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Electrocardiogram (ECG) is one of the most important signals that can be measured
from the human body. It contains lots of important information from the function
of the heart, which can be utilized e.g. in medical diagnosis. Also, one of the vital
signs, the heart rate can be derived from the ECG. Because of these reasons, ECG is
extensively used by researchers and medical professionals. However, usage of ECG
is not only limited into medical field as it is often collected e.g. during sport activity
to track the heart rate. Utilization of the ECG is becoming even more widespread,
today some of the newest smart watches have capability to measure it.
Detection of QRS complexes or R-peaks from the ECG signal is a prerequisite for
heart rate calculation. Over time, numerous rule-based algorithms have been pro-
posed for the task. Many of them work well when ECG signal has good quality, but
their performance can drop in the presence of noise. Recently Laitala et al. [2] pro-
posed robust R-peak detection algorithm that is based on Long Short-Term Memory
(LSTM) network. The work of Laitala et al. is extended in this thesis. More de-
tailed description is given from the LSTM based R-peak detection algorithm. It is
also evaluated with new additional dataset and more QRS detection algorithms are
used as reference.
Results are in line with the original work, LSTM based detector has the best general
performance from the all of the evaluated detectors. However, results are not so
striking as before. One reference detector bested the LSTM based detector with
the new dataset. The major strength of the LSTM based detector is its robustness
to noise. Another strong point is its ability to do sample precise R-peak detection.
Majority of the reference detectors lack this ability and they often induce a lag to
their predictions.
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Chapter 1

Introduction

1.1 Overview

Healthy living is important for everyone. Lots of resources have been used to develop

methods that can assess our health. Many of these methods are based on signals

that can be continuously measured and monitored from our bodies. These signals are

known as biosignals and they can be e.g. electrical, acoustic, mechanical or chemical

in nature. Our body emits these different signals constantly. For example, electrical

current, sound and vibrations are produced on every heartbeat.

One of the most widely used biosignals is ECG (Fig. 1.1). It measures the electrical

current that is produced by our most important organ, the heart. ECG is a graph

where electrical activity (measured usually as mV) varies as a function of time.

Voltage variations represent different electrical actions of the heart that are produced

during the cardiac cycles (heartbeats).

ECG has long history, first ECG from human was recorded already in 1887 by

Augustus Waller [1]. Since then the popularity of ECG has steadily increased. It is

not anymore utilized solely by researchers or medical professionals as it can benefit

others as well. Today ECG is widely utilized e.g. in chest straps that allow us to

record our heart rate during sport activities. Also, in the recent years, the capability
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Figure 1.1: Example of typical ECG signal.

to measure ECG has been added to some small wearable devices like smart watches.

Thus, development of the health technology may allow even wider adaptation of the

ECG in the future.

ECG signal carries a lot of useful information from the heart and its function. Medi-

cal professionals can diagnose different heart diseases by studying the ECG waveform.

Shapes and time intervals between the different ECG components give clues from the

existence of different heart conditions. The most widely extracted information from

the ECG is the heart rate which measures the number of heartbeats per minute. To

calculate heart rate, it is necessary to identify locations of the individual heartbeats

from the ECG. Heartbeat locations are usually determined by measuring the QRS

complex or R-peak locations from the ECG. QRS complex is composed from three

graphical deflections termed as Q, R and S waves. R wave is central part of the

QRS complex, and its maximum is referred as R-peak. QRS complexes and R-peaks

within them are the most easily distinguishable features of the ECG. Therefore, they

are usually selected as markers of the individual heartbeats.

Over the years numerous algorithms have been proposed for QRS or R-peak detec-

tion. Majority of the proposed methods have been rule-based algorithms. They work

generally very well on the regular ECG, but they can fail if ECG signal is noisy. Re-



CHAPTER 1. INTRODUCTION 3

cently Laitala et al. [2] proposed a robust R-peak detection algorithm that is based

on LSTM network. The LSTM based detector showed good performance even on

noisy ECG signals. However, one of the limitations of the work of Laitala et al. [2]

was the small test set size (seven subjects). My goal in this thesis is to address these

shortcomings and provide broader in-depth analysis of the LSTM based detector.

Therefore, the research question remains largely the same as in the original publica-

tion: Is it possible to utilize modern deep learning methodologies for robust QRS or

R-peak detection?

This thesis examines the question in a structured manner. First chapter is intro-

ductory in nature. Necessary background information from the human heart, ECG,

existing QRS or R-peak detection algorithms and neural networks are provided.

Second chapter explains the materials and methodologies used in this thesis. Devel-

opment process, structure and working principles of the LSTM based detector are

described in detail. Also used datasets and evaluation procedures are described in

the second chapter. Third chapter focused totally on evaluation; LSTM based de-

tector is evaluated with the reference detectors. Fourth and final chapter concludes

the work.

1.2 Human heart

Circulatory (cardiovascular) system is the transportation system of the body. Its

major purpose is to transport oxygen and different nutrients in and metabolic waste

out from the body tissues [3]. Heart is the driving force of the circulatory system, it

maintains circulation by constantly pumping blood. Heart is located almost middle

of the chest, being behind and slightly left to the sternum (breastbone, Fig. 1.2). It

is roughly a cone shaped muscular organ whose tip is pointing downward left and

forward. Heart has typically the size of a fist and its weight is usually in the range

of 255-340 grams [4].
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Figure 1.2: Location of the heart and its internal structure.

1.2.1 Structure of the heart

Heart is a hollow organ that is composed of four muscular chambers, left and right

atria and corresponding ventricles. The outermost layer of the heart is called peri-

cardium, it is a two-layer sac that surrounds the heart and roots of the great vessels.

The space between the sacs layers has pericardial fluid which acts as an lubricant

and reduces the friction during the heartbeats [3].

The thin lining in the interior surface of the chambers is called endocardium, it is

composed just from single layer of endothelial cells [5]. The muscle tissue between

pericardium and endocardium is termed the myocardium. It represents the largest

portion of the heart’s wall and it is the muscle that contracts in every heartbeat. The

thickness of the chamber wall is determined by the amount of high-pressure work

that the chamber is responsible. Atria have relatively light weight duties as they

just collect blood for the ventricles, therefore their walls are thin when compared to

ventricles [4]. Left ventricle has to pump blood against pressure that is seven times

higher than the pressure is for the right ventricle. Hence its wall is much thicker

(approx. 12 mm) than the wall of the right ventricle (approx. 5 mm) [3].
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1.2.2 Electrical activity of the heart

Heart needs electrical stimulus to contract and pump blood. Creation and transmis-

sion of electrical impulses happens in cellular level when cardiac cells depolarize and

repolarize. Depolarization-repolarization cycle can be summarized after Coviello [4]

as follows: At rest, cardiac cells are polarized and there is no electrical activity. Car-

diac cells have negative charges inside of them which is known as resting potential.

This charge is due to different concentrations of ions (e.g. sodium, potassium) at

the inside and outside of the cardiac cell (ions are separated by the cell membrane).

After stimulus, ions exchange happens cross the cell membrane which leads to cell

depolarization, or action potential. Fully depolarized cell then returns to its resting

state in a process that is known as repolarization. Some of the cardiac cells have

ability to initiate an impulse spontaneously (pacemaker cells) while others receive

the impulse from neighboring cells by conduction.

Electrical impulses resulting from depolarization and repolarization flow through the

heart via electrical conduction system (Fig. 1.3). When heart functions normally,

each heartbeat initiates from the sinoatrial node which is known as the heart’s natural

pacemaker. Sinoatrial node is about 1 cm long strip of specialized cardiac muscle

fibers (pacemaker cells) in the upper right wall of the right atrium [3]. After electrical

impulse has been generated by the sinoatrial node, it travels first through the both

atriums. In the right atrium impulse travels via anterior, middle and posterior

internodal tracts while conduction to the left atria happens through Bachmann’s

bundle of nerves [4]. Electrical impulse goes to the atrioventicular node at the base

of the right atria before it reaches the ventricles. There impulse is delayed by 0.04

seconds which prevents ventricles to contract too quickly and allows ventricles to fill

up with blood when the atria contracts [4]. After delay, electrical impulse leaves the

atrioventicular node and continues its journey towards the tip of the heart. It travels

through bundle of his to the right and left bundle branches. From the branches the

electrical impulse finally goes via Purkinje fibers into the endocardium and deep into

the myocardium. This makes both ventricles to contract simultaneously.
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Figure 1.3: Simplified illustration of the electrical conduction system of the heart

1.2.3 Function of the heart

Contractions of the heart push blood in motion through the circulatory system.

Circulation of blood can be summarized as follows: At first, deoxygenated blood

enters to the right atrium via superior and inferior vena cava. Then right atria

pushes blood into the right ventricle. When right ventricle contracts, it pushes

blood through the pulmonary arteries into the lungs. In lungs, carbon dioxide is

released from the blood while oxygen is absorbed. Oxygen-rich blood travels back

to the heart, to the left atrium via pulmonary veins. Then left atria pushes blood

into the left ventricle which in turn pumps the blood through the whole body.

Heart is partly controlled by the sympathetic and parasympathetic branches of the

autonomous nervous system. Sympathetic nerves accelerate the heart while parasym-

pathetic nerves slow it down. However, neural connections are not necessary because

the heart can function autonomically, even right after the heart transplantation with-

out any neural connections [3].
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1.3 Electrocardiogram

1.3.1 ECG Measurement

ECG is measured from the surface of the skin by using electrodes (Fig. 1.4). Two

electrodes form an electrode pair that is known as lead and the electrical potential

difference between the pair is known as lead voltage. Multiple different electrode

configurations can be used to obtain ECG. According to Webb [6] the simplest ge-

ometrical recording configuration uses three active electrodes with one ground elec-

trode. In this configuration the active electrodes are placed on the right arm (RA),

left arm (LA) and left leg (LL) while the ground electrode is placed on the right leg

(RL). Three different leads can be derived from the active electrodes. These leads

are also known as limb leads I-III and they are defined as:

Figure 1.4: Placement of electrodes.

Lead I = LA + RA

Lead II = LL + RA

Lead III = LL + LA
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These leads are referred as bipolar, which means that one electrode is positive pole

while the other acts as negative reference [5]. They share a relationship that is known

as Einthoven’s law which can be expressed as:

Lead II = Lead I + Lead III

This means that three limb leads contain only two pieces of independent information

[6], i.e. if two leads are known then third can be calculated. In addition to limb leads

I-III there is also three augmented limb leads that are known as aVR, aVL and aVF.

