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Abstract 

My PhD research project focused on membrane-bound inorganic pyrophosphatases 

(mPPases). mPPases are integral membrane proteins that hydrolyze pyrophosphate 

(PPi) and transport H+ and/or Na+ ions across membranes thereby forming ion 

gradients. mPPases are found in bacteria, archaea, protists and plants. mPPases are 

potential drug targets against parasitic diseases like malaria. Furthermore, mPPases 

have been shown to improve stress resistance in plants. mPPases can be divided into 

different subfamilies based on their K+ requirements and ion pumping specificities. 

This thesis consists of four articles in which I studied the evolution and functional 

properties of different mPPase subfamilies. 

In the first article we discovered that previously identified  Na+-transporting PPases 

(Na+-PPases) are in fact able to transport H+ ions at low (< 5 mM) Na+ 

concentrations. The emergence of the H+ transport activity was surprisingly not 

accompanied with a decrease in the Na+ transport efficiency, suggesting that the two 

ions do not directly compete for the same ion translocation mechanism. Further 

enzyme kinetic and mutational analyses led to the identification of two distinct Na+ 

binding sites controlling the PPi hydrolysis and ion transport specificity in Na+-

PPases.  

In the second article we focused on a group of mPPases that is phylogenetically 

distant from other subfamilies. To investigate whether these enzymes are functional 

mPPases, divergent mPPases from Chlorobium limicola and Cellulomonas fimi were 

cloned and characterized. Despite the sequence divergence, these enzymes were 

identified as functional mPPases that transport H+ ions and are regulated by Na+. We 

concluded that the group of divergent mPPases forms a new subfamily—the Na+-

regulated H+-PPases. 

In the third article we investigated the evolutionary path from Na+-PPases to 

mPPases that can transport both Na+ and H+ ions (Na+,H+-PPases). Ten new enzymes 

were characterized and classified into subfamilies based on their ion pumping 

abilities. The first group of Na+,H+-PPases was named “Na+-regulated Na+,H+-

PPases” as their H+ transport was inhibited by Na+. The second group of Na+,H+-

PPases was named “true Na+,H+-PPases” because the Na+ concentration did not 

affect their ability to transport H+. Furthermore, we found that the two differentially 

regulated groups of double-pumping enzymes have evolved separately. 

In the fourth article we showed that the K+/Lys cationic center, which determines the 

K+ dependence of mPPases, is conserved among all mPPase subfamilies. Our 

mutational analysis revealed that the K+/Lys center has an important role in PPi 

hydrolysis and enhances Na+ ion binding. Furthermore, our results suggested that 

substrate inhibition is a result of the allosteric inter-subunit regulation of mPPases 

and that the K+/Lys center is part of the regulation mechanism. 
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Tiivistelmä 

Väitöskirjatyössäni tutkin membraanipyrofosfataaseja (mPPaaseja). mPPaasit ovat 

solukalvon proteiineja, joiden tehtävä solussa on hajottaa pyrofosfaattia (PPi) ja 

muodostaa ionigradientteja. mPPaaseja löytyy monista bakteereista, arkeista, 

kasveista ja alkueliöistä mutta ei ihmisistä eikä muista eläimistä. mPPaasit ovat 

mahdollisia lääkekohteita esimerkiksi malariaa vastaan, ja niiden on myös havaittu 

parantavan kasvien stressinsietokykyä. mPPaasit voidaan jakaa alaperheisiin niiden 

ionipumppausspesifisyyden ja K+-ioniriippuvuuden perusteella. Tämä väitöskirja 

koostuu neljästä artikkelista, joissa tutkin eri mPPaasien alaperheiden evoluutiota ja 

toimintaa. 

Ensimmäisessä artikkelissa havaitsin, että Na+-ioneja pumppaavilla mPPaaseilla eli 

Na+-PPaaseilla on kyky pumpata H+-ioneita matalissa Na+-ionikonsentraatioissa. 

H+-pumppaus ei vähentänyt entsyymin kykyä pumpata Na+-ioneita, joten nämä kaksi 

ionia eivät kilpaile samasta sitoutumispaikasta ioninkuljetusmekanismissa. 

Spesifisten aminohappomuutosten ja kineettisen analyysin avulla päättelimme, että 

Na+-PPaaseilla on kaksi erillistä Na+ ionin sitoutumispaikkaa, jotka ohjaavat PPi 

hydrolyysireaktion tehokkuutta ja ioninpumppausspesifisyyttä. 

Toisessa artikkelissa tutkin aiemmin tuntematonta mPPaasien alaperhettä, joka on 

fylogeneettisesti erillään muista alaperheistä. Tämän uuden alaperheen entsyymejä 

tutkimme Chlorobium limicola and Cellulomonas fimi bakteereista peräisin olevilla 

proteiineilla. Tutkimuksessa havaitsimme, että uuden alaperheen entsyymit ovat 

toimivia mPPaaseja, jotka pumppaavat H+-ioneita ja että ne ovat Na+-ioneilla 

säädeltäviä. 

Kolmannessa artikkelissa tutkin, miten mPPaasit, jotka kuljettavat sekä Na+ että H+-

ioneita (Na+,H+-PPaasit), ovat kehittyneet evoluutiossa Na+-PPaaseista. 

Fylogeneettisen puun perusteella valittiin 10 entsyymiä, jotka karakterisoitiin. 

Na+,H+-PPaasien havaittiin muodostavan kaksi ryhmää, joista ensimmäinen 

nimettiin ”Na+-ioneilla säädeltäviksi Na+,H+-PPaaseiksi”, koska niiden H+-

ionipumppauskyky heikkeni Na+ konsentraation kasvaessa. Toisen ryhmän 

entsyymit nimettiin ”aidoiksi Na+,H+-PPaaseiksi”, koska Na+-konsentraatio ei 

vaikuttanut niiden H+-ionipumppauskykyyn. Lisäksi päättelimme, että nämä kaksi 

Na+,H+-PPaasien alatyyppiä ovat kehittyneet evoluutiossa erikseen. 

Neljännessä artikkelissa näytimme, että K+/Lys keskus, joka määrää mPPaasien K+-

ioniriippuvuuden, on konservoitunut eri mPPaasi-alaperheiden välillä. 

Aminohappomuutosten avulla selvitimme K+-aktivaatiomekanismia ja havaitsimme, 

että K+/Lys keskuksella on tärkeä rooli PPi:n hydrolyysissä ja Na+-ionin 

sitoutumisessa. K+-aktivaation todettiin määräytyvän samoin kaikissa mPPaasien eri 

alaperheissä. Lisäksi tutkimuksessa saatiin tietoa mPPaasien mahdollisesta 

alayksiköiden välisestä toiminnallisesta mekanismista substraatti-inhibitiossa. 
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Abbreviations 

ACMA  9-Amino-6-chloro-2-methoxyacridine 

AMDP Aminomethylenediphosphonate 

ATP  Adenosine triphosphate 

CCCP Carbonyl cyanide 3-chlorophenylhydrazone 

DiBAC4(3)  Bis-(1,3-dibutylbarbituric acid)trimethine oxonol 

EC Enzyme commission 

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid 

ETH157 N,N′-Dibenzyl-N,N′-diphenyl-1,2-phenylenedioxydiacetamide 

FRET Flurescence resonance energy transfer 

H+-PPase Proton transporting PPase 

IDP Imidodiphosphate 

IMV Inverted membrane vesicles 

IPTG Isopropyl-β-D-thiogalactoside 

KF Potassium fluoride 

MOPS 3-(N-Morpholino)propanesulfonic acid 

mPPase Membrane-bound pyrophosphatase 

Na+-PPase Na+-transporting PPase 

Na+,H+-PPase Na+- and H+-transporting PPase 

NCBI National center for biotechnology information  

PDB Protein data bank 

PPase  Pyrophosphatase 

PPi  Pyrophosphate 

TMA Tetramethylammonium 

TMH  Transmembrane helix 

SD Standard deviation 

sPPase Soluble PPase 

wt Wild-type 
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Abbreviations of amino acid residues 
 

A Ala Alanine 

C Cys Cysteine 

D Asp Aspartate 

E Glu Glutamate 

F Phe Phenylalanine 

G Gly Glycine 

H His Histidine 

I Ile Isoleucine 

K Lys Lysine 

L Leu Leucine 

M Met Methionine 

N Asn Asparagine 

P Pro Proline 

Q Gln Glutamine 

R Arg Arginine 

S Ser Serine 

T Thr Threonine 

V Val Valine 

W Trp Tryptophan 

Y Tyr Tyrosine 

X  Any amino acid residue 
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Abbreviations of mPPases 
 

AVP1 Arabidopsis thaliana vacuolar H+-PPase 

AVP2 A. thaliana K+ independent H+-PPase 

Bm-PPase Brachyspira murdochii Na+,H+-PPase 

Bv-PPase Bacteroides vulgatus Na+,H+-PPase 

Cf-PPase Cellulomonas fimi divergent H+-PPase 

Ch-PPase Carboxydothermus hydrogenoformans H+-PPase 

Cl(2)-PPase Chlorobium limicola divergent H+-PPase 

Clen-PPase Clostridium lentocellum Na+,H+-PPase 

Clep-PPase Clostridium leptum Na+,H+-PPase 

Cp-PPase Clostridium phytofermentans Na+,H+-PPase 

Cyf-PPase Cytophaga fermentans true Na+,H+-PPase 

Da-PPase Desulfuromonas acetoxidans Na+-PPase  

Dh-PPase Desulfitobacterium hafniense K+-dependent H+-PPase 

Dl-PPase Dehalogenimonas lykanthroporepellens Na+-PPase 

Fj-PPase Flavobacterium johnsoniae K+-dependent H+-PPase 

Gs-PPase Geobacter sulfurredicencis K+-independent H+-PPase 

Ks-PPase Candidatus Kuenenia stuttgartiensis Na+-PPase 

Lb-PPase Leptospira biflexa K+-dependent H+-PPase 

Ma-PPase Mahella australiensis Na+,H+-PPase 

Mme-PPase Methylomonas methanica Na+-PPase 

Mm-PPase Methanosarcina mazei Na+-PPase 

Mr-PPase Melioribacter roseus  Na+,H+-PPase 

Oc-PPase Oscillibacter valericigenes Na+-PPase 

Po-PPase Prevotella oralis Na+,H+-PPase 

Rr-PPase Rhodospirillum rubrum K+-independent H+-PPase 

Sc-PPase Streptomyces coelicolor K+-independent H+-PPase 

Ss-PPase Shuttleworthia satelles Na+-PPase 

Tm-PPase Thermotoga maritima Na+-PPase 

Vr-PPase Vigna radiata vacuolar H+-PPase 
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1.  Introduction 

 

All cells, whether human, bacterial or plant, use ion gradients to power numerous 

biochemical processes. Ion gradients are electrochemical potential differences of 

ions across biological membranes. Ion gradients can be utilized by membrane 

proteins to move the cell, transport nutrients into the cell or to synthetize ATP. 

Primary pumps are membrane proteins that use chemical or light energy to form ion 

gradients. This thesis focuses on membrane bound inorganic pyrophosphatases 

(mPPases). mPPases are primary pumps that use the energy released in 

pyrophosphate hydrolysis to form H+ and/or Na+ ion gradients. mPPases are a 

functionally versatile group of enzymes that have a unique structure. mPPases are 

found in bacteria, archaea, protists and plants. mPPases have been used to develop 

stress resistant plants and they are also possible drug targets against malaria and other 

parasitic diseases. In my research during this PhD project I studied the functional 

properties of different mPPases subfamilies. The aim of this research was to 

understand the evolution, structure and function of this unique enzyme family. In the 

next section of this thesis I will review the key aspects of mPPase research and then 

I will present the results obtained in the four publications included in this thesis. 

