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Preface

The Workshop on Quantum Computing and Quantum Information was held on
June 3, 2019 at Tokyo, Japan, in conjunction with the 18th International Confer-
ence on Unconventional Computation and Natural Computation (UCNC 2019).
The Workshop was initiated by UCNC program committee members Shinnosuke
Seki and Jarkko Kari, who suggested to the organizers that such a workshop
could be beneficial. In the end of 2018, the program committee was assembled,
and the call for papers was published subsequently.

The topic area of the workshop was defined very broadly, and from the very
beginning it was clear that the workshop should distinguish from the main event
so that presentations including non-finished ideas should be also welcomed, and
this was explicitly mentioned in the letter calling for papers. All submitted papers
were peer-reviewed and the program committee accepted four contributions to
be presented in the workshop. Unfortunately one manuscript was withdrawn
by the authors, due to an unsuspected personal restriction for presenting the
manuscript in the workshop.

In addition to the contributing papers, the workshop included one plenary
talk. Mika Hirvensalo gave a lecture on the role of interference in computing.

The organizers gratefully acknowledge the support by the Academy of Fin-
land, University of Electro-Communications, Tokyo, and University of Turku,
Finland.
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Quantum Algorithms for the Most Frequently
String Search, Intersection of Two String
Sequences and Sorting of Strings Problems

Kamil Khadiev1,2 and Artem Ilikaev2

1 Smart Quantum Technologies Ltd., Kazan, Russia
2 Kazan Federal University, Kazan, Russia

kamil.hadiev@kpfu.ru, artemka.tema1998@gmail.com

Abstract. We study algorithms for solving three problems on strings.
The first one is the Most Frequently String Search Problem. The problem
is the following. Assume that we have a sequence of n strings of length k.
The problem is finding the string that occurs in the sequence most often.
We propose a quantum algorithm that has a query complexity Õ(n

√
k).

This algorithm shows speed-up comparing with the deterministic algo-
rithm that requires Ω(nk) queries.
The second one is searching intersection of two sequences of strings. All
strings have the same length k. The size of the first set is n and the size of
the second set is m. We propose a quantum algorithm that has a query
complexity Õ((n + m)

√
k). This algorithm shows speed-up comparing

with the deterministic algorithm that requires Ω((n+m)k) queries.
The third problem is sorting of n strings of length k. On the one hand,
it is known that quantum algorithms cannot sort objects asymptotically
faster than classical ones. On the other hand, we focus on sorting strings
that are not arbitrary objects. We propose a quantum algorithm that
has a query complexity O(n(logn)2

√
k). This algorithm shows speed-up

comparing with the deterministic algorithm (radix sort) that requires
Ω((n+ d)k) queries, where d is a size of the alphabet.
Keywords: quantum computation, quantum models, quantum algo-
rithm, query model, string search, sorting

1 Introduction

Quantum computing [26, 5] is one of the hot topics in computer science of last
decades. There are many problems where quantum algorithms outperform the
best known classical algorithms [12, 17, 19, 18].

One of these problems are problems for strings. Researchers show the power
of quantum algorithms for such problems in [25, 6, 29].

In this paper, we consider three problems:

? the Most Frequently String Search problem;
? Strings sorting problem;
? Intersection of Two String Sequences problem.



Our algorithms use some quantum algorithms as a subroutine, and the rest
part is classical. We investigate the problems in terms of query complexity. The
query model is one of the most popular in the case of quantum algorithms. Such
algorithms can do a query to a black box that has access to the sequence of
strings. As a running time of an algorithm, we mean a number of queries to the
black box.

The first problem is the following. We have n strings of length k. We can
assume that symbols of strings are letters from any finite alphabet, for example,
binary, Latin alphabet or Unicode. The problem is finding the string that occurs
in the sequence most often. The best known deterministic algorithms require
Ω(nk) queries because an algorithm should at least test all symbols of all strings.
The deterministic solution can use the Trie (prefix tree) [11, 7, 9, 21] that allows
to achieve the required complexity.

We propose a quantum algorithm that uses a self-balancing binary search
tree for storing strings and a quantum algorithm for comparing strings. As a
self-balancing binary search tree we can use the AVL tree [2, 10] or the Red-Black
tree [14, 10]. As a string comparing algorithm, we propose an algorithm that is
based on the first one search problem algorithm from [22–24]. This algorithm
is a modification of Grover’s search algorithm [13, 8]. Our algorithm for the
most frequently string search problem has query complexity O(n(log n)2 ·

√
k) =

Õ(n
√
k), where Õ does not consider a log factors. If log2 n = o(k0.25), then our

algorithm is better than deterministic one. Note, that this setup makes sense in
practical cases.

The second problem is String sorting. Assume that we have n strings of
length k. It is known [15, 16] that no quantum algorithm can sort arbitrary
comparable objects faster than O(n log n). At the same time, several researchers
tried to improve the hidden constant [28, 27]. Other researchers investigated
space bounded case [20]. We focus on sorting strings. In a classical case, we
can use an algorithm that is better than arbitrary comparable objects sorting
algorithms. It is radix sort that has O((n+d)k) query complexity [10], where d is
a size of the alphabet. Our quantum algorithm for the string sorting problem has
query complexity O(n(log n)2 ·

√
k) = Õ(n

√
k). It is based on standard sorting

algorithms like Merge sort [10] or Heapsort [30, 10] and the quantum algorithm
for comparing strings.

The third problem is the Intersection of Two String Sequences problem.
Assume that we have two sequences of strings of length k. The size of the first
set is n and the size of the second one is m. The first sequence is given and
the second one is given in online fashion, one by one. After each requested
string from the second sequence, we want to check weather this string belongs to
the first sequence. We propose two quantum algorithms for the problem. Both
algorithms has query complexity O((n + m) · log n · log(n + m)

√
k) = Õ(n

√
k).

The first algorithm uses a self-balancing binary search tree like the solution of
the first problem. The second algorithm uses a quantum algorithm for sorting
strings and has better big-O hidden constant. At the same time, the best known
deterministic algorithm requires O((n+m)k) queries.
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The structure of the paper is the following. We present the quantum subrou-
tine that compares two strings in Section 2. Then we discussed three problems:
the Most Frequently String Search problem in Section 3, Strings Sorting problem
in Section 4 and Intersection of Two String Sequences problem in Section 5.

2 The Quantum Algorithm for Two Strings Comparing

Firstly, we discuss a quantum subroutine that compares two strings of length
k. Assume that this subroutine is Compare strings(s, t, k) and it compares s
and t in lexicographical order. It returns:

? −1 if s < t;
? 0 if s = t;
? 1 if s > t;

As a base for our algorithm, we will use the algorithm of finding the minimal
argument with 1-result of a Boolean-value function. Formally, we have:

Lemma 1. [22–24] Suppose, we have a function f : {1, . . . , N} → {0, 1} for
some integer N . There is a quantum algorithm for finding j0 = min{j ∈ {1, . . . , N} :
f(j) = 1}. The algorithm finds j0 with expected query complexity

√
j0 and error

probability that is at most 1
2 .

Let us choose the function f(j) = (sj 6= tj). So, we search j0 that is the index
of the first unequal symbol of the strings. Then, we can claim that s precedes t
in lexicographical order iff sj0 precedes tj0 in alphabet Σ. If there are no unequal
symbols, then the strings are equal.

We use the standard technique of boosting success probability. So, we repeat
the algorithm 3 log2 n times and return the minimal answer, where n is a number
of strings in the sequence s. In that case, the error probability is O

(
1

23 log n

)
=(

1
n3

)
.

Let us present the algorithm. We use The first one search(f, k) as a
subroutine from Lemma 1, where f(j) = (sj 6= tj). Assume that this subroutine
returns k + 1 if it does not find any solution.

Let us discuss the property of the algorithm:

Lemma 2. Algorithm 1 compares two strings of length k in lexicographical order
with query complexity O(

√
k log n) and error probability O

(
1
n3

)
.

3 The Most Frequently String Search Problem

Let us formally present the problem.
Problem. For some positive integers n and k, we have the sequence of strings

s = (s1, . . . , sn). Each si = (si1, . . . , s
i
k) ∈ Σk for some finite size alphabet Σ.

Let #(s) = |{i ∈ {1, . . . ,m} : si = s}| be a number of occurrences of string s.
We search s = argmaxsi∈S#(si).
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Algorithm 1 Compare strings(s, t, k). The Quantum Algorithm for Two
Strings Comparing.

j0 ← The first one search(f, k) . The initial value
for i ∈ {1, . . . , 3 log2 n} do

j0 ← min(j0,The first one search(f, k))
end for
if j0 = k + 1 then

result← 0 . The strings are equal.
end if
if (j0 6= k + 1)&(sj0 < tj0) then

result← −1 . s precedes t.
end if
if (j0 6= k + 1)&(sj0 > tj0) then

result← 1 . s succeeds t.
end if
return result

3.1 The Quantum algorithm

Firstly, we present an idea of the algorithm.