These leads are referred as unipolar, which means that there is positive pole but no

single negative pole. Negative references for unipolar leads are derived by averaging

other limb electrodes [5]. In the case of augmented limb leads aVR, aVL and aVF

negative references are Goldberg’s central terminals of (LA + LL)/2, (RA + LL)/2

and (RA + LA)/2 respectively [6]. These leads are then defined as:

aVR = −Lead I + Lead II
2

aVL = Lead I− Lead II
2

aVF = Lead II− Lead I
2

Together these six limb leads (I, II, III, aVR, aVL and aVF) give information from

the heart’s frontal plane, which is a vertical cut through the heart [4]. However, these

leads alone do not yet give complete picture from the electrical activity of the heart.

Information from the perpendicular plane is also needed. It can be collected by

using six chest (precordial) electrodes V1, V2, V3, V4, V5 and V6. These electrodes

give information from the heart’s horizontal plane, which is a transverse cut through

the heart [4]. These leads are unipolar in nature and their negative reference is the

Wilson’s central terminal (WCT), which is produced by averaging measurements

from the three limb electrodes [6]. WCT is defined as:
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WCT = LA + RA + LL
3

By using all of the leads (six limb and six chest leads) complete ECG, also known

as 12-lead ECG can be obtained. It provides 12 different views of the heart which is

very useful in medical diagnosis.

1.3.2 ECG Interpretation

The direction of the electrical current determines the magnitude and direction of

the deflection (upwards or downwards) for waveform in ECG. Relationship between

electrical force and ECG waveform can be summarized after Lilly [5] by following

four points:

1. Electrical forces towards the positive electrode of a lead produces positive de-

flection.

2. Electrical force heading away from the positive electrode of a lead produces

negative deflection.

3. Magnitude of the deflection is related to the angle between electrical force and

lead axis, magnitude of deflection is highest when they are parallel.

4. If electrical force is perpendicular to the lead axis, then lead does not register

any activity (flat line on the ECG).

P-wave, QRS complex and T-wave are the major components of typical ECG (Fig.

1.5). Together they represent one normal heartbeat. Each heartbeat begins with P-

wave which represents depolarization of the atria. After P-wave comes QRS complex

which represents depolarization of the ventricles. Last component of a heartbeat is

T-wave which represents repolarization of the ventricles. Besides these main com-

ponents, there are also other features that are commonly utilized by the medical

professionals e.g. time intervals between the different components.
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Figure 1.5: Schematic illustration of normal ECG.

1.3.3 ECG Noise sources

ECG signals might contain different types of noises that hinder the use of ECG (Fig.

1.6). Moody et al. [7] classified noise according to its frequency-domain characteris-

tics to following four categories:

1. Baseline wander

2. Electrode motion artifact

3. Muscle noise

4. Power line interference

Baseline wander is low-frequency signal produced by motions of the subject or leads.

Motion can happen e.g. when patient breaths. This adds sinusoidal component which

has the frequency of the respiration (0.15 to 0.3 Hz) to the ECG [8]. Electrode

motion artifacts are produced when mechanical forces act on electrodes frequently.

According to the Moody et al. [7] this noise type is most challenging as it can resem-

ble the features of the ECG signal. Muscle noise, also known as electromyographic

interference is produced when muscles (other than heart) contract. Muscle contrac-

tions produce signals that last for approximately 50 ms and whose frequency content

ranges from DC to 10 kHz. Power line interference is sinusoidal interference whose

frequency (50 or 60 Hz) depends on the country. In addition to these four noises

there can be also electrode pop or contact noise which occurs when electrode loses
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the contact to the skin [6]. As a result of electrode disconnection, signal baseline

shifts sharply.

Muscle artifact
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Figure 1.6: Examples of common noise types in ECG. Noise examples are from
MIT-BIH Noise Stress Test Database [9].

1.4 QRS detectors

Detection of QRS complexes or R-peaks from ECG signal is an old problem and

many different algorithms have been proposed as an solution. In 2002 Köhler et

al. [10] reviewed common detectors and divided them into four different groups that

are based on either:

1. Signal derivatives and digital filters
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2. Wavelets

3. Neural networks

4. Additional approaches

Methods in the first group are commonly composed from separate preprocessing

stage and decision stages (Fig. 1.7). The purpose of preprocessing stage is to make

decision stage easier by enhancing the input ECG. This is usually achieved by the

usage of bandpass filter that attenuates noise and other ECG components that might

hamper the QRS detection. One of the most well-known algorithms belonging into

first group is the Pan-Tompkins algorithm [11]. It uses the bandpass filter with

a passband of 5-15 Hz as a first step. Additional measures of the preprocessing

stage are the derivative filter, squaring and 150 ms moving average filter. Purpose

of derivative filter is to provide QRS complex slope information while the squaring

makes all points positive and enhances QRS complexes. Moving average filter acts as

final preprocessing step, its purpose is to give information of QRS complex duration.

After preprocessing steps, the local peaks (fiducial marks) are detected from the

preprocessed signal. Each fiducial mark is considered as candidate value for an QRS

complex. The final QRS complexes are retrieved by comparing amplitude of each

peak to the adaptive threshold that contains information form previously detected

QRS complexes and noise level.

Figure 1.7: Detectors commonly have separate preprocessing and decision stages.
After decision stage, locations of detected QRS complexes or R-peaks are returned.
Modified after Köhler et al. [10].

Wavelet transform (WT) is a widely used tool in the field of signal processing. Sim-

ilarly to Fourier transform, WT can give information from the frequency charac-
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teristics of the signal. In contrast to Fourier transformation which uses various

stretched and infinite length sinusoids, WT uses shorter waveforms (wavelets) with

finite lengths [12]. Wavelets can be generated from single mother wavelet Ψ(t) by

scaling (a) and translation (b):

Ψa,b(t) = 1√
2

Ψ
(
t− b
a

)
(1.1)

Similarly to short-time Fourier transform, WT is not just limited to frequency anal-

ysis and it can also provide valuable time information. While the short-time Fourier

transform produces time-frequency representation, WT produces time-scale repre-

sentation [10]. Generally, the WT of a function f(t) can be expressed by the following

equation:

Wf(a, b) =
∫ ∞
−∞

f(t)Ψ∗a,b(t)dt (1.2)

Where the * means complex conjugate. Many of the proposed wavelet-based ap-

proaches (e.g. [13]) are based on singularity detection algorithm of Mallat and Hwang

[14]. Some of the methods (e.g. [15]) utilize WT in the preprocessing stage to remove

noise and enhance QRS complexes.

Artificial neural networks (ANNs) have been also proposed as solution to the QRS

or R-peak detection problem. According to the 2002 review of Köhler et al. [10],

the most common neural network architectures proposed as solution were mainly

multilayer perceptron (MLP), learning vector quantization or radial basis function

networks. In the recent years, researchers have focused into more advanced neural

network architectures like convolutional neural networks or LSTM networks [2], [16]–

[18]. ANNs are able to map inputs into good decision outcomes by automatically

identifying and extracting relevant patterns from the input data [19]. Thus, ANNs

offer a more data-driven approach than traditional methods that are hand crafted

solutions which rely to different digital signal processing techniques. Traditional

methods can work very well when ECG quality is good, but their performance can
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drop when the ECG signal contains noise and artifacts. ANNs have potential to

cope even with noisy ECG signals, and thus, different ANN architectures have been

proposed as solution to the problem of noisy ECG [2], [18], [20].

Numerous alternative solutions that belong to the group 4 have also been proposed.

Following Köhler et al. [10] these methods can be divided into following subgroups

that are based either: adaptive filters, hidden Markov models, mathematical mor-

phology, matched filters, genetic algorithms, Hilbert transform, length and energy

transforms, syntactic methods, maximum a posteriori estimation and zero crossings

counts. Also, common machine learning methods like support vector machine [21]

or k-nearest neighbor [22] have been proposed.

1.5 Artificial neural networks

Artificial neural network (ANN) is a machine learning method that is based on the

connectionism. The key concept behind the connectionism is the idea that intelligent

behavior can be achieved when numerous simple processing units (i.e. neurons) work

together [19]. ANNs are able to create distributed representations from concepts,

meaning that network of neurons can represent concept by pattern of activity [23].

Right now ANNs are a very hot topic. This is due the success achieved in the field of

deep learning during the last decade. Deep learning is a subfield of machine learning

that uses a large (deep) and often very complex ANN as a machine learning model.

Deep ANNs have achieved remarkable results e.g. in the fields of image recognition

[24], speech recognition [25], language translation [26] and many other fields.

1.5.1 Single-layer neural networks

Theory behind ANN started to form already in 1943 when Warren McCulloch and

Walter Pits tried to understand how biological brain works [27]. They presented sim-

ple computational model describing neural events and their relations by the means

of propositional logic. Their model is based on artificial neurons that are also known
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as Threshold Logic Units. In essence, first artificial neurons were simple logic gates

with binary input(s) and output. They produced outputs (fired) only if their in-

puts reached some predefined threshold value. Linking artificial neurons together as

network could have allowed to perform more complex computations.

The next major step was taken in 1958 when Frank Rosenblatt introduced the per-

ceptron model (Fig. 1.8) [28]. It’s more flexible than McCulloc-Pits Threshold Logic

Unit as neuron inputs are not just binary values anymore. Input vector x is mul-

tiplied by learnable weight coefficients w. Thus, neuron input z then becomes a

weighted sum of input values:

z = w1x1 + w2x2 + ...+ wnxn =
n∑

i=1
wixi = wT x (1.3)

This linear combination of input values (z) is then fed to the step function where

it is compared to the threshold value θ. Step function is also known as activation

function, because it determines if neuron activates (fires) or not. Heaviside or sign

is commonly used as step function [29]:

heaviside(z) =


1 z ≥ θ,

0 otherwise.
(1.4)

sgn(z) =


1 z ≥ θ,

−1 otherwise.
(1.5)

For both functions, θ can be moved to the left side of the inequation and it can be

defined as a weight w0 = −θ for input x0. The additional input feature x0 outputs

1 all the time (x0 = 1) and it is known as the bias neuron. After rearrangement of

terms, the inequation becomes:

z = w0x0 + w1x1 + w2x2...+ wnxn ≥ 0 (1.6)
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Figure 1.8: Perceptron architecture with two inputs and one output.

Before training, learnable weight coefficients (w) are usually initialized to small ran-

dom numbers. During training, weight coefficients are updated by using perceptron

learning rule:

wj+1 = wj + αex(i) (1.7)

Where wj+i is the new weight vector, wj refers to current weight vector, α is a

learning rate, e is error and x(i) refers to ith training example. Error e is the

difference between the true class label y(i) and predicted class label ŷ(i) of the ith

training example:

e = (y(i) − ŷ(i)) (1.8)

In overall, working principles of the perceptron algorithm can be summarized as

follows:

1. Initialize random weights w.

2. For each training example x(i) in the dataset:

a. Apply step function to the dot product wT x to get ŷ(i).

b. Calculate error e between y(i) and ŷ(i).

c. Multiply input features x(i) with learning rate α and error e.