 

1.1  Discovery of mPPases 
mPPases were discovered in the 1960s in the photosynthetic purple bacterium 

Rhodospirillum rubrum in studies of the light-induced formation of pyrophosphate 

(PPi) (Baltscheffsky et al., 1966). Further characterization studies revealed that the 

enzyme is a PPi-hydrolyzing H+-transporting mPPase (H+-PPase) (Moyle et al., 

1972; Sarafian et al., 1992).   In 1975, mPPases were first found in plants (Karlsson, 

1975). Plant H+-PPases were associated with the vacuolar membrane and found to 

be different from the R. rubrum H+-PPase in that they needed K+ ions to function 

(Rea and Poole, 1986; Walker and Leigh, 1981). Mung bean vacuolar H+-PPase was 

the first mPPase obtained in a purified form, allowing its molecular characterization 

and production of specific antibodies (Maeshima and Yoshida, 1989) and subsequent 

cloning (Sarafian et al., 1992). In addition to plants, mPPases were discovered in the 

protozoan Trypanosoma cruzi (Scott et al., 1998) and also the archaeon Pyrobaculum 

aerophilum (Drozdowicz et al., 1999). 

Genome sequencing and the development of gene cloning techniques enabled the 

discovery of new mPPase genes that were expressed in Escherichia coli and 

Saccharomyces cerevisiae  (Belogurov et al., 2002; Kim et al., 1994). As a result, 

new mPPases were characterized and the functional divergence of mPPases began to 

unravel. In 2005, the Na+ activation of some K+ dependent mPPases was discovered 

(Belogurov et al., 2005) and two years later the Na+ transport was first shown 

(Malinen et al., 2007). The first Na+-transporting mPPases to be characterized (Na+-
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PPases) were from Moorella thermoacetica, Thermotoga maritima and 

Methanosarcina mazei (Malinen et al., 2007). Subsequently, Luoto et al. (2011) 

established that Na+-PPases are a widespread subfamily of mPPases. The latest 

discovered subfamily of mPPases before I started my Ph.D. study were Na+,H+-

PPases (found in 2013). They are different from other mPPases in that they are able 

to simultaneously transport both H+ and Na+ ions across the membrane (Luoto et al., 

2013). 

 

1.2   Function of mPPases 

1.2.1  PPi hydrolysis 
Inorganic pyrophosphate (PPi) is formed in all living cells as a byproduct of many 

biosynthetic reactions (Heinonen, 2001). Inorganic pyrophosphatases (EC 3.6.1.1) 

hydrolyze PPi to yield orthophosphate. Pyrophosphatases can be divided into soluble 

and membrane bound enzyme families. Soluble PPases (sPPases) form two non-

homologous families (I and II). Soluble PPases convert the energy released during 

PPi hydrolysis into heat, whereas mPPases use the energy to form ion gradients. 

However, mPPases are not as effective as sPPases in catalyzing the hydrolysis of 

PPi. The typical hydrolysis rate of a mPPase is about 100-1000 times slower than 

that of sPPases (Kajander et al., 2013). kcat values of around 20 s-1 have been reported 

for mPPases (Maeshima and Yoshida, 1989; Nakanishi et al., 2003; Sato et al., 1994). 

The reverse reaction, PPi synthesis, has been measured for the purified H+-PPase 

from R. rubrum (Rr-PPase) to be 0.6 % (Belogurov et al., 2002) and for the Na+-

PPase from T. maritima (Tm-PPase) to be 0.02 % of the PPi hydrolysis activity 

(Belogurov et al., 2005). PPi synthesis is expected to be stimulated in energized 

membrane. Indeed, Rr-PPase has been shown to function as a PPi synthase in vivo 

(Baltscheffsky et al., 1966). The pH optimum of mPPases is 6.5-8.0 and it varies 

slightly between different enzymes (Hirono et al., 2005; Maeshima and Yoshida, 

1989; Rodrigues et al., 1999). 

mPPases require free Mg2+ ions for their enzymatic activity (Maeshima and Yoshida, 

1989; Sosa et al., 1992). In the active site, Mg2+ ions coordinate PPi and stabilize the 

negative charges of the substrate. Two Mg2+ ions bind directly to the enzyme and 

two Mg2+ ions bind as a substrate complex. The substrate for mPPase is Mg2PPi 

(Baykov et al., 1993a; Leigh et al., 1992; White et al., 1990). Additionally, PPi and 

Mg2+ form also other complexes in solution (Gordon-Weeks et al., 1996). Binding 

of the substrate, Mg2PPi, induces conformational changes and protects the enzyme 

against thermal inactivation (Yang et al., 2004), trypsin digestion and inactivation 

by mersalyl (Malinen et al., 2008).  

Aminomethylenediphosphonate (AMDP) and fluoride have been used to identify 

mPPase expression in E. coli and yeast to distinguish between the PPi hydrolysis 

activities of sPPases and mPPases . The PPi analogue AMDP is known to specifically 

inhibit mPPases much more strongly than it does soluble PPases (Baykov et al., 
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1993b). AMDP is a competitive inhibitor with an apparent inhibition constant of 1.8 

µM (Zhen et al., 1994). In contrast, fluoride strongly inhibits sPPases, whereas 

mPPases are not sensitive to it (Baykov et al., 1993b). This difference is due to 

structural differences in the active sites of mPPases and sPPases (Lin et al., 2012). 

Rr-PPase has been shown to be inhibited by 4-bromophenacyl bromide, N,N-

dicyclohexylcarbodiimid, diethyl pyrocarbonate and fluorescein 5-isothiocyanate 

(Schultz and Baltscheffsky, 2003). Also, Ca2+ has been shown to inhibit vacuolar 

H+-PPase, but not vacuolar ATPase (Maeshima, 1991; Rea et al., 1992). 

Furthermore, acylspermidine derivatives have been shown to inhibit plant type 

mPPases (Hirono et al., 2003). 

1.2.1.1  K+ and Na+ as mPPase activators 
K+ ion dependent H+-PPases require 30–50 mM K+ for full activity (Maeshima and 

Yoshida, 1989). Rb+ can replace K+ as the activating ion in both H+-PPases and Na+-

PPases (Gordon-Weeks et al., 1997; Malinen et al., 2007). Furthermore, NH4
+, Cs+, 

Na+ and Li+ ions are able to activate K+-dependent H+-PPases (Gordon-Weeks et al., 

1997; Obermeyer et al., 1996). K+ dependence is determined by one conserved amino 

acid (Belogurov and Lahti, 2002). Mutational studies with K+ dependent H+-PPase 

from Carboxydothermos hydrogenoformans showed that replacing the conserved 

Ala460 residue with Lys converted the enzyme into a K+-independent form. 

Interestingly, pyruvate kinases have a similar K+ dependence mechanism, where the 

positively charged amino group of lysine can functionally replace the positive charge 

of K+, since the GluLys mutation made the K+ dependent enzyme K+ independent 

(Laughlin and Reed, 1997). However, the reverse mutation did not work since the 

Lys to Ala mutation in a K+-independent H+-PPase from Streptomyces coelicolor did 

not convert the K+ dependence of the enzyme (Hirono et al., 2005).  

Na+-PPases absolutely require Na+ ions for their hydrolytic activity and they are 

further activated with millimolar concentrations of K+ ions (Belogurov et al., 2005; 

Malinen et al., 2007). Li+ can substitute Na+ as the activating ion in Na+-PPases 

(Belogurov et al., 2005). In Na+-PPases, the main effect of the K+ ion is to increase 

the affinity for Na+—in the presence of K+, less Na+ is needed for activating the 

enzyme (Malinen et al., 2007). Kinetic studies with different Na+-PPases showed 

that K+ increases the maximal rate of PPi hydrolysis 2–10-fold and the Na+ binding 

affinity 40–400-fold (Luoto et al., 2011). Na+-PPases have two binding sites for the 

Na+ ion (Malinen et al., 2007). However, the amino acid residues responsible for the 

Na+ ion binding have not been unequivocally identified. Asp703 apparently 

participates in Na+ ion binding in Tm-PPase. The D703N mutation lowered the 

maximal activity of the enzyme, and the variant enzyme required more Na+ for 

activity compared to the wild-type enzyme (Belogurov et al., 2005). Also, the 

mutation E242D in Cl-PPase weakened the Na+ binding (Luoto et al., 2011). 

1.2.2  Ion transport 
mPPases can transport H+ ions, Na+  ions or both (Luoto et al., 2013; Malinen et al., 

2007; Moyle et al., 1972). Also, a K+-transport activity was claimed for mPPases, 
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but subsequent studies have shown that K+ ions are not transported across the 

membrane by vacuolar H+-PPases or by Na+-PPases (Malinen et al., 2007; Ros et al., 

1995). H+ transport is a well-studied transport activity of mPPases. The H+ transport 

activity has been shown to be electrogenic, and the resulting H+ gradient can be used 

for ATP production by the cell. The formation of an electrochemical H+ potential 

difference of 270 mV was reported (Ros et al., 1995). Na+ transport is a quite recently 

discovered property of Na+-activated mPPases. Na+ transport by Na+-PPases results 

in the formation of an electrochemical potential gradient, as was shown by 

experiments with ionophores (Malinen et al., 2007). Na+,H+-PPases can transport 

both Na+ and H+ ions. Interestingly, the ability of the Na+,H+-PPase to transport both 

Na+ and H+ ions is preserved at different pH and Na+ concentrations (Luoto et al., 

2013). This indicates that there is no competition between the transported ions. It is 

not clear whether Na+ and H+ are transported by different subunits or if both ions are 

transported simultaneously during the catalytic cycle. Furthermore, the amino acid 

residues responsible for the ion transport specificity have not been identified. The 

semi-conserved glutamate is important for the ion transport function but a mutational 

analysis by Luoto et al. (2011) revealed that it is not solely responsible for the ion 

transport specificity. The semi-conserved glutamate mutated enzymes Fj-PPase 

E185S and Lb-PPase E253S were not able to transport  H+ or Na+ ions (Luoto et al., 

2011).  

The relative stoichiometry of PPi hydrolysis and ion transport is not clear. Studies 

have shown that one or two H+ ion can be transported for one PPi molecule 

hydrolyzed (Nakanishi et al., 2003; Schmidt and Briskin, 1993; Sosa and Celis, 

1995). A H+/PPi stoichiometry of 1 has been determined for a vacuolar H+-PPase 

from Beta vulgaris (beetroot) (Schmidt and Briskin, 1993) and a vacuolar H+-PPase 

from Vigna radiata (mung bean) expressed in recombinant form in yeast (Nakanishi 

et al., 2003). However, an H+/PPi coupling ratio of 2 was measured and calculated 

for a bacterial K+-independent H+-PPase by Sosa and Celis (1995). It is thus possible 

that H+-PPases from different subfamilies have different coupling ratios. No 

coupling ratio for Na+-PPase has been reported. 

 

1.3  mPPase subfamilies 
mPPases can be divided into subfamilies based on their ion requirements and ion 

pumping specificities (Table 1). The subfamilies have been established by the 

functional characterization of enzymes as well as sequence comparisons and 

phylogenetic analyses (Figure 1). The largest subfamily of mPPases is K+- 

independent H+-PPases (Baykov et al., 2013). K+-dependent H+-PPases require K+ 

ions to be fully functional. They are found in plants and protists but also in bacteria. 