We use the well-known data structure a self-balancing binary search tree. As
an implementation of the data structure, we can use the AVL tree [2, 10] or the
Red-Black tree [14, 10]. Both data structures allow as to find and add elements
in O(logN) running time, where N is a size of the tree.

The idea of the algorithm is the following. We store pairs (i, c) in vertexes of
the tree, where i is an index of a string from s and c is a number of occurrences
of the string si. We assume that a pair (i, c) is less than a pair (i′, c′) iff si

precedes si
′

in the lexicographical order. So, we use Compare strings(si, si
′
, k)

subroutine as the compactor of the vertexes. The tree represents a set of unique
strings from (s1, . . . , sn) with a number of occurrences.

We consider all strings from s1 to sn and check the existence of a string in
our tree. If a string exists, then we increase the number of occurrences. If the
string does not exist in the tree, then we add it. At the same time, we store
(imax, cmax) = argmax

(i,c) in the treec and recalculate it in each step.

Let us present the algorithm formally. Let BST be a self-balancing binary
search tree such that:

? Find(BST, si) finds vertex (i, c) or returns NULL if such vertex does not
exist;

? Add(BST, si) adds vertex (i, 0) to the tree and returns the vertex as a result;

? Init(BST ) initializes an empty tree;

Let us discuss the property of the algorithm.

Theorem 1. Algorithm 2 finds the most frequently string from s = (s1, . . . , sn)
with query complexity O(n(log n)2 ·

√
k) and error probability O

(
1
n

)
.
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Algorithm 2 The Quantum Algorithm for Most Frequently String Problem.

Init(BST ) . The initialization of the tree.
cmax ← 1 . The maximal number of occurrences.
imax ← 1 . The index of most requently string.
for i ∈ {1, . . . , n} do

v = (i, c)← Find(BST, si) . Searching si in the tree.
if v = NULL then

v = (i, c)← Add(BST, si) . If there is no si, then we add it.
end if
c← c+ 1 . Updating the vertex by increasing the number of occurrences.
if c > cmax then . Updating the maximal value.

cmax ← c
imax ← i

end if
end for
return simax

Proof. The correctness of the algorithm follows from the description. Let us dis-
cuss the query complexity. Each operation Find(BST, si) and Add(BST, si)
requires O(log n) comparing operations Compare strings(si, si

′
, k). These op-

erations are invoked n times. Therefore we have O(n log n) comparing operations.
Due to Lemma 2, each comparing operation requires O(

√
k log n) queries. The

total query complexity is O(n
√
k(log n)2).

Let us discuss the error probability. Events of error in the algorithm are
independent. So, all events should be correct. Due to Lemma 2, the probability
of correctness of one event is 1−

(
1− 1

n3

)
. Hence, the probability of correctness

of all O(n log n) events is at least 1−
(
1− 1

n3

)α·n logn
for some constant α.

Note that

lim
n→∞

1−
(
1− 1

n3

)α·n logn

1/n
< 1;

Hence, the total error probability is at most O
(
1
n

)
.

�

The data structure that we used can be considered as a separated data struc-
ture. We call it “Multi-set of strings with quantum comparator”. Using this data
structure, we can implement

? “Set of strings with quantum comparator” if always c = 1 in pair (i, c) of a
vertex;

? “Map with string key and quantum comparator” if we replace c by any data
r ∈ Γ for any set Γ . In that case the data structure implements mapping
Σk → Γ .

All of these data structures has O((log n)2
√
k) complexity of basic operations

(Find, Add, Delete).
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3.2 On the Classical Complexity of the Problem

The best known classical algorithm stores string to Trie (prefix tree) [11, 7], [9,
21] and do the similar operations. The running time of such algorithm is O(nk).
At the same time, we can show that if the algorithm tested o(nk) variables, then
it can return a wrong answer.

Theorem 2. Any deterministic algorithm for the Most Frequently String Search
problem has Ω(nk) query complexity.

Proof. Suppose, we have a deterministic algorithm A for the Most Frequently
String Search problem that uses o(nk) queries.

Let us consider an adversary that suggest an input. The adversary wants to
construct an input such that the algorithm A obtains a wrong answer.

Without loss of generality, we can say that n is even. Suppose, a and b are
different symbols from an input alphabet. If the algorithm requests an variable
sij for i ≤ n/2, then the adversary returns a. If the algorithm requests an variable

sij for i > n/2, then the adversary returns b.

Because of the algorithm A uses o(nk) queries, there are at least one sz
′

j′ and

one sz
′′

j′′ that are not requested, where z′ ≤ n/2, z′′ > n/2 and j′, j′′ ∈ {1, . . . , k}.
Let s′ be a string such that s′j = a for all j ∈ {1, . . . , k}. Let s′′ be a string

such that s′′j = b for all j ∈ {1, . . . , k}.
Assume that A returns s′. Then, the adversary assigns sz

′

j′ = b and assigns

sij = b for each i > n/2, j ∈ {1, . . . , k}. Therefore, the right answer should be s′′.

Assume that A returns a string s 6= s′. Then, the adversary assigns sz
′′

j′′ = a

and assigns sij = a for each i ≤ n/2, j ∈ {1, . . . , k}. Therefore, the right answer
should be s′.

So, the adversary can construct the input such that A obtains a wrong an-
swer. �

4 Strings Sorting Problem

Let us consider the following problem.
Problem. For some positive integers n and k, we have the sequence of strings

s = (s1, . . . , sn). Each si = (si1, . . . , s
i
k) ∈ Σk for some finite size alphabet Σ.

We search order ORDER = (i1, . . . , in) such that for any j ∈ {1, . . . , n− 1} we
have sij ≤ sij+1 in lexicographical order.

We use Heap sort algorithm [30, 10] as a base and Quantum algorithm for
comparing string from Section 2. We can replace Heap sort algorithm by any
other sorting algorithm, for example, Merge sort [10]. In a case of Merge sort, the
big-O hidden constant in query complexity will be smaller. At the same time,
we need more additional memory.

Let us present Heap sort for completeness of the explanation. We can use
Binary Heap [30]. We store indexes of strings in vertexes. As in the previous
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section, if we compare vertexes v and v′ with corresponding indexes i and i′, then
v > v′ iff si > si

′
in lexicographical order. We use Compare strings(si, si

′
, k)

for comparing strings. Binary Heap BH has three operations:

? Get min and delete(BH) returns minimal si and removes it from the
data structure.

? Add(BH, si) adds vertex with value i to the heap;
? Init(BH) initializes an empty heap;

The operations Get min and delete and Add invoke Compare strings
subroutine log2 t times, where t is the size of the heap.

The algorithm is the following.

Algorithm 3 The Quantum Algorithm for Sorting Problem.

Init(BH) . The initialization of the heap.
for i ∈ {1, . . . , n} do

Add(BH, si) . Adding si to the heap.
end for
for i ∈ {1, . . . , n} do

ORDER← ORDER ∪Get min and delete(BH) . Getting minimal string.
end for
return ORDER

If we implement the sequence s as an array, then we can store the heap in
the same array. In this case, we do not need additional memory.

We have the following property of the algorithm that can be proven by the
same way as Theorem 1.

Theorem 3. Algorithm 4 sorts s = (s1, . . . , sn) with query complexity O(n(log n)2·√
k) and error probability O

(
1
n

)
.

The lower bound for deterministic complexity can be proven by the same
way as in Theorem 2.

Theorem 4. Any deterministic algorithm for Sorting problem has Ω(nk) query
complexity.

The Radix sort [10] algorithm almost reaches this bound and has O((n+ |Σ|)k)
complexity.

5 Intersection of Two Sequences of Strings Problem

Let us consider the following problem.
Problem. For some positive integers n,m and k, we have the sequence of

strings s = (s1, . . . , sn). Each si = (si1, . . . , s
i
k) ∈ Σk for some finite size alphabet

Σ. Then, we get m requests t = (t1 . . . tm), where ti = (ti1, . . . , t
i
k) ∈ Σk. The
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answer to a request ti is 1 iff there is j ∈ {1, . . . , n} such that ti = sj . We should
answer 0 or 1 to each of m requests.

We have two algorithms. The first one is based on “Set of strings with quan-
tum comparator” data structure from Section 3. We store all strings from s to
a self-balancing binary search tree BST . Then, we answer each request using
Find(BST, si) operation. Let us present the Algorithm 4.

Algorithm 4 The Quantum Algorithm for Intersection of Two Sequences of
Strings Problem using “Set of strings with quantum comparator” .

