
Acoustic data transmission for embedded
software platforms: an empirical study

Master of Science Thesis
University of Turku
Department of Future Technologies
Embedded Systems Laboratory
2019
Henrique Gonçalves Nogueira

Supervisors:
Msc. Jorge Peña Queralta
Assoc. Prof. Tomi Westerlund
Tommi Otsavaara

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

HENRIQUE GONÇALVES NOGUEIRA: Acoustic data transmission for embedded soft-
ware platforms: an empirical study

Master of Science Thesis, 70 p.
Embedded Systems Laboratory
August 2019

As microcontrollers become increasingly powerful at a lower cost, they continue to ex-
pand to new fields of applications, in particular those under the process of a digital trans-
formation. These systems are often packed with a broad array of complementary subsys-
tems, that can be selectively enabled to further facilitate their integration in larger designs.
Due to this immense malleability, they often enable creative problem-solving approaches
that not only serve to improve the product’s overall functionality, but may also help to
drive down costs even further.
This thesis is based on the design and implementation of an embedded software modem
system, consisting of a non hardware-native communication interface. The interface is
based on the transmission of audio signals and can thus be often implemented with little
to no additional hardware costs by utilizing the preexisting functionality of the platform’s
features. Under the constraints of the limited computational capabilities of embedded pro-
cessors, the system works as an efficient communication layer that can be easily integrated
into broader software systems concurrently running on these devices.
In contrast with signal propagation of wired interfaces, the wireless transmission of
acoustic signals brings forth a new set of challenges, which are tackled using sen-
sible strategies based on well-established telecommunication’s theory. Nevertheless,
the design approach is largely platform independent, with configurable performance
parameters that can be adapted to the available computational resources and system
specifications. The proposed architecture is based on the OFDM signalling scheme with
QAM-16 carrier modulation and the implementation results show that the system can
reliably support up to 32kb/s message transmission speeds for an average interface setup.

Keywords: DoS, OFDM, IoT, DSP

Contents

List Of Acronyms 1

1 Introduction 3

1.1 Motivation and system objectives . 5

1.2 Related works . 7

1.3 Structure . 10

2 Data communication systems 12

2.1 Data signalling basics . 13

2.1.1 Time and frequency domains . 14

2.1.2 Pulse Code Modulation . 15

2.1.3 Passband signaling techniques 17

2.1.4 M-ary Quadrature Amplitude Modulation 18

2.2 Physical constraints in real-world applications 20

2.2.1 Noise . 21

2.2.2 Channel response in LTI systems 22

2.2.3 Audio to digital conversion . 24

2.3 An effective signaling scheme for passband channels 25

2.3.1 Orthogonal frequency division multiplexing 26

3 Design overview 28

i

3.1 System design considerations . 28

3.1.1 Application message formatting 29

3.1.2 Data integrity . 30

3.1.3 Splitting messages into packets 31

3.1.4 Reducing the peak-power-to-average-power-ratio 33

3.1.5 ISI and the guard interval . 34

3.1.6 Timing synchronization challenges and the cyclic prefix 34

3.2 Signal processing algorithms . 36

3.2.1 The Preamble . 36

3.2.2 A computationally efficient mode-switch signalling scheme . . . 42

3.2.3 OFDM payloads . 45

3.2.4 Signal construction . 46

4 System implementation 48

4.1 Platform Characteristics . 48

4.1.1 DSP Features . 49

4.1.2 Fixed-Point Arithmetics . 50

4.1.3 Embedded Memory . 51

4.2 Implementation Overview . 52

4.2.1 Product integration . 54

4.3 Implementation results . 58

4.3.1 System configurations . 58

4.3.2 Frequency response of the channel interface 60

4.3.3 Runtime performance analysis 62

4.3.4 Noise immunity . 64

4.3.5 Testing the limits . 65

5 Conclusion 66

5.1 Future works . 68

5.1.1 Error correction codes . 69

5.1.2 System confidentiality . 69

5.1.3 Research performance results using fixed-point DSP 70

References 71

List of Figures

2.1 Generic illustration of a QAM-16 constellation map. 20

2.2 Spectral representation of two carriers using the OFDM scheme. 27

3.1 Simplified representation of the application model. 29

3.2 Representation of the packet structure. 32

3.3 Illustration of the data dependent peak-power-to-average-power-ratio. . . 33

3.4 QAM constellation map and the resulting rotations due to phase offsets φ. 35

3.5 Representation of the preamble signal consisting of the CP and two con-

secutive training symbols: T0 and T1. 37

3.6 Illustrative example of a tone-sequence time signal. 45

3.7 Representation of the OFDM payload processing algorithm. 46

3.8 Time graph of the packet signal construction for an arbitrary format. . . . 47

4.1 System component level flow diagram. 54

4.2 Processing model diagram depicting the concurrent master and slave threads. 57

4.3 Channel frequency response with the speaker-pickup pair setup. 61

4.4 Impulse response’s amplitude over time with the speaker-pickup pair setup. 62

4.5 Performance analysis profiling result with a default system configuration . 63

4.6 BER vs SNR with different bandwidth utilizations. 65

iv

List of Tables

1.1 Synthesis of the system’s specifications 7

1.2 DoS systems comparison overview. 10

4.1 System configuration parameters used for the performance test trial. . . . 60

v

List Of Acronyms

AES Advanced Encryption Standard

ADC Analog to Digital Converter

AES Advanced encryption standard

ASK Amplitude Shift Keying

AWGN Additive White Gaussian Noise

ADT Acoustic-data-transmission

B2B Business-to-business

CP Cyclic prefix

CPU Central Processing Unit

CRC Cyclic Redundant Check

DAC Digital to Analog Converter

DoS Data-over-sound

DFT Direct Fourier Transform

DOS Data-over-sound

DSP Digital Signal Processing

DMA Direct Memory Access

FFT Fast Fourier Transform

FIR Finite impulse response

GPIO General purpose input/output pins

IIoT Industrial Internet-of-things

CHAPTER 0. LIST OF ACRONYMS 2

IoT Internet-of-things

ISI Inter Symbol Interference

LTI Linear-time-invariant

MCU Microcontroller Unit

PAPR Peak-to-average-power-ratio

PCM Pulse Code Modulation

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

M-QAM M-ary Quadrature Amplitude Modulation

RF Radio-frequency

RIFF Resource Interchange File Format

OFDM Orthogonal Frequency Division Multiplexing

SAI Serial Audio Interface

SDK Software development kit

SNR Signal to noise ratio

SOC System on a chip

SOF Start of Frame

S&C Schmidl and Cox

USB Universal serial bus

UWCN Underwater wireless communication networks

ZCS Zadoff-Chu Sequence

1 Introduction

The Internet of Things (IoT) is built around connected devices, which monitor data or

bring intelligence to multiple domains [1]. In most applications, data transmission sys-

tems for embedded devices are implemented using electric signals, transmitted under con-

trolled physical media such as copper traces and wires, or wirelessly with the propagation

of radio waves [2]. These methods support very fast data transfers due to their large signal

bandwidth and are preferred over alternatives that rely on mechanical processes, such as

the propagation of sound. However, while the number of connected devices is reaching

the order of tens of billions [3], multiple products and applications involving embedded

devices lack the connectivity required to join the IoT [4]. The focus of this project is

to design and document a software communication system intended to run entirely on

an embedded microprocessor. It uses a novel wireless communication solution based

on acoustic data transmission that can be applied to extend IoT connectivity of musical

instruments, while exploiting the existing hardware.

Data-over-sound (DoS) is the concept of transmission of digital information through

audio, which, unlike common speech-based audio communication, relies on symbolic

data, typically encoded in binary format. When compared with other channel media that

make use of electric or electromagnetic signals, acoustic propagation uses a much nar-

rower bandwidth at a lower frequency, however, also due to its slower data-rate nature,

no specialized hardware is necessarily required in order to implement capable modem

systems that can efficiently utilize this spectral band. Acoustic signals can be read as a

CHAPTER 1. INTRODUCTION 4

continuous string of audio samples, and if the processing system has enough memory and

is fast enough, it is possible to process these samples at a rate that facilitates real-time data

transmission. So, unlike radio-based communication, DoS systems can theoretically be

efficiently implemented on any existing device that already integrates the basic hardware

support to support such an interface.

Often times, channel characteristics other than bandwidth are also important to con-

sider. These include aspects such as whether the communication is being performed out of

line-of-sight, system hardware limitations or whether the environment restricts RF propa-

gation. These factors may define the need for the application of non-conventional commu-

nication channels. For example, if we consider the field of underwater wireless commu-

nication, due to an unusual ineffectiveness of underwater electromagnetic propagation,

acoustic propagation is the most popular, efficient and proven method for underwater

wireless communications [5].

It is also important to consider that, due to the very high bandwidth and process-

ing speed requirements of typical communication systems, the modems typically exist in

the form of hardware-based implementations. These devices are composed of dedicated

hardware modules that can perform the required real-time signal processing operations at

a very fast pace, however, their functionality is limited in the sense that they are explicitly

designed for that single purpose. In contrast, software-based platforms such as microcon-

trollers serve as highly flexible, and often cheap, laboratories onto which we can deploy

a plethora of systems. In summary, this thesis provides a set of design strategies for the

software implementation of a sound-based data transmission system, requiring little to no

additional hardware support for most commercially available embedded platforms. For

this purpose, acoustic-based channels provide an attractive solution, not only due to the

uncomplicated integration efforts but also because it facilitates a signal path for wireless

data transmission.

CHAPTER 1. INTRODUCTION 5

1.1 Motivation and system objectives

This thesis project has been developed at Darkglass Electronics Oy, a Helsinki based com-

pany specializing in premium bass gear, in particular, bass distortion pedals. Essentially,

these systems are audio signal processors, and thus serve to modify certain characteristics

of the bass audio signal, both in analog and digital domains. These may include a micro-

controller unit (MCU), not only responsible for controlling some of the system’s various

analog modules but also as an engine to run digital signal processing (DSP) algorithms.

These systems are highly configurable, facilitated by the fact that they integrate an

MCU that executes firmware responsible for controlling the remaining device modules.

In essence, the software can be rewritten/reconfigured to completely modify the user in-

terface behaviour as well as the operation of some of the analog subsystems and the DSP

algorithms. As such, the company has developed a computer application, the Darkglass

Suite, that allows for each user to configure the system according to her/his needs within

the bounds of the relevant implemented product features. By default, the application in-

terfaces the products over USB and is thus the configuration accessibility is somewhat

constrained by this factor.

The project idea consists of extending the user connectivity, with an alternative chan-

nel to the USB interface already implemented, allowing users to configure the devices

on-the-go. Since these systems are designed to process audio signals they already possess

the necessary analog conversion hardware, and thus the acoustic signalling path is already

well established. This type of interface has the great benefit that it can be applied across

the whole Darkglass product line, including already deployed production devices which

can be easily updated via field firmware updates.

The system is originally implemented on Microchip’s ATSAM4S4A MCU, currently

deployed on all the relevant devices, running at 120 MHz frequency with an ARM Cortex-

M4 architecture. Most of the interface messages are relatively small in size, typically

under 1kB, with a few exceptions: impulse response filter coefficients start at 2kB in

CHAPTER 1. INTRODUCTION 6

size but are expected to increase for products further down the line, and firmware update

images, which, for now, can theoretically go up to 120kB in size. Since, ideally, the

longest transmission duration should be under around one minute, for the sake of the

quality of user experience, the targeted system transmission rate can be defined to be

around 2kB/s.

The physical interface can be routed in two different ways. The first and simplest

connection is achieved by hooking up the device to the user’s phone through a regular

2.5mm audio jack cable, connected to the aux port of the devices. Alternatively, as a

second option, the user may use the phone’s stereo system to provide the acoustic signal

that can be picked up by the magnetic pickup sensor present in the bass guitar. Note

however that this wireless transmission route is not truly acoustic in nature as the audio

signal is converted into an electric signal due to vibrations in the stereo actuator that are

picked up by the bass pickup-sensor as changes in the magnetic field, and not due to the

mechanical vibrations of the air. This works similarly to how the bass string vibrations

are converted into electric signals and as such presents slightly different characteristics

when compared to a typical speaker-microphone pair setup. Nonetheless, the methods

that have been developed can be extended to pure acoustic transmission over the air or

other mediums. For longer distance transmissions, multipath propagation needs to be

taken into account.

The wireless transmission route option is naturally much more sensitive to specific

characteristics of the phone’s stereo system and the bass guitar’s pickup sensor but im-

portantly provides a practical way to configure the device on-the-go. While these com-

munication channels are inherently different, the system design is tailored towards the

characteristics of the speaker-pickup pair communication channel due to the fact that it is

naturally more restrictive across the board and presents much greater challenges, meaning

that it has a narrower bandwidth, generates channel distortion effects, is more susceptible

to inter-symbol interference (ISI) and shows a worse SNR performance, etc.

CHAPTER 1. INTRODUCTION 7

Table 1.1: Synthesis of the system’s specifications

Specification

Direction Simplex (user out, device in)

Data integrity Lossless data transmission

Security Unencrypted / encrypted with preset key

Data rate 2 kB/s

Route Wired or wireless(stereo-pickup pair)

Message length > 64 kB

Sample rate ≃48 kHz

The communication channel is also of type simplex, meaning that data can only travel

in one direction: from the user to the device. This poses an additional challenge at a

protocol level since the transmitter does not know when or if the receiver has received

the complete message. Given that transmission should be loss-less at all times, indepen-

dently of the form of the message, strategies need to be in place guaranteeing that the

receiver may always eventually receive a complete message. The system specifications

are summarized in Table 1.1.