K+-dependent enzymes are further divided into H+ transporters and Na+ transporters. 

Na+-transporting mPPases are fully active in the presence of Na+ and K+ ions 

(Malinen et al., 2007). The Na+ activation and the ability to transport Na+ distinguish 

them from H+-PPases. Na+-PPases form the second largest subfamily of mPPases 
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and are widespread in bacteria and archaea that live in conditions of high temperature 

or salinity. Na+,H+-PPases form their own subfamily and their unique feature is their 

capability to transport both Na+ and H+ ions (Luoto et al., 2013). Na+,H+-PPases are 

found in many anaerobic bacteria that live in the human gut. 

 

Table 1.  Examples of characterized mPPases from different subfamilies. 

Organism Subfamily Organism 

description 

Reference 

Streptomyces 
coelicolor 

K+-independent 

H+-PPase 

soil-dwelling gram-

positive bacterium 

Hirono et al., 2005 

Rhodospirillum 

rubrum 

K+-independent 

H+-PPase 

photosynthetic 

bacterium 

Baltscheffsky et al., 

1966 

Methanosarcina mazei Na+-PPase methanogenic 

archaeon 

Malinen et al., 2007 

Chlorobium limicola Na+-PPase photosynthetic, 

anaerobic, green 

sulfur bacterium 

Luoto et al., 2011 

Thermotoga maritima Na+-PPase thermophilic 

bacterium 

Belogurov et al., 

2005 

Vigna radiata plant type H+-

PPase 

bean plant Maeshima and 

Yoshida, 1989 

Arabidopsis thaliana plant type H+-

PPase 

small flowering plant Sarafian et al., 1992 

Flavobacterium 

johnsoniae 

Fj-type K+- 

dependent H+-

PPase 

anaerobic gram 

negative soil 

bacterium 

Luoto et al., 2011 

Leptospira biflexa plant type H+-

PPase 

non-pathogenic soil 

and water bacterium 

Luoto et al., 2011 

Moorella 

thermoacetica 

Na+-PPase thermophilic, 

acetogenic bacterium 

Malinen et al., 2007 

Pyrobaculum 
aerophilum 

K+-independent 

H+-PPase 

hyperthermophilic 

archaeon 

Drozdowicz et al., 

1999 

Bacteroides vulgatus 

 

Na+,H+-PPase human gut bacterium Luoto et al., 2013 

Trypanosoma cruzi H+-PPase human parasitic 

protozoan 

Hill et al., 2001 

Akkermansia 

muciniphila 

Na+,H+-PPase beneficial human gut 

bacterium 

Luoto et al., 2013 
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Figure 1. Phylogenetic tree of mPPases. The total number of sequences found in the NCBI 

protein sequence database in 2013 for each PPase subfamily is given in parentheses. The scale 

bar represents a 0.2 amino acid substitution per residue. (Reprinted from Baykov et al. Microbiol. 

Mol. Biol. Rev. 2013;77:267-276 Copyright © 2013, American Society for Microbiology) 

 

The conserved Ala/Lys site can be used to identify K+-dependent and independent 

subfamilies. In a H+-PPase from C. hydrogenoformans the signature site for K+ 

dependence is Ala460 (Belogurov and Lahti, 2002). K+ independent H+-PPases have 

Lys in the Ala position. K+ dependent H+-PPases form three subfamilies in the 

phylogenetic tree. C. hydrogenoformans-type, Flavobacterium johnsoniae-type  and 

plant-type K+-dependent H+-PPases form three different subfamilies, the first two 

having been named after their representative characterized members (Luoto et al., 

2011). These subfamilies are functionally similar but can be distinguished from each 

other based on a semi-conserved glutamate residue in sequence alignments. The 

glutamate is found near the ion gate at a slightly different position in the different 

subfamilies, is important for ion transport specificity and conserved within 

subfamilies. In the plant type H+-PPases, the glutamate is found in transmembrane 

helix 6 (TMH 6) (Glu301, V. radiate numbering). In Fj-type H+-PPases,  the 

conserved glutamate is not found in TMH 6 but in TMH 5 (Luoto et al., 2011), and 

in Na+-PPases, the glutamate is located near the end of TMH 6 (Glu246, T. maritima 

numbering). The most recently discovered subfamily of Na+,H+-PPases possesses 

four signature residues: Thr90, Phe94, Asp146, and Met176 (B. vulgatus-numbering) 
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(Luoto et al., 2013). These residues are apparently conserved and found in all 

enzymes of the Na+,H+-PPase subfamily. 

 

1.4  Evolution of mPPases 
mPPases have possibly evolved through a gene duplication event, as can be deduced 

from the homology between TMHs 5–6 and 15–16 and the loops between them 

(Hedlund et al., 2006; Kellosalo et al., 2012). Furthermore, the mPPase sequence is 

abundant in the evolutionarily old amino acids Gly, Ala, Asp and Val (Hedlund et 

al., 2006; Serrano et al., 2004). All in all, mPPases are thought to be evolutionarily 

old enzymes. They are found in organisms from all three domains of life and 

therefore are likely to have evolved before the divergence to bacteria, archaea and 

eukaryotes (Drozdowicz and Rea, 2001). It has been speculated that mPPases were 

present in the last universal common ancestor (LUCA) and also in a pre-LUCA 

extremophile (Baltscheffsky and Persson, 2014; Seufferheld et al., 2011).  

It has been proposed that PPi could have preceded ATP in the initial evolution of life 

on Earth (Holm and Baltscheffsky, 2011). Furthermore, it has been speculated that 

early life would have evolved using Na+ rather than H+ bioenergetics (Mulkidjanian 

et al., 2008). mPPases fit into this model as H+ PPases that have likely evolved from 

Na+-PPases (Luoto et al., 2011). Presumably, the first mPPase was a K+-dependent 

Na+ transporter. The ability to transport H+ ions evolved possibly from Na+,H+ 

PPases with some modifications in the ion channel that enabled also H+ ions to be 

pumped (Luoto et al., 2013). Exclusive H+ pumping has evolved independently at 

least three times forming the different K+ dependent H+-PPase subfamilies that have 

the semi-conserved glutamate in different positions (Luoto et al., 2011).  

 

1.5  Physiological significance 
mPPases work in parallel with ATPases to maintain ion gradients across membranes. 

On the other hand, mPPases work together with sPPases to hydrolyze PPi in cells. 

PPi hydrolysis is essential for all cells because the accumulation of PPi would inhibit 

biosynthetic reactions (Heinonen, 2001). H+-PPase can functionally replace sPPase 

as PPi hydrolyzing enzyme in yeast (Perez-Castineira et al., 2002). The two PPi 

hydrolyzing enzymes, mPPases and sPPases, are differentially regulated in the cell 

(López-Marqués et al., 2004). mPPases have different physiological locations in 

plants, protists and prokaryotes. In prokaryotes, mPPases are found in the plasma 

membrane, where they transport ions to the periplasmic space. In plants and protists, 

mPPases are found in the vacuolar or acidocalcisome membrane in addition to the 

plasma membrane (figure 2).  
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Figure 2. Location of mPPases in prokaryotic cells (A) and eukaryotic cells (B). Reprinted 

from Baykov et al. Microbiol. Mol. Biol. Rev. 2013;77:267-276 Copyright  © 2013, American 

Society for Microbiology 

 

1.5.1  mPPases in prokaryotes 
mPPases of all different subfamilies are found in prokaryotes (Luoto et al., 2011), 

but they are distributed between them sporadically. Even within the same genus, 

some species have an mPPase gene, while others do not. This is probably due to a 

lineage specific loss of mPPase genes or to a lateral gene transfer event (Baykov et 

al., 2013; Nelson et al., 1999). In many cases, mPPases are found in bacteria and 

archaea that live in extreme conditions such as high temperatures or high salinity 

(Serrano et al., 2004). mPPases hydrolyze PPi to create an H+ and/or Na+ ion gradient 

across the cell membranes in prokaryotes and can replace ATPases in conditions of 

low energy. They have an important role during fermentative growth (Bielen et al., 

2010; Schöcke and Schink, 1998). For example, transforming the energy released 

during PPi hydrolysis into an Na+ ion gradient has an important role in the caffeate 

respiration in Acetobacterium woodii (Biegel and Muller, 2011). 

According to one view, organisms that live at high temperatures would prefer Na+-

based bioenergetics over H+, because the cell membranes become leaky for protons 

at high temperatures. However, there is no direct correlation between the temperature 

of the environment and the mPPase pumping specificity. For example, a mPPase 

from Pyrobaculum aerophilum is believed to transport H+ despite the high 

temperature that the host organism has adapted to (Drozdowicz et al., 1999). 

Interestingly, an analysis by Luoto et al. (2011) suggests that Na+-transporting 

mPPases are more frequently found in organisms living in anaerobic and high-salt 

conditions. Na+-PPases can help to pump excess Na+ ions out of the cell. 

H+-PPase from R. rubrum can function in the  direction of H+-transport or PPi 

synthesis depending on the growth conditions (Baltscheffsky et al., 1966). In aerobic 

conditions when light is available, H+-PPase acts as a PPi synthase, whereas in 

anaerobic and low-light conditions H+-PPase maintains the H+ gradient. R. rubrum 
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cells producing a mutant H+-PPase grow slowly in low-light and anaerobic 

conditions (Garcia-Contreras et al., 2004). Furthermore, salt stress increases the 

expression of mPPase in R. rubrum (López-Marqués et al., 2004). E. coli and S. 

cerevisiae do not have genes for mPPases, but their genetically engineered versions 

expressing plant H+-PPases demonstrated enhanced tolerance against salt stress 

(Yoon et al., 2013). Furthermore, the expression of a Na+,H+-PPase from Clostridium 

methylpentosum improved salt tolerance in E. coli, S. cerevisiae and the tobacco 

plant (Yang et al., 2016). This indicates that mPPases can help the host to cope under 

stress conditions, but that mPPases are not essential for prokaryotes. 

1.5.2  mPPases in plants 
Both K+-dependent and K+-independent H+-PPases are found in plants. These two 

types of enzymes have been characterized in Arabidopsis thaliana and they are 

named AVP1 and AVP2. AVP1 is found in the vacuolar membrane, whereas AVP2 

is found in the membrane of the Golgi apparatus (Segami et al., 2010). AVP1 is a K+ 

dependent H+-PPase (Sarafian et al., 1992), and AVP2 is not its isoform but a 

separate type of an K+-independent H+-PPase (Drozdowicz et al., 2000). The 

expression level of AVP2 is low compared to AVP1 (Segami et al., 2010). H+-PPase 

studies in plants have mainly focused on the vacuolar type enzymes. Vacuolar H+-

PPases acidify the plant vacuole and are able to functionally complement vacuolar 

ATPases (Kriegel et al., 2015; Pérez-Castiñeira et al., 2011; Rea and Sanders, 1987). 

Vacuolar H+-PPases have important role in maintaining low levels of PPi to drive 

biosynthesis reactions in the cytosol (Segami et al., 2018).   

Overexpression of AVP1 increases the size of the plant, whereas plants, where AVP1 

expression has been knock-down, do not grow properly (Gaxiola et al., 2001). 

Vacuolar H+-PPase has an important role during the development of the plant, and 

PPi hydrolysis by an H+ PPase is needed in postgerminative growth (Ferjani et al., 

2011). Auxin-mediated growth enhancement has been suggested as an explanation 

for the larger size of the plants overexpressing a vacuolar H+-PPase (Li et al., 2005). 