Init(BST ) . The initialization of the tree.
for i ∈ {1, . . . , n} do

Add(BST, si) . We add si to the set.
end for
for i ∈ {1, . . . ,m} do

v ← Find(BST, ti) . We search ti in the set.
if v = NULL then

return 0
end if
if v 6= NULL then

return 1
end if

end for

The second algorithm is based on Sorting algorithm from Section 4. We sort
strings from s. Then, we answer to each request using binary search in the sorted
sequence of strings [10] and Compare strings subroutine for comparing strings
during the binary search. Let us present the Algorithm 5. Assume that the sort-
ing Algorithm 4 is the subroutine Sort strings(s) and it returns the order
ORDER = (i1, . . . , in). The binary search algorithm with Compare strings
subroutine as comparator is subroutine Binary search for strings(t, s, OREDER)
and it searches t in the ordered sequence (si1 , . . . , sin). Suppose that the sub-
routine Binary search for strings returns 1 if it finds t and 0 otherwise.

Algorithm 5 The Quantum Algorithm for Intersection of Two Sequences of
Strings Problem using sorting algorithm .

ORDER← Sort strings(s) . We sort s = (s1, . . . , sn).
for i ∈ {1, . . . ,m} do

ans← Binary search for strings(t, s, OREDER) . We search ti in the
ordered sequence.

return ans
end for

The algorithms have the following query complexity.
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Theorem 5. Algorithm 4 and Algorithm 5 solve Intersection of Two Sequences
of Strings Problem with query complexity O((n+m)

√
k · log n · log(n+m)) and

error probability O
(

1
n+m

)
.

Proof. The correctness of the algorithms follows from the description. Let us
discuss the query complexity of the first algorithm. As in the proof of Theorem
1, we can show that constructing of the search tree requires O(n log n) comparing
operations. Then, the searching of all strings ti requires O(m log n) comparing
operations. The total number of comparing operations is O((m + n) log n). We
will use little bit modified version of the Algorithm 1 where we run it 3(log(n+
m)) times. We can prove that comparing operation requires O(

√
k log(n + m))

queries. The proof is similar to the proof of corresponding claim from the proof
of Lemma 2. So, the total complexity is O((n+m)

√
k · log n · log(n+m)).

The second algorithm also has the same complexity because it uses O(n log n)
comparing operations for sorting and O(m log n) comparing operations for all
invocations of the binary search algorithm.

Let us discuss the error probability. Events of error in the algorithm are
independent. So, all events should be correct. We can prove that the error prob-
ability for comparing operation is O(1/(n+m)3). The proof is like the proof of

Lemma 2. So, the probability of correctness of one event is 1 −
(

1− 1
(n+m)3

)
.

Hence, the probability of correctness of all O((n + m) log n) events is at least

1−
(

1− 1
(n+m)3

)α·(n+m) logn

for some constant α.

Note that

lim
n→∞

1−
(

1− 1
(n+m)3

)α·(n+m) logn

1/(n+m)
< 1;

Hence, the total error probability is at most O
(

1
n+m

)
.

�

Note that Algorithm 5 has a better big-O hidden constant than Algorithm 4,
because the Red-Black tree or AVL tree has a height that greats log2 n constant
times. So, adding elements to the tree and checking existence has bigger big-O
hidden constant than sorting and binary search algorithms.

The lower bound for deterministic complexity can be proven by the same
way as in Theorem 2.

Theorem 6. Any deterministic algorithm for Intersection of Two Sequences of
Strings Problem has Ω((n+m)k) query complexity.

This complexity can be reached if we implement the set of strings s using
Trie (prefix tree) [11, 7, 9, 21].

Note, that we can use the quantum algorithm for element distinctness [4],[3]
for this problem. The algorithm solves a problem of finding two identical elements
in the sequence. The query complexity of the algorithm is O(D2/3), where D is

9



a number of elements in the sequence. The complexity is tight because of [1].
The algorithm can be the following. On j-th request, we can add the string tj to
the sequence s1, . . . , sn and invoke the element distinctness algorithm that finds
a collision of tj with other strings. Such approach requires Ω(n2/3) query for
each request and Ω(mn2/3) for processing all requests. Note, that the streaming
nature of requests does not allow us to access to all t1, . . . , tm by Oracle. So,
each request should be processed separately.

6 Conclusion

In the paper we propose a quantum algorithm for comparing strings. Using this
algorithm we discussed four data structures: “Multi-set of strings with quan-
tum comparator”, “Set of strings with quantum comparator”, “Map with a string
key and quantum comparator” and “Binary Heap of strings with quantum com-
parator”. We show that the first two data structures work faster than the im-
plementation of similar data structures using Trie (prefix tree) in a case of
log2 n = o(k0.25). The trie implementation is the best known classical imple-
mentation in terms of complexity of simple operations (add, delete or find).
Additionally, we constructed a quantum strings sort algorithm that works faster
than the radix sort algorithm that is the best known deterministic algorithm for
sorting a sequence of strings.

Using these two groups of results, we propose quantum algorithms for two
problems: the Most Frequently String Search and Intersection of Two String
Sets. These quantum algorithms are more efficient than deterministic ones.
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Abstract. Quantum random number generators (QRNGs) produce the-
oretically unpredictable random numbers. A typical QRNG is imple-
mented in quantum optics [Herrero-Collantes, M., Garcia-Escartin, J.
C.: Quantum Random Number Generators. Rev. Mod. Phys. 89, 015004
(2017)]. Quantum computers become QRNGs when given certain pro-
grams. The simplest example of such a program applies the Hadamard
gate on all qubits and performs measurement. As a result of repeatedly
running this program on a 20-qubit superconducting quantum computer
(IBM 20Q Tokyo), we obtained a sample with a length of 43,560. How-
ever, statistical analysis showed that this sample was biased and corre-
lated. One of the post-processed samples passed statistical tests. To show
the effectiveness of post-processing, a larger sample size is required. The
present study of quantum random number generation and statistical test-
ing may provide a potential candidate for benchmarking tests of actual
quantum computing devices.

Keywords: true number generator· quantum random number genera-
tor· IBM Q· randomness extraction· min-entropy.

1 Introduction

Random numbers are a fundamental resource in various fields of science and
industry [1]. This is for two reasons: Firstly, random numbers are used to simulate
stochastic phenomena such as Brownian motion. Secondly, random numbers are
a source of unpredictability. Examples of such applications are below.

Cryptography. Binary information can be encrypted with the use of random
numbers. By XORing the binary representation of a message with a ran-
dom number sequence of equal length, an information-theoretically secure
encrypted message is obtained.



Simulation. Random numbers are used to simulate random events such as
Brownian motion.

Gambling. Various situations in gambling require randomness. To simulate a
fair shuffle of a deck of cards, for example, random numbers are essential.

Sampling. In situations where samples need to be extracted from a group,
random numbers enable unbiased and uncorrelated extraction.

Given the wide variety of applications above, the generation of random numbers
is still an ongoing field of research.

There are three main types of random number generators (RNGs): pseudo-
random number generators (PRNGs), classical physical random number gen-
erators, and quantum physical random number generators (QRNGs). PRNGs
adopt deterministic functions that produce seemingly random bits when given
an initial value called a seed. There are several advantages to PRNGs. Firstly,
they can be easily implemented on the classical computer. Secondly, one needs
only to store the function and the seed in order to reproduce the output. Fi-
nally, the generation rate is generally faster than other types of random number
generators. The problem with PRNGs is that the output can be predicted with
knowledge of the seed and function. While PRNGs use deterministic functions
to produce pseudorandom numbers, physical random number generators apply
measurement to physical phenomena and convert the resulting values into bits.
In the case of classical physical random number generators, the output can be
predicted from the initial condition of the physical phenomena. QRNGs, on the
other hand, produce theoretically unpredictable bits. The reason behind this is
that under the axioms of quantum physics, the measurement outcome is proba-
bilistic.

Quantum computers can be taken as QRNGs when assigned certain pro-
grams. In this study, we experimented with a program that applies the Hadamard
gate and performs measurement on all qubits available. A sample sequence with
a length of 43,560 was obtained by repeatedly running this program on IBM’s
superconducting computer (IBM 20Q Tokyo). It became clear through statis-
tical tests that this sample was biased and correlated. In order to see whether
the bias and correlation can be corrected, we applied several post-processors.
Among the ones we applied, the combination of Samuelson’s extractor and von
Neumann’s extractor produced a sample that passed the six statistical tests.
As the combination of post-processing significantly reduced the sample size, the
effectiveness is of the post-processor is debatable.

The existence of bias and correlation in the quantum random numbers gen-
erated by the quantum computer carries information about the device. Our next
task is to determine the reason behind these flaws.