1.2 Related works

The proposed system implementation presents several challenges. Nevertheless, arguably,

the fundamental difficulty is related to the implementation of real-time digital signal pro-

cessing of wireless communication algorithms on the limited computational capabilities

of embedded software platforms. In recent years, solutions relying on data-over-sound

transmissions have emerged to extend the possibilities of connectivity in the IoT. How-

ever, most recent advances have happened within the industrial sector, and the solutions

are not open-sourced. In this section, we provide an overview of the two most widely

CHAPTER 1. INTRODUCTION 8

used solutions for data-over-sound from Mutable Instruments SARL [6] and Chrip.io [7].

This project presents many development challenges, however, arguably the funda-

mental problem that is tackled here has to do with the implementation of real-time digital

signal processing of wireless communication algorithms on the limited computational ca-

pabilities of embedded software platforms. While there are other products out there that

offer a similar feature under equivalent hardware constraints, typically the implementa-

tion details are kept undisclosed to the public, and it is hard to speculate any performance

characteristics without having the opportunity to experiment extensively with these de-

vices.

The company Mutable Instruments SARL provides a promising case study for this field

of research with the development of digital synthesizer modules supporting audio-based

firmware update features. Their designs are publicly available as open-source [6]. For ex-

ample, the Elements modal synthesizer runs on an STM32F405RG Microcontroller chip

from STMicroelectronics, which coincidentally has very similar characteristics to the chip

used for project development, having, in particular, the same Cortex-M4 ARM processor

architecture. By consulting the firmware code available at their Github repository, we

can infer that the firmware update system is using a single carrier quadrature phase-shift-

keying (QPSK) as a signal modulation scheme. Notably, the software implementation is

surprisingly short and is kept rather simple, however, the bandwidth usage cannot be very

efficient, as it is using a signal correlation estimator based on the sign information alone.

Furthermore, even though the firmware update procedure is based on signals produced

in the acoustic band, it only supports a wired interface to the audio source, meaning that

the implementation does not have to account for effects due to wireless propagation. In

our work, we utilize OFDM modulation to provide higher bandwidth and configurable

channel utilization.

A white paper published by Disruptive Analysis Ltd. provides an in-depth analysis of

DoS as a technology and its current and potential application in different fields [7]. In

CHAPTER 1. INTRODUCTION 9

particular, the concept is gaining traction over fields for the Industrial Internet-of-Things

(IIoT). Multiple companies are already working on DoS as a cross-platform third party

technology for the IIoT. One of the solutions with higher market penetration is chirp.io,

a B2B service-based company developing a suite of software development kits (SDK)

that can work under different platforms, including a plethora of operating systems or

even support for C development of embedded bare-metal firmware. Their focus is on

acoustic transmission through sound propagation using an M-ary frequency-shift-keying

(FSK) modulation scheme due to its robustness in multipath-propagation environments,

while also being adaptable to different data-rate profiles. There is a clear parallelism

between this solution and our proposed system. In particular, the fact that both harness

the capabilities of unspecified pre-existing hardware. Nevertheless, dealing with multi-

platform development, decisively serves to amplify the challenges faced by the company,

as the processes must not only be adapted to the device’s computational abilities but also

the audio-related hardware interfaces.

Table 1.2 provides an overview of the aforementioned systems and the system pro-

posed in this thesis, labelled as "Ours". In this context, Chirp.io naturally offers the

most mature solution, providing ample support for various types of applications, different

platforms, high reliability and a broader set of features. On the other hand, the system de-

veloped for this thesis provides the basis for much higher data transmission rates than the

remaining solutions. It is noteworthy to mention that, regarding the Mutable Instruments

solution, all parameters are derived from the analysis of the open-source codebase alone,

and should thus be taken with a grain of salt.

When discussing acoustic data transmission applications, arguably the most advanced

application of such technology is in underwater wireless communication networks (UWCNs).

Underwater wireless communication presents an extraordinary set of challenges, in par-

ticular, is the fact that electromagnetic propagation behaves very differently in this en-

vironment. For example, radio waves can only propagate over long distances when

CHAPTER 1. INTRODUCTION 10

Table 1.2: DoS systems comparison overview.

Chirp.io Mutable Ours

Platform OS/baremetal Baremetal Baremetal

Wireless yes no yes

Encryption optional no no (optional)

Data rate Up to 1 kbps N/A Up to 32kbps

Distance 1 cm-100 m N/A 1cm (extendable)

Spectral band acoustic N/A acoustic

Direction Simplex/Duplex Simplex Simplex

Signalling M-ary FSK QPSK QAM16(OFDM)

transmitted at high power levels and at extremely low bandwidths (30-300Hz), render-

ing relatively low data rates [8]. While there exist underwater acoustic modem hard-

ware solutions, which can be used to establish a communication link between two nodes,

the embedded software platform alternatives may prove to be a more flexible and cost-

effective alternative. Qiao et. al (2013) propose an acoustic modem, running on DSP soft-

ware platforms, which, similarly to this project, utilizes orthogonal-frequency-division-

multiplexing (OFDM) as the fundamental signalling scheme [9]. In essence, we see that

the fundamental differences in acoustic-based communication schemes derive from char-

acteristics of the channel, transducers and sensors and the subsequent complexity of the

algorithms needed to tackle those differences.

1.3 Structure

The purpose of this document is to detail the actual implementation of a communication

system, in a way that it is both instructive and tries to respect the actual progression

of the project development. It aims at explaining the basic theory behind the design of

CHAPTER 1. INTRODUCTION 11

each module, and it details the system design approach at an algorithmic and software

implementation level, all while being conscious of embedded-related constraints. The

core structure of this document is split into three main parts:

• Chapter 2 covers some of the abstract basic theory of digital communication sys-

tems in general. Namely, it narrows down on the OFDM signalling scheme as this

is the central mechanism for digital data transmission.

• In chapter 3, we take a deeper look at the system design from an algorithmic point

of view. While this chapter tries to be as agnostic as possible to specific platform

constraints, the design approach is always conducted in a way that is conscious of

typical embedded-processor limitations.

• Finally, chapter 4 mentions some platform-specific details and techniques as they

relate to the software implementation of this system. Here, we also take a look at

some of the most relevant experimental results.

2 Data communication systems

The fundamental principle of digital data communication is the exchange of information,

once described in the form of discrete symbols. In every information exchange, a signal

must be involved so that either of the relevant actors may sense changes in their per-

ceived environment, and thus extract information from these events,i.e. the propagation

of signals, the information is transmitted over a given communication channel. Equally

as important, the transmitters and receivers must share a common language so that the

exchanged information is meaningful, otherwise, the signal is just plain noise.

Signals can be extremely simple, for the most basic exchanges of information, or they

can be complex to a point where they become imperceptible to normal humans, as the

information becomes embedded in more subtle ways and in greater density. For example,

while I am writing this paragraph, I am waiting for the bell to ring so that I can pick up

a mail package being delivered. It can be thought of as a binary signal, where it is either

active, while the bell rings, or inactive, while it is silent. As soon as it rings, I can only

extract the following information: someone is at the door. This protocol is very simple,

and given the bandwidth and message requirements, it works just fine. However, if I

would also like to know more information about who exactly is at the door, I would have

to resort to some other protocol, or perhaps a different system altogether.

It is important to emphasize this aspect to convey a sense of what is involved in the

development of a data transmission system from "scratch". The options are practically

endless and, with smart design choices, the system can be implemented with varying

CHAPTER 2. DATA COMMUNICATION SYSTEMS 13

degrees of optimality. The challenges of this project consist of applying existing com-

munication theory in ways that are suitable to the platform at hand, and according to the

specs described in 1.1. To meet these requirements, we are required to carefully apply

the telecommunication’s principles that serve as a foundation for modern communication

networks. The theoretical background on digital telecommunication systems is vast and

complex, and so, the purpose of this chapter is to lay out the basic theory which pertains

directly to the project’s implementation, serving as the support for the most fundamental

system design decisions.

The information compiled in this chapter is mostly inspired by the works of [10] and

it is focused on topics which are directly related to the physical aspects of communication

systems, often called the physical layer. The physical layer focuses on the generation and

interpretation of analog signals as carriers of information and the principal challenge of

this project is in designing an efficient scheme that can be translated into software. Section

2.1 mentions some basic concepts regarding data signalling techniques, then, section 2.2

introduces the main fundamental concepts for real-world applications. Finally, section

2.3 takes a deeper look into the signaling scheme that will serve as the basis for system

design later on.

2.1 Data signalling basics

The functioning principle of data-communication systems boils down to the generation

and processing of information-carrying signals. For the context of this thesis, signals

are always bi-dimensional and can be conceptualized as voltages changing over time, as a

result of the excitation of the pickup sensor. This section aims at explaining how symbolic

information can be embedded into continuous signals.

CHAPTER 2. DATA COMMUNICATION SYSTEMS 14

2.1.1 Time and frequency domains

Typically, a one-dimensional signal is represented as a value varying over time. However,

sometimes this approach is limiting in the sense that certain signal characteristics are not

visually apparent by looking at its shape alone. The truth is that the shape, or form, of

a signal, typically is not directly related with the information it contains. For example,

when considering signals that we process naturally as humans, such as audio and images,

the content can be more easily described by its frequency profile rather than the shape

of the curve as the values change over time. When something looks red, it is because of

the emission of a light signal with a wavelength close to 700nm, and when a sound feels

dissonant, it is because the frequencies of the composing sounds don not fit our natural

harmonic rules.

It quickly becomes apparent, once signals increase in complexity, it is important to

look at the same signal from the perspective of two vastly different domains. The fre-

quency domain lays out information about the signal across its frequency spectrum. Es-

sentially, it conveys how the signal can be decomposed into a sum of sinusoidal waves

for every frequency value, whereby for each frequency there is an associated component

value represented in complex number notation, Cf = AeΦ, where A defines the amplitude

and Φ defines the phase of the component at a given frequency.

The Fourier transform operation F converts a time-based signal into its frequency

domain equivalent and conversely, the inverse Fourier transform operation F−1 does the

opposite. In digital systems, however, information is presented in a discretized fashion,

i.e. time-based signals are usually stored as sequences of discrete samples, and it turns

out that this characteristic imposes some interesting behavior when applying the Discrete

Fourier Transform operation (DFT). The DFT, as the name implies, performs the equiv-

alent of a Fourier transform over sets of digitally sampled signals, and while its intrinsic

properties and constraints go beyond the scope of this document, there are a few key

points to notice before moving forward with the digital communication theory basics.

CHAPTER 2. DATA COMMUNICATION SYSTEMS 15

As the sampled signal represents can only ever be represented by a finite number of

values over a given time-span, so to can the frequency spectrum only represent a finite

number of frequency components. For a signal composed of a total of N samples, sam-

pled at a fixed rate fs, the frequency resolution of the resulting DFT spectrum is calculated

as ∆f = fs

N
, meaning that the resulting spectrum does not directly represent frequency

components that do not fall exactly at those specific frequency coordinates. Moving for-

ward, this factor will be particularly important when trying to efficiently and explicitly

calculate the key frequency components of a given signal.

The conversion between time and frequency domains are central operations in the

realization of digital communication systems, and, as it pertains to the implementation of

this projects, it is also important to note that all DFT operations are actually performed

with the Fast Fourier Transform (FFT) algorithm. Multiple variations of this specific

algorithm exist, towards varying degrees of speed and precision, but notably, one of the

main aspects is that it operates most efficiently in data sets where the number of samples

is a power of two, for example, 32, 64, 128, 256 and so forth. This is because the basic

construction of the algorithm revolves around a divide-and-conquer approach, where the

data-sets are operated on while recursively broken down in half. In essence, the takeaway

is that this operation offers an improved computational complexity O(N log(N)), when

compared to more straightforward DFT implementations of the order O(N2).

2.1.2 Pulse Code Modulation

For binary data, the simplest signal construction is the direct representation of successive

bits over time, where each bit value is mapped to a specific voltage level, for example, +1V

for the bit value 1, and -1V for the bit value 0. This stream of bits would be transmitted

at a pre-defined rate RS , corresponding to the rate at which the receptor will sample the

transmitted signal: Rd = Rs.

To try and improve the transmission speed, assuming that the maximum sampling rate

CHAPTER 2. DATA COMMUNICATION SYSTEMS 16

is fixed at a specific rate, multiple bits can be packed into the same symbol and, again,

mapped to specific ranges of voltage levels, and finally, transmitted at a fixed rate. In

this case, the data transmission speed depends on the number of bits per symbol and the

system’s sampling rate. If L defines the number of discrete voltage levels, then the data

rate can derived from: Rd = Rs ⌊log2 L⌋.

This modulation technique is called Pulse Code Modulation (PCM), where symbolic

codes are transmitted as pulses at fixed sampling rates. Its appeal comes from the fact

that it is very simple to implement when compared to other alternatives: just sample the

voltages at periodic moments in time and compare the readings with a predefined value

table. However, there are some key limitations in the implementation of a PCM based

system when considering the speaker-pickup communication channel:

• Channel attenuation: There would need to be some strategy, such as compensa-

tion factor, to calibrate the values to the voltage level table. Furthermore, making

matters worse, given that the speaker-pickup pair are not in fixed positions during

the transmission, the attenuation values fluctuate over time.

• Effective bandwidth utilization: While PCM frequency domain profiles depend

on the data being transmitted, in general, the signal is largely spread across the

spectrum. For example, with a transmission consisting of consecutive alternate

bit values with binary coding, the resulting wave would be a square wave with

frequency Fsq = Rd/2. For this particular signal, the spectrum decays linearly

with the frequency, and the fundamental frequency component corresponds to only

about 81% of the entire signal power. As explained later on, the bandwidth of the

speaker-pickup pair channel is very limited, and so, ideally, the power density of

the transmission signal should be strong.