In other studies, the PPi hydrolysis function has been suggested as the main 

regulatory function of the vacuolar H+-PPase (Ferjani et al., 2011). Accordingly, 

overexpression of a mutant vacuolar H+-PPase, that exhibits defective pumping, 

increased the size of the plants (Asaoka et al., 2016). Recent studies have also 

indicated that H+-PPase overexpression has an effect on sucrose transport (Khadilkar 

et al., 2016; Pizzio et al., 2015).  

Overexpression of a vacuolar H+-PPase has been used to engineer plants that have 

increased stress tolerance against cold, salt, nutrient deprivation and drought 

(Gamboa et al., 2013; Lv et al., 2009; Park et al., 2005). Interestingly, H+-PPases are 

naturally found in a halotolerant alga (Meng et al., 2011) and halophytic grass (Rauf 

et al., 2017). The overexpression of a transgenic H+-PPase has also been shown to 

increase the bio-mass of plants in a saline field (Schilling et al., 2014). Under Na+ 

stress, a plant cell can maintain its cytosolic functions by accumulating excess Na+ 

into the vacuole (Fukuda et al., 2004; Silva and Gerós, 2009). H+-PPases can help 
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plants tolerate salt stress by working together with a vacuolar Na+/H+ antiporter. 

Accordingly, the transgenic expression of a vacuolar H+-PPase together with a Na/H+ 

antiporter improved salt and drought resistance in Medicago sativa L. (alfalfa) and 

in A. thaliana (Brini et al., 2007; Liu et al., 2013).  

All in all, numerous studies have shown the effect of mPPase modifications on the 

stress resistance and growth of the plants. However, the molecular level explanation 

for this is not yet clear. Vacuolar H+-PPases likely have many roles, and the 

mechanism of growth enhancement is probably complex because of the differences 

in the regulation of vacuolar PPase genes in different cell types and during different 

developmental phases in plants (Gaxiola et al., 2016; Schilling et al., 2017).  

1.5.3  mPPases in protists 
In protists, H+-PPases are found in the plasma membrane, Golgi apparatus and 

acidocalcisome membranes (Martinez et al., 2002; Rodrigues et al., 1999; Scott et 

al., 1998). Acidocalcisomes are special cell organelles that contain an acidic solution 

rich in polyphosphate and Ca2+ ions and have an important role in the control of the 

pH and osmotic balance of the cell (Docampo and Moreno, 2011). Like plants, 

protists may encode two different kinds of mPPases in their genome. The type 1 

enzymes are located to the acidocalcisome membrane and are similar to the vacuolar 

H+-PPases found in plants. For example, Plasmodium falciparum has two mPPase 

genes (PfVP1 and PfVP2), of which PfVP1 is expressed more on both the mRNA 

and protein levels (McIntosh et al., 2001). mPPases have a key role in the survival 

of protists especially during osmotic stress and under changing salt levels. mPPase 

is essential for adaptation to salt stress during the endoparasitic phase of 

Philasterides dicentrarchi  (Mallo et al., 2016). Furthermore, when H+-PPase was 

silenced with RNA interference in Trypanosoma brucei, the acidocalcisome 

acidification was found defective and the silenced cells grew slower than controls 

(Lemercier et al., 2002).  

1.5.4  mPPases as drug targets 
mPPases are found in many human disease-causing protozoan parasites. These 

diseases include malaria, toxoplasmosis, trypanosomiasis and leishmaniasis. 

mPPases are crucial for the survival of several disease-causing parasites and for their 

ability to infect (Lemercier et al., 2002; Liu et al., 2014). Importantly, mPPases are 

not found in humans and consequently they are promising drug targets against 

parasitic diseases (Martin et al., 2001; Rodrigues et al., 1999; Shah et al., 2016). 

Different bisphosphonates have been shown to inhibit the growth of Plasmodium 

falciparum, Toxoplasma gondii, Trypanosoma brucei, Trypanosoma cruzi and 

Leishmania donovani (Martin et al., 2001). In addition,  an H+-PPase inhibiting drug 

was successfully used to treat a protozoan borne disease in cultured turbot fish (Mallo 

et al., 2016). 

mPPases are also present in pathogenic bacteria like Bacteroides fragilis and 

Clostridium tetani. Presumably, mPPases are not essential for the bacteria, so drugs 

that inhibit the function of mPPases would have only little effect on the survival of 
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the bacteria. Instead, a prospective drug molecule that binds to mPPase and opens its 

ion channel, thereby disturbing the ion gradient across the membrane, would have a 

dramatic effect on the cellular functions of the bacteria (Shah et al., 2016).  

 

1.6.  3-D Structure of mPPases 
mPPases exist as dimers (Maeshima, 1990; Mimura et al., 2005; Sato et al., 1991; 

Tzeng et al., 1996; Wu et al., 1991) (Figure 3A). The dimerization is important for 

their function, and coupling to a defective subunit lowers the activity of the enzyme 

(Yang et al., 2000, 2004). A mPPase monomer is constructed of 650 to 900 amino 

acid residues forming 16 transmembrane helices that are arranged into two 

concentric rings. The inner ring is formed by TMHs 5, 6, 11, 12, 15 and 16 (Kellosalo 

et al., 2012; Lin et al., 2012) (Figure 3B). A mPPase is tightly bound to the membrane 

due to its hydrophobicity (Figure 3C). Accordingly, purified mPPases require 

phospholipids (Maeshima and Yoshida, 1989) or a suitable detergent molecule 

(Kellosalo et al., 2011) to remain functional.  

 

 

Figure 3. A) mPPase dimer. The yellow line indicates the membrane boundaries. B) Cytosolic 

view of a mPPase monomer. The inner TMHs are colored in light pink. Mg2+, K+ and IDP are in 

cyan, green and orange, respectively. C) The hydrophobic residues of the mPPase dimer are 
colored in gray D) functional sites of a mPPase monomer. All figures were created from PDB 

ID: 4A01 using PyMOL (DeLano, 2002). 
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mPPases have a unique structure that does not resemble that of any other protein 

family. The 3-D structure of a mPPase has been solved by x-ray crystallography for 

two different kinds of enzymes – a plant type H+-PPase from V. radiata (mung bean) 

(Lin et al., 2012) and a Na+-PPase from the thermophilic bacterium T. maritima 

(Kellosalo et al., 2012).  There are currently six different structures for these 

mPPases in the protein data bank (Table 2). These structures represent different 

conformations with different ligands. The structures show the binding of the 

substrate analogue IDP, the product Pi and activating ions Mg2+, K+ and Na+. Four 

functional sites can be found in the core of the mPPase TMH bundle: the active center 

where the substrate binds, the coupling funnel, the ion gate and the exit channel 

(Figure 3 D). 

Table 2. All currently available mPPase structures found in PDB.  

PDB 

code 

organism resolution 

(Å) 

ligands conformation reference 

5GPJ Vigna radiata 3.5 Mg2+, PO4 product bound (Li et al., 

2016) 

5LZQ Thermotoga 

maritima 

3.49 IDP, Mg2+, Na+ substrate analogue 

bound 

(Li et al., 

2016) 

5LZR Thermotoga 

maritima 

4.0 WO4, Mg2+ product analogue 

bound 

(Li et al., 

2016) 

4AV3 Thermotoga 

maritima 

2.6 Ca2+, Mg2+ resting state (Kellosalo et 

al., 2012) 

4AV6 Thermotoga 

maritima 

4.0 PO4, K+, Mg2+ product bound (Kellosalo et 

al., 2012) 

4A01 Vigna radiata 2.35 Decylmaltoside, 

IDP, Mg2+, K+ 

substrate analogue 

bound 

(Lin et al., 

2012) 

 

In the active center of Vr-PPase (Figure 4 A), the substrate analogue 

imidodiphosphate (IDP) is coordinated by five Mg2+ ions and three conserved lysine 

residues: Lys250, Lys694 and Lys730 (Lin et al., 2012). A water molecule is 

coordinated by conserved aspartates (Asp287 and Asp731) near the substrate binding 

site. Hydrolysis is mediated by a nucleophilic water attack (Cooperman 1992, 

Kajander 2013). Also a K+ ion is found in the active site. K+ coordinates and 

increases the electrophilicity of a phosphate residue for the nucleophile attack in the 

hydrolytic center (Kellosalo et al., 2012). When the substrate is bound, the active 

center is closed by the loop between TMHs 5 and 6 (Figure 4 C, D). 

The coupling funnel is lined with conserved negatively charged asparagine residues. 

The 20-Å long funnel connects the hydrolytic center to the ion gate (Kellosalo et al., 

2012). In Tm-PPase, an Asp-Lys-Glu triad (Figure 4B) and in Vr-PPase an Asp-Lys 

pair form the gate to the ion transporting channel (Kellosalo et al., 2012; Lin et al., 

2012). The gate structure determines the specificity of the ion transport. 

Interestingly, a similar Asp-Arg/Lys pair is important for proton selection in a 

voltage-gated proton channel (Dudev et al., 2015). The exit channel of a mPPase is 

hydrophobic and contains no conserved amino acid residues. The exit channel and 
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ion gate are closed in all available structures. Superimposed structures of Tm-PPases 

with the substrate bound and in the resting state are shown in Figure 4 C. Binding of 

the substrate changes the conformation, as is indicated by the movements of the 

TMHs, especially of TMHs 11 and 12, and the cytoplasmic loop 5-6 that closes the 

active site. The gate residue Lys707 also moves up as a result of substrate binding 

(Figure 4 D). 

 

Figure 4. Vr-PPase (4A01) active center. IDP in orange, Mg2+ in cyan, and K+ in brown. B) The 

Tm-PPase gate residues and the Na+ ion in purple. C) The superimposed structures of Tm-PPase 

5LZQ in darker and 4AV3 in pale blue. Mg2+ ions in pink. D) The superimposed TMHs 5, 6 and 

12 and gate residues. All figures were created using PyMOL (DeLano, 2002). 

 

1.6.1  Functionally important amino acid residues 
Amino acid residues that are important for the function of mPPases have been 

identified by mutational analyses. Many of these residues are highly conserved. The 

active site and coupling funnel contain the majority of the functionally important 
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conserved residues. Asaoka et al. (2014) performed a wide mutational analysis of 

Vr-PPase and demonstrated the essential role of several residues near the substrate-

binding site (Thr249, Asp269, Asp507 and Asn534) and the H+ translocation 

pathway (Ile545, Leu555, Asn738, Val746 and Leu749). Furthermore, they 

identified two mutations that uncoupled PPi hydrolysis and H+-transport (Ile545A 

and Leu749A) (Asaoka et al., 2014).  

The conserved DX7KXE motif and the loop between TMHs 5 and 6 are important 

for the function of mPPases. Many of the amino acid residues found in the loop have 

been shown to be important for the hydrolysis function. Residues Asp253, Lys261, 

and Glu263 are needed for the function and Lys261 and Glu263 for binding the 

substrate (Nakanishi et al., 2001) in Vr-PPase. Lys250 is important for PPi binding 

and is the main target for trypsin digestion in Vr-PPase (Lee et al., 2011). 

An extensive mutational analysis of Sc-PPase identified Thr409, Val411, and 

Gly414 as essential for optimal function. Phe388, Thr389, and Val396 are needed 

for efficient H+ transport. Ala436 and Pro560 have a role in the coupling of PPi 

hydrolysis and H+ transport. Pro189, Asp281, and Val351 are needed for the function 

and Gly198, Glu262, Gly294, Ser325, Gly374, and Leu377 proved to be important 

for the PPi hydrolysis and proton-pumping activities (Hirono et al., 2007b, 2007a). 

