Achieving native-like experience on the
web with progressive web apps

Master of Science Thesis
University of Turku

Department of Future Technologies
Software Engineering

2020

Oskari Lindén

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

OSKARI LINDEN: Achieving native-like experience on the web with progressive web
apps

Master of Science Thesis, 57 p., 8 app. p.
Software Engineering
July 2020

For long developing applications for mobile has required developing a separate app
for each platform that the developer wants the app to support. Apple has App store,
Google has Play store and Microsoft has Microsoft store. Web apps can be used
for creating apps that work on all devices with modern web browsers. Web apps
have traditionally been outperformed by native apps and therefore been less popular
when comparing to native application development. Progressive web apps (PWAs)
are new kind of apps that aim to combine the best of native and web apps. These
apps can be installed to the user’s device and have access to some of the features
that have only been available on native apps in the past.

In this thesis we will compare PWAs with their native counterparts to find out if
these apps really deliver what is promised and work as real unifiers between native
and the web. We will list the benefits and drawbacks of developing PWAs. We will
also turn an existing web app to PWA and see what benefits can be obtained. The
results indicate that today PWAs can really be seen as a viable option compared
to native apps and that there are barely any features today that could not be
implemented with a PWA solution.

Keywords: Progressive Web Apps, Web Apps, Native Apps, Performance

UNIVERSITY OF TURKU
Department of Future Technologies

OSKARI LINDEN: Achieving native-like experience on the web with progressive web
apps

Master of Science Thesis, 57 p., 8 app. p.
Software Engineering
July 2020

Jo pitkaan mobiilisovelluskehityksesséd on tarvinnut luoda oma erillinen sovelluk-
sensa jokaiselle alustalle, jota halutaan tukea. Applella on App store, Googlella Play
kauppa ja Microsoftilla Microsoft store. Luomalla verkkosovellus voidaan taata, etté
sovellus toimii kaikilla laitteilla, joissa on moderni verkkoselain. Néma sovellukset
ovat kuitenkin perinteisesti toimineet natiiveja sovelluksia huonommin ja olleet téten
epasuosiossa niihin verrattuna. Progressiiviset verkkosovellukset (eng. Progressive
web app, PWA) ovat uudenlaisia sovelluksia, joiden luvataan yhdistédvan parhaat
puolet natiiveista ja verkkosovelluksista. Nama sovellukset on mahdollista asentaa
kayttajan laitteelle ja niilla on péasy joihinkin ominaisuuksiin, joihin aiemmin vain
natiiveilla sovelluksilla on ollut paasy.

Tassa tutkielmassa verrataan progressiivisia verkkosovelluksia vastaaviin natiivei-
hin sovelluksiin, ja selvitetdan, vastaako todellisuus sitd, mitd néista sovelluksista
luvataan. Tyossa listataan kaikki edut ja haitat, joita PWA-kehitykseen liittyy.
Tutkielmassa myo6s muunnetaan jo olemassa oleva verkkosovellus progressiiviseksi
verkkosovellukseksi, ja ndhdéan, mita etuja talla saavutetaan. Tulokset osoittavat,
ettd PWA on tanépéivana toimiva vaihtoehto natiivin sovelluksen korvaajaksi. Ei
ole olemassa montaakaan sellaista ominaisuutta, jota PWA ei viela tukisi.

Keywords: Progressiiviset verkkosovellukset, Verkkosovellukset, Natiivit sovelluk-
set, Tehokkuusmittaus

Contents

List Of Abbreviations

1 Introduction

1.1 Motivationo
1.2 Objective
1.3 Research questions,
1.4 Outline

2 Background

2.1 Previousresearcho
2.2 App development approaches L.
2.2.1 Native applications
2.2.2 Hybrid applications. L.
2.2.3 Web applications Lo
2.3 Application shell architecture
2.4 Application cache
2.5 History of progressive web apps

