPCR) primers and probes that had at least 6 
mismatches with the non-target crab species including the two crab species that have 
occasionally been encountered in the Archipelago Sea (Eriocheir sinensis and Carcinus 
maenas). To assess the amount of DNA R. harrisii releases in the water and how long 
DNA persist in the water after the removal of the target species, I conducted an aquarium 
experiment. Each separate unused plastic aquarium consisted of artificially produced 
seawater and one R. harrisii individual. R. harrisii individuals were left in the aquaria 
for 8 days, then removed. The water samples were collected (II) from each aquarium at 
day 1, 3, 5, and 8 after adding R. harrisii and on days 1, 2, 3, 5, and 7 after the removal 
of the R. harrisii. To determine the overall degradation rate of the target DNA in the 
aquarium samples, I fitted an exponential decay model to the data (II) as in Maruyama 
et al. (2014). 

Water in a natural environment usually contains organic material and DNA from a large 
number of species, all of which may influence the detectability of the target species. 
Thus, to validate the detectability of R. harrisii with the newly designed primers, I 
collected water samples from a sheltered bay where R. harrisii is readily observed (TF, 
personal observation). I collected 21 water samples (II) from near the bottom sediment 
using sterile syringes and snorkeling. To further test the usability of the eDNA approach 
to detect and monitor the R. harrisii, water samples were collected just below the surface 
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in 16 locations around the Archipelago Sea, and as a negative control location Lake 
Littoinen was used (II). R. harrisii was known to occur in 10 out of these 16 sampling 
locations. I considered a detection to be positive when two of the three technical 
triplicates resulted in a positive target species DNA amplification in qPCR (II). 

2.6 Population genetics 
For the population genetic study, I extracted DNA (III) from individuals collected from 
six different sites in the Baltic Sea including three sites in Finland, one in Estonia, one 
in Poland and one in Denmark together with one site in the native range in the east coast 
of North America. In addition, I extracted DNA from individuals from two cohorts (adult 
and juvenile) collected from the three sites in Finland. To attain the DNA sequences 
from the samples, I used the restriction-site associated DNA (RAD) sequencing 
approach (Baird et al. 2008). I prepared the four sequencing libraries following the 
protocol of Elshire et al. (2011) with a few modifications (Pukk et al. 2015; III). 

To obtain genotypes for the individuals, I built a de novo reference and mapped the 
sequences to that reference (III). Individuals were genotyped based on the allele ratio 
according to Hecht et al. (2013). To obtain the 1013 SNPs (a single-nucleotide 
polymorphism) used for the analyses, I filtered the SNPs to discard any variants that did 
not fulfill the multiple stringent quality requirements (III). I compared the genetic 
diversity and divergence of the introduced populations and tested the presence of 
temporal genetic variation among the cohorts in Finland. To assess the population 
divergence at different spatial scales, I performed a hierarchical analysis of molecular 
variance (AMOVA) and determined the pair-wise population differentiation FST values 
(III). I compared allele frequencies between the populations together with allelic 
richness and expected heterozygosity to assess the differences in the genetic diversity 
(III). To delineate the clusters of individuals, I used the Bayesian approach implemented 
in STRUCTURE (Falush et al. 2003) and performed a discriminant analysis of the 
principal components (DAPC) (Jombart et al. 2010). To reveal loci potentially under 
divergent temporal selection between cohorts in Finland, I performed a hierarchical 
island model implemented in Arlequin (Excoffier and Lischer 2010) (III). 