• Phase response linearity: A linear-phase system performs in such a way that the

output signal maintains the same shape as the output signal, i.e. if a square signal is

CHAPTER 2. DATA COMMUNICATION SYSTEMS 17

transmitted, the received signals continues to be a square signal as well. However,

in general, the speaker-pickup pair does not show a linear-phase behavior. This is

further exacerbated by the fact that the channel is limited in the frequency band,

and so, the signal is further deformed. In such cases, modulation techniques that

depend on the signal shape, such as PCM, are not optimal.

2.1.3 Passband signaling techniques

In the previous modulation technique, PCM, the signal is in its most basic form: se-

quences of symbols are directly translated into voltage levels varying over time. This is

an example of baseband transmission, where the original signal is transmitted directly

without any modulation effects. The bandwidth of the transmitted signal can thus be

defined as its highest relevant frequency component. Also, as mentioned earlier, the spec-

trum of the signal depends, to a large extent, on what data is being transmitted and basic

system specifications such as the data rate.

In general, communication channels have a limited available bandwidth. For example,

the human auditory system can capture and process signals inside the 20Hz to 20kHz

band. This means that, acoustic signals that have a lower bandwidth, can not be "fully"

heard and understood, as is the case with frequencies that exceed the upper limit. A typical

approach to tackle this issue is by applying carrier wave signaling techniques, whereby

the signal information is somehow embedded in a sinusoidal wave oscillating at a desired

frequency.

Digital signaling schemes, can be roughly separated into three categories: Amplitude

Shift Keying (ASK), Frequency Shift Keying (FSK) and Phase Shift Keying (PSK). These

techniques consist of embedding information on time-varying parameters of a sinusoidal

wave, respectively its amplitude, frequency and phase. Simply speaking, it means that,

given a certain baseband signal p(t) containing data, this signal will be present as either

the amplitude-over-time, frequency-over-time or phase-over-time values of the emitted

CHAPTER 2. DATA COMMUNICATION SYSTEMS 18

signal. Essentially, instead of encoding data as voltage levels over time, these symbols

are "keyed" into other signal characteristics like its amplitude, frequency and phase, re-

spectively for ASK, FSK and PSK. Also, it is interesting to notice that, given that these

characteristics are effectively independent, these techniques can be combined to improve

the signal’s information density. For the purpose of a software based PHY encoder/de-

coder, ASF and PSK are the more interesting techniques when compared to FSK. This will

become more clear over the following sections, but essentially, these signalling schemes

produce more predictable spectrum profile, allowing for the implementation of more effi-

cient techniques, such as orthogonal frequency division multiplexing (OFDM).

2.1.4 M-ary Quadrature Amplitude Modulation

The process of converting symbols into an ASK or PSK signal can be simple. Symbols

are mapped to certain amplitude or phase values, and these values are used to modulate

the carrier wave, generating the symbol’s corresponding signature signal. For example,

given a carrier wave oscillating at a fixed frequency Fc with phase Φ0 and amplitude A0,

and a symbol k, mapped by the phase value Φk, the respective PSK signal can be written

as:

pskk(t) = A0 sin(2πft + Φ0 + Φk) (2.1)

Similarly, the ASK signal of the same symbol mapped to an amplitude value Ak can

be written as:

askk(t) = A0Ak sin(2πft + Φ0) (2.2)

One important aspect to note from equations 2.1 and 2.2 is that the phases and am-

plitudes of the resulting signal always appear in relation with the phase and amplitude of

the carrier wave. This means that, for the receptor to extract accurate symbolic informa-

tion from the received signal, it must know what are the values of the base amplitude and

CHAPTER 2. DATA COMMUNICATION SYSTEMS 19

phase values, A0 and Φ0 respectively, of the carrier wave. This is a matter of coherence,

whereby the transmitter and receiver must be synchronized to be able of communicating

with each other. Furthermore, other channel effects such as attenuation, delay and phase

response are going to affect the perceived amplitude and phase of the received signal, and

will become a compound problem when trying to achieve coherence. Achieving proper

timing synchronization and amplitude compensation is one of the major challenges in

the implementation of PSK and ASK systems. Section 3.2.1 offers an explanation of the

strategies applied.

While theoretically speaking, there is no upper limit on the symbolic complexity, or

the number of bits per symbol, that fit into the same signature signals, in reality, as the

symbol constellation becomes more dense, i.e. the distance between different symbols,

the bit error rate increases. This is because a received signal can not be perfectly remapped

into the original constellation: the more noisy the channel, the less precise the resulting

map will be. For this reason, one heuristic to have in mind when arranging the symbol

mapping, is that the constellation points should be as distant from each other as possible.

By combining PSK and ASK signaling techniques, the information density of each

of the signature signals can be further improved. This means that more symbols can

be embedded into the same waveform, while at the same time maintaining a reasonable

distance between the constellation points. The idea is straightforward: each symbol is

mapped in both phase and amplitude "coordinates" so that the composition of both co-

ordinates provides more leeway in terms of constellation density. Figure 2.1 shows a

symbol constellation map illustrating this composition, where each cross corresponds to

a different symbol defined as specific complex number.

This signaling modulation scheme is called M-ary Quadrature Amplitude Modulation

(M-QAM) because the signal can be decomposed into two quadrature carrier waves, with

an arbitrary number M of constellation points. However it is important to consider that

while there is no absolute upper or lower limit in the mapped phase values, special consid-

CHAPTER 2. DATA COMMUNICATION SYSTEMS 20

Figure 2.1: Generic illustration of a QAM-16 constellation map.

eration must be taken for the amplitude ranges. The symbol’s amplitudes are, at the very

least, limited by the the dynamic range of the transmitter, or else non-linear behaviour due

to saturation effects will become prevalent.

2.2 Physical constraints in real-world applications

Before moving on towards the description of more specific data communication schemes,

it is important to consider what are some of the real-world effects that have to be taken

into account when designing the system. In general, the degree to which we must consider

such effects depends on the "harshness" of the system’s conditions. For example, there’s

little adaptation efforts when transmitting low frequency electric signals over short copper

wiring: the channel bandwidth is comparatively huge and there are barely any noisy dis-

turbances present in the line. In these cases, PCM is often used as a modulation scheme

and very simple hardware efforts are involved. However, when trying to use a given

CHAPTER 2. DATA COMMUNICATION SYSTEMS 21

interface to its fullest potential, some physical barriers will become more apparent. This

section goes over some important physical effects that are relevant for the implementation

of the communication system over the speaker-pickup pair.

2.2.1 Noise

The concept of noise consists of the part of a signal that is chaotic and contains no rele-

vant meaning. Generally, noise is unwanted as it interferes with the original information

contained in the signal and, in many cases, may entirely corrupt it. One way to think of

noise in this context is to imagine a pristine painting laid out on the floor, and as sand

starts pouring slowly onto the canvas the ratio of "sand to painting" increases. With time,

the picture becomes less and less discernible, until eventually it turns entirely indistin-

guishable .

Noise is caused by many sources and can behave very differently depending on the

physical processes involved. For example, thermal noise is commonly mentioned as it

occurs in every single component of an electronic circuit, arising from the random move-

ment of electrons due to the temperature of materials. This type of noise can be modelled

as being additive, i.e. summed with the original signal, and white, i.e. spread uniformly

across the spectrum.

Another interesting example to consider is the noise generated from converting digital

signals into analog signals, e.g. when generating an audio signal with a phone’s speaker,

and conversely, the noise generated when converting analog signals into digital signals,

e.g. when recording the guitar’s pickup sensor signal with an analog-to-digital converter.

This is denominated as quantization noise and it arises from the fact that digital signals

can ever only be stored, recorded and reproduced with discrete signal values, in the form

of digital data. Interestingly, this type of noise is more affected on the shape of the orig-

inal signal: if the signal weak, its voltage levels are described with a lower number of

significant bits and thus the digital quantization effect has a greater impact.

CHAPTER 2. DATA COMMUNICATION SYSTEMS 22

When thinking about the speaker-pickup pair, there is one more relevant source of

noise that comes to mind: with the pickup sensor located just under the guitar strings,

any disturbances in the strings will be propagated as a signal. As it turns out, from em-

pirical trials, it becomes evident that this noise does have a significant impact on system

performance, and depending on the setup, the user may be required to help dampen the

vibration of the strings during transmission. Even though random string vibration can still

be modelled as an additive noise source, its spectrum is not uniform as it is more prevalent

near the natural frequencies of the strings.

Despite there existing vastly different models for noise generation, for the purposes

of analysis of this project all noise considered will be idealized as Additive White Gaus-

sian Noise (AWGN). This simplification distills all noise to a single noise signal that: is

added to the original signal, has a uniformly distributed power spectrum and it follows a

Gaussian distribution with an average value of zero. As such, for a given system setup,

the noise floor defines the average value of noise, in terms power per Hertz.

The signal-to-noise ratio, typically witten in dB units, represents the ratio between the

power of the signal over the power of the noise: SNR = Ps

Pn
. The system can be more

or less resistant to noise, depending on how good is the data accuracy despite lower SNR

levels. Typically, a better SNR performance is inversely correlated to higher data-rates.

This is because a signal that packs more information with the same amount of transmitted

energy will likely be more susceptible to noise disturbances.

2.2.2 Channel response in LTI systems

When travelling through the channel interfacing a transmitter and receiver pair, the signal

may suffer some additional transformations that are not accounted by noise alone. While

some of this behaviour is hard to model, in reality, most communication channels can be

accurately modeled as linear time-invariant (LTI) systems, which are systems that apply

predictable linear transformations and whose behaviour does not vary with time. As it

CHAPTER 2. DATA COMMUNICATION SYSTEMS 23

so happens, the speaker-pickup pair can be approximately modelled as an LTI system,

as long as its behaviour is isolated in smaller chunks of time. The main reason for this

distinction is because, since both the speaker and the pickup are usually hand-held, the

geometry of the pair may suffer changes over time. Nevertheless, since these variations

occur at relatively low frequencies, it turns out that the speed at which the channel be-

haviour changes is slow when compared to the signal frequency band, and so, it turns out

that the channel can still be modelled as an LTI system.

LTI systems can be described by a transfer function that establishes how the signal is

exactly transformed. Typically, the transfer function is written in the frequency domain,

often called impulse response, and the spectrum of the resulting signal, Y (f), can be cal-

culated from the application of a complex scalar multiplication of the transfer function,

H(f), and the input spectrum, X(f). This operation represented in eq. 2.3, and it show-

cases how simple it is to predict the output behaviour of a given system once its transfer

function is characterized.

Y (f) = X(f) × H(f) (2.3)

As seen in eq. 2.3, any given frequency component of the output signal, depends ex-

clusively on its respective input and the system’s transfer function. In a passive channel,

where no signal energy is introduced during propagation, the signal will some suffer at-

tenuation, corresponding to the reduction in power. As the attenuation levels increase, the

SNR levels will typically decrease, and so, the passband of a given channel is defined as

the frequency-band in which the attenuation has not exceeded a certain threshold. This

concept is particularly important as it defines the working band of the transmitted signals

and it can have a large influence on the upper limit of the data rates. Ideally, a channel

should have a large passband, which means more bandwidth, located at higher frequen-

cies, so that the baseband signal can have a relatively small bandwidth when compared

to the frequency of the carrier wave. This will become more evident as the concept of

CHAPTER 2. DATA COMMUNICATION SYSTEMS 24

frequency multiplexing is introduced in section 2.3.

When a channel is limited in terms of its "available" band, in particular, when its cutoff

frequency is relatively close to the that of the carrier wave, the signal shape changes in

such a way that it is spread over time. Essentially, successive signals windowed in time

lose their ability to transition immediately, and so, parts of the signal remain and continue

propagating until, eventually, they die out. This factor is responsible for inter-symbol

interference (ISI), whereby signals related to different symbols interfere with each other,

with an increasing degree the closer in time they are located to each other.

Finally, as mentioned earlier, the input’s signal phase is also affected when crossing

the communication channel. While this factor does not influence the signal’s energy or

bandwidth it is also important to consider, especially when information is embedded in

phase information as is the case of PSK signalling. In such cases, strategies must be set

in place to compensate for any arbitrary phase deformations that took place, so that the

original symbols may be extracted from the resulting signal.

2.2.3 Audio to digital conversion

So far, all signals have been though of as continuous waveforms that can be described in

both time and frequency domains, however, in most modern systems, which work in the

digital domain, signals often need to be translated into a discrete form. This is because

symbolic data can only ever represent a finite amount of information, and so, signals need

to be discretized if they are to be generated, processed and stored on digital platforms. For

audio-based systems, the central components that is responsible for such a conversion is

the analog-to-digital converter (ADC) and the digital-to-analog converter (DAC), and the

quality of these components will have a large impact on the quality of the link between

transmitter and receiver.

In section 2.2.1, this topic is briefly mentioned in the context of the noise introduced

from digital discretization, meaning inaccuracy in the signal due to the quantization of

CHAPTER 2. DATA COMMUNICATION SYSTEMS 25

continuous values. However, one aspect that has not been touched upon is that of the

finite sampling rate of any given digital conversion systems. In audio systems the ADC

and DAC components sample the signal at a fixed rate denominated as sampling rate and,

during the sampling process, some of the continuous signal information is lost due to the

fact that signal records are discarded of the periods in between sampling instants.

The Nyquist theorem states that, if a continuous baseband signal has a bandwidth B

and is perfectly sampled at a fixed rate fs, then, the original signal can be accurately re-

produced if and only if 2B ≤ fs. Also, components of the original signal that correspond

to higher frequencies, exceeding fs

2 , are mirrored back into the lower frequencies, i.e.

they end up interfering with the lower frequencies. This means that, ideally, the continu-

ous signal spectrum should avoid "spilling" over this frequency threshold. In essence, not

only must the communication system be designed to operate at channel bandwidth, it is

also constrained by the sampling rate of the receiver.