3 Progressive Web App
3.1 Technical requirements for PWAs

3.2 Web app manifest o

10
11
12

14

3.3 Imstallation 18
3.4 Service worker 19
3.4.1 Installationo 20
3.4.2 Lifecycle 21
3.4.3 Scope limitation 23
3.4.4 Working offline 24
3.5 Savingdata 24
3.5.1 CacheStorage 24
3.5.2 IndexedDBo 24
3.5.3 Web Storage 25
3.5.4 Browser differenceso 25
3.6 Cache management 26
3.6.1 Caching strategies L. 27
3.6.2 Strategies for serving assets 28
3.7 Background sync Lo 29
3.8 Push notifications 31
3.8.1 Subscribing for push notifications 32
3.8.2 Sending push notifications 33
3.8.3 Security considerationso L 33
3.8.4 Facebook Messenger push notifications 34
PWA versus native 35
4.1 Benefits of PWA compared to native 35
4.2 App distributiono 36
4.3 Drawbacks compared to native L. 37
4.4 Features coming toweb o0 38
4.4.1 Google Chrome origin trials 39

4.4.2 Native File System API 39

4.4.3 Contact Picker API,

4.4.4 Badging for AppIcons oo

5 Implementations and testing
5.1 Performance testing with geolocation
5.2 HRMobi
52.1 Challenges.
5.2.2 Service worker
5.2.3 Offlineaccesso
5.2.4 Push notifications
5.2.5 Background sync
5.2.6 Performance improvements

5.2.7 Future work

6 Discussion and conclusion
6.1 Discussion
6.2 Conclusion

6.3 Suggestions for further work

References

Appendices

A Scopus search results

B Contact Picker API

C Benchmark timing results

D Benchmark load time results on HRMobi

42
42
43
44
46
48
48
49
49
o1

53
23
54
56

58

Listings

3.1
3.2
3.3
3.4
3.5
3.6
4.1
4.2
5.1
B.1

Example web app manifest 000 17
Linking the manifest to the page 17
Installing Service Worker 21
Saving assets to cache on install00 26
Registering a background sync task 30
Running a scheduled background sync task on service worker 30
Reading a file with the Native File System API 39
Using the Badging API 41
Trick for fetching CSS asynchronously 50
Testing Contact Picker APT B-1

iv

List of Figures

3.1

3.2
3.3
3.4

4.1

0.1
5.2
5.3

The process of installing a PWA and how it looks on the device after

launched from the home screen 18
The lifecycle and different states of a service worker 21
Subscribing for receiving push notifications 32
Sending push message toauser 33
Badging on WhatsApp L 41
Multiple origins in HRMobi 45
Current performance with Lighthouse tool 50
Performance with Lighthouse tool after changes 51

List of Tables

4.1

Al

C.1

D.1

Browser comparisono L0 38
Search resultso A-2
Geolocation timings with PWA and native Android application . . . C-2
HRMobi app load time D-2

vi

List Of Abbreviations

o A2HS: Add to home screen

o« AJAX: Asynchronous JavaScript And XML
o AMP: Accelerated Mobile Pages

o API: Application Programming Interface

o CTR: Click-through rate

« HTTPS: Hypertext Transfer Protocol Secure
o JSON: JavaScript Object Notation

« JWT: JSON Web Token

o PWA: Progressive web application

o TCP: Transimission Control Protocol

o TSL/SSL: Transport Layer Security / Secure Sockets

« VAPID: Voluntary Application Server Identification

1 Introduction

According to Holst [1] the number of smartphone users worldwide in 2020 is 3.5 bil-
lion and will increase to 3.8 billion in 2021. The development of mobile applications
is shifting from native applications to a web based approach as new kind of apps
known as Progressive web apps were presented in 2015. [2]

Many companies have already discovered the benefits of the progressive web
apps, one example of these is Tinder. The PWA they developed takes only 10%
of the storage space compared to their native app and the loading time of the app
dropped from earlier 11.91 seconds to 4.69 seconds when switched to PWA. [3] Many
are even saying that today the PWA development should be preferred over native
application development and that the PWAs will eventually eliminate the need for
native apps. [4]-[6][7, p. 9] There are also people who claim the opposite. [8], [9]

Google is currently working on a project where their main goal is to close the
"app gap” between native apps and web apps. The term "app gap” refers to the
feature gap there currently is between these app types as the native apps are able to
do things that web apps can not. For example, web apps are not able to access the
file system of the device. There are many interesting upcoming features that the
web apps will soon support such as access to the user’s contacts via Contact Picker
APT and accessing the file system directly via Native File System API just to name
a few. [10] The Contact Picker API was already released for mobile users early 2020

with Chrome version 80 [11].