In all of the cases described above, the mutation reduced the activity of the enzyme 

drastically, but some mutations proved to enhance the function of the mPPase. Thus, 

the F388Y and A514S mutations improved the activity and the coupling ratio of the 

Sc-PPase (Hirono and Maeshima, 2009).  

 

1.7  Mechanism of ion transport 
While the mechanism of hydrolysis by soluble PPases is understood well (Baykov et 

al., 2017; Oksanen et al., 2007), the ion transport mechanism of mPPases remains to 

be solved. Despite the evident functional similarity between well-characterized F1Fo-

ATPases and mPPases (both couple the hydrolysis of a phosphoanhydride to ion 

transport), their mechanisms are principally different because of the unique structure 

of the mPPases.  

Studies using an smFRET technique have shown that a mPPase has at least three 

conformations during its catalytic cycle (Huang et al., 2013). Based on the 3D-

structures, closure of the active site as a result of PPi binding is mainly due to the 

movement of TMHs 5, 6 and 12 (Kellosalo et al., 2012; Tsai et al., 2014). The loops 

between TMHs 5–6 and 13–14 bend over the active site to close it. Presumably, the 

closure of the active center is a critical step in the catalytic cycle and links hydrolysis 

to conformational changes (Shah et al., 2017).  The questions that remain are: how 

is the PPi hydrolysis coupled to ion transport and what is the order of the hydrolysis 

and transport events? Three different mechanisms have been proposed. 
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Li et al. (2016) have proposed a “Grotthuss type” mechanism of proton wiring for 

the transport, resembling that found in bacteriorhodopsin (Luecke, 1998). In this 

mechanism, PPi hydrolysis induces H+ pumping through a proton wire inside the ion 

channel. The proton does not move physically but instead the pumping is the result 

of a series of the breaking and forming of O-H bonds. However, it is not clear if the 

transported H+ ion is the same as the proton released from the water nucleophile 

during PPi hydrolysis or a separately bound ion. Also this model does not explain 

Na+ transport, and the conserved structure between prokaryotic and plant type 

mPPases indicates a conserved mechanism for the H+ and Na+ transport (Li et al., 

2016).  

Baykov et al. (2013) have proposed a unifying mechanism for both H+ and Na+ 

transport. They suggested that a proton generated during PPi hydrolysis could be 

directly transported (a direct Mitchelian coupling, as opposed to Boyer’s indirect 

coupling in F1Fo-ATPases). In Na+-transporting mPPases, the proton pushes out the 

Na+ ion to be transported and dissipates in the medium in the Na+-PPases, or is 

transported along with the Na+ ion in the Na+,H+-PPases. This mechanism assumes 

that the PPi hydrolysis step precedes the ion transport step. An alternative 

interpretation proposes that in Na+,H+-PPases H+ pumping by one subunit would 

allosterically induce the pumping of Na+  by the other subunit (Li et al., 2016; Luoto 

et al., 2013).  

Kellosalo et al. (2012) proposed a binding change mechanism (Figure 5). In this 

mechanism, substrate binding induces the opening of the ion transport channel, 

allowing the transport of the H+ or Na+ ion already present there. This mechanism 

differs from the above-described mechanisms in that it assumes that the transport 

event is induced by substrate binding and precedes the hydrolysis step. This 

mechanism was further elaborated in more recent publications (Hsu et al., 2015; Li 

et al. 2016; Shah et al., 2017). While the other mechanisms are purely speculative, 

the mechanism of Kellosalo et al. is supported by the electrometric observation that 

binding of the substrate analogue IDP to Vr-PPase does result in a small potential 

difference across the membrane. This effect, however, may have a different origin, 

given the involvement of interactions between the enzyme and multiple charged 

metal ions (Mg2+ and K+) on the one hand, and between the charged IDP molecule 

and one or two Mg2+ ions on the other. The observed potential difference may result 

from a change in the equilibria of these interactions upon IDP binding. The 

implications of this mechanism for the reverse reaction of PPi synthesis have been 

described (Regmi et al., 2016).  

The fine details of how PPi hydrolysis is coupled to the ion transport step and what 

determines the specificity of Na+/H+ ion pumping thus remain to be solved. It is, 

however, clear that any hypothetical mechanism of transport should explain both H+ 

and Na+ transport. 
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Figure 5. Binding change type mechanism of mPPase ion transport. Reprinted with permission 

from Kellosalo, J., Kajander, T., Kogan, K., Pokharel, K. and Goldman, A. (2012) ‘The structure 

and catalytic cycle of a sodium-pumping pyrophosphatase’, Science. 2012/07/28, 337(6093), pp. 

473–476. Reprinted with permission from AAAS, Copyright © 2012, American Association for 

the Advancement of Science 
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2.  Aims of the study 

 

The first aim of my Ph.D. thesis research project was to characterize the ion transport 

mechanism and specificity of Na+-PPases using functional assays in combination 

with mutational analyses. 

The second aim was to characterize the previously unknown evolutionary divergent 

group of enzymes that are only 30 % identical to other mPPase sequences. The goal 

was to clarify whether these enzymes are functional mPPases and to investigate if 

they have any unusual characteristics. 

The third aim of the project was to investigate the evolutionary path from Na+-PPases 

to Na+,H+-PPases by experimentally determining the ion transport specificities of 

several representative enzymes in the corresponding area in the phylogenetic tree for 

mPPases . When our preliminary data had revealed the existence of two types of 

Na+,H+-PPases, the aim was expanded to include a detailed functional 

characterization of both Na+,H+-PPase subfamilies.  

The fourth aim was to elucidate the mechanistic basis of the K+ dependence in all 

mPPase subfamilies and how it has changed during evolution.  
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3.  Materials and Methods 

3.1  Bioinformatics 
mPPase protein sequences were retrieved from the NCBI database using a BLAST 

search (Altschul et al., 1990). The Rr-PPase or Bv-PPase sequence was used as the 

query. Sequences were aligned using the MUSCLE multiple alignment program 

(Edgar, 2004). Sequences that were over 90 % similar were usually removed. 

Sequence alignments were manually trimmed so that only the areas with reasonably 

conserved amino acid residues remained. Next, the alignment sets were used as input 

for calculating phylogenetic trees with MrBayes 3.2.1 (Ronquist and Huelsenbeck, 

2003) or RaxML (Stamatakis et al., 2008).  

3.2  Expression of mPPases and the preparation of IMVs 
Membrane PPase encoding genes were cloned by PCR from genomic DNAs 

obtained from the Leibniz Institute DSMZ - German Collection of Microorganisms 

and Cell Cultures. In cases where the genomic DNA was not available, synthetic 

genes were ordered from Eurofins. Specific primers were ordered from TAG 

Copenhagen. The Nde I and Xho I restriction sites were utilized when possible to 

clone the genes into the pET36b vector. Cloning was verified by sequencing the part 

of the plasmid containing the mPPase gene. The E. coli XL1-Blue strain was used 

for plasmid copying. Mutations were introduced into the genes with specific primers. 

The mPPase proteins were expressed in the E. coli C41(DE3) strain (Miroux and 

Walker, 1996) carrying an additional pAYCA-RIL plasmid encoding transfer RNA’s 

that are rare in E. coli  (Belogurov et al., 2005). The expression was induced with 

0.2 mM IPTG and continued for 4–5 h. Cells were harvested by centrifugation at 

4500 x g for 15 min and washed with 10 % glycerol three times to remove the growth 

medium. Inverted membrane vesicles (IMVs) were prepared with some 

modifications according to Belogurov et al. (2005). Cells were suspended in 10 mM 

MOPS-TMAOH buffer, pH 7.2, containing 0.15 M sucrose, 1 mM MgCl2, 5 mM 

DTT, and 50 µM EGTA. DNAse I was added and the cells were broken with a French 

press using a pressure of 1000 psi. Cell debris was then removed by centrifugation 

at 40 000 x g for 30 min. The supernatant was transferred to an ultracentrifuge tube, 

and a 2 ml gradient of 900 mM sucrose was added to the bottom of the tube. The 

tubes were then ultracentrifuged for 2 h at 42 000 rpm using a 50.2.Ti rotor. The 

centrifugation was repeated three times and a new gradient was added between the 

runs. Notably, approximately one half of the vesicles isolated by centrifugation were 

inverted vesicles.  Finally, the gradient pillow containing the IMVs was collected 

and frozen in aliquots in Eppendorf tubes in liquid nitrogen. The IMVs were 

quantified by determining the total protein concentration using the Bradford method. 

The expression of mPPase proteins was verified with western blotting (Malinen et 

al., 2007). A vesicle sample containing 10 µg/µl protein was denaturated in SDS 

buffer at 50 °C for 15 min and loaded to a SDS-PAGE gel (4–20 %). After 

electrophoresis, the proteins were transferred to a nitrocellulose membrane (0.4 µm) 
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using a semi-dry blotter. The membrane was placed in blocking solution containing 

5 % milk powder in 100 mM Tris-HCl, pH 7.6, 0.1 % Tween-20 buffer. After 

incubating for 16 h at 4 °C, the membrane was rinsed with water and an antibody 

raised against the conserved H+-PPase peptide sequence 

IYTKAADVGADLVGKVE was added and incubated for 1 h at 22 °C. The 

membrane was then rinsed with a buffer containing 100 mM NaCl, 100 mM Tris-

HCl, pH 7.6 and 0.05 % Tween-20. Finally, the secondary anti-rabbit antibody was 

added and incubated for 1 h. The membrane was scanned with an Odyssey infra-red 

imager.  

3.3  Hydrolysis activity assay 
E. coli does not have a mPPase, and soluble PPase is washed away during vesicle 

preparation, so native E. coli vesicles could be directly used in PPi activity 

measurements. Mg2+, K+ and Na+ form different kinds of complexes with PPi. 

Association constants for the PPi complexes were taken into account when 

calculating the pipetted amounts of the reagents (Baykov et al., 1993a). Care was 

taken not to exceed the solubility limit of the Mg2PPi complex when planning the 

experiments. 

Hydrolysis activity was measured with a semi-automatic Pi analyzer (Baykov and 

Avaeva, 1981) at 25 °C. The analyzer continuously withdraws reaction medium, 

mixes it with sulfuric acid/molybdate and methyl green solutions and measures the 

resulting absorbance at 660 nm in a flow photometer. Changes in the absorbance are 

proportional to the Pi concentration. A typical reaction mixture contained 100 mM 

MOPS-TMAOH, pH 7.2, 40 µM EGTA, 5 mM Mg2+, 0-200 mM K+, 0-200 mM Na+, 

0,5-1000 µM Mg2PPi. The reaction was started by adding vesicles and the reaction 

rate was determined from the linear change in absorbance per second. The reactions 

were typically monitored for 4 min. Reaction rates were calculated from the initial 

slopes of recorder tracings. 

Trypsin inactivation of mPPase was measured with a trypsin to IMVs ratio of 1:10. 

IMVs were incubated with trypsin at 37 °C in the presence of 50 mM K+ or 100 µM 

imidodiphosphate. The hydrolysis activity of the IMVs was monitored in aliquots at 

different time points. 

