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ABSTRACT 

Diffusion tensor imaging (DTI) has provided great insights to the microstructural features of 

developing brain and has been shown to be reliable in infants. However, the repeatability of 

the DTI scalars for older pediatric age groups has not been thoroughly addressed. In this study, 

DTI scans of 5-year-olds were used to investigate the test-retest reliability of three different 

measurements with both voxel-wise and region of interest (ROI) analysis. Out of 96 diffusion 

encoding directions, divided into three parts, 20 unique diffusion encoding directions were 

chosen per measurement from 48 subjects. Tract based spatial analysis (TBSS) was used to 

extract fractional anisotropy (FA) values from those images and using the FA values the 

repeatability of the measurements was assessed by intraclass correlation coefficient (ICC) and 

standard error of measurement (SEM). Overall, FA values had high repeatability both in voxel-

based analysis (ICC>0.73) and ROI analysis (for non-skeletonized ROI type 88% of the ROI 

labels: ICC>0.75, for skeletonized ROI type 87% of the ROI labels: ICC>0.75). Using a 

skeleton in the ROI analysis did not contribute to the repeatability and the volume size was 

found to be a contributing factor for repeatability. Interscanner reliability as well as reliability 

measured by using different atlases are yet to be investigated in 5-year-old data.  

 

 



1 
 

1  INTRODUCTION 

Prior to magnetic resonance imaging (MRI) technology, the knowledge on brain anatomy was 

based on postmortem studies and animal studies. However, these studies have important 

limitations such as small sample size, sample preservation difficulties, no possibility to do 

follow up measurements and lack of quantification and thus lack of statistical comparison 

opportunities (Ferrer, Martinez, Boluda, Parchi, & Barrachina, 2008; Innocenti, Ansermet, & 

Parnas, 2003).  MRI does not have these limitations and it provides functional and structural 

information about the brain in great detail. In addition, MRI is safe and non-invasive. 

Therefore, MRI was revolutionary when it was presented to the field of neuroscience in 1980’s. 

Since then it has allowed researchers to quantitatively investigate the different types of tissues 

in brain (Cascio, Gerig, & Piven, 2007).  

Diffusion tensor imaging (DTI) is a special MR imaging technique that allows 

unparalleled insights to the white matter microstructure (Paus et al., 2001). Most modern DTI 

sequences are based on echo planar imaging (EPI) since the images have relatively high spatial 

resolution and relatively low amount of motion artifacts (Poynton, Jenkinson, Whalen, Golby, 

& Wells III, 2008). However, EPI sequences are highly prone to distortions caused by eddy-

currents and magnetic susceptibility of the cranial structures (brain, sinuses, bone). Eddy-

currents occur due to the changing diffusion gradients of the scanner and even though they can 

be corrected to a certain level during acquisition, residual artifacts are common in the phase 

encoding direction (Shen et al., 2004). In addition to eddy-current artifacts, EPI images are 

prone to magnetic susceptibility effects which lead to signal loss and distortion in the images 

especially in the areas where the tissue meets the air (Basser & Jones, 2002). 

Diffusion images are acquired based on the water motion in tissue, a small signal, and 

because of that they are also very sensitive to subject motion (Taylor et al., 2016). Subject 

movement during scanning results in blurring and ghosting in the image. During a DTI scan 
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multiple images are taken and the subject movement between image acquisitions result in 

coregisteration problems during the processing of the images (Mori & Tournier, 2014). In 

pediatric imaging, it is more critical to be aware of the challenges mentioned above and focus 

on the quality and the repeatability of the data. Previous studies, including experience from 

FinnBrain Birth Cohort Study (Copeland et al., in revision) suggest that children under 5 years 

old have difficulties in cooperating during the imaging process and have a hard time being still 

in the scanner (Yoshida et al., 2013). Considering the motion sensitivity of DTI, it is argued 

that sedation is required for younger children (Hermoye et al., 2006). Yet, sedation is neither 

recommended nor allowed in research setting (Copeland et al., in revision). Hence, as young 

children move during scanning, that motion shows up as ghosting or causes disturbances in 

signal intensities in the images. These artifacts could easily affect the interpretation of the DTI 

results in small children  Therefore, to fully benefit from DTI in small children, the technique 

needs to be applied carefully and the acquired images need to be processed with utmost caution 

to assure generalizability of the results and accurate interpretation of the data (Jones & 

Cercignani, 2010). 

In addition, collecting good quality data and repeatable results are critical also for 

practical sides of the research process. Repeating a scan, if a previous one fails, is not an easy 

task, and must be avoided as much as possible for the cost and effort goes into each scan for 

each subject. It is also crucial to have reliable baseline data for any longitudinal study for its 

benefits of allowing follow-up study possibilities, particularly when the inevitable decrease in 

number of subjects over time considered. 

Taken together, it can be claimed that the quality and repeatability of the data, 

especially in pediatric population, is of utmost importance. Not only for the short term goal of 

getting accurate information from data of the current study but also for the long term goals of 
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understanding developing brain thoroughly and accumulating reliable literature for future 

research to refer back to and to take as a base level to build up on.  

A previous study investigated the intrascan repeatability in neonates by analyzing and 

comparing the quantitative measures of DTI. The study included DTI scans of the neonates 

from 3 measurements with in total 96 different diffusion encoding directions. DTI scalars were 

extracted for all three measurements and test-retest repeatability of the scalars were analyzed 

in pairs by investigating the correlation between measurements and the measurement error 

(Merisaari et al., 2019). However, that study was only focusing on the neonate data.  

Anatomically, age 5 is particularly critical in brain development. By age 5 the brain 

gets size-wise very close to the adult brain and any specific changes in the brain cannot be 

attributed to any age point after age 5 (Yoshida, Oishi, Faria, & Mori, 2013). Evidence suggest 

that there is a profound cortical growth and myelination affecting the white matter structures 

in the first years of life (Croteau-Chonka et al., 2016; Muircheartaigh et al., 2014). Therefore, 

the 5-year-old brain is quantitatively different than the small and unmyelinated neonate brain. 

In addition, compared to neonates, who slept through the scans, 5-year-olds potentially have 

more motion during scanning. Therefore, it is worth studying the test-retest reliability of the 

data acquired in this transitional stage of human brain development. The current study 

investigated the test-retest reliability of the 5-year-old children data using a similar approach 

as Merisaari and colleagues.  

1.1 Magnetic Resonance Imaging and Neurodevelopment 

Conventional structural MRI (sMRI) provides three dimensional, anatomical images of the 

brain (Mori & Zhang, 2006) and sMRI methods have improved our understanding of the 

anatomical neurodevelopment of humans starting from prenatal period with some studies 
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assessing even prenatal development (Dean et al., 2014; Girault et al., 2019; Tamnes et al., 

2017; Tocchio, Kline-Fath, Kanal, Schmithorst, & Panigrahy, 2015). 

sMRI studies show that the first 2 years in life are critical in neurodevelopment, as the 

brain goes through major changes and growth during this time (Knickmeyer et al., 2008). The 

whole brain volume doubles in size by the time the child reaches 2 years of age, reaching 

around 80% of an adult brain’s size and weight (Yoshida, Oishi, Faria, & Mori, 2013). Even 

though the total brain volume gets close to the size of an adult brain quite early in life, the 

volumetric changes continues through childhood and adolescence. It is worth noting that, the 

growth does not happen linearly or with the same proportions throughout the brain. Whilst 

some structures such as the cerebellum almost triple in size, the size of caudate nucleus only 

increases by around 20% of its original size. The lateral ventricles seem to grow in size in the 

first year but then get smaller during the second year. Also, the overall growth seems to be 

more profound for gray matter (GM) at about 150% than it is for white matter (WM) at about 

10% in the first year (Knickmeyer et al., 2008; Pfefferbaum et al., 1994). 

Growth patterns of GM changes throughout the brain. For instance, temporal lobe 

volume shows periods of decrease and increase in different ages in childhood whilst frontal 

lobe volume peaks in adolescence. Another interesting finding about neurodevelopment of 

brain tissues is that while GM follows and inverted U shape growth curve, WM increase 

happens linearly even when the GM in cortex begins to decrease at around 10 years of age 

(Faria et al., 2010; Lenroot & Giedd, 2006; Richards & Xie, 2015).   Neurodevelopment is a 

complex process and sMRI is a great tool to observe the neurodevelopmental changes on a 

large scale. Yet, it is not enough to explain the underlying neural mechanisms of the 

neurodevelopmental processes.   
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As diffusion weighted imaging (DWI) is now available to gain a better perspective of 

the microstructural features of the white matter (WM) and the changes WM goes through 

during neurodevelopment (Reynolds, Grohs, Dewey, & Lebel, 2019).    