CHAPTER 1. INTRODUCTION 3

1.1 Motivation

Progressive web apps can be used as cross-platform solutions when creating mobile
applications. Instead of having to create separate applications for all different plat-
forms it is enough to create a single PWA that works basically on any device that
supports modern web technologies.

The author has worked in a Finnish company HRSuunti Oy for past 3 years. The
company offers workforce management solutions for other businesses. The main
product of the company is HRSuunti Net which is a remote desktop application
aimed for people at the human resources who plan the work shifts for employees.
One of the company’s products is a mobile web app called HRMobi. This application
is targeted for the employees who work on companies that use HRSuunti products
as their workforce management software. With HRMobi employees can view their
work schedules and inform foreman the actual time they were working. They can
also see contact information of their foreman and other employees. With bulletin
board functionality foremen can easily send urgent messages for employees.

HRMobi has been developed as a web application from the start instead of
making it a native app. This choice was made because one of the company’s main
selling point is that no downloads or installations are required to use their software.
As HRMobi is a web app it can be accessed simply by typing the URL in the
browser. Shifting to progressive web app seems the best choice as this allows to get
some benefits of native applications while still maintaining the ease of access.

The application could benefit from the opportunities that progressive web apps
represent. For example sending push notifications would allow users to be notified
of urgent events quickly. Therefore the author’s motivation is to gather information
of PWAs and then use that knowledge to make the best PWA possible out of the
existing web app, HRMobi. The acquired knowledge can further be applied to other

products of the company too.

CHAPTER 1. INTRODUCTION 4

There are still quite few comprehensive articles available about progressive web
apps. Another motivation for this thesis is to gather information that someone else

can later use as a base for further studies on the subject.

1.2 Objective

The aim of this thesis is to compare the available technologies and best practices for
creating a cross-platform mobile application which performs as well as possible with
the tools available today. The main focus is on PWA as we find out whether this can
be used to achieve native-like performance on the web. Another question is whether
progressive web apps will eventually surpass native applications and become the
main way of developing applications — for mobile at least.

Last we will use this knowledge to convert an existing web application, HRMobi,
to follow the best practices found. The application already supports geolocation
which is one of the features covered in this thesis. After changes our web app should
be classified as a progressive web app. It should also be accessible offline and be
able to receive and display push notifications.

The deployment structure of HRMobi represents one challenge for the PWA. The
landing page for the app contains an organization selection form. After proceeding
from this stage the app redirects to different URL depending on the chosen organi-
zation. PWAs are restricted to work on a single origin. Because of this it might be
impossible to allow the installation to take place on the main page and then move
user to a page within different origin.

One part of this thesis is a systematic literature review on progressive web apps.
As the subject is quite new, other non-scientific sources have also been used as
references. In addition experimental tests have been conducted to find out whether
the results match the theory. We also present a case study on HRMobi and how

the transition to PWA has affected it. The results of this study can be used as a

CHAPTER 1. INTRODUCTION)

reference for further studies on progressive web apps.

1.3 Research questions

In this thesis we will answer the following research questions about Progressive web

apps.
« RQ 1: What is the actual definition of PWA?

« RQ 2: What benefits and drawbacks developing a PWA has compared to

developing a native application?

— RQ 2.1: What features are currently not supported by PWA but can be

accomplished with native apps?

— RQ 2.2: In what cases native apps perform better than PWAs?