2.3 An effective signaling scheme for passband channels

In section 2.1.4, M-QAM was introduced as a signaling modulation scheme capable of

encoding symbols of arbitrary complexity into a single carrier wave. This signal can be

"positioned" at a desired frequency, depending on a channels frequency response charac-

teristics, and the symbols can be extracted from amplitude and phase information alone.

In this section, a frequency multiplexing scheme is introduced as a way to improve data

rates and the system’s overall performance, taking into account the real-world physical

effects discussed in section 2.2.

If the spectral distance between two passband signals is large enough, it is possible to

isolate each of these signals, assuming the the bandwidths don not overlap. Analog radio

transmission systems work under this principle, since there is no baseband signal con-

straints, other than limits in signal bandwidth. However, in the case of the speaker-pickup

CHAPTER 2. DATA COMMUNICATION SYSTEMS 26

pair interface, it is assumed that the speaker has the entire control over the available band-

width. This fact can advantageously used to improve the transmission signal’s spectral

efficiency, which can be described as ρ = Rb

B
[bit/s/Hz], where Rb represents its bit rate,

and B represents its bandwidth.

2.3.1 Orthogonal frequency division multiplexing

Orthogonal frequency division multiplexing (OFDM) is a frequency multiplexing tech-

nique that allows for the spectral overlapping of multiple carrier signals in such a way

that, theoretically speaking, no information is lost. By packing the frequency components

tightly together does the spectral density improve dramatically and more carriers can be

used. Furthermore there is also tremendous advantages related to the signal processing to

be performed on software-based platforms, which will become more apparent in chapter

3.

The OFDM scheme works under the principle of orthogonality of time-windowed si-

nusoidal signals, whereby the central spectral component of two signals does not suffer

from the presence of the other, even though the spectrum of the signals may overlap. Es-

sentially, given two sinusoidal signals xA(t) and xB(t), of frequency fa and fb, windowed

in time by a rectangular pulse of duration TD and separated in frequency by a distance of

∆f = k/TD, (k = 1, 2, 3, ...), then, the frequency components at those frequencies are

independent of the presence of the complementary signal: XA(fB) = 0 and XB(fA) = 0,

where XA(f) = F(xA(t)) and XB(f) = F(xB(t)). Figure 2.2 illustrates the spectrum

of a generic OFDM signal consisting of two neighbouring carriers, where we can clearly

see that the respective amplitude peak of one corresponds to one of the null-points of the

other.

As it so happens, the M-QAM signature waveforms (modulated carrier waves) can

easily satisfy the properties described above. For example, if the N carriers are located

at distance of ∆f apart from each other, then the spectrum obtained from the sum of the

CHAPTER 2. DATA COMMUNICATION SYSTEMS 27

Figure 2.2: Spectral representation of two carriers using the OFDM scheme.

carriers during the windowing pulse duration will show overlapping spectra and the sym-

bol information can be extracted from the amplitude and phase values of the frequency

components of each respective carrier.

The parameter TD is defined as the symbol’s duration, and defines how fast the signal

is switching between consecutive symbols, transmitted as OFDM signals. With a longer

symbol duration, the minimum ∆f value decreases and so the carrier waves can be more

tightly packed together, and so, the data rate does not directly depend on the symbol dura-

tion/rate, but rather only on the available bandwidth B and the number of bits transmitted

per carrier M . Assuming no signal overhead, the theoretical data rate limit Rmax can be

derived from the Nyquist rate theorem.

Rmax = B log2(M) (2.4)

3 Design overview

The theoretical fundamentals laid out in chapter 2 presented a set of models and tech-

niques that can be used as the building blocks for a working communication system,

however, their application in a real-world implementation brings forth a few challenges.

This chapter aims to describe a scheme in which these principles are applied towards a

functional design that can be viably implemented on an embedded processor. Section 3.1

provides an overview system’s sub-modules for a practical application, and section 3.2

offers an in-depth view of the signal processing algorithm and while taking a deeper look

into the construction of a single data packet signal.

3.1 System design considerations

In most cases, it is hard to isolate the design choices of the various system parameters

and basic components. These are often interdependent, and so, some of the outcomes

are the result of theoretical estimates, simulations, and practical prototyping. Here, we

discuss some considerations that are not explicitly mentioned in chapter 2 but represent

nonetheless factors that had an important influence in the implementation of the final

design.

CHAPTER 3. DESIGN OVERVIEW 29

Read
Message

Produce
action

Figure 3.1: Simplified representation of the application model.

3.1.1 Application message formatting

Throughout this project, from an application point of view, messages are seen as blobs

of information that can be translated into independent commands transmitted from a host

device. Figure 3.1 represents a simplified model of the device operation, where the em-

phasis here is that a single message should be able to contain all the relevant information

that is required to performs a certain action, an also, since the communication channel is

unidirectional, messages should not really depend on any specific state or previous trans-

missions. At this level, messages should be encoded in a format that best suit the data

structures being transmitted and the system’s requirements.

This communication interface is used to deliver device settings for the Darkglass prod-

uct line, allowing the device to reconfigure itself during operation. For this purpose, the

message formatting scheme is designed around the specifications defined by the Resource

Interchange File Format (RIFF), originally developed by Microsoft and IBM [11]. The

RIFF is a specification designed for multimedia files, which can be used as the mes-

sage structure, providing clear and simple guidelines for generating files as a collection

of chunks. Since all chunks are identified, only the very basic structure of the format

components have to be statically assigned, in terms of memory location and value. The

construction of a Darkglass RIFF is simple: all files are generated as a set of an arbitrary

number of consecutive chunks of varying size. Even though all chunks need to be de-

signed according to the needs and features of the application, the actual construction of

the RIFF is flexible. adhering to the following rules:

CHAPTER 3. DESIGN OVERVIEW 30

• All files start with the RIFF chunk, containing information about the whole file.

It contains three fields: the chunkID (4 bytes) depicting the ASCII string "RIFF"

itself, the chunkSize (4 bytes) which contains information on the size of the whole

file and the Format field (4 bytes), defining the type of file at hand. The formatting

rules of this chunk are shared by all file formats, so it is recommended that new file

implementations respect the construction of this chunk as well.

• Every chunk following the first chunk, also called subchunks, start with a header

region which is similar in construction as the RIFF itself. It contains two fields:

the subchunkID (4 bytes), identifying the subchunk type which will depend on its

desired function, and the subchunkSize (4 bytes), containing information on the

size of the subchunk. The content of the subchunk itself is located immediately

following the subchunk header. For example, the content of a data subchunk simply

consists of byte array data, while other commands have statically assigned fields

containing all relevant information.

Due to the flexibility offered in the construction of the RIFF, the software complexity

is also kept simple. As the information required to translate the RIFF is embedded in

chunks of the RIFF itself, the translation algorithm is not directly tied to the content type

and does not need to be rewritten for every new file or subchunk type that is added. Also,

application messages can be efficiently encoded and, from the designer’s perspective, they

are simple to construct in support of new device features.

3.1.2 Data integrity

According to the specifications defined in table 1.1, the communication system must yield

lossless data transmission, which essentially means that no message should be accepted

until its integrity can be verified to a reasonable degree. The simplest way to achieve this

is by applying a hash function that generates a signature of a given data set. The hash

CHAPTER 3. DESIGN OVERVIEW 31

function should be such that, if two data sets are different, then, there is an extremely high

probability that the hashes generated from each of the data sets will differ as well. So, the

integrity check process simply consists of recalculating the hash of the received data-set

and comparing it with the hash already present.

Even though it was not designed explicitly for this purpose, the cyclic redundant check

algorithm (CRC) can be used as a hash function. It not only works as a hashing function,

but it can be used as a rudimentary error correction code, meaning, the CRC code can

be used to correct corrupt data in the received data-set. While some alternative hash

algorithms can be more appropriately used for data integrity checks alone, the CRC is

ubiquitous and is often present in embedded platforms as dedicated hardware accelerators.

This latter aspect can turn out to be quite relevant as it helps decrease the computational

expense of this process.

3.1.3 Splitting messages into packets

From a transactional point of view, the communication protocol is designed towards the

transmission of independent messages, made up of a variable number of fixed-size pack-

ets. This approach simplifies the system design, in the sense that no additional signalling

is required for dictating the packet decoding control-flow, and at the same time, the pack-

ets efficiently tailored towards the specific information density of the OFDM signals.

Packets should be large enough so that the fixed packet overhead information, i.e. packet

header and data integrity codes, is small when compared to the total packet size, and they

should be adequately small to improve granularity. This latter aspect is particularly im-

portant when considering lossless transmission over a noisy channel since smaller packets

are less likely to have contained corrupted bits.

The packet size can be chosen to be such that it complies with a whole number of

symbols transmitted by the OFDM signals. For example, if a packet is transmitted over

L OFDM signals, then the size of the packet can be directly derived from the number of

CHAPTER 3. DESIGN OVERVIEW 32

ID Total Packet data content CRC-32

0 1 2 2 + N 6 + N

Figure 3.2: Representation of the packet structure.

bits transmitted by this set of signals. So, if each OFDM signal contains M ′ bits, then

the number of content bits N per packet can be calculated as: N = M ′L − 6. Such an

approach ensures that no signal is effectively "wasted", while simultaneously maintaining

complete independence between separate packets.

The packet structures represent the atomic piece of data, and since the communication

system is unidirectional by nature, with the possibility of losing packets mid-transmission

unbeknownst to the transmitter, the packet must include some additional information re-

garding its place in the overall message. For this project, we have opted for the most

straightforward strategy consisting of identifying each packet two additional byte num-

bers, the first one corresponds to an identification byte for identifying its slot within the

message, and the second one represents the total number of slots. Thus, the receiver can

simply derive the starting position of the packet content bytes by multiplying the identifi-

cation byte with the total length of bytes per packet.

The diagram presented in figure 3.2 is a byte-mapped representation of the packet

structure, where the "identification" byte and "total size" bytes can be seen in index 0 and

1 respectively. The data content segment is of variable size and depends on the number

of payloads transmitted per packet, which will be further discussed in 3.2.3. Finally, each

packet is terminated with a CRC-32 hash with the intent of verifying the validity of the

decoded information. Naturally, invalid packets are not counted towards the completion

of a message.

CHAPTER 3. DESIGN OVERVIEW 33

Figure 3.3: Illustration of the data dependent peak-power-to-average-power-ratio.

3.1.4 Reducing the peak-power-to-average-power-ratio

One key challenge with OFDM systems has to do with the containment of the peak-

power-to-average-power-ratio (PAPR). Essentially, the OFDM signal carrier waves may

line up in such a way that the resulting wave concentrates a big portion of its energy in a

short time-span, leading to quick bursts of energy. These bursts should be avoided as they

may result in the breaking of the peak power limitations or dynamic range of the emit-

ter/receptor, leading to signal distortion and, consequentially, loss of signal information.

The graph shown in figure 3.3 demonstrates the behaviour of the automatically generated

OFDM signal for two opposite situations: the red curve is generated with an all-zero data

content showing mostly a concentration of the signal’s power near the central peak, and

the blue curve was generated with random data and clearly shows a much lower peak-to-

average-power value.

While there are exist promising strategies to tackle this issue [12], the simplest way

to avoid this situation is by generating data entropy, i.e. reducing the likelihood of non-

optimal phase alignments in the signal due to its apparent randomness. For this purpose,

all outgoing data is "scrambled" by XORing the data with a predefined array, immediately

before translating the data into the transmitted signal, and the same operation is performed

by the receiver for all incoming data, immediately after extracting the symbolic data from

the transmitted signal.

CHAPTER 3. DESIGN OVERVIEW 34

3.1.5 ISI and the guard interval

As mentioned in section 2.2.2, a signal travelling through a band-limited channel will

be spread over time even shortly after the ending of its transmission, similarly to the

perceived effect of sound echoing. In the case of OFDM signals, this phenomena causes

the occurrence of ISI due to how past symbols negatively affect future symbols, acting

similarly to noisy channel effects. To decrease the impact of ISI, the most straightforward

and effective strategy is to introduce guard intervals in between succeeding symbols. The

purpose of these guard intervals is to allow the remnants of previous symbols to "die

out" before the transmission of a new symbol can start. The greater the length of the

guard interval, the less ISI will occur, however, the data rates naturally decrease due to

increased waiting periods in between symbols. So, the interval should be chosen in a way

that is adapted to the characteristics of the channel, in particular, the channel length.

3.1.6 Timing synchronization challenges and the cyclic prefix

The OFDM scheme can only be implemented in coherent communication systems, i.e.

systems in which the transmitter and receiver are synchronized in time. This is particularly

important due to the fact that each carrier wave contains information embedded in its

relative phase and any timing offset ∆t results in phase shifts proportional to the frequency

of each component fk, with the relation ∆φ = 2πfk∆t.

Consider the scatter graph that is shown in figure 3.4, where all the carrier compo-

nents are represented in the complex plane and the default QAM-16 constellation map are

marked with black crosses. The remaining dots show the resulting image with slight com-

ponent phase variations of φ, where we can see that variations in phase will eventually

lead to wrong conclusions about the symbolic value of a carrier. If we consider a 48kHz

sampling rate at the receiver, a timing estimation that is wrong by exactly one sample will

result in a ±1.3 radians phase shift at frequency components near the 10kHz mark, and

thus it becomes clear that without any additional phase compensation algorithm, this ap-

CHAPTER 3. DESIGN OVERVIEW 35

Figure 3.4: QAM constellation map and the resulting rotations due to phase offsets φ.

proach will most likely always yield wrong results. So, no matter how well implemented

the system synchronization techniques are, the timing can only ever be precise to a certain

degree, always leading to warped components, when looking at the scatter graph. More-

over, with higher precision requirements naturally follows an increase of complexity and

overhead in the synchronization components.