2.7 Impacts in the new community 
To evaluate the impacts of R. harrisii on the native species and communities in the 
northern Baltic Sea, I observed the prey choice of R. harrisii in the laboratory and in the 
field experiments. In order to compare the relative predation pressure of R. harrisii on 
mobile and sessile littoral invertebrate species as well as the impacts of R. harrisii on the 
different life stages (i.e. juvenile and adult) of the prey species, I conducted a series of 
laboratory experiments (Table 2, V). For a prey species, species associated with F. 
vesiculosus were used as F. vesiculosus is considered as a keystone species in the study 
area due to its functions as habitat for several mobile and sessile species. Thus, impacts 
of R. harrisii to species associated with F. vesiculosus could cascade to other trophic 
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levels. The prey species were isopod Idotea balthica, gammarids Gammarus sp., shrimp 
Palaemon sp., gobies Gobiidae, snail Theodoxus fluviatilis and blue mussel Mytilus 
trossulus. In the first and second set of experiments, individual crabs were 
simultaneously given different prey species one individual per species (Table 2). In the 
third set of experiment, individual crabs were simultaneously given three different prey 
species, individuals of three different size classes of each prey species and two 
individuals of each size class of each species (Table 2). At the end of each experiment, 
I removed the crabs from the aquaria and recorded the mortality of each prey item. 

Table 2. Experimental set-ups of the laboratory assays 

Experiment Prey species Number of prey 
individuals per aquarium 

Number of 
aquariums/ crabs  

per aquarium 

Duration  
(h) 

1 

Gammarus sp., 
Mytilus trossulus, 

Theodoxus fluviatilis, 
Gobiidae 

4 (1 per species) 29/1 12 

2 
Idotea balthica, 
Gammarus sp., 
Palaemon sp. 

3 (1 per species) 27/1 12 

3 
Idotea balthica, 
Gammarus sp., 
Mytilus trossulus 

18 (6 per species: 2 small, 2 
medium, 

2 large individuals) 
30/1 24 

 

To validate the results of these laboratory experiments, a caging experiment was 
performed in the field. Bushes of F. vesiculosus were attached to bricks and deployed 
into the water for 3.5 weeks to attain the natural densities of the species associated with 
F. vesiculosus. After 3.5 weeks, a cage (5 × 5 mm mesh) was added on the one set of F. 
vesiculosus bushes (no predation treatment), and on the second set of bushes, a cage and 
one crab were added (crab predation treatment). The third set of bushes were left open 
to simulate natural predation in the study area (natural predation treatment) (V). This 
experiment lasted four days, after which the bushes were retained, together with all the 
species. I evaluated the impacts of R. harrisii on the natural community by comparing 
the total number of species, the total number of macroinvertebrate individuals, the 
Shannon-Wiener diversity index (Magurran 2004), the number of T. fluviatilis, the 
number of Idotea isopods, the number of gammarid amphipods, and the number of blue 
mussels for the different predation treatments (V).  
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3. RESULTS AND DISCUSSION 
3.1 Population ecology and dynamics 
Rhithropanopeus harrisii was observed for the first time in Finland in 2009 near the 
Naantali port. In the following years, the distribution area of R. harrisii grew rapidly, 
extending ~30 km from the site of the first observation within just three years (I). Since 
then, the distribution area has expanded and now consists of the majority of the inner- 
and middle Archipelago Sea and extending to the southern Bothnian Sea (Fig. 2). In the 
northern Baltic Sea, R. harrisii was found in various habitats from soft sediments, hard 
bottoms and among the macroalgae Fucus vesiculosus, and does seem to be opportunistic 
when it comes to habitat use. Recently, R. harrisii has been also found in eelgrass 
(Zostera marina) beds (Gagnon and Boström 2016) and observed to prefer the F. 
vesiculosus habitat (Nurkse et al. 2015). This flexible habitat use behavior suggests that 
predicting the invasion potential of this opportunistic species should not be based on 
prior knowledge of habitat preference alone. 