There are some studies which try to answer similar questions but the subject
is quite new so there are not any definitive answers out there at the time. In
2019 Kerssens [12] conducted a study where they aimed to find out whether PWAs
could be used as alternatives to native applications. They found out that in Android
PWASs launch faster compared to native alternatives while on iOS they do not. They
also found out that PWAs consume as much or even less energy than their native
counter parts. Their final thought was that PWAs can be seen as viable alternatives
for native apps. With our thesis we will focus more on finding out the features that

are still missing from PWAs but exist on native.

1.4 Outline

After this chapter this thesis continues by presenting previous research and differ-

ent app development approaches in Chapter 2. In Chapter 3, we discover what

CHAPTER 1. INTRODUCTION 6

definitions there are for progressive web apps and go into more detail with different
aspects related to PWAs such as service worker and web app manifest. In Chapter
4, we compare PWAs with native apps and find out what benefits and drawbacks
there are when developing PWAs instead of native applications. Chapter 5 contains
performance testing with geolocation. We also discuss in detail what was done with
HRMobi to transform it to a progressive web app. Finally in Chapter 6 we present
the conclusions of this thesis, discuss about them and give some ideas for further

studies.

2 Background

For many years, companies have
tried to enable developers to create
app-like experiences using web

technology.

Jason Grigsby

In this chapter, we will take a look at previous studies related to Progressive
web apps. After that we will briefly explain the different methods how applications
can be developed, especially mobile apps. We will also take a look at other methods

similar to PWA that have existed before and how they compare with PWA.

2.1 Previous research

Progressive web apps have not been around for very long so the subject has not
been researched much yet. By conducting a search on Scopus with search string
"progressive web app” we get only 19 hits (on February 2020). By further inspecting
the documents we get 14 documents which involve progressive web app as a central
part of the research. The studies are pretty new as only one of the studies is from
2017 and others are even more recent. The list of studies found can be seen from
Appendix A.

Seven of the 14 studies present primaly just a simple case study for PWA and

CHAPTER 2. BACKGROUND 8

do not include much theory related to progressive web apps. Five of the studies
include mainly research and contain useful information that can be used within this
thesis. The remaining 3 studies contain a case study but also some useful research
information.

One of the studies finds out what security issues there are with PWAs. [13] The
results of this study have practical use cases as they can be taken into consideration

when creating a PWA.

2.2 App development approaches

Traditionally mobile apps have been developed as native apps. The development of
web technologies has opened new possibilities which might even replace the tradi-

tional way of developing apps.

2.2.1 Native applications

Native apps target only a specific platform, Android, iOS or Windows for instance.
When building a native app one must create a separate application for each platform
that need to be supported. [14] This is the main drawback of creating native applica-
tions as the maintenance costs increase as multiple codebases have to be maintained.
This might also mean having to hire more people as different programming language
skills are needed for different platforms. [15]

When writing native apps all of the device’s native resources can be accessed.
Usually native apps are also faster and perform more smoothly compared to hybrid
or web applications.

The distribution of native apps happens through centralized platform specific
marketplaces. Applications for Android devices can be downloaded from Google

Play and apps for iOS from App Store to give a few examples. One advantage of

CHAPTER 2. BACKGROUND 9

such centralized marketplaces is that the apps shown there reach a wider audience.
The number of total apps available on the marketplaces is currently almost 3 billion
for Google Play and approximately 2 billion for App Store [16]. This means that it
might be tough to get people to download a certain app through the app store. It
is only a very small amount of applications that forms the majority of apps that are

actively used by consumers. [17]

2.2.2 Hybrid applications

Hybrid applications try to combine the best of native and web apps. Usually the
process includes writing the program as a web application which is then wrapped
inside a native wrapper for each of the targeted platforms using a web view control.
[14]

Some popular frameworks today for creating hybrid apps includes Apache Cor-
dova! and Electron?. With Cordova and Electron the app is developed using stan-
dard web technologies such as HTML5, CSS3 and JavaScript. Cordova is mainly
used for creating cross-platform mobile apps as with Electron the main focus is on
creating desktop apps.

The idea of creating hybrid applications is that all native cababilities are basically
available which is often not the case with web appps. For instance, accessing file

system is not possible with web apps but it is possible with hybrid apps.