The cyclic prefix (CP) is a signal which is prepended to the original signal, consisting

of a replica of its ending. It is an essential concept for OFDM system as it allows reduced

precision requirements on the timing synchronization techniques. It is easy to understand

the idea by imagining an ever-repeating OFDM signal: the resulting spectrum of the

symbol, sampled at any point in time, will be the same, except for a linear phase change.

This linear phase change can then be estimated with a higher degree of precision through

a separate process explained in section 3.2.1.

The CP typically has a shorter duration than the symbol itself, but theoretically, it

may have any arbitrary length. Given that the system is not constrained in terms of its

CHAPTER 3. DESIGN OVERVIEW 36

energy efficiency, the CP can least occupy the duration of the guard interval. This way, as

the timing synchronization instant approaches the start of the symbol, or equivalently the

ending of the CP, the effective SNR of the sampled signal improves.

3.2 Signal processing algorithms

The overall communication system’s signal processing algorithm can be fully compre-

hended by deconstructing the transmission signal of a single packet. So far, the focus has

been on how to encode data in a passband signal through the OFDM signalling scheme,

however, two other packet sub-signals are critical for the construction of the packet signal

in its final form: the mode-switch signal and the preamble. These, bring forth the remain-

ing information required for the receiver to "know" how to extract the relevant data, and

so this section looks at what is their purpose, how they are constructed, and finally, how

they are inserted in the packet’s final form.

3.2.1 The Preamble

As mentioned earlier, the OFDM signalling scheme relies on emitter-receiver timing co-

herency, meaning that the receiver should know exactly what period consider when de-

coding the physical signal. The intuition behind this requirement is quite straightforward:

the OFDM payload signals are transmitted for a finite period in time, and even with the

addition of the redundant CP, the receiver system must be able to identify these periods

and sample the signal accordingly, or else some of the information may be lost. Simul-

taneously, the receiver should be able to identify the predictable transformations that the

signal undergoes when propagated through the communication channel. Here, we first

look at a timing synchronization signalling scheme that is embedded in the preamble and

is used to provide a good estimation of the synchronization instant. Then, a method is

presented to calibrate the system for the channel effects, reusing the same information

CHAPTER 3. DESIGN OVERVIEW 37

CP T0 T1

Figure 3.5: Representation of the preamble signal consisting of the CP and two consecu-

tive training symbols: T0 and T1.

embedded in the preamble signal. Finally, we present a simple frequency offset compen-

sation scheme that is used to adjust the system to small sampling frequency discrepancies.

Schmidl & Cox OFDM timing synchronization scheme

The timing synchronization scheme is adapted from the works published by Timothy

Schmidl and Donald Cox (S&C), where they present an efficient system for calculating

precise timing for the start of a frame, or packet, of a given signal [13]. The idea consists

of the transmission of a preamble signal, at the beginning of the packet, whose purpose is

to inform the receiver of a timing reference from which it can derive the sampling instants

for all remaining OFDM signal payloads. The preamble signal consists of two consecutive

training symbols, T0 and T1, which can be exact replicas of each other, preceded by the

CP as depicted by figure 3.5. The authors go on to describe specifications for the design

of these training symbols, however, for our purposes, they can simply remain equal to

each other, which will offer additional advantages as explained in section 3.2.1.

The underlying idea behind the synchronization algorithm consists of calculating the

instant at which a signal of fixed length consists of two equal parts or two equal training

symbols. In reality, as mentioned earlier, the training symbols will never be perceived

by the receiver as being exactly similar, so, the main challenge is in defining a method

to reliably identify this similarity. One idea that naturally occurs would be to continu-

ously calculate the discrete correlation between two consecutive signals, each composed

of the same number of samples corresponding to the length of the training symbol. The

algorithm proposed by (S&C) builds on this idea, providing a method to derive the tim-

CHAPTER 3. DESIGN OVERVIEW 38

ing synchronization instant from the calculations of three metrics that can be efficiently

computed in real-time for a given sample with the index d: P (d), R(d) and M(d).

The metric P (d) is a measure of auto-correlation and intends to represent the degree

of similarity between the training symbols. It measures the correlation between two sub-

sets of a signal x(d) spaced L samples apart and, importantly, can be calculated with an

iterative approach as shown in eq. 3.1. The system simply needs to keep track of the

last 2 × L samples, and the point where P (d) has the highest value should indicate the

synchronization instant.

P (d + 1) = P (d) + x(d)x(d − L) − x(d − L)x(d − 2L) (3.1)

This metric, however, only reveals half of the picture since the measure is not nor-

malized for signal power, i.e. if the x(d) is large in amplitude, the resulting P (d) will be

larger regardless of the actual correlation. For that reason, the authors included a metric

R(d), which measures signal energy for the duration of the last L samples, and can also

be iteratively calculated according to eq. 3.2. Finally the last metric M(d) can be cal-

culated from eq. 3.3 and represents a measurement of the "L-distanced" autocorrelation,

normalized to the signal’s energy.

R(d + 1) = R(d) + x(d)2 − x(d − L)2 (3.2)

M(d) = |P (d)|2
|M(d)2)| (3.3)

One important question to consider at this point is what type of signal to transmit

as the training symbols. The only constraint naturally imposed by the S&C algorithm

is that both signals be replicas of each other, however, there are a few more things to

consider taking into account the real-world application. A signal coded with the Zadoff-

Chu sequence (ZCS) is often used in timing synchronization schemes due to having good

autocorrelation properties [14], meaning that the autocorrelation value has a maximum at

CHAPTER 3. DESIGN OVERVIEW 39

the null offset and close to zero for every other point. Heuristically speaking, this provides

a greater assurance the preamble signal will offer a better sensitivity when calculating the

autocorrelation metric P (t). Also, it can be verified that this signal provides a good peak-

power-to-average-power-ratio and it has the added advantage of being evenly spread on

the frequency spectrum.

Channel calibration

Even if the timing synchronization is accurate, the channel may change the signal be-

haviour to such an extent that it does not directly translate into the OFDM symbols ex-

pected at the receivers end. As covered in section 2.2.2, these transformations are pre-

dictable and tend to operate similarly if the channel conditions remain the same, meaning

that if the receiver can extract a model of that behaviour once, it can repeatedly predict

and compensate for that model. This is the process of channel calibration and, the easiest

way to achieve it is to receive a fixed signal and determine what is the inverse channel

transformation that generates the original signal. For all the future OFDM symbols, that

same compensation transformation can then be applied to generate the intended signal.

The preamble adopted for the timing synchronization scheme can also be used to

transmit fixed reference signals as training symbols, already known from the receivers

end. Then, the complex channel compensation factor for each spectral component k, ck,

can be calculated from the values of the expected, ek, and received, rk, components: ck =
ek

rk
. From then on, the receiver simply applies the compensation factor to the respective

component of the following OFDM symbols, thus extracting a good estimation of its

actual value. Notice that the spectral band of the training symbols should correspond to

the same band as the one used by the OFDM symbols so that the signal energy is contained

only inside the relevant frequencies.

It is also interesting to notice that this channel calibration scheme also compensates

for slight offsets in the timing synchronization, as long as the synchronization instant is

CHAPTER 3. DESIGN OVERVIEW 40

located somewhere within the limits of the CP. This is because any time delay, positive

or negative, simply generates a linear phase transformation that can easily be accounted

by the same calibration procedure, i.e. it is as if the delay was a channel effect as well.

Naturally, though the synchronization instant should still be as accurate as possible to

improve the perceived SNR of the following symbols.

As mentioned earlier, for the speaker-pickup pair, the channel behaviour depends on

external factors that change over time, such as the distance between the emitter and re-

ceiver. If the packets are long, containing multiple OFDM symbols for each respective

preamble, it may be the case that the initial compensation factors calculated during the

channel calibration phase do not accurately model the channel behaviour in the later pay-

loads. To improve on this design, one can use the OFDM symbol information to have

the system adapt to the ever-changing channel over time, even during the transmission of

the same packet. This is called a soft calibration, and the idea is to compare the received

signal with the symbol’s expected signal for each QAM symbol in a given OFDM pay-

load. Essentially, if we assume that a considerable chunk of the signal’s deviation is due

to the channel behaviour, the component compensation factor can be iteratively updated

by weighing in the new differences. Eq. 3.4 demonstrates one viable approach: for every

new OFDM payload i + 1, the updated factor ck,i+1 is calculated from a weighted sum of

the previous factor ck,i and the ratio between the expected component ek,i and the received

component rk,i. Notice that, in this case, ck,0 is the first compensation factor calculated

during the channel calibration, and usually the weighting factors should be chosen such

that w0 > w1.

ck,i+1 = ck,iw0 + ek,i

rk,i

w1 (3.4)

CHAPTER 3. DESIGN OVERVIEW 41

Frequency offset compensation

So far, all design decisions have been made while considering perfect system oscillators,

meaning that the transmitter and receiver sampling frequencies perfectly align with their

theoretical values. Notice that not only are the absolute frequency values tremendously

crucial for maintaining carrier orthogonality with the OFDM scheme but also, the precise

timings of the packet signal depend on this factor as well. For this reason, a frequency

offset compensation scheme is presented here that can be used to compensate for small

sampling frequency discrepancies with little additional processing load.

The works presented by Sliskovic (2001) showcases a process for accurately estimat-

ing the frequency offset of an OFDM signal [15]. The idea is to transmit two consecutive

training symbols that utilize the relevant frequency components and to compare the phase

of the resulting spectrums. When assuming no noise, the frequency-offset ∆f produces a

frequency-dependent phase shift φ between both training symbols, according to a factor

ε, as shown in eq. 3.5.

φ(f) = ε(∆f)f (3.5)

The correction methodology presented by the previous author assumes that the sig-

nals are sampled at the precise instants, however the frequency-offset also produces an

ever-increasing timing misalignment that must be taken into consideration. Since all the

essential signal timings are derived from counting the number of samples occurring since

the synchronization instant, the frequency offset has the effect of changing the timing

offset proportionally to this number. This timing offset ends up producing an effect very

similar to the one described by eq. 3.5, by inducing a phase shift to all frequency com-

ponents, while the value of this shift is proportional to the number of samples that span

between both sampled signal.

To estimate and correct for this effect, we reuse the preamble’s training symbols to

derive the relevant phase shift values according to eq. 3.5, for each relevant component.

CHAPTER 3. DESIGN OVERVIEW 42

Through simulation results, we conclude that the bulk of the perceived distortion is actu-

ally due to timing misalignment induced by the frequency offset. As such, the corrective

solution applied for our solution can be reduced to a timing offset compensation algo-

rithm, that is described as follows:

• First, we separately apply the FFT over each training symbol t0 and t1, obtaining

the real and imaginary values of each of the relevant frequency components. We

expect that the resulting spectrum T0 and T1 be the same, except for the phase shifts

produced by the effects of the frequency offset.

• Divide each component of the spectrum T1 by each component of T0 and derive

each of the phases φk, which corresponds to the phase shift described in eq. 3.5.

• Do ∆φk
= φk/N , where N represents the number of samples composing the train-

ing symbol. This factor represents the induced phase shift per sample for each

frequency component.

• The value of ∆φk
can be used in different ways. One way is to calculate the correc-

tion phase shift at each relevant point throughout the packet signal by multiplying

this factor with the number of samples it takes to reach that point. Alternatively, a

more optimal approach is to calculate the phase correction factors that can be con-

tinuously re-applied to the channel compensation factors, in order to compensate

for this behaviour over time. This approach assumes that future sampling instants

are equally spaced apart, which happens to be the case for the signalling scheme

used for this system.

3.2.2 A computationally efficient mode-switch signalling scheme

One of the key challenges in the system implementation phase consists of integrating the

communication system in a way that it can sustainably cohabit with the remaining device

systems. Theoretically speaking, the process mentioned above for finding the start of a

CHAPTER 3. DESIGN OVERVIEW 43

frame/packet could be used as a way to detect the start of message transmission, however,

while still relatively efficient, this approach would consistently require a still excessive

amount of continuous computing power. Here is presented an efficient alternative algo-

rithm for the continuous scanning of the start of a new packet.

The mode-switch detection algorithm consists of the identification of a pre-defined

signal consisting of a specific sequence of successive sinusoidal tones. This frequency

pattern defines a tone sequence, or tone-key, which the algorithm tries to match with its

internal key value. The graph presented in figure 3.6 shows the time-based representation

of a tone sequence, composed of four different and consecutive sinusoidal waveforms.

This effectively corresponds to an FSK type, where symbols are defined in terms of fre-

quencies and transmitted in succession.

There are two great advantages for using sequences of "purely" sinusoidal waveforms

for transmitting the signature mode-switch signal. The first one has to do with the most

basic behaviour of LTI channels: a waveform composed of a single sinusoidal compo-

nent will always maintain its shape, i.e. the receiver will observe a sinusoidal signal of

the same frequency, even if with a different phase. Secondly, for sinusoidal waves, its

frequency can be estimated by calculating the number of zero crossings over a defined

period. The algorithm is thus based on a zero-crossing counter, which tracks the number

of zero-crossings during successive time slots of the recent signal. Given a pre-defined

tone sequence, the mode-switch algorithm consists of the following:

• The process maintains an array that works as bin-counters, one for every number of

tones present in the sequence and ordered accordingly. The purpose of this structure

is to track how many zero-crossings are counted in the time-span corresponding to

a given tone, relative to the last input audio sample.

• Simultaneously, it also maintains a cyclic structure called the cross-map, tracking

the zero-crossing instants, in terms of distance to the most recently processed sam-

ple. The cross-map should include at least 1 bit per sample, indicating whether a

CHAPTER 3. DESIGN OVERVIEW 44

given time instant corresponded to a zero-cross, and it should have a length equal

to the length of the entire tone sequence. Each tone is then mapped to a region in

this structure, or tone slot, which continuously shifts for every new sample that is

computed.