The rest of this paper is organized as follows. Section 2 briefly reviews ran-
domness, random number generators, tests for randomness, and post-processing.
We present the procedure for quantum random number generation on the IBM
20Q Tokyo and show the test results for the sample before and after post-
processing in Sec. 3. An interpretation for the results are also discussed. Sec-
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tion 4 is devoted to the summary. In Sec. 5, we discuss some open questions on
QRNGs.

2 Preparation

2.1 Randomness

The key to understanding randomness is to acknowledge the distinction between
the following two types of randomness.

Product randomness. The apparent randomness that can be statistically iden-
tified by examining the output of a random process is called product ran-
domness. Product randomness is practically important, as the length of a
random number sequence is always finite. To check whether a coin toss yields
a random number sequence, one can toss the coin a finite number of times
and see if the heads and tails outcomes are unbiased and independent. This
is the idea of product randomness.

Process randomness. The inherent randomness of the process of generation
is called process randomness, which is an important factor of a true ran-
dom number generator. In the example of a coin toss, process randomness
corresponds to a symmetrically designed coin and a fair tossing process. By
making sure that the process is random, one can expect the output to have
product randomness as well.

Fig. 1. Product randomness and process randomness of a coin toss.

While the goal of random number generation is to identify whether a generator
is capable of producing random numbers, one can only observe finite samples
of outputs. In practice, therefore, a generator is characterized from the samples
obtained. For example, to check whether a coin toss is fair, one must toss the
coin repeatedly and look for signs of bias and correlation.
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2.2 Essential Characteristics of Random Number Generators

There are three main qualities that a random number generator must possess in
order to qualify as legitimate.

Uniformity. A coin (random variable) with uniformity yields heads “1” and
tails “0” with equal probability.

Independence. Independent coin tosses (trials) are such that any toss does not
affect any of the other tosses. In other words, the tosses are not correlated.

Unpredictability. Unpredictability means that it is impossible to predict any
of the future outcomes.

Ideally, every random number generator should possess all qualities shown above.
However, only quantum random number generators possess all three qualities.
Because one can only ever hope to examine a random number sequence of finite
length, identifying the qualities above can only be done by applying randomness
tests to the output.

2.3 Types of Random Number Generators

Random number generators can be classified into the following groups. Each
group has its advantages and disadvantages, and the means of generation is cho-
sen in light of what application the user has in mind. Only the final group can
be considered true random number generators, which produce uniform, indepen-
dent, and unpredictable bits.

Pseudorandom Number Generators The present computer (classical com-
puter) is deterministic due to the deterministic principles of classical physics. As
a result, classical computers are incapable of producing true random numbers.
In order to overcome this problem, pseudorandom numbers have been used as a
substitute for true random numbers.

The idea behind pseudorandom numbers is that as far as product randomness
is concerned, a deterministic function that produces seemingly random outputs
suffices for some applications. For instance, random numbers used in simulation
need not be unpredictable.

While pseudorandom numbers are predictable and do not possess process
randomness, advantages do exist: pseudorandom numbers are reproducible. This
means that one needs only to remember the initial value and generation process
to obtain the same sequence, which is not the case with true random numbers. In
other words, pseudorandom numbers can be compressed. Under circumstances
where the same random number sequence is required multiple times, pseudoran-
dom numbers are convenient. Another advantage is that the generation of pseu-
dorandom numbers is generally faster than physical random numbers [1]. This
is convenient for simulation purposes where long sequences of random numbers
are required.

Despite such advantages, there exist applications where pseudorandom num-
bers cannot be used as a substitute for true random numbers. These applications
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require unpredictability or fairness. In cryptography, for example, it is crucial
that the future values are unpredictable. This cannot be achieved by pseudo-
random numbers alone. Furthermore, pseudorandom numbers are not fair. This
means that with knowledge of the initial value called a seed along with the func-
tion, one can easily manipulate the output. This is why pseudorandom numbers
should not be used for choosing winning lottery tickets.

In areas where unpredictability or fairness is required, true random numbers
cannot be replaced with pseudorandom numbers.

Fig. 2. Conceptual diagram of pseudorandom number generation.

As shown in Fig. 2, pseudorandom number generators are functions that when
given an initial value called a seed, the rest of the output is automatically de-
termined in the form of a recurrence formula. Random numbers produced in
this manner have patterns (the generation formula itself) and periods. It is thus
crucial that the user understands the limitations of pseudorandom number gen-
erators. For a better grasp of this concept, several examples of such functions or
algorithms are presented in this section.

Middle-Square Method. The middle-square method is one of the first meth-
ods of pseudorandom number generation. It produces pseudorandom num-
bers based on the following algorithm. In this example, the seed is a decimal
integer with 4 or more digits. The resulting sequence consists of 4-digit dec-
imal integers.

1. Square the seed.
e.g.) If seed = 12345, seed2 = 152399025.

2. Add zeroes at the beginning of the outcome until the number of digits be-
comes an even number of 4 or larger.
e.g.) 152399025 has 9 digits, so a single 0 is added. The number becomes
0152399025.

3. Extract the middle four digits and assign it as the new seed.
e.g.) 0152399025→ 2399. New seed = 2399.

4. Go back to initial step.

The problem with this method is that firstly, once the seed degenerates to zero,
the following numbers will all be zero and secondly, that the sequence can end
up in a cycle (e.g. 6100→ 2100→ 4100→ 8100→ 6100) [2].
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Pseudorandom numbers are predictable, periodic, and correlated. While pseu-
dorandom numbers produced by more recent methods are less predictable and
have longer periods, they still cannot be considered true random numbers.

Classical Physical Random Number Generators The simplest form of
classical random number generation is through coin tosses: when the coin yields
heads the generator outputs 1, and when the coin yields tails it outputs 0. This
example captures the essence of classical physical random number generation,
which is that a classical physical phenomena is measured and encoded to binary
numbers.

Fig. 3. Conceptual diagram of classical physical sources.

In classical physical random number generation, the initial condition of the phys-
ical phenomena is the seed. The problem is that in classical physics, all future
measurement values are determined by this initial condition. Therefore, like pseu-
dorandom numbers, classical physical random numbers are deterministic and
thus predictable in theory [1].

Quantum Physical Random Number Generators A quantum physical
random number generator is similar to its classical counterpart. The only differ-
ence is that the source is quantum physical instead of classical. Unlike classical
physics, the measurement results in quantum physics cannot be determined by
the initial condition [1]. This is due to the stochastic laws of quantum physics
which state that the measurement results are not predetermined.

Fig. 4. Conceptual diagram of quantum physical sources.
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A qubit is a quantum coin. While a classical coin is either heads or tails at all
times, a qubit can be in multiple states at once (superposition). For example,
Figure 4 shows a qubit that is initially prepared as a superposition between |0〉
and |1〉. Note that |0〉 is a state that when measured, its measurement value is
0 with certainty. Likewise, |1〉 always yields 1. One can control the probability
of 0s and 1s at will, creating a quantum coin whose output is unpredictable.

Various quantum phenomena can be considered qubits. One example is the
two paths of a photon after passing through a beam splitter as shown in Fig. 5.

Fig. 5. Quantum random number generation using a photon source [1].

When a photon is detected by detector A, the output is 1. If it is detected by
detector B, the output is 0. Optical qubits are a popular means of quantum
random number generation. Firstly, optical qubits are easy to prepare compared
to other types such as superconducting qubits. Secondly, optical methods tend to
achieve a higher generation rate compared to other quantum physical methods.
As large samples are required in both application and randomness testing, optical
qubits are convenient.

2.4 Tests of Randomness

The goal of randomness testing is to statistically evaluate the generator’s capa-
bility of producing unbiased and uncorrelated bits. This is done by examining the
generator’s output. Common test suites are the NIST test suite [3], TestU01 [4],
and the dieharder test [5].

Let there be a coin with certain probabilities for yielding heads and tails. By
flipping the coin 10 times, one obtains a sequence of heads and tails of length 10.
Randomness tests aim to decide whether the sequence in question was obtained
from an ideal random number generator that outputs unbiased and uncorrelated
bits. This is done with the following steps.
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1. Obtain a sample of appropriate length.
e.g.) 0111111111

2. Characterize the sample with a test statistic.
e.g.) the number of 1s within the sequence is 9.

3. Calculate the probability (p-value) that an ideal random number generator
outputs a sample with such a test statistic.
e.g.) the probability that an ideal random number generator outputs a se-
quence of length 10 containing 9 ones is approximately 0.009765625.

4. Decide whether the probability (p-value) is acceptable by comparing it to
the level of significance α.
e.g.) if α = 0.01, then p-value < α. In this case, the test result is that the
sample was not obtained from an ideal random number generator.

One could apply various tests by characterizing the sample using various test
statistics. One must, however, keep in mind that the ideal probability distribu-
tion of the test statistic must be known beforehand.