Over the six-year monitoring period, a total of 3,288 R. harrisii were collected, sexed 
and measured. Of those, 1,797 were collected from Kaarina, 976 from Lapila and 515 
from Naantali. Of the collected individuals, 1,335 (40.6%) were adults (males and 
females composed 49.7 and 50.3% of adults) with 185 ovigerous females, and 1,953 
(59.4%) were juveniles. The sex ratio of the introduced population in the northern Baltic 
Sea was 1:1 unlike in the southern Baltic Sea where sex ratio is reported to be slightly 
skewed towards more males (54 and 52% of adults respectively; Turoboyski 1973; 
Hegele-Drywa et al. 2014). In the native range both male and female skewed sex ratios 
have been reported with 57 and 47% of males, respectively (Ryan et al. 1956; I) Not a 
single external form of the parasite Loxothylacus panopei was observed, indicating that 
R. harrisii has escaped from the parasite species when invading the Baltic Sea (I; IV; 
Hegele-Drywa et al. 2014). Lack of the parasite allows crabs to invest more energy in 
the growth and reproduction, especially as L. panopei castrates infected crabs decreasing 
the reproductive success of the population.  

The abundance of R. harrisii initially increased rapidly, but then declined although there 
were differences between the sampling sites (IV, Fig. 4). This type of rapid initial 
increase in the abundance of an introduced species is commonly observed (Simberloff 
and Gibbons 2004) and it is thought to be caused by multiple factors such as escape from 
predators and parasites and access to more resources (Torchin et al. 2003; Simberloff 
and Gibbons 2004). Despite the initial increase, after six years, the population abundance 
decreased to almost the same number, as observed at the start of the monitoring. Other 
introduced populations have also demonstrated this boom and bust pattern, eventually 
stabilizing at lower abundances than initially observed (Simberloff and Gibbons 2004). 
Despite the subsequent abundance decline, according to the quasi-extinction probability 
simulation, R. harrisii will persist in the study area at least for the next 50 years.  
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Figure 4. The mean number of 
Rhithropanopeus harrisii individuals 
per crate during a six-year monitoring 
period collected from three sites with 
95% confidence intervals. 

 

The abundance of R. harrisii in the northern Baltic Sea is lower than it is in the native 
range (I) although in the northern Baltic Sea the individuals grow larger (I). Larger sizes 
of introduced species in invaded areas is a common phenomenon observed in several 
species groups (Grosholz and Ruiz 2003; Parker et al. 2013; Sargent and Lodge 2014) 
and is considered to be caused by increased available resources in the invaded area or an 
absence of predators and parasites that allows individuals to invest more energy in 
growth (Torchin et al. 2001; Grosholz and Ruiz 2003; Sargent and Lodge 2014). When 
comparing the abundance of the introduced population in the northern and southern 
Baltic Sea, the abundance in the northern Baltic Sea is substantially higher than in the 
southern Baltic Sea (I). This difference might be caused by either a different stage in the 
invasion dynamics as the population in the southern Baltic Sea is older than the 
population in the northern Baltic Sea, a difference in predation pressure, or the more 
heterogeneous habitats in the northern Baltic Sea that can sustain a more abundant 
population. 

To understand the changes in the population dynamics during the monitoring period and 
to delineate factors potentially affecting the observed dynamics, I studied several 
demographic traits and population characteristics of R. harrisii. According to both 
deterministic and stochastic elasticities, changes in the survival of reproductive females 
has a larger impact on the population growth rate of R. harrisii compared to other life 
stages (IV). This is not surprising given the high reproductive output of females and low 
survival of larval and juvenile individuals (Costlow et al. 1966; Laughlin and French 
1989b). Taken together these results indicate that especially the reproductive females are 
the drivers of the overall population dynamics of R. harrisii in the northern Baltic Sea 
and factors regulating the abundance of adult females such as predation could regulate 
the population abundance. In the study area, several fish species such as perch (Perca 
fluviatilis) and four-horned sculpins (Myoxocephalus quadricornis) consume R. harrisii 
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(Puntila 2016). These fish predators preferentially consume adult R. harrisii between 9 
and 16 mm CW (Puntila 2016), thus it is possible that this predation could regulate the 
abundance of female crabs, and thus the population size of R. harrisii. 