1.2 Diffusion Weighted Imaging  

In its most basic form; diffusion is the movement of any given substance from high 

concentration to low concentration. In the context of diffusion imaging, diffusion refers to is 

the random motion of water (Brownian motion) led by the thermal energy caused by the 

microscopic movement of molecules even without the presence of factor (i.e. concentration, 

temperature or pressure) effecting the conditions (Baliyan, Das, Sharma, & Gupta, 2016; 

Rajagopalan et al., 2017). In theory, assuming no limits, water diffusion follows a Gaussian 

distribution. In this type of diffusion, the matter diffuses in a uniformly restricted, sphere 

shaped manner (isotropic diffusion; Figure 1). The diffusion constant (D) of that free motion 

of water at 37°C is calculated with 3.0 x 10−9 m2/s. Based on this calculation most of the free 

water moves at least a couple dozen µm in 50 ms (Le Bihan & Iima, 2015). Though the 

movement is miniscule, this type of diffusion can be observed in the cerebrospinal fluid (CSF) 

for there are no restrictions to its flow.  

In brain tissue, water diffusion is limited by for example fibers and cell membranes. 

Therefore, the distribution is not Gaussian and the motion of water remains limited to a few 

µm in 50 ms and random diffusion gains directionality (Le Bihan, 2007). This type of diffusion 

is called anisotropic diffusion (Figure 1). Anisotropic diffusion is observed in the WM. WM is 

comprised of the axon tracts and commissures that are covered with a mostly lipid layer called 

myelin sheath, not only giving the matter a lighter appearance compared to GM but also 

isolating the water content and giving direction to the water diffusivity (Purves et al., 2012). 
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Figure 1. The comparison images for isotropic and anisotropic diffusion. 

 

Diffusion weighted imaging (DWI) utilizes the same properties of the hydrogen nuclei 

as sMRI does to measure the diffusion of water. It is a technique where the differences in 

diffusion motion of the water creates the signal to provide information about the organization 

and orientation of the WM tracts (Baliyan et al., 2016). The main goal of DWI is creating 

magnetic field inhomogeneity along an axis so that the signal is sensitized to water diffusion 

and by doing so measuring the water motion in that axis. Magnetic field inhomogeneity is 

created by applying two different gradients. The gradient polarity changes depending on the 

sequence used. Regardless the polarity of the gradients when the first gradient is applied it 

disrupts the magnetic field homogeneity and after that the protons based on their locations 

resonate in different phases than before, hence this gradient is called a dephasing gradient, and 

this creates a signal loss. Following the dephasing gradient, based on the sequence used another 

gradient is applied. The second gradient rephases the protons, hence it is called a rephasing 

gradient (Mori & Tournier, 2014). The signal attenuation in this approach is calculated with a 

formula based on the diffusion coefficient. This process creates the diffusion weighted images. 

It is worthy of note that, the measured signal is not solely influenced by diffusion (Le Bihan & 

Johansen-Berg, 2012).  

However, as explained above brain tissue enables a more complicated version of 

diffusion and the diffusion coefficient (D) is not enough to explain the non-Gaussian 



7 
 

distribution of the water motion. Therefore, D is replaced by another diffusion parameter called 

apparent diffusion coefficient (ADC). This parameter requires at least two diffusion weighting 

application to acquire quantitative diffusion images where signal attenuation is purely due to 

the diffusion sensitization (b). The common way to do this is to apply one gradient without any 

diffusion weighting (b=0 s/mm2) and another one with high diffusion weighting (b=1000 

s/mm2). Based on the difference between the signal attenuation between different diffusion 

sensitizations (b-values) ADC enables direct physical interpretations of the brain tissues, 

especially the highly anisotropic WM tissue (Le Bihan, 2013). 

Directionality of the anisotropic diffusion naturally turns the sphere shape of isotropic 

diffusion into an 3D ellipsoid shape. Since it is no longer possible to estimate the diffusivity 

with a diffusion constant only, a more detailed model called diffusion tensor model is presented 

to interpret the diffusivity accurately (Mori, 2007). 

1.3 Diffusion Tensor Imaging 

Diffusion tensor model consist of a 3×3 array where each number represent the diffusion rate 

in each combination of directions. DTI estimates the diffusivity in WM structure by utilizing 

the three gradient units (x, y, z) already existing as a given property of each MRI and their 

combinations to measure the diffusivity along a given WM tract. To have an accurate diffusion 

tensor model bare minimum is six parameters; three for the orientations of the three defining 

axes of the ellipsoid which are called eigenvectors and three for the lengths of those 

eigenvectors which are called eigenvalues (Drobyshevsky et al., 2004). The visualization of 

the six parameters defining the ellipsoid is shown in Figure 2. To be able to quantitatively 

estimate the diffusivity in WM tracts each DTI scanning must include an image without any 

direction gradient applied to set the baseline and at least six directions to cover all independent 

elements to acquire sufficient DTI data. The number of directions is increased depending on 

the analysis method and purpose of the (Catherine Lebel, Benner, & Beaulieu, 2012). 
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Figure 2. The six parameters, three eigenvectors (v1, v2, v3) and three eigenvalues (𝜆1, 𝜆2, 𝜆3 ) needed to define 

the ellipsoid.  

 

1.3.1 DTI scalars  

The term DTI scalar is used to refer to the measures of magnitude and directionality of the 

diffusion. The DTI scalars can be used to quantitatively measure and compare the 

microstructural features of the brain tissues in a specific region or the whole brain to investigate 

a wide spectrum of cases including healthy neurodevelopment, aging and diseases caused by 

axonal and myelin damage (Soares, Marques, Alves, & Sousa, 2013). There are four diffusion 

scalars; mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and fractional 

anisotropy (FA). 

Mean Diffusivity   

Mean diffusivity (MD) is a measure of diffusion magnitude. It refers to the average of the eigen 

values in all three directions. Because of the brain maturation processes such as increasing 

myelination and axonal changes MD tends to decrease throughout the childhood to adolescence 

(Snook, Plewes, & Beaulieu, 2007).  

Axial Diffusivity  

Axial diffusivity (AD) is a measure of diffusion magnitude parallel to the axon, it can be 

evaluated as a measure of axon alignment in fiber bundles (Billiet et al., 2015). It has been 

frequently used in research focusing on aging, where WM maturity and related axonal damage 

are studied. Evidence suggest that eventually AD increases in the whole brain with adult aging 
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yet this happens gradually in different time points and in different areas of the brain depending 

on the effects of aging  (Kumar, Chavez, Macey, Woo, & Harper, 2013). 

Radial Diffusivity  

Radial diffusivity (RD) is a measure of diffusion magnitude perpendicular to the axon and it is 

associated with the myelin content in the fiber bundles. Therefore, it is taken as a reliable 

measure of myelin damage and/or demyelination (Winklewski et al., 2018). Similar to AD, RD 

also decreases during neurodevelopment because of the increased myelination as brain matures 

(Partridge et al., 2004). 

Fractional Anisotropy 

Fractional anisotropy (FA) value shows the directionality of the diffusivity and it is 

associated with axonal integrity of the fiber bundles. The FA value ranges from 0 to 1, with 0 

indicating no directionality and 1 indicating highest amount of directionality. For instance, in 

an isotropic diffusion scenario, all the eigenvectors are equal thus the FA value would be 0. 

In an anisotropic diffusion scenario as the asymmetry in the diffusivity increases, the 

ellipsoid shape gets more prominent and FA value gets closer to 1. From infancy through 

adolescence FA increases as the brain matures due to the exact same factors causing MD to 

decrease over time (Moon et al., 2011).   

 FA = √
 (𝜆1−𝜆2)2 +  (𝜆2−𝜆3)2 +  (𝜆1−𝜆3)2

2(𝜆1
2+𝜆2

2+𝜆3
2)

 

In this study, FA was chosen particularly as it has been used as a robust and reliable 

measure of WM microstructure in test-retest studies as well as numerous other DTI studies 

conducted with both clinical and healthy population regardless the age group (Grieve, 

Williams, Paul, Clark, & Gordon, 2007; Heiervang, Behrens, Mackay, Robson, & Johansen-
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Berg, 2006; Lewis et al., 2020; Mckinstry & Mathur, 2002; Siasios et al., 2016; Venkatraman 

et al., 2015; Voldsbekk et al., 2020). 