2.5 Post-processing

True random number generators have physical sources. The process of physical
random number generation begins with the measurement of some observable
value of a physical system as shown in Fig. 6. At this stage, the effect of classical
noise becomes a matter of concern. The measured values are then encoded into
binary information. At this encoding stage, errors must be taken into considera-
tion. As a result of these properties, physical random number generators require
post-processing where noise and errors are excluded as much as possible.

Fig. 6. The process of random number generation based on physical sources [1].

von Neumann Extractor The simplest example of a randomness extractor
would be the von Neumann extractor. This extractor interprets the input binary
sequence as pairs and translates 01s to 0s and 10s to 1s [6]. This extractor can
only be effectively used for certain sources, namely, independent and identically
distributed (iid)-bit sources [7]. Iid-bit sources are sources that consist of discrete
random variables X1, X2, · · · , Xn ∈ {0, 1} where for any i ∈ {1, · · ·n}, Pr[Xi =
1] = δ for some unknown constant δ[9, Chapter 6]. A coin toss with a constant
bias throughout the tosses is, for instance, an iid-bit source. Such a source should
yield 01s and 10s with equal probability, hence the method turns the biased
sequence into a uniform one.
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Samuelson Extractor The Samuelson extractor is similar to the von Neumann
extractor, except that it translates 10s to 0s and 11s to 1s [8]. It is often the
case that the use of the Samuelson extractor is followed by the use of the von
Neumann extractor. While using both extractors reduces the sequence to 1/4 on
average[9, Chapter 6], this is sometimes necessary as the Samuelson extractor
targets different sources compared to the von Neumann extractor. This extractor
is effective when used on a source where the previous bit affects the probability of
the next bit. For example, if a source is more likely to produce 0→ 1 than 1→ 0,
the von Neumann extractor cannot be used. The Samuelson extractor, however,
fixes the previous bit to 1, which turns the input into a sequence expected from
an iid-bit source.

3 Experimental Procedure and Results

In light of the recent trend of quantum random number generation and quantum
computing, we wonder if actual quantum computers are capable of producing
random numbers. The following experiment aims to answer this question.

3.1 Random Number Generation

In this section, the procedure for generating random numbers on a quantum
computer is introduced. A quantum computer is a device that contains multiple
qubits. The IBM 20Q Tokyo device contains 20 qubits. Below are the steps for
random number generation.

1. Prepare all qubits in the state of superposition between state |0〉 and |1〉, so
that both states have equal probabilities. This can be achieved with the use
of the Hadamard gate.

2. Measure all qubits once, and collect the result.
e.g.) |00101101 · · · 1〉.

3. Return to step 1.

By repeating the procedure above and concatenating the results in order, a
sequence with a length of 43,560 was obtained. This procedure was conducted
in July of 2018. It took approximately one month to obtain a sequence with a
length of 43,560. Let us call this raw sample rand43560.

When the user specifies how many times which algorithm should be run,
the IBM 20Q Tokyo device returns a histogram showing the probability of each
measurement outcome. In order to obtain a sequence of measurement outcomes,
we set the number of runs at 1 and kept running the same algorithm. This way,
the histogram shows the measurement outcome of each run.

3.2 Post-Processing

The three post-processing extractors presented below were used.
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1. The von Neumann Extractor: 01→ 0, 10→ 1.
Sample name after post-processing: Neumann

2. The Samuelson Extractor: 10→ 0, 11→ 1.
Sample name after post-processing: Samuelson

3. A combination of the above: Samuelson → Neumann.
Sample name after post-processing: SN

The resulting samples were statistically examined along with the raw sample
rand43560.

3.3 Test Results of Post-Processed Samples

The first 6 tests from the NIST test suite were applied to the respective samples.
Figure 7 shows the result of the frequency test, which is a test for uniformity.
The test statistic z is defined as below, and is known to follow a standard normal
distribution.

z ≡ x− np√
np(1− p)

(1)

Note that x is the number of 1s in the sample, n is the length of the sample, and
p is the ideal probability of 1s, which is 0.5. z yields 0 for a sample that contains
equal proportions of 0s and 1s.

Figure 7 shows the values of z for each sample, as well as the corresponding
probability densities. The probability that an ideal random number generator
generates a sample with a value of z falling into the regions colored in green is
lower than 1 %. When the value of z is in the green region, the sample is not
uniform. This decision is based on a level of significance of α = 0.01.

Fig. 7. Uniformity of rand43560 before and after randomness extraction.

We observe that the raw sample rand43560 is not uniform. This points to the
possibility that the qubits were not prepared to yield equal probabilities of 0s
and 1s, which provides insight into the accuracy of the gates and measurement
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of the device. Another reason is that the device is unstable. With the device
going through calibration on a daily basis, it is questionable whether the device
maintains the same properties from one day to another.

The fact that the von Neumann extractor failed to sufficiently correct the
bias in the sequence suggests that the 20 qubits cannot be considered an iid-bit
source.

The Samuelson extractor and the combination of the Samuelson extractor
and the von Neumann extractor, on the other hand, proved effective. The effec-
tiveness of the former extractor implies a Markovian property in the sequence.
This means that the output of adjacent qubits tend to be correlated. The latter
extractor is not as effective as the former, which suggests that even after the
Samuelson extractor is applied, the sequence is still not iid.

Table 1. The NIST test results and corresponding p-values of samples.

Test Rand43560 Neumann Samuelson SN

Length 43560 10463 10116 2538
Frequency 0.0000 0.0024 0.7204 0.0954
Frequency (block) 0.0000 (396) 0.0052 (126) 0.0161 (85) 0.2099 (22)
Runs 0.0000 0.1135 0.2333 0.7388
Runs (block) 0.0000 (128) 0.3125 (128) 0.0325 (128) 0.3952 (8)
Matrix rank 0.5285 0.9523 0.7138 0.7419
DFT 1.0000 0.1493 0.0003 0.4072
Result Fail Fail Fail Pass

Table 1 shows the p-values corresponding to the 6 tests from the NIST test
suite of the respective samples. If a p-value is lower than α = 0.01, the test is
a failure. Unless the sample passes all six tests, it is not regarded as random.
Block means that the sequence was divided into blocks of certain lengths, which
are shown next to the p-values in brackets.

According to Table 1, only sample SN passes all 6 tests. This could be due
to the fact that the size of the sample is small. In general, smaller samples are
more likely to pass these tests.

4 Conclusion

The sequence of length 43,560 was obtained by repeatedly performing a quantum
coin toss using all 20 qubits of the IBM 20Q Tokyo device. Following the conven-
tional treatment of physical random number generation, three post-processing
extractors were applied to the raw sample. The extractors are the von Neumann
extractor, the Samuelson extractor, and the two combined.

As a result of applying the first 6 tests from the NIST test suite, it was
revealed that only the combination of the von Neumann and Samuelson extrac-
tors succeeded in producing a sample that passes all 6 tests. Due to the limited
sample size, however, it was not clear whether this method was effective.
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Regarding the generation rate (approximately 43,560 digits per month) and
precision of the device, using the IBM 20Q Tokyo device as a QRNG is not a
practical idea. However, examining the quality of the output quantum random
numbers may lead to benchmarking of actual quantum computing devices.

5 Open Questions

While using the IBM 20Q Tokyo device as a quantum random number generator
is impractical, producing quantum random numbers with the device may not be
an entirely pointless attempt.

In theory, quantum computers should be capable of producing quantum ran-
dom numbers without post-processing. Therefore, the reason why the IBM 20Q
Tokyo device failed to achieve this is worth pursuing.

A quantum computer is a multipurpose device, and judging its condition in
light of a single purpose is of no use. However, there is a need for a comprehensive
indicator of the device’s condition, such that the user could refer to that indicator
when deciding which device to use and when to use it. We believe that the quality
of quantum random numbers produced by the device is a potential candidate of
such an indicator.

The following are some open questions.

1. How can the quality of quantum random numbers and generators be quan-
tified and compared?

2. What is the relationship between the quality of the random numbers and
the device’s condition?

3. Given that the quality of the random numbers is poor, what can be done to
improve their quality?

4. How does the poor quality of random numbers affect other algorithms run
on the same device?

5. What is the relationship between randomness and quantum computers?
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Abstract. It is known that for some languages quantum finite automata
are more effective than classical counterparts. Particularly, a QFA rec-
ognizing the language MODp has an exponential advantage over the
classical finite automata. However, the construction of such QFA is prob-
abilistic. In the current work, we propose a deterministic construction of
the QFA for the language MODp. We construct a QFA for a promise
problem Palindromep.
Keywords: quantum computing, automata, quantum automata, quan-
tum fingerprinting, palindrome

1 Introduction

Quantum finite automata are a mathematical model for quantum computers
with limited memory. A quantum finite automaton has a finite state space and
applies a sequence of transformations corresponding to a letter of an input word
to this state space. In the end, the state of the quantum automaton is measured,
and the input word is accepted or rejected, depending on the outcome of the
measurement.