3.4  H+ transport assay 
H+ transport was measured with a fluorimeter at 22 °C using the fluorescent dye 

ACMA. The reaction mixture typically contained 20 mM MOPS-TMAOH, pH 7.2, 

8 µM EGTA, 5 mM Mg2+, 300 µM Mg2PPi, 0–50 mM K+, 0–100 mM Na+, 20 µM 

ACMA and 0.15–0.3 mg/ml of vesicles. The excitation wavelength was 428 nm and 

emission 475 nm. The reaction was incubated for 4 min in the dark and then 2 min 

in light before PPi was added. The decline in the fluorescence indicated the 

accumulation of the H+ ion in the vesicles. The signal was restored by adding 10 mM 

NH4Cl which cleared the H+ gradient through the native E. coli  NH4
+/H+ transporter. 
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Alternatively, DiBAC4(3) was used as the fluorescent probe instead of ACMA to 

measure changes in membrane potential. 

3.5  Na+ transport assay 
Na+ transport was measured with 22Na at 22 °C. Typically, 1 mg/ml IMVs in 20 

MOPS-TMAOH, pH 7.2, 8 µM EGTA, 50 mM K+, 1 mM Na+, 5 mM Mg2+ was 

incubated with 22NaCl. The transport reaction was initiated by adding 10 µl PPi or 

for the control reaction, water. After 1 min, the reaction was stopped with EDTA. A 

60-µl aliquot of the reaction mixture was pipetted onto a nitrocellulose membrane 

over suction. The vesicles were rinsed with 1 ml of the buffer containing 100 mM 

Na+ to remove excess 22Na. The membrane was transferred into an Eppendorf tube 

and 1 ml of scintillation liquid was added. The amount of the 22Na isotope in the 

vesicles was determined by using a liquid scintillation counter (Beta Rack, Wallac). 

Usually 3–4 parallel measurements were done and the scintillation was counted also 

3 or 4 times for each sample. A reaction standard was made using 10 µl of the 

reaction mixture on the membrane without rinsing.  
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4.  Results and Discussion 

4.1  Studies of the transport specificity of Na+-PPases and 
Na+,H+-PPases (studies I and III) 
Our strategy to study the ion transport specificity and evolution of Na+-PPases and 

Na+,H+-PPases was to use well established kinetic and ion transport measurements 

combined with phylogenetic analyses and site-directed mutagenesis.  In study I, the 

ion pumping specificity of Na+-PPases was investigated and specific mutations were 

introduced to the C. limicola Na+-PPase (Cl-PPase). Mutations were designed based 

on the newly published structure of Tm-PPase showing a water molecule near the 

ion gate (Figure 6). To study if the Na+ ion binding site is located in place of the 

water molecule and to study the function of the ion gate, we designed mutations to 

see if they affect Na+ binding or ion transport. In study III, the evolution of the ion 

transport specificity of Na+-PPases and Na+,H+-PPases was analyzed by 

characterizing new enzymes that were located between the two enzyme families in 

the mPPase phylogenetic tree. 

 

Figure 6. The structure of the Tm-PPase ion gate. Corresponding amino acid residues in Cl-

PPase are marked in black. (Study I) 

 

4.1.1  mPPase expression and isolation of IMVs (studies I and III) 
Cl-PPase variant enzymes (Study I) and new wild-type mPPases, (Study III) were 

expressed in E. coli and isolated as inverted membrane vesicles (IMV). mPPases 

were visualized on Coomassie-stained SDS-PAGE gels. The calculated molecular 

mass of mPPase is approximately 75–80 kDa but due to the hydrophobicity of the 

proteins they migrate faster, at the rate of a 60–70-kDa protein. mPPases were also 

visualized by western blotting with an anti-H+-PPase antibody. Furthermore, the 

effects of inhibitors on the hydrolysis activities of the new enzymes were measured. 

The mPPase inhibitor AMDP inhibited the hydrolysis, whereas the sPPase inhibitor 

KF had only a small inhibitory effect. This proved that the detected PPi hydrolysis 

resulted from mPPase activity. Figure 7 shows the data for wild type and variant Cl-

PPase enzymes. The variant enzymes K681R, D239S and D239E did not display any 
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detectable mPPase hydrolytic activity. The enzymes explored in Study III are 

displayed in Figure 8. Again, all new enzymes demonstrated a hydrolysis activity 

and were identified as functional mPPases. 

 

 

Figure 7. Four of the seven Cl-PPase variants had a PPi hydrolysis activity. The expression of 

the wt and variant Cl-PPase enzymes was confirmed with a Coomassie stained SDS-PAGE gel 

(A) and by western blot (B). Hydrolysis activities were measured at 25 °C in the presence of the 

soluble PPase inhibitor KF and the mPPase inhibitor AMDP (C). The reaction mixture included 

5 mM Mg2+, 50 mM K+, 10 mM Na+, 100 µM Mg2PPi (pH 7.2).  (Study I) 

 

 

 

Figure 8. New enzymes were expressed as active mPPases. The expression of mPPases was 

verified with an anti-H+-PPase antibody (A) and Coomassie-stained SDS-PAGE (B). PPi 

hydrolysis activities were measured with inhibitors as indicated (C). (Study III) 

 



34 

 

4.1.2  Na+-PPases can transport H+ at low Na+ concentrations (study I) 
In study I, a major finding was that Na+-PPases can transport H+ ions at low Na+ 

concentrations. The H+-transport signal was seen when the Na+ concentration was 

below 5 mM. The H+ transport was measured for Cl-PPase at pH 6.2 and 8.2 in 

addition to pH 7.2 (Figure 9). At all tested pH values, the H+ transport was seen when 

the Na+ concentration was less than 5 mM and lowering the pH did not increase the 

H+ pumping. Transport measurements with ionophores showed that the signal was 

electrogenic. CCCP abolished the signal, ETH157 did not affect it and valinomycin 

enhanced it (Figure 9 B). H+ transport was measured also for other known Na+-

PPases and in all cases the H+ transport was seen at 0.1 and 1 mM Na+ concentrations 

but not for over 5 mM Na+ concentrations (Figure 10). Thus, we concluded that H+ 

transport at low Na+ concentration is a common feature of all Na+-PPases. 

  

Figure 9. Na+-PPases can transport H+ ions at low Na+ concentrations. A) The H+ transport of 

Cl-PPase was measured at 5 mM Mg2+, 50 mM K+ and different Na+ concentrations (indicated 

at the curves in mM). The additions of PPi and NH4Cl are indicated with arrows. B) The effects 

of ionophores and the mPPase inhibitor AMDP were measured at 0.1 mM Na+. C) Rr-PPase was 

used for comparison. The H+-transport of Cl-PPase was measured at pH 6.2 (D) and 8.2 (E). 

(Study I)  

 

D 

E 
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Figure 10. H+ transport is a common feature of Na+-PPases. The H+ transport of different Na+-

PPases was measured at 0.1, 1 and 10 mM Na+. (Study I) 

 

4.1.2.1  Lys681 has an important role in H+ transport in Cl-PPase 
In study I, the Na+ and H+ ion transport of Cl-PPase variant enzymes was assayed. 

The K681R, D239E and D239S variants did not transport H+ ions as expected since 

they did not have a PPi hydrolysis activity. Other variants (E242D, S243A and 

N677D) transported H+ ions, except for the K681N variant (Figure 11). The absence 

of H+ pumping by the K681N variant was not due to a small hydrolysis activity 

because the K681N variant has an activity similar to that of the N677D variant, which 

showed H+ pumping. Furthermore, the K681N variant transported Na+ ions at the 

same rate as the other mutants. This indicates that the mutation affected only the H+ 

transport but not the Na+ transport function. 

 
Figure 11. K681N variant enzyme is unable to transport H+. H+ transport was measured at 

different Na+ concentrations for Cl-PPase variant enzymes. 
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Na+ transport was measured with the 22Na isotope. The accumulation of transported 

Na+ into vesicles over time was measured for Cl-PPase in Study I (Figure 12A). The 

transport coupling ratio was calculated by dividing the amount of transported Na+ by 

the amount of PPi hydrolyzed in the same conditions (Figure 12B). The ratio (0.02 

to 0.035) was constant over the range of Na+ concentrations but very low, probably 

because of the leakiness of the E. coli membranes. The Na+ transport of Cl-PPase 

variant enzymes was measured at different time points (Figure 13). The variants 

(K681R, D239S and D239E) that did not show any hydrolysis activity did not 

transport Na+ ions either. The other variants (E242D, S243A, N677D and K681N) 

transported Na+ ions increasingly over time. Importantly, the K681N variant was 

able to transport Na+ ions, so the mutation affected only the H+ transport activity. 

 

 

Figure 12. Na+ accumulation by Cl-PPase was measured at different time points at 1 mM Na+ 

(A) or at different Na+ concentrations for a constant time (1 min) (B). The white bars represent 

the PPi hydrolysis activity and the gray bars the amount of transported Na+. (Study I) 
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Figure 13. All Cl-PPases variants transport Na+. The Na+ transport by Cl-PPase variants was 

measured with 1 mM Na+ over time. (Study I) 

 

4.1.2.2  Activating Na+ ion binds near the ion gate 
In study I, Na+ binding was measured for wild-type and variant Cl-PPase enzymes 

in the absence and presence of 50 mM K+ (Figure 14).  The mutations lowered the 

maximal activity compared to the wild type. Variant enzymes also required more 

Na+ for activation.  

 

 

Figure 14. Mutations near the gate affect Na+ binding. The hydrolysis activity was measured at 

different Na+ concentrations for the wild-type Cl-PPase (A) and variant enzymes. Open circles 

represent activity measured in the absence of K+ and closed circles in the presence of 50 mM K+, 

respectively. (Study I)  

All in all, our studies showed that the structure of the gate is very sensitive to changes 

in the amino acid residues. Furthermore, we showed that Lys681 has an important 

role in H+ ion transport. Our mutational analysis revealed that Na+-PPases have two 

Na+-binding sites near the gate. The first Na+-binding site activates PPi hydrolysis 

and the second one controls ion transport. Furthermore, Na+ and H+ ions do not 

compete for the same transport machinery. 
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According to the proposed mechanism of ion translocation, Lys 681 has a key role 

in the different transport specificity of Na+ -PPases and H+-PPases (Li et al., 2016). 

Interestingly, Lys movement upon PPi binding to Na+-PPases makes space to bind 

the Na+ ion to be transported (Figure 4B, D). However, when Na+ is not bound to the 

gate, H+ ion can be transported by Na+-PPase. This explains why Na+-PPases 

transport H+ only at low Na+ concentrations. The H+ transport of Na+-PPases is seen 

at sub-physiological Na+ concentrations so that while it is mechanistically 

interesting, it  probably has no physiological significance since the Na+ concentration 

in the cell is rarely under 5 mM. 

 

4.1.3  Na+,H+-PPases form two differently regulated groups (study III) 
In study III, the H+ transport of ten new enzymes from the Na+-PPase and Na+,H+-

PPase branches of the phylogenetic tree were characterized. The aim was to elucidate 

the ion pumping specificity and evolution of Na+-PPases and Na+,H+-PPases. The 

H+ pumping was assayed at different Na+ concentrations from 0.1 mM to 100 mM 

(Figure 15). The new enzymes were divided into three groups based on their H+ 

transport signal at different Na+ concentrations. Enzymes that were not able to 

transport H+ ions at Na+ concentrations >5 mM were classified as Na+-PPases, as 

defined in study I.  Ks-, Bm-, Ss-, Ov-, Mme- and Dl-PPases were therefore 

identified as Na+-PPases. 