1.4 DTI in Pediatric Population 

DTI has been commonly used to study the WM development in healthy and clinical pediatric 

population including perinatal period (Huber, Henriques, Owen, Rokem, & Yeatman, 2019; 

Jakab, Tuura, Kellenberger, & Scheer, 2017; C. Lebel et al., 2012; Li et al., 2018; Mckinstry 

& Mathur, 2002; Young et al., 2018). WM maturation is more profoundly observed in 

microstructural level than in a gross volume growth as it is observed in GM. In the first two 

years of life rapid increase rates in FA and decrease rates in MD due to myelination is observed.  

From late childhood to adolescence there is slower increase in FA and decrease in MD due to 

the increase in axonal density. More subtle changes continues to happen in specific tracts 

throughout the lifespan (Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008; Long, 

Benischek, Dewey, & Lebel, 2017; Qiu, Mori, & Miller, 2015; Reynolds et al., 2019).   

Two of the most used diffusion image analysis methods are voxel-based analysis 

(VBA) and region of interest (ROI) analysis. VBA involves image registration, either 

smoothing or the use of a skeleton to determine the voxels desired to be in the statistical 

analysis part. Tract based spatial statistics (TBSS) is a commonly used tool that extends VBA-

style analysis. TBSS allows the investigators to create a white matter skeleton that estimates 

the individual tract centres before further analysis, and it provides robust results, reduces partial 

volume effect and does not necessitate spatial smoothing (Bach et al., 2014). VBA is a great 

analysis to use in group comparisons especially when answering a research question without a 

spatial hypothesis (Tamnes, Roalf, Goddings, & Lebel, 2018; Van Hecke, Emsell, & Sunaert, 

2015).  
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When there is a spatial hypothesis, ROI analysis is more efficient. In the ROI analysis, 

same idea used for VBA applies within the predefined regions. ROIs can be defined by many 

factors depending on the research question. For instance, the anatomical boundaries, disease 

pathologies or results based on other studies can be used to determine the ROIs. This analysis 

is quite efficient for investigating the DTI scalars in the WM structures. ROIs can be defined 

manually or based on an atlas. Manual selection requires more effort and time compared to 

using an atlas, but it might be more useful in clinical populations for anatomical boundaries 

that may not coincide with the ones in the atlas. Using an atlas to define the ROIs, on the other 

hand, is useful in healthy populations. By using an atlas, reliable comparison between 

participants can be done and the time and effort that goes into each analysis are reduced (Faria 

et al., 2010; Oishi et al., 2008; Van Hecke et al., 2015).  

Brain atlases are mostly based on adult brain and thus not well suited for the younger 

populations. Researchers claim that using adult templates and atlases in small children might 

be problematic (Machilsen et al., 2007). Due to high variability of  age related anatomical 

changes and the possibility of misclassification of the brain tissues (Fonov et al., 2011; Yoon, 

Fonov, Perusse, & Evans, 2009). 

1.5 Research Aims and Hypotheses  

By the nature of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) 

method there are artifacts and involuntary motion in the data. There are two main purposes of 

the current research: 1) to quantitatively investigate the intrascan test-retest reliability of the 

DTI data of 5-year-old children and 2) to critically reflect to previous test-retest reliability 

findings.  The objectives of the study can be divided into three main parts: 

1. to extract the DTI scalars to grasp the microstructural features of white matter 

(WM) in 5-year-olds a 96 direction DTI sequence in three parts 
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2. To quantitatively compare the fractional anisotropy (FA) values in between 

sessions across the whole brain white matter skeleton (voxel-wise approach) and,  

3. to quantitatively compare the FA values in between sessions with a region of 

interest (ROI) based approach.  

It is hypothesized that; the extracted FA values should show small amount of variability 

between measurements and they should have high repeatability in terms of intraclass 

correlation coefficient (ICC) and standard error of measurement (SEM) values. 

2  METHODS 

2.1 Participants 

The DTI data analysed in this study was acquired by FinnBrain Birth Cohort Study (Karlsson 

et al., 2018). Data from 48 (23 boys and 25 girls) 5-year-olds (mean age on scan day in 

days:1945±24) were included in the analyses.  

2.2 Data Acquisition  

MRI data was acquired using a Siemens Magnetom Verio 3T scanner with 12-element Head 

Matrix coil in the same centre was used to collect the data. All participants went through 4 

different sequences (sagittal T1-MPRAGE, field map acquisition, DTI with single shell and 

multishell parts, and task and resting state-fMRI during, which the participants viewed inscapes 

video). One scanning session lasted up to an hour.  

The single shell DTI data, used in the current study, was acquired by standard twice-

refocused Spin Echo-Echo Planar Imaging (SE-EPI) sequence. The resolution was 2×2×2 mm3 

isotropic resolution (FOV 208 mm; 64 slices; TR 8500 ms; TE 90 ms) and the b-value 1000 

s/mm2.  For each participant all three measurements in the DTI sequence included 3 b0 images 

and each measurement included uniformly distributed 31, 32 or 33 directions overall ended up 

to 96 unique diffusion encoding directions. 
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2.3 Ethics 

This study was carried out in accordance with the recommendations of the Ethics Committee 

of the South-Western Hospital District with written informed consent from all mothers. All 

mothers gave written informed consent in accordance with the Declaration of Helsinki. The 

protocol was approved by the Ethics Committee of the South-Western Hospital District. 

2.4 Data Analysis  

2.4.1 Preprocessing  

The initial preprocessing of the data was done as per FinnBrain Neuroimaging Lab pipelines 

(Merisaari et al., 2019). First, good quality b0 images were chosen, coregistered and averaged. 

FSL's (FMRIB Software Library v 5.0.9; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 

2012) Brain Extraction Tool (BET) (Smith, 2002) using -R -f 0.3 flags was employed to create 

brain masks. Next, DTIPrep software (Oguz et al., 2014) was employed to assure the 

quantitative quality of the diffusion images. DTIPrep is an open source automatic quality 

control software developed to detect and correct a wide range of inevitable artifacts such as 

eddy-currents, motion related artifacts, gradient related artifacts and more (Oguz et al., 2014). 

Since DTI is susceptible to many artifacts it is highly recommended to use some procedure to 

assure the quality of the data for any artifact majorly effects the data and the interpretation of 

it. Based on suggestions of the DTIPrep quality control some directions and volumes were 

discarded (Merisaari et al., 2019). After the automatic exclusion, 48 subjects with at least 20 

direction in each measurement were included in the further analyses. To maximize the number 

of subjects and number of directions included in the study, differently from the model study, 

there was not a manual quality control step in addition to DTIPrep. Finally, eddy current and 

motion correction were done on FSL (Andersson & Sotiropoulos, 2016).  
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After the preprocessing, the analyses were continued as follows; brain masks were used 

as the template for DTIFIT, which fits a diffusion tensor model to each voxel determined by 

the brain mask. The FA images created by DTIFIT were fed into the Tract-Based Spatial 

Statistics (TBSS) pipeline of FSL (Smith et al., 2006). TBSS pipeline created all participants’ 

mean FA template and mean FA skeleton as a final output (Figure 3). The mean FA images 

were the averaged versions of the FA images that were aligned to a standard space. TBSS 

pipeline assumes that the highest FA values are located in the middle of the WM tracts and 

skeletons were created based on that assumption. The highest FA values were projected onto 

the skeleton and the skeleton was created (Van Hecke et al., 2015).  More information about 

the TBSS steps / commands and the exact flags used in each step can be found in Table 1. This 

process prepared the data to further statistical analysis. 

 

Table 1. The TBSS pipeline steps with flags used in the study and the goal task of each step. 

TBSS pipeline 

step 

flags tasks 

tbss_1_preproc 
- 

Copies all originals file to another folder to create a new folder to work on and 

creates an html for visual quality control (QC).  

tbss_2_reg 
-T 

Aligns all FA images into FMRIB58_FA 1x1x1 MNI standard space through 

non-linear registration 

tbss_3_postreg 

-S 

Brings all subjects into the standard-space and creates files including all FA 

files (all_FA), mean of all the FA files (mean_FA) and the skeletonized 

version of the mean FA file (mean_FA_skeleton).  

tbss_4_prestats 0.25 Thresholds skeletonized mean FA image.  

 

The skeletonized FA values were used for VBA. For the ROI analyses, the International 

Consortium of Brain Mapping (ICBM)-DTI-81 white-matter labels atlas was chosen among 

the two JHU DTI-based white-matter atlases available in FSL. The atlas includes 48 manually 

segmented WM tract labels. The standard space used for the segmentation was gathered from 

81 healthy adults (mean age 39) (Mori et al., 2008). The atlas was co-registered to the TBSS 

template so that FA values could be extracted based on the 48 ROIs in the atlas from both 

skeletonized and non-skeletonized versions.  
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Figure 3. Skeletons (green) overlaid on mean FA images in sagittal, coronal and axial planes (respectively from 

left column to right column) created by TBSS for measurement repetitions 1, 2 and 3 (respectively from top row 

to bottom row in).  