2.2.3 Web applications

Web applications are special kind of interactive websites which function like tradi-
tional desktop or mobile applications. These apps have the advantage of using the

common web technologies such as HTML5, CSS3 and JavaScript.

https://cordova.apache.org/
2https://electronjs.org/

CHAPTER 2. BACKGROUND 10

There is no exact definition for what makes a web site a web app. Usually a web
site which functions similarly to a desktop or mobile application is described as a
web application. One distinction is that a web app has a single use purpose as web
sites usually contain many sections and serve multiple purposes. Web apps are also
dynamic at least to some extent compared to normal web sites which may instead
be static. "Dynamic” in this case means that the content shown is specific to the
user that is viewing the app. Web apps also usually rely heavily on JavaScript.

A major advantage compared to native apps is that web apps do not require any
installation and can be accessed instantly anywhere from any web browser. This on
the other hand means that the user must have a working network connection. This
requirement does not apply to progressive web apps. In Chapter 3 we discuss how
PWAs can work offline.

The main drawback with web apps used to be the fact that many native func-
tionalities such as taking photos with the device’s camera or fetching the GPS data
were not available. Today all of the major browsers support most of these device

capabilities which is one reason behind the growing popularity of web apps.

2.3 Application shell architecture

An application shell architecture is a technique where a simple app shell for the
application is separated from other application logic. This shell contains all the
critical HTML, CSS and JavaScript needed for the initial page render to happen.
All content is loaded dynamically. This makes the app feel more like a native app as
page transitions can be made fluid. The application shell is usually cached so that
on repeated visits the shell is loaded instantaneously. [18]

According to Osmani [18] there are three main benefits of using application shell

architecture:

CHAPTER 2. BACKGROUND 11

« Fast and reliable: Most of the static content are cached and will load in-
stantly on repeated visits. Dynamic content is loaded as needed when the user

is using the app.

o Native-like feel: Navigation feels more native-like as the page loads dynam-
ically instead of doing full re-renders. Caching also enables the app to work

offline.

« Minimal data usage: By caching assets efficiently and loading dynamic
content only when needed the amount of data downloaded from the server is

much less than it would be without these techniques.

Goal is to keep the size of the app shell as small as possible so that it will allow
fast load times even when visited for the first time. Because of how TCP works the

best results are obtained if the shell size is less than 14kb.? [19]

2.4 Application cache

Application cache (shortened as AppCache) is an older way of enabling offline access
to web sites. The idea is to allow caching assets such as HTML pages, stylesheets,
JavaScript files, etc. on the browser side so that the pages could be accessed even
when there is no internet connection [20].

One main part of progressive web apps is a script known as the service worker.
This script is installed on the browser where it acts as a proxy and is able to cache
files and intercept web requests for instance. We will explain this in more detail in

the next chapter in Section 3.4.

3TCP splits data to multiple packets. The size of a single packet gets larger with more data to
be sent. The first packet sent is 16kb. The first 2kb of the packet contains overhead data. So if

the data to be transmitted is 14kb or less only one packet is sent instead of multiple packets.

CHAPTER 2. BACKGROUND 12

Archibald [21] pointed out the flaws of AppCache already in 2012. Gaunt [22]
agrees that there have been many issues with AppCache API and that service work-
ers were designed to avoid these problems. Because of this service worker can be
used as a replacement for AppCache.

Browser manufacturers are currently working on disabling the application cache
feature completely on the their browsers. This means that after some time the

feature will no longer be supported. [23]

2.5 History of progressive web apps

As early as in 2007 Steve Jobs introduced web apps as a main way of developing
apps for iPhone. The release of the App Store for native iOS apps came a year
later. The web technologies were not powerful enough at the time and the idea
of supporting solely web apps was abandoned as the native apps performed much
better. [24]

The phrase "Progressive web app” was coined by Alex Russell and Frances Ber-
riman on June 2015 [25]. On the blog post "Progressive Web Apps: Escaping Tabs
Without Losing Our Soul” Russell [2] explains how they came up with this phrase
when they were discussing about the best practices for making a web app. The
required technologies had existed for some time already but no one had given them
a name.