CHAPTER 1. INTRODUCTION 17

d. Add product of previous step (c) to the weight vector w to update weights.

In 1969 Minsky and Papert [30] highlighted the limitations of perceptrons in their

book Perceptrons. One major limitation is the incapability to solve exclusive-or clas-

sification problem. Thus, perceptons have same limitations as other linear classifiers,

they work well only for linearly separable data.

1.5.2 Multi-layer neural networks

Multi-layer network is composed of input layer, output layer and one or more hidden

layers (Fig. 1.9). Size of input layer must equal to number of features while size

of output layer depends on a given task e.g. one neuron in binary classification and

three or more neurons in a multiclass classification. There are no strict rules for the

number or sizes of the hidden layers. If all neurons of the layer are connected to the

all neurons in the previous layer, then layer is considered to be fully connected or

dense [29]. If network has more than one hidden layer, it is also known as deep ANN

[31]. If input signal flows only forward in the network (i.e. no recurrent connections),

then architecture represents a feedforward neural network.

Figure 1.9: Multi-layer network with one hidden layer. Network takes two inputs
and produces three outputs.

It is possible to solve exclusive-or classification problem by stacking perceptrons to

form a multi-layer architecture that is known as multilayer perceptron (MLP). In
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fact, a neural network with just one hidden layer can approximate any continuous

function to any degree of accuracy, given that it has enough nodes [32]. This property

is known as universal approximation theorem [33], [34]. Large enough neural network

might be able to represent any continuous function, however, it is not guaranteed

that the learning algorithm can learn that function [35]. For example, learning

algorithm might overfit and choose a wrong function or it might not be able to find

the parameters that correspond to the target function.

I describe simple multi-layered network architecture and working principles of it by

using roughly similar mathematical notations as Andrew Ng and Kian Katanforoosh

used in CS229 lecture notes [36]. Outputs of the different layers are denoted as a[l].

Letter a is used as it refers to the “activation” value of the neuron. Letter l in

superscript brackets foo[l] refers to the layer index (zero-indexing), e.g. a[0] would

refer to the activations of the input layer and a[1] activations of the first hidden

layer. Activation value of the individual neuron j in layer l can be referred by using

subscript j e.g. a[1]
j would refer to the activation of jth unit in first hidden layer.

Thus, output of the layer l is a vector that contains the activation values of the

neurons in that particular layer:

a[l] =



a
[l]
1

a
[l]
2
...

a
[l]
j


(1.9)

Activations of the first layer of the network (input layer a[0]) are equal to the input

values (features). Neurons of the input layer are passthrough neurons that just

pass the signal through [29]. For the first hidden layer, neuron inputs are linear

combinations of input features with additional bias values. Thus, the input of the

first neuron in the first hidden layer is:
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z
[1]
1 = W[1]

1 x + b[1]
1 (1.10)

Where W is a weight matrix and b is a bias term. W1 refers to first row of the

weight matrix while b1 is a first component of a bias vector. Output or activation

for this particular neuron can be calculated applying activation function g to the

neuron input z. This can be expressed as:

a
[1]
1 = g(z[1]

1 ) (1.11)

Non-linear activation function is needed to solve complex problems. It must be

differentiable to allow the use of gradient-based approach to learn the weights that

are connected to the neuron [31]. Some of the popular activation functions are (Fig.

1.10):

sigmoid(z) = 1
1 + e−z

(1.12)

tanh(z) = ez − e−z

ez + e−z
(1.13)

ReLU(z) = max(z, 0) (1.14)

ReLU sigmoid tanh
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Figure 1.10: Popular activation funtions
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To summarize, activations of the first hidden layer a[1] can be calculated in two steps

by fist calculating the layer input z and then applying the activation function g to

every component of z:

(step 1) z[1] = W[1]x + b[1] (1.15)

(step 2) a[1] = g[1](z[1]) (1.16)

To calculate activations of the subsequent hidden layer (or any other layer l), similar

steps can be taken. In general, activations of the previous layer l-1 are used to

calculate activations of the current layer l:

a[l] = g[l](z[l]) = g[l](W[l]a[l−1] + b[l]) (1.17)

Training multi-layered neural networks was not possible until 1986 when David

Rumelhart, Geoffrey Hinton and Ronald Williams introduced backpropagation train-

ing algorithm [37]. In summary, backpropagation algorithm has two phases, the

forward phase and the backward phase. Before forward phase, weight and bias pa-

rameters of a network need to be initialized. For example, small random values that

are normally distributed around zero (N (0, 0.1)) can be used as initial parameter

values [36].

In forward phase, the input signal is first propagated forward from the input layer to

the output layer to compute the network prediction. Then loss function L is used to

measure how well prediction matches the target value (label). Loss function compares

prediction (activation of the output layer) to target and returns a scalar value which

represents a difference between the two. For example, Squared Error (SE) can be

used in regression tasks and Cross-Entropy (CE) can be used in classification tasks

as a loss function:
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SE(ŷ, y) = 1
2(ŷ − y)2 (1.18)

CE(ŷ, y) = −(y log ŷ + (1− y) log (1− ŷ)) (1.19)

In backward phase error signal (loss) is propagated backwards from the output layer

to input layer. This is done by calculating the gradient of the loss function with

respect to ANN parameters (weights and biases). I demonstrate this whole process

with simple ANN (Fig. 1.11) that can be used for regression task. To recap, squared

error loss for this example ANN when single training example x(i) is used can be

expressed as a nested function:

L = 1
2(g[2](w[2]T g[1](W[1]x + b[1]︸ ︷︷ ︸

z[1]︸ ︷︷ ︸
a[1]

) + b[2])

︸ ︷︷ ︸
z[2]︸ ︷︷ ︸

ŷ=a[2]

−y)2 (1.20)

Figure 1.11: Simple ANN architecture for regression. ANN uses sigmoid activation
in the hidden layer and linear activation in the output layer

Gradients with respect to different ANN parameters can be calculated by utilizing

the chain rule. For the example ANN, calculations are done with the following
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equations:

∂L
∂w[2] = ∂L

∂a[2]
∂a[2]

∂z[2]
∂z[2]

∂w[2] = (a[2] − y)a[1] (1.21)

∂L
∂b[2] = ∂L

∂a[2]
∂a[2]

∂z[2]
∂z[2]

∂b[2] = (a[2] − y) (1.22)

∂L
∂W[1] = ∂L

∂a[2]
∂a[2]

∂z[2]
∂z[2]

∂a[1]
∂a[1]

∂z[1]
∂z[1]

∂W[1] = (a[2] − y)w[2] � g′(z[1])xT (1.23)

∂L
∂b[1] = ∂L

∂a[2]
∂a[2]

∂z[2]
∂z[2]

∂a[1]
∂a[1]

∂z[1]
∂z[1]

∂b[1] = (a[2] − y)w[2] � g′(z[1]) (1.24)

Where � indicates element-wise multiplication. Note how right sides of the equations

share common terms. In practice, there is no redundant calculations and each term

is calculated only once. As network is iterated backwards, terms calculated for layer

l are reused for the calculations of layer l-1.

After gradients of loss with respect to different network parameters are calculated,

they can be used to update the weights to decrease the loss. Update of parameters

is done by using the gradient descent method. This means that network parameters

are updated by moving them by small steps in the opposite direction of gradient.

The size of the update step is proportional to the gradient and also controlled by

the learning rate (α). This process is illustrated in Fig. 1.12. Parameter updates for

layer l of the ANN can be done with following rules:

W[l] = W[l] − α ∂L
∂W[l] (1.25)

b[l] = b[l] − α ∂L
∂b[l] (1.26)

In practice, optimization of the ANN is more complex than shown in Fig. 1.12.
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Figure 1.12: Simplified illustration of the gradient descent method and effect of
learning rate with the model that contains only one parameter. In topmost figure
learning rate has a good value and gradient descent converges to global minimum.
Note how update steps are largest at the beginning when derivatives are also larger.
Figure in the middle shows what happens when too small learning rate is used. In
this case algorithm does not converge because learning happens too slow. In the
other hand, too high learning rate might lead to oscillating behavior around the
minimum and algorithm might even diverge from the minimum. This is illustrated
at the bottommost figure.
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Instead of just one global minimum, multiple local minima might be present. This

could be seen a problem for a gradient-based methods as they head to the nearest

local minimum and might get stuck there. If the local minimum has high loss,

this leads to poor results. However, large neural networks rarely get stuck to local

minimum and even if it happens, the local minimum is often as good solution as

the global minimum [29]. Also, in high dimensional spaces saddle points are more

common zero gradient points than local minima [35]. Therefore, learning process

can still be hindered by saddle points, plateaus or other flat regions.

Up until now I have described method that uses only single training example at time

to optimize the ANN. This method is known as stochastic gradient descent. In batch

gradient descent, optimization is done by considering all training examples (m) and

the goal is to minimize cost function J :

J = 1
m

m∑
i=1
L(i) (1.27)

Gradients calculated just from L(i) might be noisy and thus, not as accurate than

gradients calculated from J [36]. However, in the case of large datasets, using batch

gradient descent might not be computationally feasible. Therefore, a method that is

known as mini-batch gradient descent is usually used. It falls between the stochastic

and batch gradient descent as it uses user defined amount (B) training examples.

The cost function Jmb for mini-batch gradient descent is expressed as:

Jmb = 1
B

B∑
i=1
L(i) (1.28)

1.5.3 Recurrent neural networks

Traditionally data is treated as a set of independent observations, i.e. training ex-

amples in data are independent and identically distributed (IID). In the case of

sequential data IID assumption does not hold as the data is intrinsically ordered,

i.e. samples in the sequence are related to each other. Time-series data (e.g. ECG,
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stock prices) is a one common example of sequential data where samples are col-

lected with respect to time dimension. However, other types of sequences also exist

(e.g. text). Sequential datasets have one extra dimension when compared to tra-

ditional two-dimensional datasets, where rows represent observations and columns

represent features. For example, in the case of ECG first dimension could represent

the patient, second dimension the time and third dimension the features (lead volt-

ages). I will refer to this extra time dimension with superscript of angle brackets.

For example (x(i)<1>,x(i)<2>, ...,x(i)<T >) would refer to ith training example which

is a time-series of length T where superscript angle brackets denote each individual

time step of the time-series.

Recurrent neural networks (RNNs) are a subclass of ANNs that are specialized in

sequence modelling. In theory, RNNs can utilize entire history of the input sequence

when they predict output [38]. This is possible due to the recurrent connections

that act as ‘memory’ of the previous inputs, and thus, previous inputs can affect to

current output of the network. One of the key advantages of RNNs is the ability to

process sequences with variable lengths. This gives more flexibility when compared

to other ANN architectures where input and output dimensions are fixed and they

need to be known beforehand [39]. This flexibility is due to the parameter sharing,

i.e. same parameters are used in the all time steps of the input sequence [35].