 

During the TBSS analysis in-house bash and python scripts were used to warp the atlas 

on skeletonized and non-skeletonized ROI types and to extract the FA values for whole WM 

and both ROI types. The statistical analyses with the extracted FA values for three datasets 

(whole WM, non-skeletonized ROI and skeletonized ROI) were completed in Rstudio 

(1.2.5033, Rstudio, 2015). Step by step information about the data analyses can be found in the 

data analysis procedure diagram below (Figure 4).   
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Figure 4. The data analysis procedure. Automated processes are shown in sharp-cornered rectangles and visual 

control steps are shown in round-cornered rectangles with gray shading.   

 

2.4.2 Statistical analysis 

Kruskal-Wallis Test  

The Kruskal Wallis Test is a non-parametric method to investigate whether the samples come 

from the same population (Chan & Walmsley, 1997). The aim of using this testin the study was 

to determine whether there is a statistically significant difference in FA values extracted from 

three different repetitions, before moving on to the repeatability analyses.  

Bland-Altman Plots  

Bland and Altman suggested that since given two measurements are not identical there is bias 

and difference between them and they came up with a plotting method to quantitatively show 
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how much the different measures agree (Bland & Altman, 1999). Therefore, the idea of the 

Bland Altman plots is to check the agreement between the results acquired by two different 

paired methods, in the current study the agreement between DTI sequence parts, by plotting 

the paired measurements against the mean of the two measurements. (Giavarina, 2015). The 

Bland-Altman plot is a great visualization tool revealing a lot of quantitative information about 

the two given datasets. 

When interpreting a Bland-Altman plot there are three main criteria to consider. When 

these criteria are met, it can be concluded that two methods agree well. The first criterium is, 

for a quantified predetermined significance level at 0.05, the 95% of the data must be in the 

data are in the range of ±2 SD of the mean difference. The second one is that the data creating 

a tube shape distribution and not a cone shape. This means that at any point data have same 

amount of mean difference and no specific mean difference can be attributed to a specific part 

of the data. The third criterium is to have the mean difference at 0, which is an indicator of the 

data not having a systematic bias. 

Intraclass Correlation Coefficient (ICC)  

ICC is a numerical value, providing information about how similar the given measurements 

are and hence how reproducible the measurements are. In other words, ICC involves both 

agreement and correlation between measures. Since one of the aims of the study is to 

investigate the possible differences between three different measurements acquired under same 

conditions from same participants, ICC analysis is a great tool achieve that goal. When ICC is 

calculated; a specific ICC value is generated based on a, preferably 95%, confidence interval 

(CI). To make a reliable assumption based on the ICC analysis, both CI and ICC value must be 

taken into account (Koo & Li, 2016). Reliability criteria of ICC value can be found in Table 2.  
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ICC has several forms that can be employed based on the study design. In the literature 

it is emphasized that the most appropriate form of ICC to study test-retest reliability is a two-

way model (Shrout & Fleiss, 1979). Also, in this study for the reason that repeated 

measurements acquired were not randomized samples the chosen form of ICC for the analyses 

was a two-way fixed effects model for single measurement (ICC(3,1)).  

 
Table2. The reliability criteria for ICC(3,1) 

 

  

 

Standard Error of Measurement (SEM)  

SEM is another metric that is used to provide quantitative information about the test reliability 

in measurement unit. It is an absolute number and it shows whether the acquired results are due 

to a random error or not. SEM is 0 when the test is completely reliable without error and it is 

equal to standard deviation (SD) when the test is completely not reliable (Harvill, 1991). Hence, 

the closer SEM value to 0 the more reliable the results are. SEM is calculated with the following 

formula:  

 

SEM= SD √1 − 𝑟 

SEM =standard error of measurement 

SD = standard deviation 

r = Cronbach alpha  

 

 

 

 

 

ICC(3,1)  reliability 

<0.5 poor 

0.5-0.75 moderate 

0.75-0.9 good 

>0.9 excellent 
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3  RESULTS 

3.1 Whole White Matter Skeleton Analysis 

Whole WM analysis was done by assuming the whole skeleton as the ROI and the FA values 

were calculated based on the skeletonized mask of the scalar globally. For each participant, FA 

values from each voxel were extracted, and mean FA values of each participant were used in 

the analyses. First, as a quality reassurance Kruskal Wallis Test was employed to investigate 

the possible differences within the following repetition combinations 1vs.2, 1vs.3, 2vs.3 and 

all three repetitions combined. Yet, no significant difference was found between the repetitions 

(in every case p>=0.37). 

3.1.1 Agreement between measures  

To evaluate whether having different repetitions affected the FA values Bland Altman plots 

were used. Bland Altman plots were created for repetition combinations 1vs.2, 1vs.3 and 2vs.3 

(Figure 5a, 5b and 5c). Based on the agreement criteria mentioned earlier, it can be concluded 

that the repetition pairs in the study agreed well.  
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Figure 5a. Bland-Altman plot for the mean FA values from first and second repetitions out of three measurements. 

The thick red dash line at point 0 shows the mean difference and the thinner darker red dash lines above and below 

the mean difference shows the confidence interval of mean difference. The thick blue dash lines above and below 

the mean difference represents the minimum and maximum limits of agreement (LoA) and the thinner dash lines 

above and below the LoA show for the confidence intervals for maximum and minimum LoA.  

 

Figure 5b. Bland-Altman plot for the mean FA values from first and third repetitions out of three measurements. 

The thick red dash line at point 0 shows the mean difference and the thinner darker red dash lines above and below 

the mean difference shows the confidence interval of mean difference. The thick blue dash lines above and below 

the mean difference represents the minimum and maximum limits of agreement (LoA) and the thinner dash lines 

above and below the LoA show for the confidence intervals for maximum and minimum LoA. 
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Figure 5c. Bland-Altman plot for the mean FA values from second and third repetitions out of three 

measurements. The thick red dash line at point 0 shows the mean difference and the thinner darker red dash 

lines above and below the mean difference shows the confidence interval of mean difference. The thick blue 

dash lines above and below the mean difference represents the minimum and maximum limits of agreement 

(LoA) and the thinner dash lines above and below the LoA show for the confidence intervals for maximum and 

minimum LoA. 

 

3.1.2 Test-retest reliability analyses 

ICC(3,1) values were calculated for each repetition combination, smallest ICC(3,1) value was 

0.73. The ICC(3,1) value for each repetition combination with confidence intervals (CI) can be 

found in Figure 6. Based on the ICC values overall reliability of the repetitions is moderate to 

good level.  
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Figure 6. ICC(3,1) values with 95% confidence interval for each repetition combination. From left to right 

ICC(3,1) values calculated with the mean FA values from first and third repetitions, second and third repetitions, 

all three repetitions and first and second repetitions. 

 

The SEM values were calculated for each repetition combination as well (Figure 7). All 

repetitions combined had the highest SEM value with 0.0037. Since that number is very close 

to zero it is safe to claim that the results were not due to random error and FA values were 

repeatable. 
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Figure 7. SEM values for each repetition combination. From left to right SEM values calculated with the mean 

FA values from first and second repetitions, second and third repetitions, first and third repetitions and all three 

repetitions. 

 

3.2 ROI Analyses 

For ROI analysis instead of extracting the FA values globally, they were calculated based on 

the atlas labels. From the non-skeleton mask, FA values were extracted for all 48 labels of the 

atlas whilst from the skeletonized mask FA values could only be calculated for 47 labels. The 

complete list of the ROI labels in the atlas and their mean FA values as well as the information 

about the ones excluded from the study can be found in Table 3a and 3b. As it was done with 

the global analysis, as a first step and a quality reassurance, possible differences between the 

three repetitions in each label for both ROI types were investigated with Kruskal Wallis Test. 

There were also no significant differences between measurements in any of the ROI labels 

(smallest p value for skeletonized ROI type p=0.07, smallest p value for non-skeletonized ROI 

type p=0.33). 
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Table 3a. ROI label names and numbers in JHU-ICBM DTI-81 white-matter labels atlas (ROI numbers from 1 

to 24) and the mean FA values (mean ± SD) for non-skeletonized and skeletonized ROI types. 