Enzymes that were able to transport H+ ions at all tested Na+ concentrations were 

classified as “true” Na+,H+-PPases (Mr- and Cyf-PPases). The H+-transport of some 

enzymes was inhibited by Na+ and they were classified as Na+-regulated Na+,H+-

PPases (Ma- and Cp-PPases). Also, the Na+,H+-PPases that were previously reported 

by Luoto et al. (2013), were studied more closely. As a result, Bv-, Am- and Po-

PPases were classified as true Na+,H+-PPases and Clen- and Clep-PPases as Na+-

regulated Na+,H+-PPases. 
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Figure 15. Na+-PPases, Na+ regulated Na+,H+-PPases and true Na+,H+-PPases are identified by 

their H+ transport abilities. H+-transport was measured at different Na+ concentrations and the 

enzymes were divided into different subfamilies indicated with pink, yellow and purple for a true 

Na+,H+-PPase, a Na+-regulated Na+,H+-PPase and a Na+-PPase, respectively. (Study III) 
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In study III, all the new enzymes were shown to transport Na+ (Figure 16). The Na+-

PPases and Na+,H+-PPases could not be separated based on the Na+-transport data. 

Cl-PPase (a well-studied Na+-PPase) was used as a positive control and an 

established H+-PPase (Lb-PPase) as a negative control. 

 

 

Figure 16. Na+-PPases and Na+,H+-PPases cannot be separated based on Na+ transport data. All 

new enzymes transported Na+ ions. Lb-PPase was used as a negative control and Cl-PPase as a 

positive one. The error bars represent the SD of three independent measurements. (Study III) 

 

The Na+ dependence of PPi hydrolysis was measured in the presence and absence of 

K+ ions. In study III, all new enzymes were found to be Na+ activated, as expected 

(Figure 17). K+ further activated the enzymes and increased their affinity to Na+. The 

Na+ dependencies of Na+-PPases and Na+,H+-PPases were similar. Both types of 

enzymes were activated by Na+ and achieved their maximal activity in the presence 

of Na+ and K+. Our data on the effects of Na+ and K+ ions on the PPi hydrolysis were 

in line with previous reports on Na+-PPases and Na+,H+-PPases (Luoto et al., 2011, 

2013; Malinen et al., 2007).  
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Figure 17. Na+-dependence of PPi hydrolysis was measured in the presence and absence of 50 
mM K+. (Study III) 
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4.2  Discovery of Na+ regulated H+-PPases (study II) 

The aim of study II, was to determine if the enzymes in an evolutionarily divergent 

group are functional mPPases. A phylogenetic tree of all mPPases including the 

unidentified group of sequences was constructed (Figure 18).  The tree showed a 

divergent group of sequences that was clearly distant from the other subfamilies. A 

sequence alignment revealed that the divergent mPPases possess the amino acid 

residues important for Mg2PPi binding. Interestingly, divergent mPPases have 100–
150 extra amino acid residues compared to other prokaryotic mPPases. These extra 

residues are found in loops between TMHs and are predicted to form an extra TMH 

at the N-terminal end. Furthermore, divergent mPPases have Lys in the position were 

K+-independent mPPases have Ala, which suggests that they are K+-independent.  

Enzymes belonging to the divergent group from C. limicola and Cellulomonas fimi 

(Cl-PPase(2) and Cf-PPase, respectively) were chosen for characterization. The 

enzymes were cloned and expressed in E. coli. The enzymes showed a PPi hydrolysis 

activity that was not inhibited by KF and AMDP. However, the antibody normally 

used to detect mPPases did not recognize the divergent mPPases, so they were 

visualized as His-tagged variants using an anti-His antibody (Figure 19). 

 

Figure 18. Phylogenetic tree of mPPases including a previously uncharacterized 

phylogenetically distant group of enzymes. (Study II) 
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Figure 19. Divergent mPPases hydrolyze PPi. A) Western blot of divergent mPPases using an 

anti-His antibody. Order of the samples: 1. no-PPase 2. Cl-PPase(2) 3. Cf-PPase 4. His8-tagged 

Cl-PPase(2) 5. His8-tagged Cf-PPase 6. His6 protein ladder B) The activities of Cl-PPase(2) and 

Cf-PPase were measured in the presence of 5 mM Mg2+, 100 µM Mg2PPi and inhibitors. (Study 

II) 

 

4.2.1  Divergent mPPases are H+ transporters 
Cl(2)-PPase and Cf-PPase both transport H+ ions (Figure 20), but not Na+ ions 

(Figure 21). The H+ transport by Cl(2)-PPase was enhanced by K+ and inhibited by 

Na+. An H+ transport signal was also seen with DiBAC4(3), which is an indicator of 

membrane potential. AMDP inhibited the H+ transport by Cl-PPase(2). Na+ transport 

was not seen with Cl-PPases(2), so we concluded that divergent mPPases are H+ 

transporters. 

 

Figure 20. Divergent mPPases are H+ transporters A) Cl-PPase(2) H+-transport was measured 

with different added ions and ionophores as indicated at each curve B) Cl-PPase(2) H+ transport 

at  25–1000 µM Mg2PPi. C) H+ transport of Cl-PPase(2) measured with DiBAC4(3). (Study II) 
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Figure 21. Cl-PPase(2) and Cf-PPase cannot transport Na+ ions. The Na-PPase from C. limicola 

was used as a positive control. (Study II) 

 

 

4.2.2  Discovery of a novel Na+ regulation mechanism  
Based on their sequence, divergent mPPases were expected to be K+-independent. 

However, measurements showed that Cl-PPase(2) is activated by K+ ions and 

inhibited by Na+ ions. The effects of these ions depended on the substrate 

concentration (Figure 22). Furthermore, extensive kinetic measurements revealed 

that Na+ and K+ compete with Mg2+ ions for binding to the active site. Replacing the 

Mg2+ ion with K+/Na+ inhibited the enzyme especially at low substrate 

concentrations. However, at higher substrate concentrations K+ activated the 

enzyme.  The detailed kinetic characterization of Cl-PPase(2) can be found in the 

original publication of study II.  

Interestingly, C. limicola has two different kinds of mPPases: a Na+-PPase and a 

Na+-regulated H+-PPase. The Na+ regulation of the H+ transport may be used to 

regulate the activities of the two types of mPPases in the cell. The Na+ inhibition 

mechanism of Cl-PPase(2) may thus ensure that at a high and toxic Na+ 

concentration, the cell can use the available PPi pool to pump Na+ out of it, instead 

of consuming PPi to transport H+ ions. 
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Figure 22. Cl-PPase(2) is regulated by K+ and Na+ ions. A) The effects of KCl and NaCl were 

measured with 20 µM Mg2PPi and 1 mM Mg2+. The curve labelled as NaCl(KCl) shows the NaCl 

dependence measured in the presence of 50 mM KCl. TMACl was used to maintain a constant 

ionic strength. B) A hill plot of the NaCl data shown in panel (A). C) The effect of Mg2+ was 

measured with 20 mM Mg2PPi. 50 mM Na+ and K+ were added as indicated on the curves. D) 

The substrate dependence was measured with 5 mM Mg2+. Na+ (100 mM) and K+ (150 mM) 

were added as indicated on the curve. (Study II) 

 

4.3  Studies of the K+ ion dependence of mPPase subfamilies 
(study IV) 
In study IV, we explored the evolutionary conservation of K+ dependence/ 

independence across the mPPase protein family. An attractive hypothesis for the 

major sequence determinant of the K+ dependence/independence had been proposed 

previously based on the finding that an Ala460Lys substitution in a K+-dependent 

H+-PPase from C. hydrogenoformans rendered the enzyme K+-independent 

(Belogurov and Lahti, 2002). We wanted to expand the study of the K+ dependence 

to mPPases from all subfamilies. We performed the AlaLys mutation in five 

enzymes that represented different K+-dependent mPPase subfamilies. Furthermore, 

the reverse mutation LysAla was introduced to a K+-independent H+-PPase and a 

Na+-regulated H+-PPase to test if they became K+-dependent. 
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The chosen wild-type enzymes represented all of the different mPPase subfamilies. 

Dh-PPase and Gs-PPase were characterized for the first time in study IV. Other wild-

type enzymes, Da-PPase (Luoto et al., 2011), Bv-PPase (Luoto et al., 2013), Fj-

PPase (Luoto et al., 2011), Lb-PPase (Luoto et al., 2011) and Cl(2)-PPase (study II), 

had been previously characterized. Two new wild-type enzymes and five variants 

were all expressed in E. coli (Figure 23). 

 

Figure 23. Wild-type and variant enzymes were detected with western blot and SDS-PAGE (A). 

Two new wild-type (B) and seven variant enzymes (C) actively hydrolyzed PPi. (Study IV) 

 

4.3.1  The K+/Lys center determines K+ dependence in all subfamilies 
K+-dependent H+-PPases absolutely require millimolar concentrations of K+ for their 

activity. Na+-PPases achieve their maximal activity in the presence of K+ and Na+ 

but have some activity also with Na+ only. To study the effects of the mutations, the 

K+ activation of wild-type and variant enzymes was measured (Figure 24). Equation 

1 was derived for Scheme 1 and used to make the fittings. The fitting parameters are 

listed in Table 3. In all cases, the mutations lowered the PPi hydrolysis activities of 

the variant enzymes compared to the wild-type ones.  

Wild-type K+-dependent H+-PPases (Dh-, Fj- and Lb-PPases) were activated but the 

Ala  Lys variants of these enzymes were not activated by K+. Wild-type Na+-PPase 

(Da-PPase) and Na+,H+-PPase (Bv-PPase) were active in the presence of 10 mM Na+ 

but were further activated by K+. The AlaLys variants of these Na+-dependent 
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enzymes were not activated by K+ ions. Gs-PPase is a K+-independent H+-PPase and 

the activity of its wild-type form was not increased by K+ ions. However, the 

GsK460A variant was activated by K+. Cl-PPase(2) is a Na+-regulated H+-PPase that 

is slightly activated by K+ ions. The K553A variant enzyme had only low activity 

when no K+ ions were added, but it was clearly activated by added K+.  

Our measurements also revealed that K+-dependent H+-PPases demonstrate activity 

even in the absence of K+. PPi hydrolysis was measured for Dh, Fj and Lb-PPase 

with no K+ added. Furthermore, a small AMDP-sensitive H+ transport signal was 

observed with Dh-PPase in the absence of K+. This indicates that K+-dependent H+-

PPases surprisingly retain function in the absence of K+ ions.      

                                   

                            K1                      K2 

                ES       ↔       ESM       ↔       ESM2                        

                 ↓V0                   ↓V1                     ↓V2                                                                            

Scheme 1. K+ and Na+ binding to the enzyme–substrate complex.  

 

 

𝑣 = (𝑉1 + 𝑉0𝐾1/[M] + 𝑉2[M]/𝐾2)/(1 + 𝐾1/[M] + [M]/𝐾2)           (Eq. 1) 

 

 

 

Figure 24. K+ dependence of wild-type and variant mPPases. (Study IV) 

 



48 

 

Table 3. Kinetic parameters for the K+ activation of PPi hydrolysis at a fixed Mg2PPi 

concentration (100 µM). (Study IV)  
Enzyme V0, nmol min-1 mg-1 V1, nmol min-1 mg-1 V2, nmol min-1 mg-1 K1, mM 

Da† 160 ± 10 1360 ± 20 - 43 ± 2 

Da (A451K)* 67 ± 2 - - - 

Bv† 130 ± 10 320 ± 10 - 7 ± 2 

Bv (A485K)* 21 ± 1 - - - 

Dh 40 ± 10 970 ± 40 - 8 ± 1 

Dh (A460K) 61 ± 1 - - - 

Fj 20 ± 6 1170 ± 20 - 17 ± 1 

Fj (A495K) 70 ± 3 <20 - >100 

Lb 25 ± 6 570 ± 20 - 6 ± 1 

Lb (A480K) 23 ± 1 - - - 

Gs 700 ± 20 - - - 

Gs (K460A) 31 ± 2 70 ± 6 36 ± 3  16 ± 5† 

Cl(2) 230 ± 10 420 ± 50 - 90 ± 50 

Cl(2) (K553A) 21 ± 2 109 ± 4 - 23 ± 4 
* The assay mixture additionally contained 50 mM Na+. 
† K1 and K2 values were arbitrarily assumed to be equal. 