RNNs can be used for many different use cases. For example, it is possible to

produce prediction to every time step of the input sequence or just one prediction

that describes the whole sequence. RNN can also produce an output sequence from

an input that is not a sequence itself. Example of this is the image captioning,

where combination of convolutional and recurrent neural network is used to produce

sequence of text (caption) for a input image [40]. One more popular use is encoder-

decoder model used in language translation. In this architecture, encoder codes

input sequence (e.g. sentence in English) into the vector representation which is

then decoded back to sequence (e.g. sentence in other language) [29].

Structure of simple RNN with just one hidden layer h (Fig. 1.13) is quite similar
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to feedforward network with one hidden layer. It has the weights Wxh that connect

inputs x to hidden layer and weights Who that connect hidden layer to output layer

o. Similarly there is also bias vectors bh and bo that connect to hidden layer and

output layer respectively. However, besides these parameters RNNs also have a

weight matrix Whh that connects the hidden layer output from previous time step

t-1 to current time step t. This is the recurrent connection that passes information

from the previous time steps. At the beginning of the sequence, there is no previous

time steps and thus, Whh is initialized to small random values or zeros [31]. Note

that with weight matrices I used the subscript where the first letter denotes the

origin layer and second letter denotes the target layer. I also do not use letter a with

superscript to refer different layers anymore, layers a[0], a[1] and a[2] are referred

with letters x, h and o respectively. This simplifies notation and removes need for

multiple superscripts.

Figure 1.13: Simple recurrent neural network. Arrows indicate weight matrices (full
connections) between the layers. Same weight matrices are repeatedly used in each
time step. For the sake of simplicity, bias vectors are not shown.

Like before, I explain steps used in training RNN just in the case of singe training

example x(i) Training algorithm for RNNs is called backpropagation through time

[41]. In this approach both input signal and error signal (gradients) flow through

different time steps, but otherwise it is like regular backpropagation. At first I

describe the forward phase. Input z<t> to the hidden layer for a time step t is

calculated by adding linear combination of inputs to the bias vector and to the

linear combination of activations from the previous time step t-1 :
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z<t> = Wxhx<t> + Whhh<t−1> + bh (1.29)

Like before, activations of the hidden layer h<t> are simply calculated by applying

activation function g (usually tanh) to every component of the layer input z<t>:

h<t> = gh(z<t>) (1.30)

Output for the time step t is then calculated as:

o<t> = go(Whoh<t> + bo) (1.31)

Because the whole sequence acts as training example, the loss is calculated by sum-

ming up the losses from different time steps of the sequence:

L =
T∑

t=1
L<t> (1.32)

Gradients of loss with respect to different RNN parameters are calculated similarly

by summing up the gradients at every time step. For example, gradient with respect

to Whh would be calculated as:

∂L
∂Whh

=
T∑

t=1

∂L<t>

∂Whh

(1.33)

Gradient of loss with respect to Whh for time step t is calculated by utilizing the

chain rule:

∂L<t>

∂Whh

=
t∑

k=1

∂L<t>

∂o<t>

∂o<t>

∂h<t>

∂h<t>

∂h<k>

∂h<k>

∂Whh

(1.34)

Note that chain rule is also used to term ∂h<t>

∂h<k> . This can result long chains if the

sequence is long, e.g. if t=50 and k=1 :
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∂h<50>

∂h<1>
= ∂h<50>

∂h<49>

∂h<49>

∂h<48>
. . .

∂h<2>

∂h<1>
(1.35)

Multiplicative factor of the term ∂h<t>

∂h<k> can make gradients either vanish or explode

[31]. Gradients vanish or explode because RNNs have to propagate gradients back-

wards over long sequences. If small values are repeatedly used in matrix multiplica-

tion, gradient will shrink and eventually it will vanish. This prevents states that are

too far from the current time step to contribute gradient computation [42]. There-

fore, RNNs gradually forget the first inputs of the sequence and are not able to learn

the long-term dependencies. Vice versa, usage of too large values in matrix multipli-

cation leads to exploding gradients. Problems with unstable gradients are not just

restricted to RNNs but any deep ANN might suffer from them [29].

RNNs can have more complex and powerful architectures than described earlier.

Like with feedforward networks, adding depth to RNN network can increase its

performance. This have been experimentally shown e.g. by Graves et al. [43]. In

multi-layer architecture, the output sequence produced by one layer is fed as input

sequence to the layer above it. It can be thought that the lower layers extract

representations from the raw input that are more usable at the higher layers [35].

Standard RNNs process input only in chronological order. This means that state

at time t contains information only from previous time steps. In some cases this

is not enough and it is beneficial also to know the future context. Bidirectional

recurrent neural networks [44] can utilize information both from past and the future.

Bidirectional RNN is a combination of two RNNs that are connected to same output

layer. One RNN iterates the input sequence in chronological order while the other

iterates it in reversed order. Therefore, output layer is able to produce presentation

that depends on both past and future context.

Like mentioned before, RNNs can be thought to possess some sort of ‘memory’. The

part of the network which acts as memory i.e. contains information from previous

time steps is known as memory cell [29]. In a simple RNN the hidden layer h<t>

acts as memory cell. More complex and powerful RNN memory cells have been
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also proposed. The Long Short-Term Memory (LSTM) cell proposed by Hochreiter

and Schmidhuber in 1997 [45] is one of the most popular RNN variants (Fig. 1.14).

Unlike regular RNN, LSTM is able to learn long-term dependencies. This is possible

due to separate cell state c<t> where information can be stored over longer time

spans. Flow of information within the LSTM cell is controlled by forget, input and

output gates that are element-wise multiplication operations. Fully connected layers

act as gate controllers, they are defined in respective order as follows:

f<t> = σ(Wxfx<t> + Whfh<t−1> + bf ) (1.36)

i<t> = σ(Wxix<t> + Whih<t−1> + bi) (1.37)

o<t> = σ(Wxox<t> + Whoh<t−1> + bo) (1.38)

Figure 1.14: Structure of the LSTM cell. Modified after Raschka and Mirjalili [31].

Since the weights parameterizing the gates are learned during training, it is impos-
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sible to know exactly what operations these gates actually do [46]. However, I will

describe next the roles and functions that are commonly assigned to these gates. All

gate controllers use sigmoid activation (σ), which produces outputs that range from

0 to 1. This means that e.g. the forget gate can completely erase the cell state c<t−1>

if gate controller f<t> outputs just zeroes. Hence, it can be thought that the forget

gate controls what information from c<t−1> can pass thought and what needs to be

erased. Similarly, the input gate controls what information from the main layer g<t>

is saved to cell state c<t>. Main layer g<t> is analogous to the hidden layer h<t>

of a simple RNN, and thus, its role is to analyze current input x<t> with previous

hidden state h<t−1> [29]. Main layer g<t> is defined as:

g<t> = tanh(Wxgx<t> + Whgh<t−1> + bg) (1.39)

Gate controllers f<t> and i<t> are used to calculate cell state c<t> as follows:

c<t> = f<t> � c<t−1> + i<t> � g<t> (1.40)

The role of output gate is little different than other gates as it does not affect to the

cell state c<t> but rather just determines what is read from it and what parts of the

cell state c<t> are outputted as hidden state h<t>. While c<t> can be thought to

represent long-term state, h<t> can be thought as more short-term state [29]. Before

output gate, cell state c<t> is scaled by applying tanh activation element-wise and

thus, hidden state h<t> is calculated as follows:

h<t> = o<t> � tanh(c<t>) (1.41)
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Material and methods

2.1 Data sets

Four different datasets were used in this work, MIT-BIH Arrhythmia database [47],

[48], MIT-BIH Noise Stress Test database [7], [48], Glasgow University Database

(GUDB) [49] and small dataset of seven subjects [50]. Former two were used for

model training while latter two were used for evaluation. All of the data sets except

the small one are publicly available.

2.1.1 Training data sets

MIT-BIH Arrhythmia database was the first generally available database for ar-

rhythmia detector evaluation. It has been widely used to benchmark R-peak or

QRS detection algorithms and for basic research of cardiac dynamics. Database has

a total number of 48 half-hour ECG records from 47 subjects. Each record is two

channel ambulatory ECG record that has been digitized at 360 Hz. For most of the

records one channel is modified limb lead II (electrodes are on the torso) while the

other is V1.

MIT-BIH Noise Stress Test database contains three half-hour recordings of noise:

baseline wander, muscle artifact and electrode motion artifact. These noise records
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have been constructed by recording noise with electrode placement where ECG is

not visible and then concatenating segments of similar noise type.

2.1.2 Evaluation data sets

GUDB contains ECG records from 25 subjects that are performing different tasks

(sitting, solving maths test, walking, operating a hand bike and jogging) for duration

of 120 seconds. ECG signals have been recorded using an Attys Bluetooth data

acquisition board that has a sampling rate of 250 Hz. All ECG records in the

database have been annotated at sample precision. Two different kind of setups,

loose cables (standard Einthoven leads I, II, III) and chest strap have been used to

record ECG for each task. In this work, chest strap and Einthoven lead II from

the loose cables setup are used. Therefore, a total number of 250 (25x5x2) different

ECG records are available with these conditions. However, 21 of the records have

no annotations, and thus, only 229 ECG records are available for evaluation.

The small dataset is a part of larger database that is collected by University of

California, Irvine researchers. From now on this dataset is referred as UCI dataset.

One channel ECG signals in the UCI dataset have been recorded from postoperative

patients during re-examination by using portable biopotential acquisition device [51].

In total, these seven records have 103 minutes of Lead I ECG that has been sampled

at 500 Hz. Nearly 19 minutes of ECG recordings are very noisy. Annotations for

UCI data set were created by fellow researcher who used threshold-based automatic

R-peak detection and manual correction of detection errors.

To evaluate how detectors perform at different degrees of noise, one ECG record

(No. 1) from the UCI dataset was selected and different degrees of Gaussian noise

were added to it by a fellow researcher (Fig. 2.1). Noisy ECG examples were

generated with a signal-to-noise ratios (SNRs) of 20, 10, 5, 1, 0.5, 0.4, 0.3, 0.2 and

0.1. Sliding 1-second window was used and Gaussian noise was added by controlled

linear SNR=Psignal/PNoise. The detrended raw ECG samples within the window

were the signal base and PSignal was their total power.
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Figure 2.1: Examples of ECG record with three different degrees of gaussian noise.
Signals have been normalized to range [-1,1].

2.2 LSTM based method for R-peak detection

2.2.1 Overview of the Development process

LSTM based method for R-peak detection was developed in two separate stages (Fig.