On the blog post Russell [2] defines the PWA as a web app which has the following

characteristics:

« Responsive: The application will scale and work with any size or form of a

screen such as mobile device, tablet, TV, etc.

e Connectivity independent: The application will work even when offline

with the help of a service worker. This of course limits the app to access only

CHAPTER 2. BACKGROUND 13

the offline content that has been downloaded before.

« App-like-interactions: The application feels like a native app with app-like

navigation and transitions.

e Fresh: The application will always be up to date thanks to the fact that it is

basically a web page that can be fetched again when the user reloads it.

o Safe: The application will be served over a secure HI'TPS connection.

e Discoverable: The application can be found by search engines and will be

classified as an "application” instead of a web page.

+ Re-engageable: The application will be able to send push notifications to

the user.

o Installable: The application can be added to the user’s home screen.

o Linkable: The application has its unique URL so it can be shared and ac-

cessed by anyone.

This is the first definition that was given to progressive web apps. In the next
chapter we will see other definitions and go into more detail on what defines a
progressive web app. With the obtained knowledge we will answer RQ 1 about the
definition of PWA.

3 Progressive Web App

These apps aren’t packaged and
deployed through stores, they’re
just websites that took all the right

vitamins.

Alex Russell

Progressive web apps are web sites which behave like native apps and look like
them. PWA is not a framework nor a technique but instead a combination of web
technologies and a set of best practices one must follow to get all the benefits of a
PWA [26].

Progressive web apps offer features that can not be achieved with regular web
apps. Any PWA can be installed on the user’s device in a way that it shows up as
an app on the device’s app list. They can also be launched in a full screen mode.
By caching assets PWAs are able to offer offline experience unlike regular web apps.
With the help of service workers they are also able to send user push notifications
just like native applications.

Service workers are scripts that run separate from the scope of the web page.
These scripts can work on the background even after the page has been closed.
Service worker also works as a proxy by handling all network requests sent from the
web page. We discuss more about service workers in Section 3.4. [22]

Grigsby [27, p. 6] claims that progressive web apps are built using progressive

CHAPTER 3. PROGRESSIVE WEB APP 15

enhancement. It is a strategy where a baseline experience is offered for everyone and
then capabilities of the app are progressively enhanced based on the user’s device.
Ater [7, p. 21] points out that this kind of approach is not a technical requirement
for a progressive web app — it is just something one should do. A simple example for
a progressive enhancement is that we can serve a dynamic web page with JavaScript
for users who have JavaScript enabled and an alternative static version of the web
page for users who have not enabled JavaScript. It seems to be unclear what is the
actual definition of PWA. Firtman [28] even claims that there is no unique definition
available.

Google gives even more vague definition as they define progressive web apps

being "user experiences” with the following attributes: [29]

* Reliable: The application loads instantly and works even when there is no
network connection available. This is accomplished by the help of service

workers which can cache pages and requests offline.

o Fast: Works smoothly and fast and responds quickly to the user input — just

like a native app would.

« Engaging: Looks like a native app when launched as a full screen experience.
Is cabable of sending push notifications to users and lives on the home screen

of the user’s device.

The above definition presented by Google does not describe PWAs on a technical
level. The focus is more on how they behave or how they feel. These attributes work

as selling points for PWAs instead of defining how they actually work.

CHAPTER 3. PROGRESSIVE WEB APP 16

3.1 Technical requirements for PWAs

Keith [30] presents a clear technical perspective on the case on his blog post "What
is a Progressive Web App?”. On that post he sums up that "a Progressive Web App
is a website served over HT'TPS with a service worker and a manifest file.” So to

open that up, there are 3 core technical requirements for a PWA:
e« 1. HTTPS: The application has to be served over a secure connection.

e 2. Service Worker: The application must register a service worker that is

able to intercept and alter requests and handle asset caching.