Quantum automata are discussed and compared with classical ones in [13,
17, 20, 18, 16, 31, 27, 22, 19, 32, 15].

In 1998 Freivalds and Ambainis presented a technique for construction of
quantum finite automata exponentially smaller than classical counterparts for
several languages [13]. In this work, they used a fingerprinting approach for
construction of a QFA. In papers [21, 14], Ambainis and Nahimovs used a similar
technique and showed an improved exponential separation between quantum
and classical finite automata. They constructed a QFA for the language MODp.
Define the MODp = {ai|i is divisible by p}, where p is a prime.

In papers [21, 14] a construction of the QFA is probabilistic. It employs a
sequence of parameters (k1 · · · kd) that are chosen at random and hardwired into
the QFA. The idea of construction is the following. The QFA uses a register of d
qubits. Reading input symbol the automaton rotates each qubit |qi〉 on it’s own
angle depending on parameter ki ∈ {k1 · · · kd}. d depends on the probability
of error. Existence of such set {k1 · · · kd} of parameters is proven in [21, 14] by
using Azuma’s theorem from Probability Theory.



In these papers ([21, 14]) authors gave two techniques of explicit finding this
set. The first of them gives a QFA with O(log p) states, but only numerical
experiments show the correctness of a QFA. The second one gives an explicit
construction of a QFA with O(log2+ε(p)) states, where ε > 0 is a probability of
error.

Vasiliev, Latypov and Ziatdinov [28] used simulated annealing and genetic
heuristical algorithms for finding this set of required parameters {k1 · · · kd}. The
algorithm for construction of a QFA was generalized by Ablayev and Vasiliev [9].
They improved the technique and constructed an OBDD for a Boolean function
f = MODp(x1, . . . , xn), where p is any positive integer, not only prime. An
OBDD is a modification of automata where transition functions depend on a
position of an input head, and in OBDD we can read input symbols in different
orders [29]. Quantum and classical OBDDs were considered and compared in [4,
5, 3, 10, 11, 1, 23, 2, 24, 7, 6].

In the current paper, we consider the same language MODp and a QFA with
O(log p) states recognizing this language. It uses a set of parameters mentioned
above. However, we propose a deterministic algorithm for computing the required
parameters. It allows an explicit construction of a QFA for MODp with O(log p)
states. This technique is based on the results of [30]. We use a sequence of
functions called pessimistic estimators. The theorem from [30] claims that if
the sequence of such pessimistic estimators is defined, then the required set of
parameters can be computed deterministically. Using this algorithm, we obtain
explicit numbers as parameters for construction of the QFA.

Additionally, we construct a QFA for a Palindromep language as one more
example for using this technique. Thus, we propose that this approach can be
used for solving a large class of languages.

The paper is organized in the following way. Section 2 contains some prelim-
inaries and previous results on an improved construction of a QFA. In Section 3
we give a method of deterministic finding a set of parameters. In Section 4 there
is one more example for applying the quantum fingerprinting technique. Here
we describe a scheme of the QFA for the Palindromep language. Section 5 is a
conclusion.

2 Preliminaries

We use a definition of 1-way quantum finite automata (QFA) given in [25]. A 1-
way QFA is a tuple M = (Q,Σ, δ, q0, Qacc, Qrej) where Q is a finite set of states,
Σ is an input alphabet, δ is a transition function, q0 ∈ Q is a starting state, Qacc
and Qrej are disjoint sets of accepting and rejecting states and Q = Qacc∪Qrej .
} and $ are symbols that do not belong to Σ. We use } and $ as the left and the
right end markers, respectively. The working alphabet of M is Γ = Σ ∪ {}, $}.

A superposition of M is any element of l2(Q) (the space of mappings from Q
to C with l2 norm). For q ∈ Q, |q〉 denotes the unit vector with value 1 at q and
0 elsewhere. All elements |ψ〉 of l2(Q) can be expressed as linear combinations
of vectors |q〉. We will use |ψ〉 to denote elements of l2(Q).
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A transition function δ maps Q × Γ × Q to C. The value δ(q1, a, q2) is an
amplitude of |q2〉 in the superposition of states to which M goes from |q1〉 after
reading a. For a ∈ Γ , Va is a linear transformation on l2(Q) defined by

Va(|q1〉) =
∑
q2∈Q

δ(q1, a, q2)|q2〉

We require all Va to be unitary. The computation of the QFA starts from the
superposition |q0〉. Then transformations corresponding to the left end marker
}, the letters of the input word x and the right end marker $ are applied.
The transformation corresponding to a ∈ Γ is just Va. If the superposition
before reading a is |ψ〉, then the superposition after reading a is Va(|ψ〉). After
reading the right endmarker, the current state |ψ〉 is measured with respect to
the observable Eacc⊕Erej where Eacc = span{|q〉 : q ∈ Qacc}, Erej = span{|q〉 :
q ∈ Qrej}. This observation gives |ψ〉 ∈ Ei with the probability equal to the
square of the projection of |ψ〉 to Ei.

After that, the superposition collapses to this projection. If we get |ψ〉 ∈ Eacc,
the input is accepted. If |ψ〉 ∈ Erej , the input is rejected.

Let L be a language in the alphabet Σ. We say a bounded error QFA recog-
nizes a language L iff after reading an input word x the automaton terminates
in an accepting state ∈ Qacc.

– with probability more than 1− ε if x ∈ L
– with probability less than ε if x /∈ L

2.1 Previous results

Let p be a prime. We consider the language MODp = {ai|i is divisible by p}. It
is easy to see that any deterministic 1-way finite automaton recognizing MODp

has at least p states. Ambainis and Freivalds in [13] constructed an efficient QFA.
They have shown that a QFA with O(log p) states can recognize MODp with
bounded error ε. A big-O constant in this result depends on ε. For x ∈MODp,
an answer is always correct with probability 1. There is a QFA with 16 log2 p
states that is correct with probability at least 1/8 on inputs x /∈ MODp. In a
general case, [13] gives a QFA with poly(1/ε) log2 p states that is correct with
probability at least 1−ε on inputs x /∈MODp (where poly(z) is some polynomial
in z).

The papers [21, 14] present a simple design of QFAs that achieve a better big-
O constant. Ambainis and Nahimovs show that for any ε > 0, there is a QFA
with 4 log2 2p

ε states recognizing MODp with probability at least 1 − ε. Denote
this QFA by M . It is constructed by combining d subautomata Mi, each has 2
states qi,0 and qi,1.

The set of states of M consists of 2d states {q1,0, q1,1, q2,0, q2,1, · · · , qd,0, qd,1}.
The starting state is q1,0. The set of accepting states Qacc consists of one state
q1,0. All other states qi,j belong to Qrej . A transformation for the left endmarker
} is such that V}(|q1,0〉) = 1√

d
(|q1,0〉+ |q2,0〉+ · · ·+ |qd,0〉).

A transformation for the input symbol a is
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– Va(|qi,0〉) = cos 2kiπ
p |qi,0〉+ sin 2kiπ

p |qi,1〉
– Va(|qi,1〉) = − sin 2kiπ

p |qi,0〉+ cos 2kiπ
p |qi,1〉,

where k1, k2, · · · kd is a sequence of numbers.
A transformation for the endmarker $ is the following.

– The states |qi,1〉 are not changed,
– V$(|qi,0〉) = 1√

d
|q1,0〉 plus some other state.

In particular, V$( 1√
d
(|q1,0〉+ |q2,0〉+ · · ·+ |qd,0〉)) = |q1,0〉.

If the input word is aj and j is divisible by p, then M accepts the word with
probability 1. If the input word is aj and j is not divisible by p, then M accepts
with probability

1

d2

(
cos

2k1πj

p
+ cos

2k2πj

p
+ · · ·+ cos

2kdπj

p

)2

.

In their proof, the authors use a theorem from Probability Theory (variant of
Azuma’s theorem):

Theorem 1. [26] Let X1, · · · , Xd be independent random variables such that
E[Xi] = 0 and the value of Xi is always between −1 and 1. Then,

Pr

[
|
d∑
i=1

Xi| ≥ λ

]
≤ 2e−

λ2

2d .