 

 

Figure 25. Na+ dependence of wild-type and variant mPPases in the presence and absence of 50 

mM K+. (Study IV) 

 

Na+ activation was measured for all wild-type and variant enzymes in the presence 

and absence of 50 mM K+ (Figure 25). In the absence of K+, Na+ was able to activate 

K+-dependent enzymes. The AlaLys-mutated H+-PPases (Dh-, Fj- and Lb-PPase) 

were not activated by Na+ but instead inhibited by high Na+ concentrations. In Na+-
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PPases and Na+,H+-PPases, K+ enhanced Na+ binding and increased the maximal 

catalysis rate. However, the AlaLys-mutated Na+-dependent enzymes (Da- and 

Bv-PPases) were similarly activated in the presence and absence of K+, indicating 

that the Lys replaced the activating function of the K+ ion. The kinetic parameters 

describing these effects can be found in the original publication 

 

4.3.2  Lys can functionally replace K+ in ion transport 
H+ transport by the AlaLys-mutated enzymes was seen in the presence and absence 

of K+ ions (Figure 26). The H+ transport of the LysAla variant enzymes was 

enhanced by K+ ions. The Cl-PPase(2) K553A variant showed no H+ transport in the 

absence of K+ ions. The Gs-PPase K460A variant transported H+ ions even in the 

absence of K+ ions but the transport rate nearly doubled in the presence of K+ ions. 

Dh-PPase also showed a small pumping signal in the absence of K+ ions, which was 

abolished by AMDP. This further indicated that K+ dependent H+-PPases have a 

small activity even when no K+ or Na+ is available. 

The AlaLys-mutated Da- and Bv-PPases were able to transport Na+ in the absence 

of K+ (Figure 27). As expected, the AlaLys variant of Lb-PPase was not able to 

transport Na+, indicating that the K+/Lys site does not control the ion pumping 

specificity. 

 

 
Figure 26. H+ transport by wild type and variant enzymes was measured in the presence and 

absence of 50 mM K+. (Study IV) 
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Figure 27. Na+ transport by wild type and variant enzymes was measured in the presence and 

absence of 50 mM K+. PPi was replaced with water in the control reactions, white bars). (Study 

IV) 

The effect of the K+ ion on the conformation of the mPPases was tested using trypsin 

digestion. The PPi hydrolysis activities of wild-type Dh-PPase and its A480K variant 

were measured in the absence and presence of 50 mM K+ and 100 µM 

imidodiphosphate (IDP). The substrate analogue IDP protected the enzymes from 

digestion but the K+ ion had no effect. Based on these results it seems that K+ ion 

does not induce conformational changes in the structure of the mPPases. 

 

Figure 28. PPi hydrolysis activity was measured at different time points during trypsin digestion 

(Study IV). 
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4.3.3  Substrate inhibition is a result of subunit asymmetry 
The substrate (Mg2PPi) dependence of the hydrolysis of all wild type and variant 

enzymes was measured in the presence and absence of 50 mM K+. Na+ (10 mM) was 

added to Da- and Bv-PPases to keep these Na+-transporting PPases active. Scheme 

2 describes how the substrate binds to two subunits of the enzyme. Equation 2 was 

used to make the fittings in Figure 29. Surprisingly, a significant decrease in the 

activity of all wild type enzymes was observed at high substrate concentrations 

suggesting that the binding of the second substrate molecule partially arrests the 

enzyme. Because the mPPase active site has only space for one substrate molecule 

and there are no other potential PPi binding sites, we concluded that the inhibition is 

due to substrate induced asymmetry in the function of the two subunits of the mPPase 

homodimer. At high substrate concentrations, substrate binding to one subunit 

interferes with substrate binding to the empty subunit. When both subunits are 

occupied by the substrate, the hydrolysis is slower. The inter-subunit regulation was 

only seen when the K+/Lys site was working optimally. But when the site was 

mutated or empty (no K+ bound) the substrate inhibition was not seen. 

 

                              Km1                                           

                        E2        ↔       E2S     →   V1 

              Km1 ↓↑       Km2        ↓↑ Km2        

                    SE2       ↔      SE2S    →   2V2                                                           

                     ↓V1 

Scheme 2. Substrate binding and hydrolysis in two active sites of a dimeric mPPase. 

  

𝑣 = (2𝑉1 + 2𝑉2[S]/𝐾𝑚2)/(2 + 𝐾𝑚1/[S] + [S]/𝐾𝑚2)                   (Eq. 2) 
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Figure 29.  PPi hydrolysis activity was measured at different substrate concentrations for wt and 

variant enzymes in the presence and absence of 50 mM K+. For Da-PPase and Bv-PPase, 10 mM 

Na+ was added to all reactions. (Study IV) 

 

 

4.4  Phylogenetic tree of mPPases  
A phylogenetic tree of all mPPases was constructed in study III (Figure 30 A). Table 

4 summarizes all of the new mPPase wild type and variant enzymes characterized in 

studies I-IV. The results gained in this thesis elucidate the most complete picture of 

mPPase subfamilies and evolution so far. 

Na+-PPases are probably the evolutionary precursors of all mPPases (Luoto et al., 

2011). In study I, we investigated the transport specificity of Na+-PPases. We 

discovered that Na+-PPases can transport protons at sub-physiological Na+ 

concentrations. Furthermore, we identified a Lys residue that has an important role 

in the H+ ion transport. We also identified two Na+-binding sites that control the 

hydrolysis and ion transport, respectively. Our results support thus the theory that of 

H+ transporting mPPases have evolved from Na+ transporters.  

In study II, the phylogenetic tree was expanded by identifying a new subfamily. We 

studied a phylogenetically divergent group of mPPases that was identified as Na+-

regulated H+-PPases. This previously unknown group of enzymes has a unique 

mechanism of regulation. 
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In study III we investigated enzymes located between Na+-PPases and Na+,H+-

PPases on the phylogenetic tree. A detailed tree of the Na+,H+-PPase clade was also 

created, and based on their characteristics, the enzymes were divided into Na+-

PPases, true Na+,H+-PPases and Na+-regulated Na+,H+-PPases (Figure 30 B). The 

tree shows that the Na+,H+ double-pumping ability has evolved twice in the nodes A 

and B and the two double-pumping subfamilies are separated by a group of Na+-

PPases. However, we were unable to identify distinct key amino acid residues that 

would explain the functional differences between the Na+,H+-PPases and Na+-

PPases. Furthermore, we concluded that the previously identified four signature 

residues (Luoto et al., 2013) are not limited to Na+,H+-PPases but are also found in 

some Na+-PPases. This means that the significance of the signature residues was 

previously overestimated and the double-transport ability has probably evolved two 

times through several small amino acid residue changes that tuned the ion gate and 

the channel. 

In study IV, the K+ dependence was explored and was shown to be similarly 

conditioned in all subfamilies. All in all, our results indicate that Lys can functionally 

replace the K+ ion in K+-dependent H+-PPases and Na+-PPases. Furthermore, 

replacing the Lys with Ala confers K+ activation to K+-independent enzymes. We 

conclude that the K+/Lys center is conserved across the different subfamilies and it 

has an important role in the communication between the subunits but has no effect 

on the ion transport specificity or mechanism. 
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Figure 30. Phylogenetic tree showing all mPPase subfamilies (A) and a detailed tree of the 

Na+,H+-PPase branch (B). Clade credibility values below 90 are shown. The experimentally 

characterized mPPases are indicated in bold. (Study III) 
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Table 4. All new wild type and variant enzymes characterized in these studies. 

Organism Abbreviation Subfamily NCBI number  Reference 

Chlorobium limicola Cl(2)-PPase Divergent H+-

PPase 

WP012466119 Study II 

Cellulomonas fimi Cf-PPase Divergent H+-

PPase 

AEE45454 Study II 

Brachyspira murdochii Bm-PPase Na+,H+-PPase WP013114293 Study III 

Candidatus Kuenenia 

stuttgartiensis 

Ks-PPase Na+-PPase CAJ72581 Study III 

Cytophaga fermentans Cyf-PPase true Na+,H+-

PPase 

WP027472795 Study III 

Clostridium 

phytofermentans 

Cp-PPase Na+ regulated 

Na+,H+-PPase 

WP012199835 Study III 

Dehalogenimonas 

lykanthroporepellens 

Dl-PPase Na+-PPase ADJ26073 Study III 

Mahella australiensis Ma-PPase Na+ regulated 

Na+,H+-PPase 

AEE96015 Study III 

Melioribacter roseus Mr-PPase true Na+,H+-

PPase 

WP014857027 Study III 

Methylomonas 
methanica 

Mme-PPase Na+-PPase AEG00770 Study III 

Oscillibacter 

valericigenes 

Oc-PPase Na+-PPase WP014119890 Study III 

Shuttleworthia satelles Ss-PPase Na+-PPase WP006906218 Study III 

Geobacter 

sulfurredicencis 

Gs-PPase K+ independent 

H+-PPase 

NP954331 Study IV 

Desulfitobacterium 
hafniense 

Dh-PPase K+ dependent 

H+-PPase 

BAE86625 Study IV 

Variant enzymes Abbreviation Mutation Other Reference 

C. limicola Na+-PPase Cl-PPase S243A  Study I 

  N677D  Study I 

  K681N  Study I 

  K681R inactive Study I 

  D239S inactive Study I 

  D239E inactive Study I 

C. limicola H+-PPase Cl(2)-PPase K553A  Study IV 

G. sulfurredicencis Gs-PPase K460A  Study IV 

Leptospira biflexa Lb-PPase A480K  Study IV 

D. hafniense Dh-PPase A460K  Study IV 

Bacteroides vulgatus Bv-PPase A485K  Study IV 

Desulfuromonas 

acetoxidans 

Da-PPase A451K  Study IV 

Flavobacterium 
johnsoniae 

Fj-PPase A495K  Study IV 
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5.  Concluding remarks and future prospects 

 

mPPases are a functionally versatile group of enzymes found in bacteria, archea, 

plants and protists. mPPases are potential drug targets against malaria and other 

protozoan diseases. Furthermore, mPPases offer possibilities for the biotechnical 

improvements of plants. Numerous studies have shown that overexpressing a 

vacuolar H+-PPase is a productive approach for engineering stress-resistant plants. 

mPPases are interesting objects for the study of bioenergetics and evolution. 

mPPases have a unique structure but the mechanism of coupling PPi hydrolysis to 

pumping and the ion transport specificity remain to be solved. A crystal structure of 

a Na+,H+-PPase would be helpful in elucidating the mechanism that determines the 

ion specificity.  

In this research, the functional diversity of mPPases was studied by characterizing 

new enzymes, discovering new properties of known enzymes and defining 

completely new enzyme subfamilies. The results gained during this thesis project 

elucidate the functional properties of mPPases and also the evolutionary path of the 

ion pumping specificity of these primary transporters.  
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