Overall, in the northern Baltic Sea, female R. harrisii were smaller than males (IV). The 
maximum body-size of both male (CW 23.37 mm) and female (20.21 mm) R. harrisii in 
the northern Baltic Sea seemed to be slightly larger than individuals from other 
introduced populations elsewhere (the maximum CW of males 17.30–22.10 mm and 
females 10.90–19.41 mm; Mizzan and Zanella 1996; Roche and Torchin 2007; Hegele-
Drywa et al. 2014; Rodrigues and Incao 2015), except for males in one location in Poland 
(CW 26.1 mm; Turoboyski 1973). However, a reliable comparison is challenging, as the 
sampling methods were different. On the other hand, larger body sizes in ectotherms 
occur in lower temperatures where individuals grow slower but larger, and mature at 
larger body sizes (Angilletta et al. 2004; Kelley et al. 2015). R. harrisii in the northern 
Baltic Sea represents the northernmost known populations that experience some of the 
coldest water temperatures during winter, factor that might explain the slightly larger 
body size in the northern Baltic Sea. The larger maximum size of females in the northern 
Baltic Sea is notable as larger females lay more eggs (IV), potentially increasing the 
production of offspring to the population compared to other introduced or native 
populations. In addition, the overall percentage of ovigerous females in the northern 
Baltic Sea (53%) (IV) was higher than previously reported from the southern Baltic Sea 
( ~30–40%, Turoboyski 1973) indicating a higher reproductive output in the northern 
Baltic Sea. 

I observed a high proportion of recruits (young-of-year) in the northern Baltic Sea 
population (IV); more than 59% of all the collected individuals were juveniles. This 
number is more than the 30% of juveniles previously reported from the southern Baltic 
Sea (Hegele-Drywa and Normant 2014) although the definition of “juvenile” and the 
sampling methods were different. Hegele-Drywa and Normant (2014) defined all 
individuals smaller than 4.4 mm CW as juveniles unlike the current study where 
juveniles were defined separately for each year according to the population size 
distribution (the maximum size of juvenile range < 4.0–7.5 mm CW). However, the 
proportion of juveniles in northern Baltic Sea is higher than previously reported even 
when the 4.4 mm maximum carapace width is used (41%). While sampling methods 
could explain some of the differences in the proportion of juveniles between studies, the 
higher female reproductive output observed in northern Baltic Sea may also have 
contributed to the observed difference. Despite the large proportion of juveniles 
observed in this study, the majority of them appear not to survive the first winter, 
indicating that aperiodic cold and long winters may influence the range expansion and 
population dynamics of this species in the northern Baltic Sea as observed with other 
species (Canning-Clode et al. 2011; Canning-Clode and Carlton 2017).  

The size of the recruits was dependent on the mean water temperature in June–August 
(i.e. during the egg development, larval period, and first crab stages) (IV); juveniles grew 



24 Results and Discussion  

larger during warm summers compared to cold summers. Water temperature affects the 
duration of the planktonic larval stage of R. harrisii (Costlow et al. 1966; Laughlin and 
French 1989b). Hence, juveniles grow to a larger size after a warm summer due to a 
shorter planktonic larval stage, allowing them to metamorphose into the crab stage 
sooner. Similar patterns of increased growth rates and decreased intermolt periods in 
warmer temperatures have been observed in several crab species such as Callinectes 
sapidus, Chionoecetes bairdi, Eriocheir sinensis and Paralithodes platypus (Stoner et 
al. 2013; Cunningham and Darnell 2015; Ryer et al. 2016; Yuan et al. 2017). Other 
factors in addition to water temperature, such as juvenile density, may also impact the 
individual size of juveniles due to intra-specific competition (Donahue 2004; Moksnes 
2004). 