• For every new sample value, it checks the value crosses the reference zero value,

i.e. if the new sample has a different signal when compared to the previous sample.

Note that it is usually necessary to include some hysteresis in this calculation to

avoid false positives due to low magnitude noise. When a zero-crossing is detected,

it is marked as a "1" in the most recent index of the cross-map.

• Then, the idea is to shift the cross-map regions progressively as the index incre-

ments and update the bin-counters with the number of zero crossings present in

each region. For example, if a new zero crossing is detected, the bin-counter for

the last tone will either increment or remain the same, depending on whether the

updated cross-map region contains one more or the same number of zero crossings.

• The bin counters can be efficiently updated by propagating the information from

the last bin counter, all the way back to the first bin. For example, if a cross-map

region corresponding to a given tone slot "loses" one zero-crossing, then the region

corresponding to the preceding tone will now include the zero-crossing that was

yielded.

• Finally, every time the bin-counters are updated, they are values are compared with

a reference pattern which holds the expected number of zero crossings per bin for

the given system configuration. If the difference between the expected and calcu-

lated pattern is small enough, the mode-switch signal has been detected.

It is clear that the computational complexity per sample of the detection algorithm

is very low, involving only fast memory accesses and some additional operations. The

CHAPTER 3. DESIGN OVERVIEW 45

Figure 3.6: Illustrative example of a tone-sequence time signal.

selectivity of the algorithm can increase indefinitely with the size of the tone-sequence,

at the expense of a slight linear increase in computational load. It is important to note

however that, similarly to the ISI effects, the waveforms of immediately successive tones

will exert influence on each other, leading to a different number of zero-crossings per

tone on the receivers end. This can also be solved with a guard interval scheme, by, for

example, ignoring the number of zero-crossings during the first half of the transmitted

tone.

3.2.3 OFDM payloads

In section 2.3, OFDM is described as the underlying data signalling encoding scheme.

With this method, data symbols are encoded in carrier waves transmitted simultaneously,

placed in specific locations of the frequency spectrum in such a way that the resulting

inter-carrier interference is kept to a minimum. Each OFDM signal, or OFDM payload,

can transmit several symbols at a time, one per carrier wave and each symbol can itself

contain information about a number of bits. The information density of a given OFDM

signal is thus not only dependent on the number of carrier waves, which directly depends

on the channel bandwidth, but also on the number of bits per carrier itself.

For this project, the carrier waves are designed as 16-QAM signals, which can express

4 bits per carrier, striking a good balance between data rates, i.e. constellation density,

and reliability, i.e. inter-point distance. From eq. 2.4, and given the channel bandwidth

B, we can calculate the maximum theoretical data rate with this signalling scheme to be

CHAPTER 3. DESIGN OVERVIEW 46

FFT QAM16
�� ���������� � ′

�

��

Figure 3.7: Representation of the OFDM payload processing algorithm.

Rmax = log2(16)B = 4B.

The process for extracting the symbolic payload data is represented in figure 3.7, con-

sisting of a total of three stages. First, the discrete time payload signal xn is converted

to its frequency domain equivalent, Xk, through the FFT operation. Then, the frequency

spectrum is multiplied with the channel and frequency compensation coefficients, Ck,

which are calculated during the timing estimation, channel calibration and frequency-

offset estimation phase and updated for every new processed signal block. The resulting

frequency-based signal Xk should contain an accurate representation of the OFDM pay-

load spectrum, as generated by the transmitter, and so, each individual carrier wave can

be decoded using the QAM-16 scheme in reverse. For that purpose, it suffices to check

which QAM-16 constellation map point is nearest that of each component X ′
k.

3.2.4 Signal construction

Having gone through all the separate signal components, it’s time to put it all together and

showcase the progressive packet decoding stages. The communication system processes

the signal as it is being transmitted, and as such, the order of the several processing stages

are located following the order of the respective sub-signals transmitted in sequence. Fig-

ure 3.8 presents an example of the first part of the time graph of a packet signal, for an

arbitrary format configuration, where the emphasis is on the start of the transmission and

the stage progression starting from the mode-switch signal, going to the preamble and

finally onto the OFDM payload stages.

All packets start with the Mode-switch signal so that the receiver can react to the start

CHAPTER 3. DESIGN OVERVIEW 47

Figure 3.8: Time graph of the packet signal construction for an arbitrary format.

of the packet on time to start computing the next stage. As we can see, this sub-signal

is much greater in amplitude than the remaining others, which is due to the fact this

stage is much more resistant to signal saturation distortion effects, since the only relevant

information is the points of zero-crossing. Also, it is important to note that all packets

include this sub-signal so that the receiver can identify the message transmission from

any arbitrary point in the message, which is cyclically transmitted.

Immediately following is the Preamble signal, which will serve to provide a good esti-

mation of the synchronization instant and the frequency component compensation factors

for channel calibration. Naturally, the stage precedes every the first payload stage be-

cause this information is crucial for decoding of the OFDM payloads. After this stage,

the system can then infer all critical instants within the remaining signal.

Finally, several Payload signals are sent in succession for an arbitrary number of times.

Each Payload is encoded using the OFDM signalling scheme and contains a subset of

the entire packet data. As information is extracted from each payload, the data can be

buffered into an internal packet buffer so that it can be processed later. Once the entire

packet is decoded, the CRC value can be verified, and if the validity is confirmed, the

packet content data can be copied to the appropriate slot of the final message buffer.

4 System implementation

The following chapter aims at clarifying the most relevant details regarding the software

implementation of the communication system. First, some specifications regarding the

target platform architecture are briefly mentioned in section 4.1, then, section 4.2 looks

at some methods and schemes applied for the implementation of the system, and finally,

section 4.3 serves to showcase the implementation outcomes and discuss the more relevant

performance results metrics.

This system implementation has been designed for the ATSAM4S4A chip [16], from

the ARM M4 processor family [17], nevertheless, the details described in this document

can be directly applied to several other MCU architectures. The relevant hardware sys-

tem supporting the microprocessor is straightforward in principle and can be entirely ab-

stracted from. The fundamental peripheral hardware module consists of an interface for

communicating the digital audio data, sampled from the output of the pick-sensor. This

interface can either be in the form of a serial-audio-interface (SAI) connected to an exter-

nal ADC/codec, or it can be more directly accomplished reading the signal directly from

the internal ADC inputs, included in the SOC. More detailed specifications regarding the

system setup and constraints have been discussed in section 1.1.

4.1 Platform Characteristics

This project runs on a 32 bit ARM M4 processor, clocked at 120MHz. The Cortex-M4

family comes equipped with digital signal processing (DSP) features that are incredibly

CHAPTER 4. SYSTEM IMPLEMENTATION 49

useful for the relevant signal decoding algorithms, however, for this particular chip, the

processor core does not offer a dedicated hardware floating-point unit (FPU). Even though

the acoustic channel is of relatively low bandwidth, during the project development phase

it became obvious that some of the implementation decisions were largely constrained

by the available computational power, and that the system processor usage should be

configurable to an extent.

Let us consider the following example. The system is running at a fixed sampling rate

fs = 48kHz, so, if the processor is to process data in real-time, the speed at which it can

process each task set related to a block of samples should be greater than the speed at

which new blocks of samples originate. This means that the average processing time per

sample must be no greater than the sampling period, equating to around 21µs processing

time per sample. In order to extract the symbols from each OFDM payload, the processor

must at least apply an FFT operation over the block of samples buffered for that signal’s

length. Knowing that the FFT operation has a computational complexity of O(N log(N)),

it means that the greater the length of OFDM signal, the more time per sample it takes

to process such block. For OFDM decoding, longer blocks are typically preferred so that

the GI and CP lengths are kept relatively short, leading to a more efficient implementa-

tion. However, after benchmarking the FFT performance it became clear that these blocks

should be no longer than 512 samples.

4.1.1 DSP Features

The ARM Cortex-M4 processor system packs several DSP features [18], which can be

essentially described as internal processing hardware that facilitates and improves the

performance of common data processing functions. Single-instruction-multiple-data type

instructions (SIMD) are one prime example of how hardware can be modified to improve

digital processing throughput. These special instructions can simultaneously operate over

multiple data fields at once, and in the case of the Cortex-M4 SIMD instructions work

CHAPTER 4. SYSTEM IMPLEMENTATION 50

with sets of 8-bit or 16-bit values at once with 32 bit wide registers.

Even though DSP instructions can only be directly accessed through lower-level soft-

ware, typically in the form of C macros, the ARM CMSIS DSP libraries provide wrappers

for more complex high-level functions such as FFT, or even simpler and common opera-

tions such as vector arithmetics. Also, since the library’s API is abstracted to the actual

hardware, the code can be migrated between different ARM platforms while maintaining

very high computational performance.

4.1.2 Fixed-Point Arithmetics

As mentioned above, the processor at hand does not include an FPU, and so, all dec-

imal point operations are always performed from a combination of integer operations.

Sometimes, to reduce programming complexity, it makes sense to emulate floating-point

operations which, with the assistance of the compiler, are automatically translated into

integer-based instructions. However, a more optimal alternative to writing computation-

ally efficient code is through the direct application of fixed-point arithmetics, in such a

way that the system submodules are then adapted for performing fixed-point calculations

with little to no redundancy.

Essentially, fixed-point numbers are integers that represent decimal numbers. This

means that decimal operations using fixed-points arithmetics can be easily translated into

integer operations. This representation sets the decimal point at a specific bit position,

usually defined as the Q format. For example, the Q1.30 format is a format containing

one integer bit and thirty fractional bits, with an extra sign bit. When two numbers in this

format are added with integer addition, the resulting number remains in the same format,

however, if they are multiplied together, the resulting number will default to Q2.62 format.

Essentially, even though fixed point arithmetics allows for the implementation of very

efficient calculation procedures, the challenge in using the fixed-point arithmetics is that

the data needs to be constantly converted into the correct formats in order to maintain

CHAPTER 4. SYSTEM IMPLEMENTATION 51

correctness, and the risk of overflow is usually much higher.

4.1.3 Embedded Memory

Embedded devices typically aim at being extremely cost-efficient, meaning that at least

the processor chip’s die area should be kept to a minimum. One of the ways to achieve

this is by reducing the amount of available system volatile and non-volatile area, and in

the case of the ATSAM4S4A, this factor is showcased by the relatively low amounts of

system memory, in the form of 64kB of Static Random Access Memory (SRAM), and

limited non-volatile memory region as well, with a total 256kB of flash storage. These

characteristics imply that certain strategies need to take place to not only guarantee that

there is enough memory to run all the firmware systems but also run them reliably.

The memory model for the device firmware, including the new communication system

feature, is such that there is never any dynamic memory allocation and all stack memory is

kept to an absolute minimum. The reason for this is because it is hard to predict/calculate

the usage of heap memory during run-time and guarantee that it’s kept under a certain

threshold, while it’s very easy to compute the memory usage from data structures that

are statically allocated. As for the stack usage, it is perhaps even harder to determine

the worst-case scenario and accurately predict the required minimum amount of stack

required for a given program, even if running directly on a given processor without any

operating system abstraction. So, the system memory map can be simplified and designed

in such a way that the stack/heap shared memory region is large enough to accommodate

for the stack memory requirements, with a reasonable amount of slack. While the trade-

off of this approach is that it may lead to redundant memory usage, if for example two of

the system’s sub-modules use internal temporary buffers requiring two separate and non-

overlapping static memory allocations, it’s also an approach that leads to a more reliable

design with faster development times.

CHAPTER 4. SYSTEM IMPLEMENTATION 52

4.2 Implementation Overview

In figure 4.1 is shown a flow diagram representing the system as a sequential process.

There, we can visualize the processing steps, starting from the physical signal processing,

and going all the way to the final message. It has been laid out in a way that is tightly

related to the actual program processing flow. The following is a description of each stage:

• Mode-switch detected? The mode-switch detection process is always running in

the background, and its sole purpose is to notify the system that the start of a packet

has been detected. This is particularly relevant from a system integration’s point

of view since the processing resources are scarce and must be shared by the entire

system.

• Search for SOF The search for the start of frame (SOF) consists of the calculation

of the M metric, mentioned in section 3.2.1, and includes the calculation of the

packet synchronization instant.

• Found SOF shortly after? The SOF is ever going to occur in a given time window

after the detection of the mode-switch signal. If the search exceeds this expected

deadline without identifying a SOF, it means that it can not guarantee precision in

timing synchronization, and so, the process falls back to normal mode and ignores

the following packet signal.

• Channel compensation factors Once the synchronization instant is known, the

program can uses the preamble signal to compute the channel compensation factors,

according to the algorithms described in section 3.2.1.

• Frequency-offset compensation factors The frequency-offset compensation fac-

tors are also calculated using the information present in the preamble signal, as also

described in section 3.2.1. These factors need to be calculated separately as they

are used to update the channel compensation factors over time.

CHAPTER 4. SYSTEM IMPLEMENTATION 53

• Wait for next payload Before decoding an OFDM signal, the program must wait

for the transmission of a number of samples corresponding to the payload block

size.

• Apply comp. factors The OFDM payload is translated into the frequency do-

main and the relevant components are corrected using the channel calibration and

frequency-offset compensation factors. This is done by first applying the frequency-

offset factors over the channel compensation factors, and only then the resulting

factors onto the payload’s spectrum.

• Decode OFDM During this phase, the program computes the data by translating

the payload samples of the OFDM signal. Once the data is extracted, it is appended

to an internal packet buffer.

• Update comp. factors The compensation factors are updated using the informa-

tion from the decoded signal, i.e. by assuming that all symbols are correct and

calculating the resulting error.