2.2). At first stage, LSTM model was trained by using publicly available MIT-BIH

arrhythmia and MIT-BIH Noise stress test databases. Training data was created

by using data augmentation where ECG signals were mixed with typical ECG noise

sources. Separate generator function was developed to do this task. In a second stage,

two functions, a wrapper function and a filtering function were created. Former uses

trained model to detect R-peak locations while the latter removes unnaturally closely

occurring R-peaks by utilizing model predictions and distances between successive

R-peaks.

2.2.2 Data augmentation

Lots of noisy ECG signals are needed as training data if the goal is to train the

network to detect R-peaks from noisy data. This means that there are two problems,
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Figure 2.2: Overview of the development process [2].

the need of noisy training data and labeling the training data. If the ECG signal is

saturated with complex noise it might not be possible to label R-peak locations with

high confidence. To solve both problems, training data can be augmented, i.e. noisy

ECG signal can be simulated. Training examples are created by adding variable

amounts of different noises to noise free ECG signals. This way large amounts of

diverse training examples can be created, and R-peak locations can be known even in

the presence of complex noise. Each training example is constructed by the generator

function roughly by the following five steps (Fig. 2.3):

1. Select randomly one ECG record from the database.

2. Select randomly 1000 sample window from the ECG record.

3. Make sure that all beats in the window are normal type.

4. Normalize ECG window to [-1, 1] range and create labels for it
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5. Generate noise and add it to the selected window.

From these the steps 1-4 are trivial but step 5 contains more details, and thus, needs

a more detailed description. In step 5 randomization is also used in noise generation.

At first, 1000 sample windows are selected randomly from the both noise sources

(baseline wander, muscle artifact). Then the selected noise windows are multiplied

by random number. Random multipliers are drawn from uniform distributions of

(0,10) for baseline wander and (0,5) for muscle artifact. Multiplication is done to

add variation to the magnitude of the noise. The next step is to choose the noise type

that is added from the following three categories: Baseline wander, muscle artifact or

combination of these two. After selection, 60 Hz sine wave that simulates power line

interference is added to the noise. Sine wave is also multiplied by random number

from uniform distribution of (0, 0.5) to alter its magnitude. After noise is create it is

added to the ECG signal which has been normalized to [-1, 1] range. After addition

the noisy ECG signal is normalized again to the [-1, 1] range.

Labeling scheme used in step 4 is binary, each time step of the window is labeled

either as zero or one (Fig. 2.4). Zeros indicate time steps without R-peaks while

ones correspond to time steps where R-peak is present. Ones were added also two

time steps before and after the the R-peak. This makes labels slightly more balanced

and helps with model training.

Generator function generates high amounts of differing training examples (Fig. 2.5).

They can be almost noise free or saturated with complex noise or anything between

these two extremes.

2.2.3 Model architecture and training

Model was built and trained with TensorFlow deep learning framework (2.0 RC)

[52] by using high-level Keras API [53]. Sequential model architecture is shown in

(Fig. 2.6). Model has sequence of two bidirectional LSTM layers and one dense

layer. Binary cross-entropy was used as loss function and Adam [54] was used as
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Figure 2.3: Schematic illustration of the generator function. Graph illustrates how
single training instance is created. BW:baseline wander, MA:muscle artifact. U
means uniform distribution where multiplier is randomly drawn [2].

optimizer. Model was trained a total number of 150 epochs, with 40 steps per epoch

and batch size being 256. With aforementioned settings, a total number of 1 536

000 (150x40x256) different training examples were generated and used for model

training.

2.2.4 Model usage

When model is used to make predictions, it expects its inputs to be in a similar

form that was used in training phase. This means that the input ECG needs to

be reshaped into 3D tensor where first axis is the batch dimension, second axis
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Figure 2.4: Illustration of the used labeling scheme. Each R-peak is marked by 5
ones while rest of the time steps are zeroes [2].
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Figure 2.5: Training examples produced by the data augmentation process (gener-
ator function). Training examples can be almost noise free (lower right) or contain
variable amounts of noise from different sources.
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Figure 2.6: Schematic illustration of the used network architecture [2].

represents time steps and third axis corresponds to features. Outputs of the LSTM

model are also in the same form as the inputs. Because of this, “wrapper code”

was developed which processes the input ECG to suitable form and extracts R-peak

locations from the model outputs. The code was developed by using object oriented

paradigm and its structure is illustrated in Fig. 2.7.

Figure 2.7: Structure of wrapper code. Private methods are as mint green while
public methods are as green. Small arrows show if a method utilizes other method.

Class ECG_detector was designed to process model inputs and outputs. It is in-

herited from the Detector class that contains more general methods that are not

restricted just to ECG signals. These methods could be used in future e.g. when
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processing RR interval time series. Hence, this kind of design allows future extensi-

bility.

The Detector class contains methods _extract_windows, _calculate_means

and _mean_preds that are intended for private use. Method _extract_windows

divides input signal into overlapping windows. Methods _calculate_means and

_mean_preds calculate mean values from overlapping predictions. R-peak locations

are extracted by private _filter_predictions method. The whole peak detection

algorithm is executed by calling public find_peaks method. It uses previously

defined methods to carry out subtasks in needed order to process model inputs and

outputs. In addition, there is public remove_close method whose purpose is to

filter out unnaturally closely occurring R-peaks.

The work done by find_peaks method can be roughly summarized into eight phases:

1. If needed, resample ECG signal to 250 Hz.

2. Extract overlapping segments (windows) from the ECG signal.

3. Use LSTM model to make predictions.

4. Calculate average values for overlapping predictions.

5. Extract R-peak locations from predicted probabilities.

6. Resample R-peak locations to original sampling frequency

7. Use original ECG signal to correct R-peak locations.

8. If duplicate R-peaks are present, remove them.

Phases 1 and 2 cover the input preprocessing tasks. The purpose of first step is quite

clear, the input ECG needs to have same sampling frequency which was used during

model training. In a second phase, input ECG is split into overlapping windows.

Splitting is done by sliding the 1000 time step window by user defined step (stride).

The stride value can be 100, 200, 250 or 500 time steps that corresponds to 10, 5,

4 or 2 time overlap respectively. This increases computational cost but at the same

time it allows model to see time steps at different context and thus, improves R-peak

detection. To achieve same amount of overlap for each time step, padding is used at
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the both ends of signal. Median value of 1000 closest time steps is used as padding

value. After splitting, extracted ECG segments are normalized to range of [-1, 1]

and data is reshaped into 3D tensor that can be fed to the model. Model makes

predictions for every ECG segment in the 3D tensor (Fig. 2.8) and then returns 3D

tensor that contains predictions.

LSTM Predictions

ECG
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Figure 2.8: Normalized ECG segment (above) and corresponding predictions made
by the LSTM model (below).

After LSTMmodel has been used for prediction in phase 3, phases 4-7 are executed to

extract R-peak locations from the model predictions. At first, averages are calculated

from overlapping predictions in phase 4. Then R-peak locations can be extracted

from average predictions in phase 5. This is done by using probability threshold

which determines the time steps that belong to R-peaks. Only time steps whose

average prediction is above user defined probability threshold are kept. This doesn’t

yet give exact R-peak locations as time steps belonging to R-peaks occur in groups

i.e. one R-peak is described by multiple consecutive (e.g. 5) time steps. As R-

peaks are “peaks” it is natural to assign exact R-peak location to the corresponding

local maximum of the ECG signal. This is done by moving each time steps to the

local maximum that is within five time steps. If five or more time steps end to

same location (e.g. local maximum) then that location is assigned as an R-peak.
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Upon this point all of the work has happened with respect to ECG signal that has

been resampled to 250 Hz in phase 1. To get R-peak locations in original sampling

frequency, phase 6 is needed. R-peak locations can differ slightly in the two different

sampling frequencies, therefore correction to local maxima with respect to original

signal is done in phase 7. In some very rare cases there can occur duplicate R-peaks

(i.e. two R-peaks in same location). Duplicates are removed in phase 8 if they occur.

2.2.5 Filtering false positives

After all R-peaks are extracted from model predictions, some unnaturally close R-

peaks (false positives) might still occur. These can be e.g. noise peaks or pronounced

T-waves that have been falsely detected as R-peaks. To get rid of these false positives,

separate filtering function remove_close (Fig 2.9) was developed. It works very well

when the aim is to maximize recall and low user defined probability threshold is used

in phase 5. This produces high number of false positives, but most of them can be

removed by filtering function. Filtering function works by removing R-peaks that

are closer than user defined threshold distance (e.g. 200 ms). It returns array of

R-peak locations where all R-peaks are at least threshold distance away from each

other.

Filtering function uses average probabilities calculated in phase 4 as an aid to do the

filtering. At first, set of R-peaks that occur within threshold distance are determined

and this set is removed from set of all R-peaks. Then, these removed R-peaks

are iterated over so that in each iteration R-peak with highest probability value is

selected. Selected R-peak is then compared against the set of approved R-peaks. If

distance of selected R-peak is higher than threshold distance to all R-peaks in the

set of approved R-peaks, it is added to the set of approved R-peaks. If this is not

the case, the selected R-peak is thrown away. Iteration continues until the set of

removed R-peaks is empty. This simple algorithm is surprisingly efficient in the case

where heart rate does not vary too much. Obvious drawback of this method is the

fixed threshold distance value. With long records where heart rate is not stationary,
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more advanced method with adaptive threshold distance is needed.

Figure 2.9: Working principles of the filtering function.

2.3 Evaluated QRS detectors

All reference algorithms are from the py-ecg-detectors (v1.0.2) [55] package that

has been developed conjunction with the GUDB. Package contains implementations

for seven QRS detection algorithms. These algorithms are: Pan-Tompkins [11],

Hamilton [56], Christov [57], Elgendi [58], Kalidas [15], Engzee [59] with modifica-

tions by Lourenco et al. [60] and matched filter [49]. However, only six algorithms

were used as one algorithm (matched filter) did not work properly. All reference

algorithms were run with default settings.

LSTM based method was run by using 0.05 as user defined probability threshold,

250 as stride value and 300 ms as a threshold distance for filtering function. Except

for threshold distance, these values are same that was used in publication of Laitala
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et al. [2]. This time 50 ms smaller threshold distance is used with GUDB as some

of the activities are very physical in nature and as a result heart rate can be much

faster. With UCI dataset, the threshold distance is not altered.

2.4 Evaluation process

Common feature for majority of the detectors is the delay that they induce to the

input ECG. Thus, predicted R-peak timestamps often occur later than the ground

truth R-peak timestamps. This delay needs to be considered during evaluation and

some tolerance needs to be allowed when true positives are determined. Friesen et

al. [8] allowed delay of 88 ms during their evaluation of different detectors. Same

88 ms time tolerance is used in this work. However, in this work time tolerance of

88 ms is not restricted just to delay but it covers both preceding and following 88

ms with respect to true R-peak (Fig. 2.10). This difference in approach is due the

used evaluation algorithm (compare_annotations function from the wfdb package

was used).
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Figure 2.10: Tolerance distance (88 ms) before and after an R-peak is shaded. If
predicted R-peak falls within this region it is considered as true positive

Precision, Recall and F1 score were used as performance metrics to evaluate different
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detectors. These metrics are defined in equations 2.1-2.3. All of the used performance

metrics are based on number of true positives, false positives and false negatives.