The abundance of juveniles in fall was more dependent on the temperature at the time of 
the larval period (July-August) than the reproductive output of the females in summer 
(IV) indicating that the survival of the planktonic larvae has a large impact on the 
recruitment of juveniles. As both the survival and growth of larvae are dependent on 
water temperature, R. harrisii may benefit from the warming summer temperatures 
caused by climate change. In the northern Baltic Sea, the sea surface water temperature 
is estimated to increase by 4ºC over the next 80 years (Meier 2006). This increase in 
water temperature could potentially increase larval survival, however, salinity is 
estimated to decrease, although at a slower rate than the water temperature increases 
(Meier 2006). The larval survival of R. harrisii positively relates to both temperature and 
salinity (Costlow et al. 1966; Laughlin and French 1989b; Gonçalves et al. 1995b); thus 
decreased salinity in the Baltic Sea may counteract the positive effects of increasing 
temperature on the planktonic larval stage of R. harrisii (Holopainen et al. 2016).  

3.2 Using environmental DNA to detect introduced crab species 
In chapter II I was able to detect hard-shelled mud crab DNA from environmental water 
samples collected from both field and experimental aquariums. Aquarium experiments 
revealed that degradation of R. harrisii DNA followed the exponential decay curve (II) 
as observed with several other species (Thomsen et al. 2012; Barnes et al. 2014; 
Maruyama et al. 2014). The majority of the DNA (89.9%) degraded during the first two 
days, however, I was able to detect R. harrisii DNA seven days after the individual was 
removed from the experimental aquarium. In previous studies the degradation speed of 
the target species DNA has varied substantially from 7 to 25 days (Dejean et al. 2011; 
Thomsen et al. 2012; Piaggio et al. 2014; Pilliod et al. 2014), as environmental factors 
such as bacterial composition, UV exposure, temperature and pH affect the speed of 
DNA degradation (Strickler et al. 2015; Tsuji et al. 2017).  

Based on the water samples collected from the sheltered bay at Seili, the overall detection 
rate of R. harrisii from the field samples was not that high (57%), although the 
consistency of detection among biological and technical replicates was high, thus 
suggesting that the detection of the target species was reliable using eDNA approach. 
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Despite of the 57% detection rate when sampling sheltered shallow bay, I was able to 
consistently detect R. harrisii DNA only in a single site of the ten locations where R. 
harrisii was known to occur. Earlier studies have demonstrated that the detection rate of 
eDNA approach varies depending on the target species from close to 100% for many 
fish species down to 59% for crayfish species (Thomsen et al. 2012; Tréguier et al. 
2014).  

The low detection rate of R. harrisii in the Baltic Sea samples might be a combination of 
multiple factors. Previous studies have observed that extracellular DNA persists in 
seawater only for few hours rather than for days (Dell’Anno and Corinaldesi 2004). Other 
factors affecting the detection rate include density, age and life-stage of the target species, 
and environmental factors, such as UV-radiation, salinity, and temperature together with 
technical factors such as, the amount of sampled water, DNA extraction method and DNA 
detection approach (Thomsen et al. 2012; Goldberg et al. 2013; Kelly et al. 2014; Mächler 
et al. 2014; Maruyama et al. 2014; Piaggio et al. 2014; Pilliod et al. 2014; Tréguier et al. 
2014; Deiner et al. 2015; Strickler et al. 2015). Therefore, it is hardly surprising that the 
reported detection rates vary among species and studies. Even though the detection of 
small mud crab species was possible, the results indicate that the method is not as sensitive 
when used to detect small, benthic, and hard-shelled species as it is to detect various fish 
and amphibian species. However, the high detection rates of crustacean species have 
observed in the latest studies (Dougherty et al. 2016; Agersnap et al. 2017) indicating the 
usability of the eDNA method to detect and monitor crustacean species. All in all, more 
studies are needed to optimize the methodological approach, to understand the factors 
affecting the detection rate of different species groups and to thoroughly evaluate the 
usability of the eDNA method in monitoring of introduced species. 