 Non-skeletonized Skeletonized 

Label name 
Label 

number 

WM 

parcellation 

Number of measurements Number of measurements 

1 2 3 1 2 3 

Middle 

cerebellar 

peduncle* 

1 Brainstem 0.51±0.02 0.51±0.02 0.50±0.02 0.58±0.02 0.59±02 0.58±0.02 

Pontine crossing 

tract* 
2 Brainstem 0.46±0.03 0.46±0.03 0.46±0.03 0.48±0.03 0.49±0.03 0.49±0.03 

Genu of corpus 

callosum 
3 Commissural 0.54±0.02 0.54±0.02 0.54±0.02 0.77±0.03 0.72±0.3 0.78±0.03 

Body of corpus 

callosum 
4 Commissural 0.58±0.02 0.59±0.03 0.59±0.03 0.71±0.03 0.71±0.03 0.71±0.4 

Splenium of 

corpus callosum 
5 Commissural 0.69±0.02 0.70±0.02 0.69±0.02 0.79±0.02 0.80±0.02 0.79±0.02 

Fornix 6 Association 0.40±0.03 0.40±0.03 0.40±0.03 0.49±0.03 0.48±0.04 0.48±0.04 

Corticospinal 

tract R* 
7 Brainstem 0.49±0.02 0.49±0.02 0.49±0.03 0.52±0.02 0.52±0.03 0.51±0.03 

Corticospinal 

tract L* 
8 Brainstem 0.50±0.02 0.50±0.02 0.49±0.02 0.53±0.03 0.53±0.02 0.52±0.03 

Medial 

lemniscus R* 
9 Brainstem 0.51±0.03 0.50±0.02 0.51±0.02 0.56±0.03 0.59±0.03 0.56±0.02 

Medial 

lemniscus L* 
10 Brainstem 0.51±0.03 0.51±0.03 0.51±0.03 0.55±0.03 0.56±0.03 0.56±0.03 

Inferior 

cerebellar 

peduncle R* 

11 Brainstem 0.47±0.03 0.48±0.03 0.47±0.03 0.52±0.03 0.53±0.04 0.52±0.03 

Inferior 

cerebellar 

peduncle L* 

12 Brainstem 0.46±0.02 0.46±0.03 0.46±0.02 0.51±0.03 0.51±0.03 0.51±0.03 

Superior 

cerebellar 

peduncle R* 

13 Brainstem 0.52±0.02 0.52±0.02 0.52±0.02 0.61±0.03 0.61±0.03 0.62±0.03 

Superior 

cerebellar 

peduncle L* 

14 Brainstem 0.48±0.02 0.48±0.02 0.48±0.02 0.64±0.03 0.65±0.03 0.65±0.03 

Cerebral 

peduncle R* 
15 Projection 0.61±0.02 0.61±0.02 0.61±0.02 0.71±0.02 0.71±0.02 0.71±0.03 

Cerebral 

peduncle L* 
16 Projection 0.61±0.02 0.61±0.02 0.61±0.02 0.69±0.02 0.70±0.02 0.69±0.03 

Anterior limb of 

internal capsule 

R 

17 Projection 0.50±0.02 0.50±0.02 0.50±0.02 0.60±0.03 0.60±0.03 0.61±0.03 

Anterior limb of 

internal capsule 

L 

18 Projection 0.50±0.02 0.5±0.02 0.50±0.02 0.58±0.02 0.58±0.02 0.58±0.03 

Posterior limb 

of internal 

capsule R 

19 Projection 0.62±0.02 0.62±0.02 0.62±0.02 0.70±0.02 0.70±0.02 0.70±0.02 

Posterior limb 

of internal 

capsule L 

20 Projection 0.59±0.02 0.59±0.01 0.60±0.02 0.70±0.02 0.70±0.02 0.70±0.02 

Retrolenticular 

part of internal 

capsule R 

21 Projection 0.56±0.02 0.56±0.02 0.56±0.02 0.61±0.02 0.60±0.02 0.60±0.03 

Retrolenticular 

part of internal 

capsule L 

22 Projection 
0.547±0.0

18 

0.551±0.0

16 

0.522±0.0

20 

0.627±0.0

21 
0.63±0.02 0.63±0.02 

Anterior corona 

radiata R 
23 Projection 

0.440±0.0

26 

0.441±0.0

27 

0.443±0.0

27 

0.499±0.0

30 
0.50±0.03 0.50±0.03 

Anterior corona 

radiata L 
24 Projection 0.44±0.02 0.44±0.02 0.44±0.03 0.50±0.03 

0.050±0.0

3 
0.51±0.03 

*excluded from the study because of their locations (brainstem) 
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Table 3b. ROI label names and numbers in JHU-ICBM DTI-81 white-matter labels atlas (ROI numbers from 25 

to 48) and the mean FA values (mean ± SD) for non-skeletonized and skeletonized ROI types. 

 Non-skeletonized Skeletonized 

Label name 
Label 

number 

WM 

parcellation 

Number of measurements Number of measurements 

1 2 3 1 2 3 

Superior corona 

radiata R 
25 Projection 0.46±0.02 0.46±0.02 0.46±0.02 0.50±0.03 0.50±0.03 0.51-0.03 

Superior corona 

radiata L 
26 Projection 0.46±0.02 0.47±0.02 0.46±0.02 0.51±0.02 0.52±0.2 0.52±0.02 

Posterior corona 

radiata R 
27 Projection 0.44±0.02 0.45±0.02 0.45±0.02 0.48±0.03 0.49±0.03 0.49±0.03 

Posterior corona 

radiata L 
28 Projection 0.44±0.02 0.44±0.02 0.44±0.03 0.49±0.03 0.49±0.03 0.49±0.03 

Posterior 

thalamic 

radiation R 

29 Projection 0.57±0.03 0.58±0.03 0.58±0.03 0.61±0.03 0.62±0.03 0.62±0.03 

Posterior 

thalamic 

radiation L 

30 Projection 0.54±0.03 0.54±0.03 0.54±0.03 0.62±0.03 
0.062±0.0

3 
0.63±0.03 

Sagittal stratum 

R 
31 Association 0.49±0.02 0.50±0.02 0.50±0.02 0.55±0.03 0.55±0.03 0.55±0.03 

Sagittal stratum 

L 
32 Association 0.44±0.02 0.44±0.02 0.44±0.02 0.54±0.03 0.54±0.04 0.54±0.03 

External capsule 

R 
33 Association 0.38±0.01 0.38±0.02 0.38±0.02 0.45±0.02 0.45±0.02 0.45±0.02 

External capsule 

L 
34 Association 0.38±0.01 0.38±0.01 0.38±0.02 0.48±0.02 0.48±0.02 0.48±0.02 

Cingulum 

(cingulate 

gyrus) R 

35 Association 0.45±0.03 0.44±0.03 0.45±0.03 054±0.03 0.53±0.04 0.52±0.03 

Cingulum 

(cingulate 

gyrus) L 

36 Association 0.43±0.03 0.43±0.03 0.43±0.03 0.57±0.04 0.57±0.04 0.57±0.04 

Cingulum 

(hippocampus) 

R 

37 Association 0.36±0.02 0.36±0.02 0.36±0.02 0.41±0.02 0.41±0.02 0.40±0.03 

Cingulum 

(hippocampus) 

L 

38 Association 0.34±0.02 0.34±0.03 
0.35±0.02

6 
0.41±0.03 

0.403±0.0

3 
0.41±0.03 

Fornix / Stria 

terminalis R 
39 Association 0.43±0.02 0.44±0.02 0.44±0.02 0.56±0.03 

0.563±0.0

3 
0.57±0.03 

Fornix / Stria 

terminalis L 
40 Association 0.45±0.02 0.45±0.02 0.45±0.02 0.57±0.03 0.57±0.03 0.57±0.03 

Superior 

longitudinal 

fasciculus R 

41 Association 0.45±0.02 0.45±0.02 0.45±0.02 0.52±0.03 0.51±0.03 0.52±0.03 

Superior 

longitudinal 

fasciculus L 

42 Association 0.44±0.02 0.44±0.02 0.44±0.03 0.51±0.03 0.51±0.03 0.51±0.03 

Superior fronto-

occipital 

fasciculus R 

43 Association 0.48±0.03 0.48±0.03 0.48±0.03 0.54±0.04 0.54±0.04 0.55±0.04 

Superior fronto-

occipital 

fasciculus L 

44 Association 0.45±0.03 0.45±0.04 0.45±0.04 0.53±0.04 0.53±0.04 0.52±0.05 

Uncinate 

fasciculus R 
45 Association 0.44±0.03 0.44±0.03 0.44±0.03 0.51±0.03 0.50±0.04 0.51±0.04 