Define Xi as cos 2kiπj
p where each ki is from {0, · · · p − 1}. By the theorem,

it is possible to choose k1, · · · , kd values to ensure

1

d2

(
d∑
i=1

cos
2kiπj

p

)2

< ε. (1)

This inequality gives a bound for d = 2 log2 2p
ε , a number of states for M is

4 log2 2p
ε .
The proposed QFA construction depends on d parameters and accepts an

input word aj /∈MODp with probability

1

d2

(
d∑
i=1

cos
2kiπj

p

)2

However, this proof is by a probabilistic argument and does not give an
explicit sequence k1, . . . , kd.

Two approaches for construction of specific sequences are presented in [21,
14].

The first one is based on numerical experiments and gives a QFA with
O(log p) states. It is based on using so-called cyclic sequences Sg = {ki = gi
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mod p}di=1 where g is a primitive root modulo p. The authors checked all
p ∈ {2, . . . , 9973}, all generators g and all sequence lengths d < p. They experi-
mentally compared two strategies: using a randomly chosen sequence and using
a cyclic sequence. In 99.98% − 99.99% of the experiments, random sequences
satisfied the theoretical upper bound (1), but cyclic sequences substantially out-
performed random ones in almost all the cases. For some p, in 1.81% of the
cases, the random sequences gave better values of ε. The numerical experiments
showed that almost all the observed sequences satisfied the bound (1).

However, it is still open whether one could find the desired generator without
an exhaustive search of all generators for all values of p.

The second approach gives an explicit construction of a QFA. This approach
is based on a result of Ajtai et al. [12]. Nevertheless, the QFA has O(log2+3ε p)
states that is more than O(log p).

3 Deterministic Algorithm for Construction of a QFA

In this section, we suggest an explicit algorithm for deterministic finding the
set of parameters S = (k1, . . . , kd). By using this approach, we can explicitly
construct a QFA for MODp with O(log p) states. The QFA is designed as in
[21, 14]. However, the set S of required parameters is not randomly chosen, but
deterministically computed.

The method is based on an algorithm from [30]. That is the explicit algorithm
for deterministic construction of a small-biased set.

3.1 Definitions

Let us introduce some necessary definitions.

Definition 1. Let us denote [n] the set of integers {0, . . . , n− 1}.

Definition 2. We let A ≥ 0 denote that A is positive semidefinite (p.s.d.) ma-
trix (i.e. all of its eigenvalues are non-negative).

Let A and B be symmetric matrices. Let A ≤ B denote that B −A ≥ 0.
Let us denote [A;B] the set of all symmetric matrices such that A ≤ C and

C ≤ B.

Definition 3 (Pessimistic estimators). Let σ : [p]d → {0, 1} be an event.
Pessimistic estimators φ0, . . . , φd are functions φi : [p]i → [0, 1], such that

for each i and for each x1, . . . , xi ∈ [p]:

Pr
Xi+1,...,Xd

[σ(x1, . . . , xi, Xi+1, . . . , Xd) = 0] ≤ φi(x1, . . . , xi) (2)

and

EXi+1

[
φi+1(x1, . . . , xi, Xi+1)

]
≤ φi(x1, . . . , xi) (3)
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3.2 Algorithm for Finding a Small-Biased Set

To compute a set of parameters we generalize a problem. Let H be a group and
χ : H → C be a characteristic of H. Suppose that we are able to find a set
S ⊂ H such that

1

|S|

∣∣∣∣∑
s∈S

χ(s)

∣∣∣∣ ≤ ε.
If we take H = Zp then χ(h) = cos 2πh

p + i sin 2πh
p .

Therefore,

ε ≥ 1

|S|

∣∣∣∣∑
s∈S

χ(s)

∣∣∣∣
=

1

d

∣∣∣∣ d∑
j=1

cos
2πkj
p

+ i sin
2πkj
p

∣∣∣∣
≥ 1

d

∣∣∣∣ d∑
j=1

cos
2πkj
p

∣∣∣∣,
where S = {k1, . . . , kd} is the desired set of parameters.

Given ε < 1, we want to find a set S ⊂ [p]d such that

1

|S|

∣∣∣∣∑
s∈S

χ(s)

∣∣∣∣ ≤ ε,
where p is a non-negative number, d is a size of the desired set of parameters S,
ε is a probability of error.

The solution for this problem is given by Wigderson [30] in the following
theorem and its proof. Let us reformulate this theorem in our notation.

Theorem 2 ([30]). Let σ : [p]d → {0, 1} be an event.
If there are pessimistic estimators φ0, . . . , φd of σ, then we can efficiently find

x1, . . . , xd by deterministic algorithm such that σ(x1, . . . , xd) = 1.

Proof. Pick x1, . . . , xd one by one.

– At step 0 φ0 < 1.
– At step i we have x1, . . . , xi and φi(x1, . . . , xi) < 1. Enumerate over xi+1 ∈

[p] and choose a value such that φi+1(x1, . . . , xi+1) ≤ φi(x1, . . . , xi) < 1. An
existence of xi+1 is guaranteed by inequality (3).

– At step d we have x1, . . . , xd and φd(x1, . . . , xd) < 1. By inequality (2),
Pr[σ(x1, . . . , xd) = 0] ≤ φd(x1, . . . , xd) < 1, therefore σ(x1, . . . , xd) = 1.

The definition of required functions f can be found in [30, Theorem 5.2]. Let
us reformulate it in our notation.
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Theorem 3 ([30]). Let γ < 1. Let H be a group with character χ : H → C.
Denote p = |H|.

There exists a set S of size |S| = O( 1
γ log n) such that

1

|S|

∣∣∣∣∑
s∈S

χ(s)

∣∣∣∣ ≤ γ,
and this set can be found deterministically.

Proof. Let Ph for h ∈ H be a p×p permutation matrix of the action of h by right
multiplication. Let matrix-valued f : H → [−Ip, Ip] be f(h) = (I − J/p) 1

2 (Ph +
Ph−1), where I is unit matrix and J is all-one matrix. Let σ : [p]d → {0, 1} be

the event σ(x1, . . . , xd) = 1 iff 1
d

∑d
i=1 f(xi) ≤ γI. Let t = γ/2.

By [30, Theorem 4.1] the following functions are pessimistic estimators for
σ(x1, . . . , xd):

φ0 = pe−tγd
∣∣∣∣∣∣∣∣E[exp(tf(X))]

∣∣∣∣∣∣∣∣d ≤ pe−γ2d/4

φi(x1, . . . , xi) = pe−tγd Tr

(
exp

(
t

i∑
j=1

f(xj)
))∣∣∣∣∣∣∣∣E[exp(tf(X))]

∣∣∣∣∣∣∣∣d−i
Therefore, by Theorem 2, there exists polynomial algorithm to find x1, . . . , xd
such that σ(x1, . . . , xd) = 1.

So we get the following deterministic Algorithm 1 for computing a set of
parameters. Here p is a prime, d is a size of the desired set of parameters S, ε is
a probability of error.

See Appendix A for numerical results.

4 One More Example for Applying the Quantum
Fingerprinting Technique

The paper [8] gives a notation of Equality-related problems in a context of quan-
tum Ordered Binary Decision Diagrams. Authors apply a new modification of
the fingerprinting technique to such problems as Equality, Palindrome, Periodic-
ity, Semi-Simon, Permutation Matrix Test Function. We conclude that the given
deterministic method of finding a required set of parameters works for the men-
tioned class of problems. In this section, we present a construction of a QFA for
a promise problem Palindromep.

Define the promise problem Palindromep as follows. Let p be some even
integer, an input is a string X in an alphabet {0, 1,#}. The input word is
bordered by a left end marker } and a right end marker $. We are promised
that after each p input symbols belonging to {0, 1} a symbol # appears. We
split the input into so called subwords of size p divided by the symbol #.

x1x2 . . . xp#xp+1 . . . x2p# . . .#xip+1xip+2 . . . x(i+1)p# . . .
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Algorithm 1 Algorithm to find a set of parameters

Require: p, d, ε

Ensure: S = {k1, . . . , kd}, s.t. 1
d

∣∣∣∣∑d
i=1 cos 2πki

p

∣∣∣∣ ≤ ε
t← ε/2
f ← Z
for all i ∈ {1, . . . , p} do
f [i]← (I − J/n)(Pi + Pi−1)/2

end for
S ← {}
for all i ∈ {1, . . . , d} do
m← 0
for all j ∈ {1, . . . , p− 1} do

if φi+1(s1, . . . , si, j) < φi(s1, . . . , si) then
m← j

end if
end for
S ← S ∪ {m}

end for
return S

Define these subwords as ω0, ω1, . . . , ωi, . . .. If a length of the input is not
divisible by p, then the remaining part of the input is ignored.

Define Palindrome(x1, x2, . . . xp) ≡ (x1x2 . . . xp/2 = xp/2+1xp/2+2 . . . xp).

Palindromep ≡ [Palindrome(ω0)&Palindrome(ω1)& . . .]