3.3 Population genetics 
In chapter III, I was able to distinguish regional-scale population divergence in the Baltic 
Sea and small-scale temporal variation in Finland. The Finnish and Estonian R. harrisii 
populations differed from each other substantially according to AMOVA and pairwise 
FST values (III). In addition, they were assigned to different clusters based on both 
STRUCTURE and DAPC analyses (Fig. 5a). As R. harrisii individuals collected from 
Finland and Estonia were genetically divergent, these results suggest that the Finnish R. 
harrisii population is most likely not the source population of the Estonian R. harrisii 
and vice versa, even though these populations are geographically the closest known 
populations. In addition, even though these two populations were observed for the first 
time only two years apart, it is conceivable that they do not originate from the same 
source population. 

Nevertheless, both of these newly founded populations possessed similar levels of 
diversity (III), thus indicating that R. harrisii has not experienced a major reduction in 
genetic diversity during secondary introductions within the Baltic Sea. The maintained 
genetic diversity might have been one factor facilitating the establishment success of this 
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species. In both Finland and Estonia the population growth of R. harrisii has been rapid 
following the first observation (Kotta and Ojaveer 2012; I; IV) which can reduce the 
genetic drift of newly founded populations (Nei et al. 1975; Zenger et al. 2003). As 
expected, based on the earlier work of Projecto-Garcia et al. (2010), the introduced 
populations in the Baltic Sea were highly divergent from a native population, thereby 
reflecting the long geographical distance and the invasion history of this species. 

The results indicated, however, that the four Polish individuals are genetically similar to 
Finnish individuals as they were clustered to the same cluster according to DAPC analysis 
(Fig 5a). Although these results need to be validated by using a larger number of specimens 
from the Southern Baltic Sea, it is possible that R. harrisii in Finland could potentially 
have originated from Poland, or these two populations share the same source population. 
The first observation from Finland was from an area near the port of Naantali, which has 
received vessels from the Gulf of  Gdańsk, Poland where R. harrisii has been observed 
since the early 2000s (Hegele-Drywa and Normant 2014). If indeed the Finnish population 
originated from the Gulf of Gdańsk, it means that the lag time between the first observation 
of R. harrisii in the Gulf of Gdańsk and the first observation in Naantali was rather short, 
i.e., a maximum of nine years. A short lag-time between successful invasions also indicates 
that R. harrisii possessed the necessary genetic diversity, adaptive plasticity, and/or 
tolerance to a wide range of environmental conditions and could rapidly acclimatize or 
adapt to a new environment (Bock et al. 2015). 

 
Figure 5. Discriminant analyses of principal components of the genetic structuring a) of all seven 
locations and b) of the Finnish sites only. Individuals are represented with symbols and sampling 
sites are color-coded with inertia ellipses. DEN= Denmark, EST= Estonia, FIN= Finland: KA= 
Kaarina adult, KJ= Kaarina juvenile, LA= Lapila adult, LJ= Lapila juvenile, NA= Naantali adult, 
NJ= Naantali juvenile and POL= Poland. 
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Within Finland, I observed no genetic divergence among the individuals collected from 
three geographically close sites (Fig 5b) which was expected due to a recent invasion to 
the study area (i.e., not enough time has passed to accumulate the genetic divergence 
between the sites). Despite the lack of genetic divergence among sites, I observed 
temporal variation between cohorts (adult vs. young-of-year) in genetic diversity and 
divergence (III). This observed variation between cohorts could be caused by genetic 
drift or potential selective effects related to a variation in environmental conditions, such 
as water temperature, during the larval period. Water temperature is known to affect both 
larval survival and growth (Costlow et al. 1966; Laughlin and French 1989a, b; IV). A 
similar difference in genetic diversity among the cohorts has also been observed in other 
species such as polychaete (Pygospio elegans), lake sturgeon (Acipenser fulvescens) and 
Hawaiian goby (Sicyopterus stimpsoni) (Kesäniemi et al. 2014; Welsh et al. 2014; 
Moody et al. 2015) and has been linked to environmental stress (Myrand et al. 2002; 
Ferrer et al. 2016).  