Uncinate 

fasciculus L 
46 Association 0.41±0.03 0.42±0.03 0.42±0.03 0.46±0.03 0.47±0.03 0.46±0.03 

Tapetum R 47 Commissural 0.40±0.03 0.40±0.03 0.40±0.03 0.56±0.05 0.56±0.06 0.56±0.06 

Tapetum L* 48 Commissural 0.30±0.03 0.31±0.03 0.31±0.03 - - - 

*excluded from the skeletonized mask automatically due to its small volume 
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3.2.1 Repeatability of corpus callosum 

Corpus callosum is a large size ROI mostly composed of myelinated WM tracts that have 

homogenous directionality (Anand et al., 2019; Fabri, 2014).   For that reason, observing high 

repeatability of CC works as a reference region in repeatability studies. Therefore, one of the 

first ROIs to be analyzed must be corpus callosum (CC). The atlas used splits corpus callosum 

(CC) into three sections; genu of corpus callosum (GCC) the most anterior part of CC, splenium 

of corpus callosum (SCC) the most posterior part of the CC and body of corpus callosum (BCC) 

the area between the GCC and SCC. Even though the SEM values for the skeletonized ROI 

type seem higher in the plot, the difference between the skeletonized and non-skeletonized ROI 

types were quite small to create any significant difference (the largest difference between ROI 

types is 0.003). All three areas of CC found to have high ICC(3,1) values and low SEM values. 

Hence, it can be concluded that the repeatability is high in both ROI types (Figure 8a and 8b).  

 

Figure 8a. The ICC(3,1) values for corpus callosum for non-skeletonized and skeletonized ROI types. 
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Figure 8b. The SEM values for corpus callosum for non-skeletonized and skeletonized ROI types. 

3.2.2 Repeatability by ICC(3,1) 

In terms of ICC(3,1) values, 87% of the skeletonized ROI type and 88% of the non-skeletonized 

ROI type had good to excellent repeatability.  The ROI with the highest repeatability in the 

skeletonized ROI type that had excellent repeatability (ICC(3,1) = 0.94, CI: 0.90-0.96) was the 

anterior corona radiata (ACR) in the right hemisphere. ACR is a relatively large bundle of 

fibers connecting thalamus to the cortex i.e., prefrontal cortex (Karababa, Bayazıt, Kılıçaslan, 

& Celik, 2015). In the non-skeletonized ROI type, posterior thalamic radiation (PTR) and 

tapetum in the left hemisphere had the highest repeatability among ROI labels (ICC(3,1)=0.93, 

CI:0.88-0.95, ICC(3,1)=0.93, CI:089-0.96). PTR is a smaller fiber bundle compared to ACR, 

but it also connects the thalamus to cortex, to parietal and occipital lobes to be exact. Tapetum 

of corpus callosum is the temporal side of the CC yet it is located separately from the CC (Mori 

et al., 2008). Even though the areas mentioned with the highest ICC(3,1) values were not the 

same in both ROI types, both ROIs are still in the highest repeatability list on both ROI types. 

The ROI labels with excellent reliability for both ROI types (ICC(3,1) > 0.9) can be found in 

Figure 9a and 9b. 
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Figure 9a. The ICC(3,1) values for the ROI labels with excellent repeatability in the skeletonized ROI type. ROI 

labels respectively from left to right: (21)retrolenticular part of internal capsule R, (30)posterior thalamic radiation 

L, (32)sagittal stratum L, (19)posterior limb of internal capsule R, (24)anterior corona radiata L, (5)splenium of 

corpus callosum, (47)tapetum R and  (23)anterior corona radiata R. 

 

 

 
 

Figure 9b. The ICC(3,1) values for the ROI labels with excellent repeatability in the non-skeletonized ROI type. 

ROI labels respectively from left to right: (19)posterior limb of internal capsule R, (21) retrolenticular part of 

internal capsule R, (23) anterior corona radiata R, (5)splenium of corpus callosum, (48)tapetum L, (30) posterior 

thalamic radiation L, (47)tapetum R. 

 

On the other hand, some ROIs had lower repeatability compared to others. The ROI 

label with the lowest repeatability in the skeletonized ROI type was the superior fronto-
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occipital fasciculus (SFOF) in both hemispheres with poor to good reliability (ICC(3,1)=0.62, 

CI:0.47-0.75).  SFOF is a rather small bundle of fibers assumed to be connecting frontal lobe 

to parietal lobe (Mori et al., 2008). In non-skeletonized ROI type, the ROI label with the 

smallest ICC(3,1) compared to others was again the SFOF in the right hemisphere with poor 

to moderate repeatability (ICC(3,1)=0.6, CI:0.44-0.73). Similar to plots of ROI labels with the 

the highest repeatability in terms of ICC(3,1), plots of ROI labels with the lowest repeatability 

in terms of  ICC(3,1) include the almost same ROIs for both ROI types. The ROI labels with 

moderate reliability for both ROI types (ICC(3,1) < 0.75) can be found in Figure 10a and 10b. 

 

Figure 10a. The ICC(3,1) values for the ROI labels with moderate repeatability in the skeletonized ROI type. 

ROI labels respectively from left to right: (43)superior fronto-occipital fasciculus R, (44)superior fronto-occipital  

fasciculus L, (40)fornix (cres) / stria terminalis L, (45)uncinate fasciculus R. 
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Figure 10b. The ICC(3,1) values for the ROI labels with moderate repeatability in the non-skeletonized ROI type. 

ROI labels respectively from left to right: (43)superior fronto-occipital fasciculus R, (34)external capsule L, 

(44)superior fronto-occipital fasciculus L, (45)uncinate fasciculus R. 

 

3.2.3 Repeatability by SEM  

All ROIs in both ROI types had really close to zero numbers for SEM which suggests that the 

results are repeatable and did not occur by chance or a random error. The lowest SEM value 

was observed in posterior limb of internal capsule (PLIC) in right hemisphere in the 

skeletonized ROI type (SEM=0.003). PLIC is the part of the internal capsule lies between 

thalamus and globus pallidus (Mori, Oishi, & Faria, 2009). In non-skeletonized ROI type, 

again, the lowest SEM value was observed in PLIC and additionally in SCC (SEM=0.003). As 

expected, same ROIs with high ICC repeatability measures were also observed in the low SEM 

plots. The ROI labels with lowest SEM values for both ROI types can be found in Figure 11a 

and 11b (SEM<0.005).  
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Figure 11a. The lowest SEM values for the ROI labels in the skeletonized ROI type. ROI labels respectively from 

left to right: (19)posterior limb of internal capsule R, (5)splenium of corpus callosum, (24)anterior corona radiata 

L, (20)posterior limb of internal capsule L, (23)anterior corona radiata R, (21)retrolenticular part of internal 

capsule R. 

 
Figure 11b. The lowest SEM values for the ROI labels in the non-skeletonized ROI type. ROI labels respectively 

from left to right: (19)posterior limb of internal capsule R, (5)splenium of corpus callosum, (17)anterior limb of 

internal capsule R, (20)posterior limb of internal capsule L, (21)retrolenticular part of internal capsule R, (3)genu 

of corpus callosum, (32)sagittal stratum L, (24)anterior corona radiata L, (26)superior corona radiata L, 

(18)anterior limb of internal capsule L, (22)retrolenticular part of internal capsule L. 

 

In accordance with the lowest ICC(3,1) value, the highest SEM value was observed in 

posterior SFOF in both hemispheres in the skeletonized ROI type (SEM=0.02).  In non-

skeletonized ROI type one more label joined SFOF in lowest repeatability group based on SEM 

value; posterior corona radiata (PCR) in right hemisphere (SEM=0.01). Corona radiata is 



32 
 

located in the frontal motor cortex and the ROI label refers to the most posterior part of those 

projections. In the atlas used the anterior, superior, posterior parcellation was made based on 

the CC (Mori et al., 2008).  The ROI labels with highest SEM values for both ROI types can 

be found in Figure 12a and 12b (SEM>0.007). 

Figure 12a. The highest SEM values for the ROI labels in the skeletonized ROI type. ROI labels respectively 

from left to right: (47)tapetum R, (36)cingulum (cingulate gyrus) L, (4)body of corpus callosum, (38)cingulum 

(hippocampus) L, (45)uncinate fasciculus R, (40)fornix (cres) / stria terminalis L, (39) fornix (cres) / stria 

terminalis R, (44)superior fronto-occipital fasciculus L, (43)superior fronto-occipital fasciculus R. 
 