True positives were already defined as a predictions that occur within 88 ms from

the ground truth R-peaks. Predictions that fall outside of this threshold distance

are considered as false positives. False negatives are ground truth R-peaks that do

not have prediction within the threshold distance.

Precision is a measure of quality; in this work it describes how often the predicted

R-peak is really the R-peak. Recall is a measure of quantity, in this work it tells how

many R-peaks from all of the available R-peaks algorithm found. These metrics need

to be used always together as it is very easy to maximize one of them in isolation but

not both at the same time. Information from precision and recall can be summarized

by calculating F1 score, which is the harmonic mean of the precision and recall.

precision = True Positives
True Positives + False Positives (2.1)

recall = True Positives
True Positives + False Negatives (2.2)

F1 score = 2× precision× recall
precision + recall (2.3)

However, these metrics alone do not necessarily give good enough picture of the

performance as all true positives might not be equally important. This can be

especially true from the point of heart rate variability (HRV) analysis. HRV means

the variation of time intervals between consecutive heartbeats (R-peaks). These

intervals are known as RR intervals (Fig. 2.11) or NN (normal-to-normal) intervals

if only heart beats originating from sinus node depolarization are considered. HRV

gives information from overall cardiac health and functioning of the autonomous

nervous system [61]. By allowing tolerance when classifying correctly detected R-

peaks also uncertainty is allowed. For example, allowing the 88 ms tolerance before
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and after each R-peak means that in extreme cases the time interval between two

consecutive R-peaks can be 176 ms longer or shorter than the ground truth interval.

This uncertainty can clearly hamper the heart rate variability analysis.
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Figure 2.11: Illustration of RR intervals between consecutive R-peaks. In this case
all all of the RR intervals are also NN intervals as all heart beats are normal.

To get an idea how well different QRS detection algorithms perform on the point of

HRV analysis, distances from true positives to ground truth R-peaks are examined.

This gives information how different algorithms behave and how suitable they are

from the point of HRV analysis. Performance of the detectors in Time-domain HRV

analysis is also briefly evaluated. Time-domain analysis of HRV focuses to quantify

the amount of variability in monitoring periods that may range from ~2 min to

24 h [62]. One of the popular time-domain HRV metrics is the root mean square

successive difference of intervals (RMSSD, equation 2.4), which gives information of

vagal effect in HRV [62].

RMSSD =
√∑N−1

i=1 (RRi −RRi+1)2

N − 1 (2.4)

RMSSD is calculated on RR intervals that are based on predictions (R-peaks) made

by each detector. This RMSSD is then compared to RMSSD that is calculated
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from RR intervals that are based on ground truth R-peaks. Only the ECG records

corresponding the activities of sitting and maths are used in RMSSD evaluation.

This is in line with the usual HRV analysis practice which is carried out under

physiologically stable conditions. Because of this exclusion, only 99 ECG records are

used for RMSSD evaluation.

UCI dataset is used for more traditional style evaluation of the QRS detectors as only

precision, recall and F1 scores are calculated for different QRS detectors. Similar

evaluation with the UCI dataset was already done by Laitala et al. [2]. However,

in this evaluation more reference QRS detectors and different implementations from

the same QRS detection algorithms are used. The tolerance distance (88 ms) is also

stricter than the tolerance distance (100 ms) that was used by Laitala et al. [2].

Because sample precise annotation has been the focus with the GUDB, it is used

to more detailed analysis. Besides the standard performance metrics, GUDB is also

used to examine true positive distances and performances of the QRS detectors in

time-domain HRV analysis.

Because focus of this work is to re-evaluate the performance of the LSTM based

detector, a short section is also devoted to error analysis of this method. In this

section the most significant types of failures and reasons behind them are examined

briefly.



Chapter 3

Evaluation

3.1 Evaluation with the UCI dataset

Table 3.1 shows precision, recall and F1 scores for the detectors on the UCI dataset.

It is clear that the LSTM based detector has the best performance across the whole

dataset. All reference detectors show much worse performances and their perfor-

mance vary a lot between different subjects. Results are very similar to the results

obtained by Laitala et al. [2]. However, reference detectors (BioSPPy package [63])

used by Laitala et al. [2] gave slightly better performances than the reference QRS

detectors that are used now.

Fig. 3.1 shows how different detectors perform at the different SNR ratios. It

is again evident that the LSTM based detector has the best performance in all

noise levels. Performance of the reference detectors decays very fast as SNR ratio

decreases, while the LSTM based detector shows relatively good results even at the

lowest SNR ratios. This is in line with the results of Laitala et al. [2]. However,

current reference detectors show much worse results at low SNR ratios than the

reference detectors used by Laitala et al. [2]. Interestingly, reference detectors could

be also grouped into two different groups based on their performance with different

noise levels. Performances of Hamilton and Elgendi decay much slower than other

reference detectors as the SNR decreases. Similar behavior could be seen also in
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the evaluation of Laitala et al. [2] where the Hamilton had clearly much better

performance at low SNR ratios than rest of the reference detectors.
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Figure 3.1: F1 scores of the detectors at different SNR ratios
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Table 3.1: Performance of the detectors. The best scores for each metric within the same ECG record (in each row) are
highlighted with bold font.

LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
Subject preci. recall F1 preci. recall F1 preci. recall F1 preci. recall F1 preci. recall F1 preci. recall F1 preci. recall F1

1 0.991 0.99 0.991 0.769 0.789 0.779 0.967 0.978 0.972 0.970 0.972 0.971 0.976 0.932 0.953 0.964 0.978 0.971 0.943 0.948 0.946
2 1 1 1 0.821 0.836 0.829 0.982 0.993 0.987 0.996 0.997 0.996 0.979 0.886 0.930 0.911 0.955 0.933 0.981 0.987 0.984
3 0.995 0.997 0.996 0.879 0.767 0.819 0.987 0.843 0.910 0.991 0.843 0.911 0.967 0.691 0.806 0.878 0.786 0.830 0.944 0.969 0.956
4 0.998 0.999 0.998 0.921 0.951 0.936 0.963 0.984 0.974 0.985 0.994 0.990 0.978 0.838 0.903 0.936 0.973 0.954 0.942 0.956 0.949
5 0.995 0.987 0.991 0.862 0.188 0.309 0.970 0.979 0.975 0.983 0.924 0.953 0.988 0.944 0.965 0.957 0.205 0.338 0.988 0.978 0.983
6 0.999 0.999 0.999 0.582 0.590 0.586 0.986 0.993 0.989 0.986 0.993 0.989 0.994 0.985 0.989 0.959 0.976 0.968 0.993 0.998 0.995
7 0.995 0.995 0.995 0.905 0.490 0.635 0.958 0.986 0.971 0.829 0.987 0.901 0.982 0.676 0.801 0.917 0.494 0.642 0.969 0.979 0.974
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3.2 Evaluation with the GUDB

Precision and recall were calculated for each of the 229 ECG records. These records

can be grouped by type of recording device and activity to ten different groups.

Information from the performance metrics is summarized by the used recording setup

and activity in the Fig. 3.2. Tables of F1 scores that cover all subjects, detectors

and test setups (activity, recording device) are at appendix A.

Three detectors, Kalidas, LSTM based and Engeldi perform noticeably better than

rest of the detectors. These detectors have very high average precision and recall

within each group and also standard deviations of the metrics are negligible. From

these three Kalidas has the best performance while LSTM based and Engeldi share

the second place. LSTM based detector has the most notable drop in the performance

with loose cables setup during jogging.

Rest of the detectors do not perform as well but they show interesting characteristics.

For example, Christov has very high recall within each group but it has notably

lower precision with high standard deviation. For Engzee this is reversed, i.e. it has

generally high precision but recall is always lower with higher standard deviation.

Hamilton does not perform as good with loose cables setup than it does with the

chest strap setup. For Engzee and Pan-Tompkins this is the other way around as

they show better performance with loose cables setup. Pan-Tompkins has clearly

the worst performance from all of the detectors. Its behavior is also rather strange,

as it shows better performance during jogging than more sedentary activities.

3.2.1 Examining true positive distances

Fig. 3.3 shows how true positive distances to the corresponding R-peaks vary between

different detectors. From the methods, Engzee and LSTM based seem to be the

most robust ones as most of the true positives are on point with the ground truth

R-peaks. Rest of the algorithms are not so consistent as true positive distances to

the R-peaks vary much more. Engeldi seems to be especially inconsistent as it shows
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Figure 3.2: Precision and recall of different detectors for all different test setups
(recording device and activity type combinations). Dots represent mean values and
vertical bars standard deviations of the metrics within each combination.
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large amounts of both low and high true positive distances.

However, Fig. 3.3 was made by considering true positives from all of the 229 ECG

records. From the point of the HRV analysis true positives do not need to be precisely

at the same position as R-peaks but rather their distance (bias) to the R-peaks

should be constant within each record. Fig. 3.4 shows distributions for standard

deviations of true positive distances that are calculated for each individual ECG

record. Engzee, LSTM based detector and Kalidas stand out with high number of

low standard deviations, i.e. true positive distances for these methods are relatively

consistent within ECG records. Rest of the methods are not so consistent.

3.2.2 Performance in time-domain HRV analysis

According to [64] normal value for RMSSD is 27 ms (mean) with standard deviation

of 12 ms. Fig. 3.5 shows how RMSSD values based on predictions differ from ground

truth RMSSD. Values calculated on predictions of Pan-Tompkins and Hamilton differ

notably from the ground truth RMSSD for majority of the records. Difference to

the ground truth RMSSD is also usually very large, being usually more than two

standard deviations away. Engzee and Christov produce results that are generally

quite close to the ground truth but for several ECG records these methods fail

completely. LSTM based detector shows similar behavior to Engzee and Christov.

However, RMSSD values calculated from the predictions of the LSTM based detector

are generally much more precise as they are usually almost equal to the ground truth.

Kalidas behaves similarly to LSTM based detector but it shows small differences

for higher number of records. Engeldi performs worse than Kalidas as it shows

differences for higher number of records and the differences are also larger.

To summarize this information, absolute values are taken from the differences (errors)

and then both mean and median are calculated for each method. Table 3.2 shows

the mean and median absolute errors between predicted RMSSD and ground truth

RMSSD for different methods. Kalidas shows smallest mean absolute error while the

LSTM based detector has the smallest median absolute error.
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Figure 3.3: Distance of true positive to the R-peak. Results from all of 229 ECG
records are combined.
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Figure 3.4: Histograms of standard deviations of true positive to R-peak distances
within each record. High counts of low standard deviations indicate good perfor-
mance.
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Table 3.2: Mean and median absolute errors between predicted RMSSD and true
RMSSD.