I identified a number of outlier loci under temporal divergent selection between cohorts 
using hierarchical island-model suggesting that contemporary selection in newly 
established areas may be stronger than selection associated with spatial heterogeneity 
within the Baltic Sea. Blasting of outlier loci against NCBI database revealed that 
temporal outliers are involved in collagen biosynthetic process, growth and stress 
responses. Thus, the functional annotation of outliers support their putative role in 
adaption to novel environment but in order to characterize the extent and severity of 
temporal selection in newly established areas availability of  better annotated reference 
genomes from closely related species is needed. 

This kind of temporal variation between cohorts, as observed in this study, may be easily 
interpreted as a fine-scale geographic differentiation if the differences in sampling time 
and/or age and sex of individuals are not explicitly taken into account. These results 
demonstrate the importance of considering the temporal perspective when studying fine-
scale geographical differentiation in highly mobile marine species to disentangle the 
spatial and temporal patterns of genetic divergence and diversity. 

3.4 Impacts in the new community 
In chapter V, I showed that Rhithropanopeus harrisii is an effective predator of the most 
common littoral grazers and has a negative impact on the native species inhabiting 
littoral habitats dominated by Fucus vesiculosus. Omnivorous R. harrisii consumed all 
presented prey species, but showed a clear choice for some species, such as isopods, 
gammarid amphipods and blue mussels although the feeding choices depended on the 
availability of prey (V). When R. harrisii was offered multiple individuals of the same 
species, R. harrisii consumed mainly isopods and gammarid amphipods and preyed on 
small and medium sized prey (V). Similar size selective predation of small- and medium- 
size individuals has been observed with other crab species (Juanes 1992; Mascaro et al. 
2003; Smallegange et al. 2008) as well as a preference for consuming softer-shelled 
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crustaceans (Buck et al. 2003). The result of this size-selective predation of small- and 
medium- size individuals suggests that R. harrisii could alter the prey population size-
structure through size selective predation on smaller individuals (Ojeda and Dearborn 
1991). In the aquarium experiments, the consumption rate of R. harrisii on isopods and 
gammarid amphipods was high, but it could have partially been due to the naïveté of 
these prey species to a novel predator and the prey’s lack of anti-predator behavior (Cox 
and Lima 2006; Sih et al. 2010). Although, I cannot exclude the effect of the confined 
space of an aquarium. 

In the field experiment, R. harrisii decreased the richness and abundance of its prey 
species and the Shannon-Wiener diversity index of the macroinvertebrate community 
associated with F. vesiculosus (Fig. 6a, V). From the individual species, the presence of 
R. harrisii only decreased significantly the abundance of T. fluviatilis (Fig. 6b), although 
the relationship could be indirect and the decrease a result of predator avoidance 
behavior of T. fluviatilis snails. These results show that R. harrisii can alter the invaded 
community by reducing the abundance of its prey species, decreasing species diversity, 
and altering the prey population size-structure through size selective predation. These 
impacts could be stronger during the early stage of the invasion due to the naïveté of the 
prey species to a novel predator, the prey’s lack of anti-predation behavior toward the 
predator (Cox and Lima 2006; Sih et al. 2010) as well as at elevated abundance of R. 
harrisii (IV).  

 
Figure 6. Box plot of the a) average Shannon-Wiener diversity index and b) the abundance of 
Theodoxus fluviatilis in crab predation and no predation treatments. Both comparisons between 
treatments are statistically significant (P < 0.05). 