• Was last payload? The packet contains several payload blocks, and so, the payload

processing sequence must be repeated once for all the payload blocks.

• CRC verified? At the end of the packet data extraction, the 32 bit CRC value is

calculated and compared with the corresponding field embedded in the packet data.

Note that before performing any operation over this data it needs to be "unscram-

bled" according to the process mentioned in section 3.1.4.

• Write packet into message slot The packet corresponds to a chunk of the entire

message under transmission. Due to the cyclic nature of the unidirectional message

transmission process, these packets do not necessarily arrive in sequence and so the

content data needs to be copied to the appropriate chunk of the message buffer.

CHAPTER 4. SYSTEM IMPLEMENTATION 54

Mode	Switch
Detected?

Search for SOF

Found	SOF	
shortly	after?

Decode OFDM

Wait for next payload

Was	last	
payload?

CRC	verified?

Write packet into
message slot

Update packet
tracking table/flag

Yes

No

YesNoYesNo

Channel
compensation factors

Frequency-offset
compensation factors

Update comp. factors

Apply comp. factors

Figure 4.1: System component level flow diagram.

• Update packet tracking table/flag The message is only transmitted once all the

corresponding packets have been received. For this purpose, a binary table is up-

dated every time, in order to determine whether the packet is new, and a counter

is maintained to determine whether the full message has been received. Once the

message is complete, a flag is set to signal that the message buffer contains a valid

message.

4.2.1 Product integration

As mentioned in section 1.1, the acoustic communication system is to implemented across

many capable devices of the Darkglass product line, and naturally, this system must be

added as a supplementary and independent feature. This means that it is running at a lower

priority level relative to the other basic product functions, such as digital audio signal

processing, and also, responding to the user interface and external switches. As such one

of the major challenges is in integrating the feature in a way that it is simultaneously

accessible, i.e. easy to activate and use, but also while limiting its ability to interfere with

the remaining software systems.

CHAPTER 4. SYSTEM IMPLEMENTATION 55

Mode-switch detection

The system integration pattern is designed around the idea of two different modes of

operation: the STANDBY mode and the ACTIVE mode. When in STANDBY mode,

the communication system’s processes run at a low priority level while barely loading

the CPU, and the system is tasked with scanning the audio signal for the start of a new

message. Once the start of a new message is found, the system switches to an ACTIVE

mode, where it starts to run at a high priority level and using most of the processor time

available.

When active, the communication system must be continuously running in the back-

ground so that it can immediately detect an incoming communication whenever the user

wishes to use the feature. While this greatly improves the accessibility and the ease of

use, it also means that there must exist a process that can continuously scan for the start

of a new message. With the remaining device modules running concurrently within the

system, more notably the audio FIR filters, the processor time available is very limited,

and so, this background process needs to be relatively light. Moreover, the process also

needs to be selective enough so that it does not issue false positives, i.e. indicating that

there is an incoming message signal when there is not.

The Mode-switch detection scheme, already introduced in 3.2.2, is a crucial compo-

nent for system integration, providing a way for it to continuously poll the audio channel

while running as a "background" process with a very low processor usage rate. Empirical

tests show that this scheme provides a high selectivity rate without interfering with the

remaining processor systems.

Processing model

The system is running in "baremetal" mode, meaning that the firmware is running di-

rectly, without an underlying operating system abstraction layer. While the program flow

depicted in figure 4.1 shows a sequential progression of the system, in reality, the under-

CHAPTER 4. SYSTEM IMPLEMENTATION 56

lying process runs off two concurrent threads. The number of samples contained in each

packet signal is too large to be buffered all at once, so the DSP necessarily needs to run in

a real-time fashion, i.e. by simultaneously sampling and processing the incoming audio

signal.

The audio data is communicated through the SAI interface and is routed to an internal

buffer in system memory through the use of peripheral-to-memory direct memory access

(DMA). Through DMA, the system can be set up in such a way that the samples arriving

at the SAI FIFO are copied to an internal buffer without requiring any intervention by

the CPU. Essentially, this allows the processor to operate over blocks of samples, when a

DMA interrupt is issued, rather than being interrupted for every new audio sample.

The need for two concurrent threads comes from the fact that we cannot guarantee that

the heavier computations can be completed in the time that spans between two consecutive

blocks of audio samples. Some computations such as the OFDM payload processing, not

only require somewhat complex mathematical calculations such as the FFT but also typi-

cally involve a large number of samples. Fortunately, thread concurrency can be achieved

through the handling of the DMA interrupts occurring at a fixed time rate, i.e. once a new

block of audio samples has been written in the buffer. Every time this interrupt routine is

called, it preempts the main loop, and so it is as if there is a thread running concurrently

at a higher priority level.

The system’s processing model is depicted in figure 4.2, showing the two concurrent

threads, Master and Slave, side by side. In this case, the Master thread corresponds to

the interrupt callback routine, and the Slave thread corresponds to a function running

repetitively inside the main loop. The Master thread is in charge of maintaining the serial

audio interface flow, by storing the incoming samples and issuing new transfers, and at

the same time is also in charge of dictating the tasks for the slave thread to perform.

In this model, the Master thread can communicate with the Slave thread by writing

values to the Slave’s state variable, depicted in the picture as slave.state. The Master is

CHAPTER 4. SYSTEM IMPLEMENTATION 57

Store new samples in
circular buffer

New	task?

Process samples

Return from interrupt

slave.state	==
READY?

Set
slave.state = task

Yes

Yes

No

No

Master Slave

slave.state	==
READY?

Return to main

Yes

Perform task
according to
slave.state

No

Set
slave.state = READY

Figure 4.2: Processing model diagram depicting the concurrent master and slave threads.

CHAPTER 4. SYSTEM IMPLEMENTATION 58

only ever allowed to set the variable if the slave.state is set to state READY, and the Slave

thread is only allowed to return the variable to READY state. With this scheme, and

since this is a single processor system, we can guarantee that there will never be any race

conditions regarding the access to the slave.state variable.

The task mentioned in the processing model diagram in figure 4.2 can correspond to

several different operations, depending on the packet processing stage. For example, once

the timing synchronization instant is identified, the Master thread will issue a ’Calibrate

channel’ task to the Slave so that it can start processing the preamble signal informa-

tion and obtain the channel compensation factors. Nevertheless, the Master thread will

also perform some light DSP operations, as is the case for example of the mode-switch

detection routine discussed later on.

4.3 Implementation results

To test out the implementation, the system is running in development mode on the Mi-

crotubes X Ultra distortion pedal. This section aims at showcasing the fundamental be-

havioural characteristics of the system’s implementation on the ATSAM4S4A platform,

namely its runtime performance metrics and noise immunity.

4.3.1 System configurations

The system’s modules have been implemented in a way that they support different con-

figurations, depending on the format of the transmission signal, such as OFDM payload,

CP length and the bandwidth usage of the signal itself. These configurations may directly

impact the transmission speed and they will essentially determine whether the implemen-

tation is viable or not, depending on whether the microprocessor is powerful enough to

compute the underlying processes at the required rate. The following is a list of the main

system configuration parameters:

CHAPTER 4. SYSTEM IMPLEMENTATION 59

• CP length (CPL) corresponds to the number of samples per cyclic prefix, i.e. the

length of this signal. Larger numbers lead to longer guard intervals, less ISI, how-

ever, it also increases the amount of signal overhead, due to the fact that it contains

redundant information. It is also possible to increase the length of this parameter to

artificially increase the slack time between consecutive OFDM payloads.

• OFDM payload length (PL) corresponds to the number of samples per OFDM sig-

nal. The frequency resolution of the signal’s DFT depends directly on this number,

meaning that we can pack more symbol carriers. However, larger PLs also mean an

increase in computational complexity, as mentioned in section 2.1.1.

• Carriers per payload (CPP) is the number of M-QAM symbol carriers per OFDM

signal. Essentially, for a fixed PL value, this parameter translates the bandwidth

of the system, so, the larger its value, the more symbols are packed into a single

payload. Also, a greater CPP value will inversely decrease the average power per

carrier, which negatively influences the perceived SNR at the receiver’s end.

• Index of the first carrier (C0) corresponds to the index of the first frequency com-

ponent of the OFDM payload signal. This component can be calculated for a given

sampling rate fs as f0 = fsC0
P L

, and so, this parameter works hand in hand with CPP

in defining the signals band usage.

• Payloads per packet (PPP) is the number of symbol payloads that form a sin-

gle packet. With more payloads being packed into the same packet, there is more

content data and less overhead caused by the preamble and mode-switch signals.

Nevertheless, fewer payloads also mean finer-grained packets and less data buffer

memory requirements.

• Modeswitch length (ML) defines the length of the mode-switch signal. This length

influences the selectivity of the mode-switch pattern, i.e. by decreasing the likeli-

hood of detecting false positives of the mode-switch signal.

CHAPTER 4. SYSTEM IMPLEMENTATION 60

Table 4.1: System configuration parameters used for the performance test trial.

Parameter Value

fs 46.875 kHz

CPL 256 samples (≃ 5.4 ms)

PL 512 samples (≃ 10.8 ms)

CPP 120 carriers (≃ 11 kHz bandwidth)

C0 44 (f0 ≃ 4 kHz)

PPP 16

ML 1024 (≃ 21.6 ms)

For system testing, the testbench configuration parameters were decided on based

on empirical trials, by tweaking parameter values until arriving at a setup that shows

simultaneously the best performance and reliability. Table 4.1 provides a compilation

of the system configuration parameters used for this test. Considering that packets are

continuously transmitted ad infinitum, the theoretical maximum data transmission rate

for this system configuration is around 3kB/s (≃ 3065 B/s).

4.3.2 Frequency response of the channel interface

As mentioned earlier, the communication channel, denominated as the speaker-pickup

pair is mainly composed of two elements: the phone’s speaker serves as the acoustic

transmitter, and the bass/guitar pickup serves as the receiver. The performance of the

entire system strongly depends on the quality of the signal, as it travels through the com-

munication channel, and conversely, the behaviour of the channel depends mainly on the

type and quality of these components. It is safe to say that there is no single configuration

that can run on all possible configuration, for example, some lesser quality speakers may

distort the signal to the extent that the data is then unobtainable from the receiver’s end.

CHAPTER 4. SYSTEM IMPLEMENTATION 61

Figure 4.3: Channel frequency response with the speaker-pickup pair setup.

Nevertheless, from the company’s perspective, it is vital to find at least one system config-

uration that works reliably for most users. For this project, the system has been modelled

around a setup consisting of a generic bass pickup and an iPhone 8 speaker.

The graph that is shown in figure 4.3 represents the normalized frequency response

of the given setup. One of the most noteworthy characteristics is the channel’s passband,

i.e. the frequency band that least attenuates the signal, which is important because it

significantly influences the value of the received signal’s SNR. By setting a threshold at

-20dB, meaning a 10x normalized attenuation factor in the worst-case scenario, we can

roughly consider the passband to be from around 2.5kHz to around 15 kHz. Also, notice

that the phase response is not linear, which confirms an earlier assumption made in the

design phase.

Finally, the other important characteristic to consider is the impulse response length,

which influences the amount of ISI present in the system, as mentioned in section 3.1.5.

The graph in figure 4.3 represents the amplitude, in normalized dBs, of the impulse re-

sponse, derived from a sinusoidal sweep measurement. As with channel bandwidth, the

definition of the impulse length dramatically depends on the application at hand, and for

this case we may arbitrarily decide that the ISI should be no higher than -20dB lower than

CHAPTER 4. SYSTEM IMPLEMENTATION 62

Figure 4.4: Impulse response’s amplitude over time with the speaker-pickup pair setup.

the most attenuated frequency, i.e. the impulse length corresponds to the time instant at

which the amplitude of the impulse response does not exceed -40dBs (normalized).

4.3.3 Runtime performance analysis

The SEGGER Systemview toolkit was used To conduct the runtime performance analysis

of system implementation [19]. This application profiling tool allows us to track events

issued by the system, such as the start and end of specific tasks, with microsecond preci-

sion, very low computational overhead, and all in a realtime fashion. It means that we can

extract an almost exact model of the running system behaviour and, for this analysis, we

are interested in measuring the computation times of different processes and determine

the viability of different configurations.

Figure 4.5 showcases a sequence of processes running over a period of around 320 ms.

It corresponds to the period in which a message packet is being interpreted, with each

coloured block corresponding to a different process running from the master thread, slave

thread and other unrelated device modules. While there are other concurrent system pro-

cesses, the following is a descriptive list of the more relevant types that explicitly appear

CHAPTER 4. SYSTEM IMPLEMENTATION 63

Figure 4.5: Performance analysis profiling result with a default system configuration

as coloured blocks in the diagram due to requiring more processor time:

• Black blocks represent the idle process, which, roughly speaking, includes every

process that is not directly related to the communication system.

• Red blocks, here rather appearing as stripes, represent the master thread processes,

i.e. the processes that are called upon the arrival of every new SAI DMA block.

• Green blocks correspond to the calibrate channel task and the Blue blocks corre-

spond to the OFDM decode payload task, both performed by the slave thread.

At the start, the processor is mostly idle, while being periodically interleaved by the

master thread. The red stripes, even though not always explicitly visible, appear at a fixed

rate throughout the whole time-span, however, during this first phase, it is noticeable that

these are thicker in form, indicating that the master thread is loaded with more substantial

computations. In this case, the master thread is tasked with the ’mode-switch detection’

task, i.e. trying to identify the signal right at the start of a new packet.