Mean AE Median AE
LSTM 14.48 0.05
Pan-Tompkins 50.62 47.53
Hamilton 32.48 23.12
Christov 25.66 1.32
Engzee 913.91 1.15
Kalidas 2.91 0.52
Elgendi 10.43 0.67

3.3 Error analysis of the LSTM based detector

LSTM based detector had excellent performance across the whole UCI dataset. How-

ever, it has still some weak points as it does not perform well in the vicinity of sharp

base line changes that are caused by the electrode contact artifacts (Fig. 3.6).
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Figure 3.6: LSTM based detector fails in the vicinity of strong electrode contact
artifact. Hollow circles indicate predicted R-peaks while grey dots mark the true
R-peaks. ECG from the subject 5 (UCI dataset).

LSTM based detector had lowest precision and recall for the ECG records from the

GUDB that were recorded during jogging by using loose cables setup. F1 scores for

different detectors for this particular scenario are presented on table 3.3. Table has
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only 9 subjects from 25, as there were no annotations for rest of the subjects. This

is most likely due to very noisy ECG records that were produced in this setup.

From the table it is evident that the performance of LSTM based detector is quite

good except for subjects 7 and 12. Without these records LSTM based detector

would have performed almost as well as Kalidas, which is clearly the best one. By

examining the detection failures in (Fig. 3.7) one can see that the failures are due

to the very challenging ECG signal. Noise peaks have stronger amplitude than real

R-peaks and they seem to occur at constant frequency. They are probably electrode

motion artifacts that can be produced e.g. during running, when mechanical forces

act on electrodes as a frequent manner.

Table 3.3: F1 scores, jogging with loose cables setup. The best F1 score within the
same ECG record (in each row) are highlighted with bold font.

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 0.99 0.91 0.83 0.94 0.85 0.97 0.93
6 1 0.96 0.98 0.99 0.99 1 0.99
7 0.75 0.86 0.86 0.75 0.71 0.97 0.85
8 0.98 0.98 0.99 0.95 0.69 1 0.87

12 0.87 0.97 1 0.98 0.79 1 0.96
13 1 0.94 0.99 1 1 1 0.99
17 1 0.94 0.99 0.97 0.94 1 0.98
18 1 0.93 0.88 0.99 0.99 1 0.99
24 0.95 0.96 0.93 0.93 0.76 0.99 0.95

The artifact types seen on Figs 3.7 and 3.6 were not present on the ECG that was

used to train the LSTM network. This largely explains the detection errors made by

the LSTM based detector.

3.4 Discussion

LSTM based detector has the best performance with the UCI dataset and also very

good performance with the GUDB. This makes it much more robust than reference

detectors whose performance varies between the two datasets. Evaluation with dif-
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Figure 3.7: Failure of the LSTM based detector. Hollow circles indicate predicted
R-peaks while grey dots mark the true R-peaks. ECG from Subject 7, jogging with
loose cables setup (GUDB).

ferent degrees of Gaussian noise also emphasized the robustness of the LSTM based

detector. Its performance in the lowest SNR ratios was substantially above the

reference detectors.

There is only few records from the GUDB where LSTM based method showed some

degree of failure. Without these, the performance of the LSTM based QRS detector

would have been nearly flawless. Performance with the UCI data set was nearly

flawless as LSTM based QRS detector showed only few detection errors. In all

cases, failures are probably explainable by the noise types that were not used in the

training, and thus, are unknown to the LSTM network.

Besides robustness to the noise, the obvious strong points of the LSTM based de-

tector is its capability for sample precise detection. The predictions are usually at

point with the ground truth R-peaks and there is no lag that is often present with

reference detectors. From the reference detectors only the Engzee shows similar

characteristics as its predictions match to the ground truth R-peaks. However, the

overall performance of Engzee is not very good as it has often low recall. Perfor-

mance of the LSTM based detector is also consistent as there are only small number
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of records where distances from true positives to ground truth R-peaks vary notably.

These factors make LSTM based detector a very good option for HRV analysis where

precise identification of R-peak locations can be beneficial. This was validated with

RMSSD evaluation, where LSTM based detector showed substantial failures only for

few ECG records.

Error analysis showed that LSTM based detector fails on very challenging ECG sig-

nals. Failures occurred with electrode contact artifacts or with electrode motion

artifacts. In former, the ECG contains sharp and intense baseline changes, while in

the latter case ECG signal contains noise peaks that occur in the frequent manner.

These challenging noise types were not used during the training phase, and therefore,

LSTM model is unable to handle them. On the positive side, this gives straightfor-

ward direction for the model improvement. Using more noise sources during the

training phase is most likely the easiest way to improve performance of the LSTM

based detector.

From all of the detectors, Kalidas had best overall performance with the GUDB

dataset. However, its performance was not nearly as good with the UCI dataset.

One explanation could be the different nature of the data sets. For example, UCI

dataset seems to have more high frequency noise (e.g. electrical interference, muscle

artifacts) than GUDB dataset. Other possible explanation could be overfitting to

GUDB dataset. Porr and Howell [49] made changes to the original algorithm of

Kalidas to increase its performance:

“In the original paper, a moving average was performed on the squared

signal, however, it was found that using a bandpass filter instead signifi-

cantly increased sensitivity and accuracy.”

This kind of optimization could have caused overfitting against the GUDB dataset,

which in turn can decrease the generalization performance.



Chapter 4

Conclusions

ECG is important biosignal that gives information from the function of the heart.

It has a long history in the field of medicine where it is widely used by health

professionals for diagnostic purposes. ECG has been utilized also by the regular

people and athletes e.g. to track heart rate during the training. It has become more

popular also with small wearable devices, like smart watches. For example, Apple

Watch Series 5 and Withings Move ECG have the capability to record ECG.

Precise detection of QRS or R-peaks is requirement for accurate tracing of heart rate

and HRV. Over the years, numerous methods have been proposed for the task. Most

of the proposed methods are are traditional rule-based algorithms. They often work

well when the ECG has good quality, but they can fail when the ECG is saturated

with complex noise. ECG records can become easily contaminated with different

noises. For example, electrodes can have bad contact to the skin, muscle artifacts

can be induced during physical activity and electrical interference can occur in the

vicinity of electrical devices. These kinds of noises can easily creep into the ECG

e.g. during intense sport activity or long 24-h ambulatory ECG recordings.

Laitala et al. [2] proposed LSTM based detector for solution to noisy ECG signals.

This thesis expanded the work of Laitala et al. [2] by giving more detailed explanation

of the method and more comprehensive performance evaluation. The results are in

the line with the previous work, the LSTM based detector showed the best overall
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performance. This is not surprising, during the current decade the ANNs have

shown their worth in many different fields, often resulting to better outcomes than

can be achieved with traditional methods. However, this time results were not so

one sided as in the evaluation of Laitala et al. [2] as one of the reference detectors

(Kalidas) showed slightly better overall performance with the GUDB dataset. But

when evaluated with the UCI dataset, all reference detectors showed much lower

performances than the LSTM based detector.

Major strengths of the LSTM based detector are its capability to process very noisy

ECG signals and sample precise detection of R-peaks. These are valuable features

for any detector. No separate preprocessing steps are required from the user as

majority of the work is done by the LSTM model. This makes method very straight-

forward and easy to use. Because of the sample precise R-peak detection, it is

possible to calculate very accurate heart rate and HRV values. Although results of

the LSTM based detector were very good, there is still some room for improvement.

The most straightforward way to improve method would be to use more different

noise sources (e.g. electrode motion and contact noise) during the training phase.

Also the remove_close filtering function should be developed further so that it can

work better in the case where heart rate varies a lot. This could be done by replac-

ing the fixed threshold distance that is currently used with more advanced advanced

adaptive threshold distance.

The major downside of the LSTM based detector is its high computational costs. The

reference algorithms are very lightweight, and they can be run on small embedded

devices. This is not true for LSTM based detector which requires more computa-

tional resources. However, today Internet of Things (IoT) has a big role and IoT

based solutions are developing fast. IoT could offer a solution for computational

requirements, processing could be performed in the Fog or Cloud layers where more

computational capacity is available.
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Appendix F1 Scores

Table 4.1: F1 scores, jogging with chest strap setup

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 1 0.84 1 1 1 1 1
1 0.85 0.9 0.99 0.87 0.76 0.99 0.94
2 1 0.81 1 1 0.99 1 1
3 1 0.87 1 1 0.99 1 1
4 0.99 0.91 0.99 0.99 0.99 1 1
5 1 0.76 1 1 1 1 0.99
6 1 0.95 0.99 0.99 1 1 1
7 0.91 0.72 0.81 0.72 0.89 0.9 0.59
8 1 0.92 1 1 0.99 1 0.94
9 1 0.81 1 1 1 1 1

10 0.95 0.83 0.93 0.87 0.92 0.94 0.77
11 0.99 0.92 1 0.89 0.56 1 1
12 1 0.85 0.99 0.99 0.83 1 0.99
13 1 0.84 0.99 1 0.77 1 0.98
15 0.98 0.91 0.99 0.92 0.97 1 0.9
16 1 0.65 0.92 1 0.07 0.99 0.99
17 0.98 0.31 0.87 1 0.14 1 1
18 1 0.92 0.96 0.99 0.81 0.99 0.99
19 1 0.87 0.99 0.98 0.94 0.99 0.99
20 1 0.9 1 1 0.97 1 1
21 0.98 0.81 0.99 0.99 0.57 1 0.99
22 1 0.83 1 1 0.95 1 0.99
23 0.95 0.89 0.93 0.89 0.94 0.99 0.85
24 0.98 0.96 0.97 0.97 0.91 1 1



APPENDIX F1 SCORES A-2

Table 4.2: F1 scores, hand bike with loose cables setup

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 1 0.88 0.8 0.98 0.81 0.88 0.94
1 1 0.64 0.99 0.99 0.99 0.99 0.99
2 1 0.74 0.56 0.99 0.93 0.99 0.94
3 1 0.86 1 1 1 1 0.99
5 0.98 0.86 0.89 0.93 0.82 0.92 0.94
6 1 0.88 0.87 0.69 0.83 0.98 0.97
7 1 0.87 1 1 1 1 1
8 1 0.72 0.99 1 0.94 1 1
9 1 0.89 1 0.99 0.99 0.99 1