Later, stable isotope analyses positioned adult R. harrisii among secondary consumers 
in the northern Baltic Sea (Aarnio et al. 2015). In addition, similar results of a decrease 
in species richness and diversity as well as the abundance of gastropods were observed 
in the natural community of F. vesiculosus (Jormalainen et al. 2016). These effects of R. 
harrisii on macroinvertebrates in F. vesiculosus community could cascade to other 
trophic levels as has been observed with other predatory crab species (Silliman and 
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Bertness 2002; Trussell et al. 2002). These cascading effects might become positive by 
increasing the abundance of F. vesiculosus by reducing the abundance of grazers 
(Engkvist et al. 2000) or negative by reducing the abundance of T. fluviatilis that feed 
on the fouling organism of F. vesiculosus that would otherwise completely cover it 
(Honkanen and Jormalainen 2005). However, top-down effects of R. harrisii are likely 
modified by top-down effects of fish as several fish species have been shown to predate 
R. harrisii in the study area (Puntila 2016).  
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4. CONCLUSIONS AND FUTURE DIRECTIONS 
The results of my studies show that R. harrisii has established a population in the 
Archipelago Sea (I, IV), the northernmost location of its distribution, and has become a 
part of the local community. The study of R. harrisii population ecology revealed the 
opportunistic habitat use of this species highlighting that the predictions of invasion 
potential and habitat specific impacts of introduced species cannot be based on the prior 
knowledge of the habitat occupancy as in the introduced range species might also occupy 
other habitats than previously recorded. Even though the abundance of R. harrisii seems 
to have followed the boom and bust pattern, the established population will most likely 
persist in the study area for the next 50 years (IV). In the northern Baltic Sea R. harrisii 
grows larger than in the native range or in the other introduced areas (I, IV) and has a 
higher abundance than in the southern Baltic Sea. As seen for many other introduced 
species, R. harrisii has not suffered a major reduction of genetic diversity during the 
invasion process (III), although there are significant differences between the cohorts in 
diversity and divergence indicating temporal selection in a newly established area. Taken 
together the results of chapters III and IV it seems that the genetic diversity and the rapid 
population growth of R. harrisii have facilitated the successful invasion of the northern 
Baltic Sea.  

I was able to detect introduced crab species using environmental DNA approach (II) 
although more research is needed to refine the sample collection and laboratory 
methodologies to increase the sensitivity of the detection. Recent advances in the studies 
of eDNA have incorporated eDNA and metabarcoding enabling the faster and more 
reliable simultaneous detection of multiple species from many different species groups 
(Brown et al. 2016; Borrell et al. 2017; Trebitz et al. 2017) increasing the usability of 
eDNA approach for detection and monitoring purposes. According to my results, the 
population growth rate of R. harrisii is most dependent on the survival of the 
reproductive females (IV), hence native predators that feed on adult R. harrisii, such as 
predatory fish, could regulate the population growth of R. harrisii in the study area. This 
information could also be used for management purposes to target the management effort 
to decrease the survival of reproductive females. The growth and recruitment of juveniles 
is dependent on the water temperature (IV). Therefore warming temperatures in the 
future caused by climate change is likely beneficial for R. harrisii. Finally, in the 
introduced community this species reduces the abundance of its prey species and lowers 
the species diversity with possibly cascading effects (V). Although, the population 
abundance seems to be stabling at the recently established populations, R. harrisii 
continues to expand its distribution range, and the rapid initial abundance increase is 
likely also occurring at the newly invaded sites.  

My thesis has only scratched the surface of introduced marine species in a species-poor 
community while opening a door to future studies among this nature’s own real-life 
experiment. In general, this thesis answers certain questions about the population 
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establishment, genetics, and impacts of an introduced marine species, however, at the 
same time it raises many more questions that are yet to be answered. Questions such as: 
How introduced species alter the native community in an ecological and evolutionary 
perspective? The roles of standing genetic variation, high phenotypic plasticity and rapid 
local adaptation in a successful species invasions? In the future, new molecular methods 
will likely create an opportunity for more efficient species detection and monitoring and 
also provide more detailed information about the position of the introduced species in 
the food web and the genetic adaptation processes that are needed for introduced species 
to establish populations in the northern sea areas. 
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