Immediately following this initial phase, once the mode-switch signal is detected, the

preamble related tasks are issued, and the slave thread takes over most of the processing

time. After the preamble is transmitted, the OFDM payload decoding tasks are issued

for every OFDM payload transmitted in sequence, appearing as the blue sections. Even

though the different payloads are not explicitly distinguishable, for the most part, they

should be separated by the black stripes. In essence, this indicates that the slave thread

has successfully completed those computations on time, and can withhold of processor

usage in the meantime. With this system configuration, the packet is composed of a total

of 16 OFDM payloads, which can be confirmed by looking closely at the diagram. After

CHAPTER 4. SYSTEM IMPLEMENTATION 64

decoding all 16 payload blocks, the cycle repeats, and the system returns to a mostly idle

state, while the master thread goes back to running the mode-switch detection task once

more.

A crucial metric that can be inferred from the runtime analysis is the processor load.

From the previous analysis, we see that the system appears to be running close to its

computational load limit. Ideally, there should be more idle blocks in between the slave

tasks, i.e. a longer slack time to decrease the restrictiveness of the deadlines. Nevertheless,

these results show that the current configuration is able to run reliably under average

system load conditions.

4.3.4 Noise immunity

Assuming that CPL and PL remain constant, the system’s data rates directly depend on the

number of OFDM carriers used, which translates into the bandwidth of the signal. This

spectral utilization should not only be adapted to the channel’s passband but must also

consider how the noise immunity varies with different numbers of OFDM carriers. For

example, in the case of the speaker-pickup pair, where the 4 kHz to 16 kHz band typically

shows the best SNR performance, the number of carriers can vary between 1 and 120,

given the default system configurations presented in Table 4.1.

To test the system’s noise immunity, we collected bit-error-rate (BER) data for differ-

ent test signals artificially infected with additive gaussian noise. The graph represented

in Figure 4.6, where the BER appears plotted against the SNR for different system con-

figurations. From these empirical results, we define the noise immunity level as the SNR

value at which the BER drops bellow 100 ppm, translating into the successful transmis-

sion of over 99 % of all packets. As expected, configurations with fewer carriers show

improved noise immunity. Furthermore, as expected, the noise immunity is directly pro-

portional to the average power per carrier, i.e. if we halve the number of carriers noise

immunity improves by 3dB.

CHAPTER 4. SYSTEM IMPLEMENTATION 65

B
E

R

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00

10 15 20 25 30

120 carriers 90 carriers 60 carriers 30 carriers

Figure 4.6: BER vs SNR with different bandwidth utilizations.

4.3.5 Testing the limits

To test the limits of the final system implementation, we experimented with different set-

tings of the system while trying to achieve the highest data rates and relatively reliable

transmission. With CPP = 160, and all other configuration parameters set to the default

values, the system was able to wirelessly transmit a 160 kB message in 40 s without drop-

ping a single packet. These settings correspond to a data rate of 32 kb/s, corresponding to

33% faster speeds than the ones possible with the default system settings.

5 Conclusion

This thesis presents a promising solution for extending IoT connectivity to resource-

constrained embedded devices through high-speed acoustic data transmission. The main

contribution of this work has been the design and development of an OFDM-based one-

way acoustic communication system that can be implemented in a wide variety of mi-

crocontrollers. Also, it provides a case study for the implementation communication

modems as a software system, while presenting an ample view of the design challenges

of a software-based physical layer of the communication stack.

In order to efficiently utilize the available bandwidth of a given channel, the system

needs to be set up as a real-time process so that it may adequately operate over streams of

incoming data. This aspect proved to be the most significant challenge not only due to the

imprecise timing behaviour of general-purpose processors but also primarily due to the

challenges of integration and sharing of computation resources with the external software

components, running concurrently on the same platform.

The experimental trials show that OFDM succeeds as an effective signalling scheme

by providing a simple method for configuration of the system’s spectral utilization. With

careful carrier placement, the resulting spectrum is such that the frequency band is adapted

to the frequency response of the communication channel at hand. Moreover, the total

number of carriers per OFDM symbol inversely influences the average power per carrier,

and thus, it is used as an additional parameter to control the average SNR value of each

component. This behaviour was verified with extensive experimentation results, compar-

CHAPTER 5. CONCLUSION 67

ing how SNR influences the BER with different configuration settings. Despite expecting

varying frequency responses depending on the specific speaker and pickup devices used

as the physical interface channel, we can estimate that the passband is placed in the mid-

range acoustic band, i.e. around 5 kHz to 15 kHz. Nevertheless, as we gather more user

feedback from their experience with the feature and the deployed devices, the goal is that

we can eventually arrive at the optimal configuration settings that lead to a system that is

simultaneously reliable and supports high data rates.

The runtime performance of the proposed algorithms can depend significantly on the

available speed and DSP features of the underlying platform, and as such, it was neces-

sary to include methods for system configuration parameters that can adapt to the com-

putational load constraints. For processing the OFDM payload symbols, the length of the

CP and Payload block can be adjusted according to the available slack as observed during

runtime analysis. While the CP should be long enough to encompass the entire GI period,

there is no practical upper limit, and so a more extended CP effectively leads to a longer

waiting period in between successive payload blocks. As for the Payload block itself, the

processing computation complexity is expressed by O(N log(N)), and so, shorter blocks

yield less processing time per sample.

The design of the preamble signal also proved to be effective in achieving system co-

herency, through timing synchronization, and compensation of the channel-distortion and

frequency-offset effects. The start-of-frame detection algorithm and channel compensa-

tion factor calculation are shown to be realizable in embedded software, and an optional

delay can be appended immediately after the preamble to compensate for any delays re-

quired due to the heavier computational load of this process. Also, the mode-switch de-

tection signalling scheme has shown to be a surprisingly simple, lightweight and selective

algorithm for identifying the beginning of transmission during idle times.

From a data format point of view, the proposed packets-based protocol provides a

simple design for lossless transmission of independent messages. While not intended

CHAPTER 5. CONCLUSION 68

as a one-fits-all solution, this strategy is reliable enough for most application use-cases

that don’t have strict security requirements. Simultaneously, this scheme also contributes

towards lower amounts of data overhead, consisting of only 2 bytes for the packet header,

and 4 bytes for the CRC-32 code integrity check code. The overhead corresponds to a

fixed total of 6 bytes per packet, which translates into under 1% of the packet length for

most reasonable configuration settings. In essence, the signalling overhead due to the

mode-switch detection signal, preamble and CPs far outweighs the impact of the packet

data overhead.

To conclude, the works presented in this thesis provide a substantial collection of ma-

terial that can be applied towards the replication of the implementation of the communica-

tion system on virtually any other embedded system with minimal capabilities. There is a

compelling motivation for the integration of such a feature in the digital audio processing

consumer products market, as it enables a new and exciting way of user interaction at no

added production costs. Furthermore, with the proposed approach, we have been able to

obtain transmission speeds of over one order of magnitude over the state-of-the-art and

the most widely used commercial solutions.

5.1 Future works

While the contents presented in this thesis detail the implementation of a complete and op-

erational system, the result is not by any means a final and optimal solution. In particular,

we’ve identified some key areas of the design that can still be improved in order to en-

hance the system’s overall reliability, computational efficiency, and speed. The following

is a brief discussion of these ideas.

CHAPTER 5. CONCLUSION 69

5.1.1 Error correction codes

The system discussed in this thesis has the unusual property of being implemented as a

uni-directional communication interface while also requiring lossless data transmission.

This characteristic makes it all the more critical that the receiver can adequately identify

if any corrupted data, and continue waiting until it has received a complete and unadul-

terated message. The current approach uses a rough integrity check process based on

32 bit CRC codes appended to each packet, however, it would be interesting to consider

alternative ways that include some degree of error correction as well.

The Reed-Solomon codes [20] are a common approach to solve this problem, and

can even be found in other similar solutions like the one implemented with chirp.io’s

solution. Similarly to the current method, it consists of a code that can be calculated

and appended to a given data-set, providing some extra redundant information that can

identify and reconstruct a number of faulty bits. For example, one common code setup is

defined as RS(255,223), where for every 255 bytes of data, 223 are actual content, and the

remaining is composed of the Reed-Solomon code. With this setup, the Reed-Solomon

decoder can identify and recover up to 16-byte errors occurring in any arbitrary location

of the data-set.

5.1.2 System confidentiality

For applications requiring a secure and confidential communication link, the solution pro-

posed in this thesis does not fulfil this specification. The system was designed without the

premise of data confidentiality built-in, and thus further considerations are necessary in

order to achieve this goal. The standard way to implement such a feature is by applying

a symmetric-key encryption scheme, such as the advanced encryption standard (AES),

where both transmitter and receiver use a common secret key to encrypt and decrypt the

messages respectively. Note that due to the uni-directional nature of the communication

channel, the keys have to be statically set in both sides before transmission.

CHAPTER 5. CONCLUSION 70

5.1.3 Research performance results using fixed-point DSP

For this project, some of the DSP routines are implemented using floating-point opera-

tions, namely during the payload processing and channel estimation phase. Given that the

test platform does not possess a native hardware FPU, this approach is likely less compu-

tationally efficient than an alternative implementation using fixed-point arithmetics. The

extent to which this is true greatly depends on the computer architecture of the underlying

platform, nevertheless it would be interesting to evaluate the performance results of this

alternative implementation on an ATSAM4S4A chip or similar.

References

[1] S. Andreev et al., “Understanding the iot connectivity landscape: A contemporary

m2m radio technology roadmap”, IEEE Communications Magazine, vol. 53, no. 9,

pp. 32–40, 2015.

[2] Z. Sheng, C. Mahapatra, C. Zhu, and V. C. M. Leung, “Recent advances in indus-

trial wireless sensor networks toward efficient management in iot”, IEEE Access,

vol. 3, pp. 622–637, 2015. DOI: 10.1109/ACCESS.2015.2435000.

[3] A. Ericsson, “Cellular networks for massive iot—enabling low power wide area

applications”, no. January, pp. 1–13, 2016.

[4] J. G. et al., “Internet of things (iot): A vision, architectural elements, and future

directions”, Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660,

2013.

[5] M. T. Anowar et al., “A survey of acoustic underwater communications and ways

of mitigating security challenges”, 2016.

[6] É. Gillet. (). Eurorack, Mutable Instruments SARL, [Online]. Available: https:

//github.com/pichenettes/eurorack (visited on 09/21/2019).

[7] D. Bubley, “Data over sound technology: Device-to-device communications and

pairing without wireless radio networks”, Disruptive Analysis Ltd., Jun. 2017,

p. 29.

https://doi.org/10.1109/ACCESS.2015.2435000
https://github.com/pichenettes/eurorack
https://github.com/pichenettes/eurorack

CHAPTER 5. CONCLUSION 72

[8] I. F. Akyildiz et al., “Underwater acoustic sensor networks: Research challenges”,

2005.

[9] Gang Qiao, Songzuo Liu, Zongxin Sun, Feng Zhou, “Full-duplex, multi-user and

parameter reconfigurable underwater acoustic communication modem”, 2013.

[10] Simon Haykin, Communication systems, 4th ed. John Wiley & Sons Inc., 2001.

[11] IBM Corporation and Microsoft Corporation, “Multimedia programming interface

and data specifications 1.0”, 1991.

[12] Y. Rahmatallah and S. Mohan, “Peak-to-average power ratio reduction in ofdm

systems: A survey and taxonomy”, IEEE Communications Surveys & Tutorials,

vol. 15, no. 4, pp. 1567–1592, 2013.

[13] Timothy M. Schmidl and Donald C. Cox, “Robust frequency and timing synchro-

nization for ofdm”, 1997.

[14] David C. Chu, “Polyphase codes with good periodic correlation properties”, 1972.

[15] Maja Sliskovic, “Sampling frequency offset estimation and correction in ofdm sys-

tems”, 2001.

[16] Atmel, Sam4s series, Atmel Corporation, 1600 Technology Drive, San Jose, CA

95110 USA, Jun. 2015.

[17] ARM, Arm® cortex®-m4 processor, ARM ltd., 110 Fulbourn Road, Cambridge,

England CB1 9NJ, Feb. 2015.

[18] T. Lorenser, “The dsp capabilities of arm® cortex®-m4 and cortex-m7 processors”,

2, Nov. 2016, p. 19.

[19] SEGGER, Segger systemview user guide, SEGGER Microcontroller GmbH, In den

Weiden 11, D-40721 Hilden, Germany, Aug. 2018.

[20] I. S. Reed, G. Solomon, “Polynomial codes over certain finite fields”, 1960.

CHAPTER 5. CONCLUSION 73

[21] K. Marneweck et al., “Why data-over-sound is an integral part of any iot engineer’s

toolbox: Chirp + arm = frictionless low power connectivity”, 2019.

	List Of Acronyms
	Introduction
	Motivation and system objectives
	Related works
	Structure

	Data communication systems
	Data signalling basics
	Time and frequency domains
	Pulse Code Modulation
	Passband signaling techniques
	M-ary Quadrature Amplitude Modulation

	Physical constraints in real-world applications
	Noise
	Channel response in LTI systems
	Audio to digital conversion

	An effective signaling scheme for passband channels
	Orthogonal frequency division multiplexing

	Design overview
	System design considerations
	Application message formatting
	Data integrity
	Splitting messages into packets
	Reducing the peak-power-to-average-power-ratio
	ISI and the guard interval
	Timing synchronization challenges and the cyclic prefix

	Signal processing algorithms
	The Preamble
	A computationally efficient mode-switch signalling scheme
	OFDM payloads
	Signal construction

	System implementation
	Platform Characteristics
	DSP Features
	Fixed-Point Arithmetics
	Embedded Memory

	Implementation Overview
	Product integration

	Implementation results
	System configurations
	Frequency response of the channel interface
	Runtime performance analysis
	Noise immunity
	Testing the limits

	Conclusion
	Future works
	Error correction codes
	System confidentiality
	Research performance results using fixed-point DSP

	References