For solving the promise problem Palindromep, we consider a QFA that al-
lows a measuring several times. Construction of the automaton is based on the
technique described above. Let the automaton be defined by P . Here we use a
quantum register |ψ〉 of t = dlog2 de + 1 qubits, where d = 2 log2 2p

ε is a size of
the set of parameters S. An additional register |φ〉 of dlog2 pe qubits is needed
for storing an index of an observing symbol in a subword. The QFA P consists
of 2t · p ≈ 2dp states.

|ψ1ψ2 . . . ψt−1〉|ψtarget〉|φ〉 = |00 . . . 0〉|0〉|0〉

is an initial state. An accepting state is |00 . . . 0〉|0〉|0〉. All other states are re-
jecting.

Reading the left end marker P maps the initial state to a superposition of d
states by applying the Hadamard transformation for the first t− 1 qubits.

|00 . . . 0〉|0〉|0〉 → 1√
d

d∑
i=0

|i〉|0〉|0〉

The register |φ〉 is changed after reading a symbol xj of a subword by ap-
plying a transformation U : |j〉 → |(j + 1) mod p〉, where j ∈ {0, . . . , p − 1}. A
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transformation p× p matrix U is the following.

U =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
· · ·

0 0 · · · 1 0


On a symbol xj = 1 the qubit |ψtarget〉 is transformed by a rotating G on an

angle 2πki2
j

2p/2
if j < p/2 (mod p), and on an angle − 2πki2

p−j−1

2p/2
if j ≥ p/2 (mod

p). The transformation is the following.

G =

[
cosα sinα
− sinα cosα

]
,

where α = 2πki2
j

2p/2p
if j < p/2 (mod p),

α = − 2πki2
p−j−1

2p/2
if j ≥ p/2 (mod p).

On xj = 0 the system is not transformed.

The set S = {k1, k2 . . . kd} can be computed in a way described in the previ-
ous section.

Reading the symbol # the automaton maps the first t − 1 qubits to the
|00 . . . 0〉 by applying the Hadamard transformation, and |ψtarget〉 is measured.
If the measured value is |0〉, then the computation is continued on the next
subword starting from the same initial state |00 . . . 0〉|0〉|0〉. If no, then P stops
and rejects the input with probability 1.

Theorem 4. If the input word x ∈ Palindromep, then P accepts it with prob-
ability 1. If x /∈ Palindromep, then P accepts it with probability ε.

Proof. If x ∈ Palindromep, then each of its subwords is a palindrome. Initially,
|ψtarget〉 = |0〉. By the construction of the QFA, after reading each ωi, the
automaton P maps |ψtarget〉 to itself. After reading the right end-marker, P gets
into the state |00 . . . 0〉|0〉|0〉. That is the only accepting state.

If x /∈ Palindromep, then at least one subword of the input is a non-
palindrome. Let it be ωg. After reading ωg and measuring |ψtarget〉, we get |0〉
with probability

1

d2

 d∑
i=0

(

p/2−1∑
j=0

cos
2πki2

j

2p
+

p−1∑
j=p/2

cos
2πki2

p−j−1

2p
)

2

< ε.

Thus, P accepts the wrong word with the probability < ε.

If there are m such wrong subwords in the input, and measurements of
|ψtarget〉 are independent, then a probability of acceptance of the wrong input
is less than εm < ε.
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5 Conclusion

This technique can be applied for a QFA solving a promise problem Palindromep.
This result shows the effectiveness of quantum approach for solving the class of
Equality-related problems.
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A Numerical Results

All computation were performed on the following computer:

CPU: Intel Core i7-5930K with 6 cores (12 threads) and 3.50 GHz frequency
RAM: 64 Gb
GPU: NVIDIA GPU GeForce GTX 1080 (GP104-A) with 8 Gb memory
OS: Ubuntu 18.04.1 LTS
Octave version: 4.2.2
GPU drivers: nvidia-drivers-415.23
CUBLAS version: 9.1

Results of numerical experiments are summarized in the following table and
figures 1, 2, 3. Figure 4 is a zoomed out version of fig. 3.

The algorithm run for given parameters p and d, and γ was set to γ = 0.9.
Here p is any non-negative integer (not only prime), the program computes the

set of parameters S = {k1, k2 · · · kd} such that ε(S) = 1
d

∣∣∣∣∑d
i=1 cos 2πki

p

∣∣∣∣ ≤ γ.

The table also contains a value ε = ε(S) that was computed for the resulting S.

Table 1: Results of numerical experiments. Columns p and d contain
input parameters. Column S contains d numbers — the sequence
of parameters that was found. Column ε contains the value of bias
for the sequence S.

p d S ε
8 5 1, 2, 3, 0, 4 0.20000
16 7 1, 2, 7, 3, 4, 6, 5 0.14286
16 9 1, 2, 7, 3, 4, 6, 5, 0, 8 0.11111
20 8 1, 4, 5, 3, 6, 9, 8, 2 0.22613
21 8 1, 9, 8, 3, 4, 10, 7, 6 0.21837
22 9 1, 4, 5, 10, 2, 6, 3, 7, 8 0.20458
23 9 1, 10, 5, 11, 8, 4, 3, 9, 2 0.18515
24 9 1, 4, 10, 3, 6, 9, 2, 5, 8 0.22222
25 9 3, 12, 10, 2, 4, 8, 11, 6, 7 0.23534
30 10 1, 4, 8, 12, 3, 9, 7, 6, 5, 13 0.24962
32 25 1, 6, 5, 8, 14, 9, 7, 2, 12, 10, 15, 3, 11, 4, 13, 0, 16, 5, 4, 13, 2, 6,

10, 9, 11
0.10630

64 30 1, 6, 22, 5, 13, 19, 21, 30, 11, 8, 9, 14, 12, 18, 27, 23, 3, 7, 20, 24,
4, 16, 28, 17, 25, 31, 29, 2, 10, 26

0.066026

128 35 1, 44, 30, 9, 6, 50, 31, 32, 41, 14, 28, 24, 35, 7, 18, 46, 49, 21, 40,
52, 22, 5, 19, 12, 45, 48, 60, 39, 63, 36, 43, 20, 13, 10, 3

0.15562

256 40 2, 17, 97, 77, 68, 127, 90, 121, 124, 19, 67, 23, 116, 16, 112, 57, 98,
41, 29, 126, 103, 110, 69, 94, 47, 26, 31, 56, 33, 22, 40, 84, 51, 18,
122, 7, 99, 37, 105, 107

0.17884

384 43 1, 6, 107, 142, 158, 37, 108, 55, 148, 75, 83, 179, 119, 100, 33, 89,
185, 155, 164, 60, 174, 106, 78, 145, 178, 82, 80, 95, 91, 45, 171,
110, 57, 47, 124, 38, 133, 112, 180, 46, 30, 29, 19

0.17676
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Table 1: (continued)

p d S ε
512 45 1, 172, 186, 226, 162, 197, 245, 239, 45, 37, 129, 217, 111, 7, 146,

224, 219, 87, 220, 190, 130, 24, 127, 208, 185, 101, 57, 150, 125,
84, 74, 193, 93, 114, 153, 62, 144, 3, 243, 115, 206, 122, 42, 152,
136

0.18060

640 47 105, 10, 11, 259, 271, 223, 304, 15, 115, 81, 64, 252, 68, 25, 282,
149, 195, 136, 80, 17, 33, 198, 13, 238, 86, 262, 27, 131, 112, 213,
224, 142, 317, 284, 283, 95, 312, 163, 172, 21, 157, 22, 296, 244,
187, 287, 12

0.18123

768 47 1, 10, 62, 232, 372, 107, 382, 296, 253, 225, 122, 206, 184, 214, 39,
231, 6, 52, 187, 262, 127, 121, 155, 181, 157, 325, 21, 75, 117, 333,
351, 22, 245, 101, 368, 301, 260, 198, 73, 100, 115, 203, 63, 364,
348, 270, 152

0.18809

1024 50 1, 465, 6, 200, 428, 481, 14, 356, 191, 149, 102, 510, 281, 70, 64,
290, 47, 499, 216, 283, 123, 177, 468, 511, 254, 399, 25, 463, 167,
304, 124, 161, 164, 82, 497, 72, 287, 249, 51, 29, 353, 346, 309, 245,
75, 50, 458, 62, 122, 153

0.18722

1280 52 1, 6, 208, 265, 364, 627, 42, 245, 481, 365, 87, 311, 519, 297, 64,
523, 412, 421, 169, 594, 468, 79, 30, 58, 456, 119, 439, 303, 163,
438, 298, 337, 491, 145, 55, 344, 283, 544, 534, 122, 629, 314, 536,
348, 207, 482, 205, 134, 95, 553, 232, 186

0.18946
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Fig. 1. Values of d that were used for different p
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