 
 

Figure 12b. The highest SEM values for the ROI labels in the non-skeletonized ROI type. ROI labels respectively 

from left to right: (45)uncinate fasciculus R, (44)superior fronto-occipital fasciculus L, (43)superior fronto-

occipital fasciculus R. 
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3.2.4 Volume size and repeatability 

Volume sizes were calculated by taking the average of all three measurements for all label sizes 

for both non-skeletonized ROI and skeletonized ROI types and multiplying by the volume of 

a single voxel (8ml).  

The average volume sizes and both ICC(3,1) scores and SEM scores were analyzed to 

reveal any possible relationship between the measures. In skeletonized set after around 5 ml in 

volume size, ICC values tend to get higher and SEM values tend to get lower, same trend was 

observed in non-skeletonized set around the 20 ml mark in volume size. To investigate the 

relationship between the volume size and repeatability further different regression models i.e. 

linear regression, exponential regression and polynomial regression with a quadratic model 

were applied to find how much the trend can be statistically explained, in other words how well 

the volume size can predict the repeatability. Even though the results were significant for 

almost all of the relationships between the volume and SEM and volume and ICC(3,1) in both 

ROI types, the explanatory power of the exponential and linear models were quite low (highest 

R2 =0.22). Interestingly, the magnitude of the relationship between SEM and volume size (R2 

=0.55) and ICC(3,1) and volume size (R2 =0.34) for skeletonized ROI type and ICC(3,1) and 

volume size for non-skeletonized ROI type (R2 =0.31) seem to increase considerably with 

polynomial model. However, since the ending trend of the polynomial model was depending 

on one ROI label point only, though the magnitude of the relationship seemed relatively large, 

it was still weak evidence for the effect of the volume size on repeatability. Plots for the 

regression models for skeletonized ROI type can be found in Figure 13a and 13b and for non-

skeletonized ROI type in Figure 14a and 14b. The detailed information about the statistical 

measures of the regression models can be found in Table 4. 
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Figure 13a. Relationship between the volume sizes of the labels and the corresponding SEM values for three 

repetitions in skeletonized ROI type.  

 

Figure 13b. Relationship between the volume sizes of the labels and the corresponding ICC(3,1) values for 

three repetitions in skeletonized ROI type. Commissural tracts (3-5,47) had higher ICC(3,1) values compared to 

others, association fibers (6,31-46) show more variability in terms of ICC(3,1) compared to projection fibers 

(17-30). 
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Figure 14a. Relationship between the volume sizes of the labels and the corresponding SEM values for three 

repetitions in non-skeletonized ROI type. 

 

Figure 14b. Relationship between the volume sizes of the labels and the corresponding ICC(3,1) values for three 

repetitions in non-skeletonized ROI type. Commissural tracts (3-5,47,48) had higher ICC(3,1) values compared 

to others, association fibers (6,31-46) show more variability in terms of ICC(3,1) compared to projection fibers 

(17-30). 
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Table 4. Different types of regression analyses for the relationship between repeatability and volume size in 

skeletonized ROI and non-skeletonized ROI types.   

regression type data p value R2 

linear model 

skeletonized 

SEM vs volume 
<0.01 0.22 

skeletonized 

ICC vs volume  
<0.05 0.18 

non-skeletonized 

SEM vs volume 
<0.05 0.15 

non-skeletonized 

ICC vs volume 
>0.05 0.06 

exponential model 

skeletonized 

SEM vs volume 
<0.01 0.26 

skeletonized 

ICC vs volume 
<0.05 0.18 

non-skeletonized 

SEM vs volume 
<0.05 0.16 

non-skeletonized 

ICC vs volume 
>0.05 0.06 

polynomial regression 

(quadratic model) 

skeletonized 

SEM vs volume 

<0.01 0.55 

skeletonized  

ICC vs volume 

<0.01 0.34 

non-skeletonized 

SEM vs volume 

<0.01 0.31 

non-skeletonized 

ICC vs volume 

>0.05 0.09 

 

3.2.5 Lateralization and repeatability 

To investigate whether there are any hemispheric differences, both repeatability measures were 

compared for the ROI labels located in both hemispheres in both skeletonized ROI and non-

skeletonized ROI types. Based on the results it can be concluded that structures did not have 

any hemispheric differences in terms of repeatability. 

3.2.6 The effect of skeleton and repeatability 

ICC(3,1) and SEM values for the ROI labels were plotted to visualize any possible difference 

might be caused by the use of the skeleton in right hemisphere (Figure 15a and 15b) and in left 

hemisphere (Figure 16a and 16b). Evaluating relevant plots (Figure 8a and 8b, Figure 15a and 

15b and Figure 16a and 16b), it can be concluded that none of them were suggestive of a 

significant effect of the use of the skeleton neither for whole WM nor for individual ROIs. 
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Figure 15a. The ICC(3,1) values of the ROI labels located in the right hemisphere for skeletonized ROI and non-

skeletonized ROI types. ROI labels respectively from left to right: (17)anterior limb of internal capsule R, 

posterior limb of internal capsule R, retrolenticular part of internal capsule R, anterior corona radiata R, superior 

corona radiata R, posterior corona radiata R, posterior thalamic radiation R, sagittal stratum R, external capsule 

R, cingulum (cingulate gyrus) R, cingulum (hippocampus) R, fornix (cres) / stria terminalis R, superior 

longitudinal fasciculus R, superior fronto-occipital fasciculus R, uncinate fasciculus R, tapetum R. 

Figure 15b. The SEM values of the ROI labels located in the right hemisphere for skeletonized ROI and non-

skeletonized ROI types. ROI labels respectively from left to right: (17)anterior limb of internal capsule R, 

(19)posterior limb of internal capsule R, (21)retrolenticular part of internal capsule R, (23)anterior corona radiata 

R, (25)superior corona radiata R, (27)posterior corona radiata R, (29)posterior thalamic radiation R, (31)sagittal 

stratum R, (33)external capsule R, (35)cingulum (cingulate gyrus) R, (37)cingulum (hippocampus) R, (39)fornix 

(cres) / stria terminalis R, (41)superior longitudinal fasciculus R, (43)superior fronto-occipital fasciculus R, (45) 

uncinate fasciculus R, (47)tapetum R. 
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Figure 16a. The ICC(3,1) values of the ROI labels located in the left hemisphere for ROI skeletonized ROI and 

non-skeletonized ROI types. ROI labels respectively from left to right: (18)anterior limb of internal capsule L, 

(20)posterior limb of internal capsule L, (22)retrolenticular part of internal capsule L, (24)anterior corona radiata 

L, (26)superior corona radiata L, (28)posterior corona radiata L, (30)posterior thalamic radiation L, (32)sagittal 

stratum L, (34)external capsule L, (36)cingulum (cingulate gyrus) L, (38)cingulum (hippocampus) L, (40)fornix 

(cres) / stria terminalis L, (42)superior longitudinal fasciculus L, (44)superior fronto-occipital fasciculus L, 

(46)uncinate fasciculus L. 

 

Figure 16b. The SEM values of the ROI labels located in the left hemisphere for skeletonized ROI and non-

skeletonized ROI types. ROI labels respectively from left to right: (18)anterior limb of internal capsule L, 

(20)posterior limb of internal capsule L, (22)retrolenticular part of internal capsule L, (24)anterior corona radiata 

L, (26)superior corona radiata L, (28)posterior corona radiata L, (30)posterior thalamic radiation L, (32)sagittal 

stratum L, (34)external capsule L, (36)cingulum (cingulate gyrus) L, (38)cingulum (hippocampus) L, (40)fornix 

(cres) / stria terminalis L, (42)superior longitudinal fasciculus L, (44)superior fronto-occipital fasciculus L, 

(46)uncinate fasciculus L. 
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4  DISCUSSION 

The current study followed the footsteps of a previous test-retest reliability study done with 

neonates to assure the same quality and reliability level with 5 year-olds (Merisaari et al., 2019).  

Adopting the data acquisition and preprocessing methods stated in the model study, two 

hypotheses were formulated. First; FA values should have really small differences, if any at 

all, between the three repetitions. Second, FA values should have high repeatability, i.e. close 

to zero SEM values and good to excellent level of ICC(3,1) values. 

The first two methods, Kruskal Wallis test and Bland Altman plots, used to investigate 

the possible differences in all measurement combinations showed that, even though there were 

slight variations in the data they were not significant. Kruskal-Wallis test revealed non-

significant results and the three requirements Bland-Altman plots stipulate for the agreement 

between measures were met. 95% percent of the data remained in the range of ±2 SD of the 

mean difference, none of the mean differences could be attributed to any point in the data 

specifically and the mean difference was zero.  