10 1 0.94 0.99 0.99 0.99 0.99 0.98
11 1 0.96 0.99 0.99 1 1 0.99
12 0.78 0.87 0.97 0.89 0.7 0.96 0.96
13 1 0.89 0.99 0.99 1 1 1
14 1 0.73 1 1 1 1 0.99
15 1 0.89 0.98 1 0.99 0.99 1
16 1 0.4 0.98 0.99 1 1 0.99
17 1 0.6 0.99 0.99 0.99 1 1
18 1 0.8 0.99 1 1 1 0.98
19 1 0.9 0.13 1 0.99 0.99 1
20 1 0.98 0.97 1 0.99 1 1
21 0.99 0.85 0.89 0.64 0.98 0.99 0.97
22 1 0.99 1 0.98 0.95 1 0.99
23 0.98 0.93 0.96 0.98 0.73 0.97 0.98
24 1 0.82 0.99 0.99 1 1 1
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Table 4.3: F1 scores, hand bike with chest strap setup

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 0.99 0.75 0.99 0.99 1 1 1
1 0.99 0.89 0.99 0.73 0.81 0.99 0.99
3 1 0.69 0.97 1 1 1 0.99
4 1 0.93 1 1 0.99 1 0.99
5 1 0.88 0.96 1 0.99 0.99 0.99
6 1 0.89 0.98 0.99 0.99 0.99 1
7 1 0.95 0.99 1 1 1 1
8 1 0.65 1 1 1 1 1
9 1 0.38 0.97 1 1 0.99 1

10 1 0.53 0.98 0.99 1 1 0.99
11 0.93 0.63 0.98 0.66 0.58 0.99 0.98
12 1 0.87 1 1 0.98 1 1
13 1 0.84 0.96 0.99 0.92 0.99 0.99
14 0.95 0.79 0.89 0.63 0.64 0.97 0.9
15 1 0.67 0.99 1 1 0.99 1
16 1 0.45 0.98 1 0.04 1 0.99
17 1 0.09 0.98 1 0.66 1 1
18 0.98 0.68 1 0.4 0.66 0.98 0.95
19 0.98 0.81 0.77 0.86 0.8 1 0.92
20 1 0.61 0.99 1 0.96 1 1
21 0.9 0.55 1 0.99 0.09 1 0.99
22 1 0.5 0.99 1 0.99 1 1
23 0.99 0.95 0.99 0.99 0.93 1 0.92
24 1 0.96 0.99 0.99 0.67 1 0.97
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Table 4.4: F1 scores, maths with loose cables setup

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 1 0.89 0.93 0.99 0.99 0.99 0.95
1 1 0.63 1 1 0.99 1 0.99
2 1 0.61 0.97 1 0.99 0.99 1
3 1 0.72 0.99 1 0.99 1 1
5 1 0.82 0.96 0.99 1 1 0.99
6 1 0.8 0.97 0.99 1 0.98 0.96
7 1 0.97 0.99 1 0.99 1 1
8 1 0.66 1 1 0.99 1 1
9 1 0.79 1 1 1 1 1

10 1 0.76 1 0.99 0.99 1 1
11 1 0.29 0.99 1 0.99 1 1
12 0.92 0.98 1 1 0.84 0.99 0.99
13 1 0.98 0.99 1 1 1 0.99
14 1 0.36 0.99 1 0.99 1 1
15 1 0.71 1 0.99 0.99 0.99 1
16 1 0.48 0.98 1 1 1 0.98
17 1 0.46 0.76 0.99 1 0.99 1
18 1 0.64 1 0.99 1 1 1
19 0.99 0.89 0.23 0.99 1 1 1
20 1 0.78 0.99 1 1 1 1
21 1 0.66 1 1 0.99 1 0.99
22 1 0.8 0.99 1 0.99 1 1
23 0.99 0.98 0.99 0.99 0.65 0.99 0.99
24 1 0.87 0.12 1 1 1 0.99
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Table 4.5: F1 scores, maths with chest strap setup

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 1 0.51 0.99 1 0.99 1 1
1 1 0.76 0.99 0.67 1 1 1
2 1 0.45 1 1 1 1 1
3 1 0.54 1 1 1 1 1
4 1 0.99 0.98 1 1 0.99 1
5 1 1 1 1 0.99 1 1
6 1 0.9 0.99 0.97 0.99 1 1
7 1 0.98 1 1 1 1 1
8 1 0.54 1 1 1 1 1
9 1 0.37 1 1 1 1 1

10 1 0.18 1 1 1 0.99 1
11 0.97 0.66 0.99 0.66 0.14 0.99 1
12 1 0.86 0.99 1 0.87 1 0.99
13 1 0.85 0.98 1 0.98 1 1
14 1 0.95 0.99 1 1 0.99 1
15 1 0.44 1 1 1 0.99 1
16 1 0.37 0.99 1 0.62 1 1
17 1 0.16 1 1 0.97 0.99 1
18 1 0.94 0.96 1 1 0.99 1
19 1 0.57 0.98 1 1 1 1
20 1 0.3 1 0.98 0.99 1 0.99
21 0.93 0.4 0.98 1 0.05 1 0.99
22 1 0.25 0.99 1 1 0.99 1
23 1 0.99 1 0.99 1 1 1
24 1 0.9 0.55 0.96 0.99 1 0.99
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Table 4.6: F1 scores, sitting with loose cables setup

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 1 0.96 0.98 0.99 1 0.99 1
1 1 0.48 1 1 1 1 0.99
2 1 0.52 0.98 1 1 1 0.99
3 1 0.53 0.98 1 1 1 1
4 0.99 1 0.25 0.99 0.93 0.99 0.99
5 1 0.66 0.87 1 1 1 1
6 1 0.83 1 1 1 1 1
7 1 0.97 1 0.99 1 1 1
8 1 0.54 0.98 1 0.99 1 0.99
9 1 0.78 1 0.99 1 1 1

10 1 0.78 0.99 1 0.99 1 1
11 1 0.28 0.98 1 1 1 1
12 0.99 1 1 1 0.96 0.99 1
13 1 0.85 1 1 1 1 1
14 1 0.28 1 0.99 0.99 0.99 1
15 1 0.8 0.99 1 1 1 0.99
16 1 0.55 0.99 1 1 1 1
17 1 0.71 1 1 1 1 1
18 1 0.6 1 1 1 1 1
19 1 0.85 1 0.99 0.99 0.99 1
20 1 0.85 0.07 1 1 0.99 1
21 1 0.53 0.88 1 0.99 1 1
22 1 0.51 1 1 0.99 1 1
23 1 0.95 0.94 1 0.97 1 1
24 1 0.73 0.04 0.56 0.99 1 1
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Table 4.7: F1 scores, sitting with chest strap setup

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 1 0.44 0.98 1 1 1 1
1 1 0.93 1 0.75 0.69 1 0.99
2 1 0.61 0.99 0.99 1 0.99 1
3 1 0.54 0.99 1 1 0.99 1
4 1 0.99 1 1 0.99 0.99 1
5 1 1 0.97 0.99 0.99 1 1
6 1 0.95 0.99 1 1 0.99 1
7 1 0.93 1 1 1 1 0.99
8 1 0.43 1 1 1 1 1
9 1 0.35 1 1 0.99 1 1

10 1 0.2 0.99 1 0.99 1 1
11 1 0.59 0.95 0.66 0.21 0.99 1
12 1 0.83 0.99 1 0.59 1 1
13 1 0.88 0.95 1 0.96 1 1
14 1 0.85 0.99 0.67 1 1 1
15 1 0.25 0.99 1 1 1 1
16 1 0.18 0.98 1 0.03 0.99 1
17 1 0.08 0.91 1 0.95 0.99 1
18 1 0.98 0.98 0.99 1 1 1
19 1 0.58 0.99 1 1 0.99 1
20 1 0.28 0.98 1 0.99 1 1
21 0.91 0.42 0.99 1 0.11 1 1
22 1 0.19 1 1 0.99 1 1
23 1 1 1 0.99 1 1 0.99
24 1 0.81 0.67 0.99 0.99 1 1
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Table 4.8: F1 scores, walking with loose cables setup

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 1 0.92 0.82 1 0.99 0.97 0.98
1 1 0.97 0.99 0.99 1 1 1
3 1 0.96 0.99 0.99 1 1 1
4 0.92 0.77 0.99 0.9 0.7 0.99 0.99
5 0.99 0.96 0.97 0.99 1 1 0.99
6 1 0.79 0.97 1 1 1 1
7 1 0.98 0.8 0.99 1 1 1
8 1 1 1 1 0.94 1 0.99
9 1 0.67 0.67 0.99 1 1 0.99

10 0.99 0.98 0.97 0.96 1 0.99 0.97
11 0.99 0.69 0.58 0.82 0.77 1 0.95
12 0.88 0.99 1 1 0.83 1 1
13 1 0.96 0.99 1 0.99 1 1
14 1 0.98 0.98 1 1 1 1
15 0.99 0.99 0.98 1 1 0.99 1
16 1 0.98 0.9 0.99 1 0.99 0.98
17 1 0.97 0.96 1 1 1 1
18 1 0.92 0.91 0.99 1 0.99 1
19 1 0.56 0.41 0.97 0.99 1 1
20 0.98 0.92 0.96 0.96 0.96 0.98 0.96
21 1 0.99 0.99 0.98 0.97 0.99 0.99
22 1 0.97 0.99 0.99 0.95 1 1
23 0.79 0.88 0.87 0.68 0.44 0.98 0.96
24 1 0.97 0.99 0.99 0.99 1 1



APPENDIX F1 SCORES A-9

Table 4.9: F1 scores, walking with chest strap setup

Subject LSTM Pan-Tompkins Hamilton Christov Engzee Kalidas Elgendi
0 1 0.62 0.99 1 1 1 1
1 1 0.85 0.99 0.67 1 1 1
2 1 0.84 1 1 1 1 1
3 1 0.57 1 1 1 1 1
4 1 1 0.99 0.99 1 0.99 1
5 1 0.98 0.99 0.99 1 0.99 0.99
6 1 0.89 0.99 0.99 0.99 1 1
7 1 1 1 1 1 1 1
8 1 0.62 1 1 0.99 1 1
9 1 0.33 1 1 1 1 1

10 1 0.31 0.99 1 1 0.99 1
11 0.95 0.67 0.99 0.66 0.04 1 1
12 1 0.87 1 1 0.68 1 1
13 1 0.76 1 1 0.94 1 1
14 0.98 0.65 0.48 0.72 0.97 0.99 0.97
15 1 0.43 1 1 1 0.99 0.99
16 1 0.29 0.99 1 0.17 0.99 0.99
17 1 0.11 0.96 1 0.68 0.99 1
18 1 0.96 0.99 0.46 0.98 1 1
19 1 0.41 0.98 1 1 1 1
20 1 0.52 0.97 0.99 0.98 1 1
21 0.91 0.48 1 1 0.21 1 0.99
22 1 0.15 0.99 1 1 1 1
23 1 0.99 1 1 1 1 1
24 1 0.97 0.81 0.99 1 1 1
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