The results of the repeatability measures showed that globally, overall three repetitions 

had ICC(3,1) values referring to moderate to good level of repeatability (ICC(3,1)=0.75, 

CI:0.64-0.84) and locally almost 90% of the datasets showed good to excellent level of 

repeatability (ICC(3,1)>0.75). Considering the time difference between the first repetition and 

the third repetition, having high ICC(3,1) values and low SEM values for each repetition and 

those values not being significantly different from the each other are supportive evidence for 

the repeatability of the data. Also, even though an adult atlas was used, the high repeatability 

provides one justification for using and adult template and atlas in 5-year-old population. 

Future studies should confirm this by additionally using a study-specific template. 
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In accordance with the previous studies conducted in different populations and age 

groups there was quite little variability in FA between measurements (Boekel, Forstmann, & 

Keuken, 2017; Carlson et al., 2014; Hakulinen et al., 2012; Merisaari et al., 2019; Shahim, 

Holleran, Kim, & Brody, 2017; Zhou et al., 2018). The ICC(3,1) values, in this study they were 

a bit smaller than the ones acquired from neonate data (Merisaari et al., 2019). The reason for 

this is thought to be the subject motion, since the neonate data in collected during sleep, there 

was considerably less effect of subject motion on the data in those cases.  

The ROIs in the study is manipulated through 2 different processes. The first one is 

exclusion of the ROIs classified as brainstem ROIs (Mori et al., 2008) and cerebral peduncle 

in both hemispheres. In total of 12 ROIs were excluded for they were of no interest to the study 

and their locations were not consistently included in the field of view as per scanning 

instructions. The second one is the conservative thresholding (0.25) used for FA values. The 

threshold value is different than the default value in FSL and this approach has disadvantage 

of losing WM unnecessarily. In tract base analysis studies it was shown that, especially in 

specific ROIs, having a more conservative FA threshold can lead to problems due to its effect 

on the DTI metrics, for instance having a lesser number of tracts or not being able to draw the 

WM tracts at all (Domin, Langner, Hosten, & Lotze, 2014; Taoka et al., 2009).  In this study 

there were uneven numbers of ROI labels in skeletonized (47 labels before exclusions) and 

non-skeletonized (48 labels before exclusions) ROI types. Tapetum of corpus callosum in the 

left hemisphere was not represented in the ROIs of the skeletonized ROI type and tapetum of 

the corpus callosum in the right hemisphere which was represented in the skeletonized ROI 

type had the smallest volume among others. Therefore, it is likely that tapetum in the left 

hemisphere was just ruled out during the skeletonization process due to conservative 

thresholding. Yet, in this study after evaluating the images with thresholding of recommended 

0.2, a higher threshold was needed to assure accuracy in WM selection. These manipulations 
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made on ROIs in the study are good examples of how research question and through data 

quality assessment must be considered as a guide in ROI definition and selection.  

In ROI based repeatability results, a strong indicator of good test-retest reliability of the 

data is having higher ICC(3,1) values for corpus callosum (CC). CC is a large and directionally 

coherent i.e. without curves or crossing fibers, compact WM fiber bundle and consequently, 

has high anisotropy (Hasan, Gupta, Santos, Wolinsky, & Narayana, 2005). For that reason, CC 

is a good reference ROI and having high repeatability in the region is crucial.  

Besides CC, almost all the ROIs had high ICC(3,1) values but when ROIs were 

investigated according to the classification of tracts provided with the atlas a variety was 

observed in terms of repeatability level. In accordance with literature, association fibers show 

more variability in terms of ICC(3,1) values compared to commissural and projection fibers 

and commissural tracts had higher ICC(3,1) values in both ROI types (Duan, Zhao, He, & Shu, 

2015). 

Investigating the repeatability of ROIs separately also revealed the agreement between 

ICC(3,1) and SEM values. When the ROIs with highest repeatability and lowest repeatability 

were plotted, most of the ROIs in both low and high repeatability plots were the same in both 

repeatability by ICC(3,1) and repeatability by SEM plots without major conflicts. One of the 

ROIs classified as an association tract in the atlas had specifically lower repeatability on all 

measures for both ROI types, Superior fronto-occipital fasciculus (SFOF). Yet, it is rather 

controversial whether it is an association tract, and whether it even exists at all (Schmahmann 

& Pandya, 2007). Whilst some studies could not locate a WM tract where the SFOF was 

thought to be, some studies did find WM tracts in the location of interest but they also found 

that SFOF was not a tract on its own connecting frontal lobe to any specific areas, but might 

belong to other WM tracts like superior thalamic peduncle or  anterior thalamic radiation (Bao, 
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Wang, Wang, & Wang, 2017; Ture, Yaşargil, & Pait, 1997). The low repeatability of FA values 

in the ROI can be explained by how established the ROI itself is and the challenges of such 

interconnected the area with many different crossing fibers bring.   

All volume sizes for all the labels in three repetitions were equal in non-skeletonized 

version, and there were small differences in volume size in skeletonized version. However, 

since the biggest difference between the volume size and the average was 29, it was safe to 

take the average value as a representative volume size for the label. Based on the results, higher 

repeatability values could be associated with smaller volume sizes. However, the magnitude 

was low, none of the regression models used could not predict the data well. Therefore, it can 

be concluded that small volume size was not a standalone predictor of lower repeatability and 

the measurements were repeatable regardless the size of the label. As literature suggests, 

repeatability cannot only be explained by volume alone (Vos, Jones, Viergever, & Leemans, 

2011). The results of the test-retest reliability of the neonate study supported this finding. Even 

though neonate brains were much smaller than the 5-year-old brains, neonate data showed 

relatively higher ICC(3,1) values compared to the 5-year-olds data (Merisaari et al., 2019). 

Based on this, it can be argued that motion is a much more profound factor in repeatability than 

the volume size. However, caution is required when it comes to interpreting the repeatability 

of the smaller ROIs since the volume size is still one of the contributing factors and FA seems 

to be sensitive to volume changes  (Vos et al., 2011). One viable additional analysis would be 

a detailed probing of different motion profiles and their influences on repeatability. 

Lastly, to investigate the differences between the ROI types, the SEM and ICC(3,1) 

values were plotted next to each other for each ROI label of both ROI types, for better visuality 

purposes the values were plotted separately for each hemisphere. No profound effect of using 

a skeletonized ROI type was observed based on the SEM values and the ICC(3,1) values and 

the CIs.  
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4.1 Limitations of the Study 

There are some limitations in this study. The first one is the small number of subjects, which 

is partly due to ongoing data collection. Sample size affects the statistical power of the analyses, 

confidence intervals and overall conclusions drawn based on those analyses. The effort was 

made to keep the number of subjects as high as possible by only employing an automated 

exclusion step in the analysis pipeline and eliminating the manual exclusion step to avoid 

further reduction of the number of subjects. That is also affecting the quality of data and is 

therefore a limitation. Yet, considering the robust repeatability of the results, it can be claimed 

that FA measures had high test-retest reliability.       

Previous studies suggest that in adult data FA measures tend to be more similar in 

intrascanner studies compared to interscanner studies (Pfefferbaum, Adalsteinsson, & Sullivan, 

2003; Vollmar et al., 2010). Hence, it would be worth conducting interscanner repeatability 

studies in 5-year-olds as well. Such approaches are in use in state-of-the-art multi-site studies 

(Casey et al., 2018). 

The atlas used in the study, as per other WM atlases, inevitably includes both 

anatomical boundaries for the ROIs and hypothetical ones for anatomical restrictions to draw 

the boundaries are not always available (Mori et al., 2008).  Because of that reason even though 

using an atlas standardize and automize the analysis especially for healthy population (Faria et 

al., 2010), there are differences between the atlases and that is another aspect of the test-retest 

reliability analyses a future study should investigate further.   

5  CONCLUSION 

The current study conducted a test-retest analyses of the 96 direction DTI data of 5-year-old 

children gathered in three repetitions based on two different measures. In the light of the results, 

it can be claimed that in 5-year-old children data FA values gathered from VBA and ROI 



44 
 

analysis using adult MNI space ICBM atlas with and without a skeleton were in line with the 

literature and had good repeatability. High repeatability was achieved even in the data that has 

less than highest possible quality. The use of skeleton in ROI analysis did not have a significant 

effect on repeatability and despite the fact that volume of the ROI could not predict the 

repeatability, it was found to be a contributing factor. 
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