« 3. Web app manifest: The application has to have a web app manifest
file which describes the base attributes of the application such as it’s display

name, screen orientation, etc.

Even more simple approach is presented by Lee, Kim, Park, et al. [13] as they de-
fine PWA as being any web site that registers a service worker on the user’s browser.
This definition covers the demand for HT'TPS and Service worker as registering a
service worker only works in a secure context!. As registering a service worker is
possible without web app manifest this definition differs from the above definition.

Google has a progressive web app checklist? which lists all the core requirements
for PWAs as well as some other features which ”"optimal” progressive web apps should
fullfil. One of the core requirements is that all PWAs must follow a responsive design.
This means that the app should scale and look good whether the user is using a
device with a small screen or a device with a larger screen. It is not clear if this is
a technical requirement that would stop a web app of being a PWA as there are no

exact definitions for when a page is responsive and when it is not.

1Secure context practically means that if the site is not served from localhost it should be served

over https:// URL and use a network channel that is not considered deprecated.

2https:/ /web.dev/pwa-checklist/

1

CHAPTER 3. PROGRESSIVE WEB APP 17

3.2 Web app manifest

A web app manifest is a file which describes the properties of the PWA. For the
browser to ask the user to install the app, a web app manifest is needed. The
manifest is in JSON format® and must contain at least the fields shown in Listing

3.1 which shows an example of a web app manifest file.

{
"name": "My App",
"icons": [
{
"src": "/images/icons-192.png",
"type": "image/png",
"sizes": "192x192"
1,
{
"src": "/images/icons-512.png",
"type": "image/png",
"sizes": "b512x512"
}
I
"start_url": "/myapp/?source=pwa",
"display": "standalone",
"theme_color": "#3367D6"
}

Listing 3.1: Example web app manifest

The web app manifest has to be linked to the page by referring to it in the
<head> element of the page as is shown in Listing 3.2

<link rel="manifest" href="manifest.json">

Listing 3.2: Linking the manifest to the page

3JSON is a file format for describing data in human readable text form

CHAPTER 3. PROGRESSIVE WEB APP 18

3.3 Installation

Progressive web apps can be installed on the user’s device. When installed they
look very similar compared to native applications installed on the device. The app
can only be run on a fullscreen mode when launched from the home screen icon.

The action of installing a PWA was formerly known as "Add To Home Screen”
action (shortened as A2HS). The main benefit with installing a PWA is that the
user is more likely to actually use the app. [31]

The process of installing a PWA to the home screen can be seen from Figure 3.1.
The image on the left shows how the app looks like when being first visited with
the browser. At the bottom an install prompt can be seen. The image at the center
shows what the app looks like when launched from the home screen. Finally on the
right-hand side we can see that the app runs on its own window

w0 .082% W 13.41 1. 82% W 13.42

()} @ https//appsco.pe ® : Appscope
Appscope Featured apps
@ Chrome
Featured apps ‘ @ Appscope

Featured apps

Google Santa Tracker 1

i
Google Santa Tracker 1
g Google Santa Tracker

Top apps View more
I

Top apps View more : it th Top apps View more

The be iNd I POJ P jre €

; n
Q)] =
G Lisda Appscope aloitusnéytolle X Home SULJE KAIKKI

Figure 3.1: The process of installing a PWA and how it looks on the device after
launched from the home screen. The screenshots have been taken with Samsung S7

device with Google Chrome version 76.

CHAPTER 3. PROGRESSIVE WEB APP 19

The requirements that need to be fulfilled for the installation banner to be shown
may differ between different browsers. For Google Chrome and Microsoft’s Edge [32]

the criteria for the install banner to appear are the following:

o The application is not already installed

e The application has to be served over HTTPS and have a service worker

registered with a fetch event handler.
o The application has to have a web app manifest that contains at least:

— short_ name or name
— 2 icons: 192px and 512px

— start_url

display that is set to fullscreen, standalone, or minimal-ui

[33]

Mozilla has slightly different requirements as they do not demand the instal-
lation of a service worker while they still require HTTPS. In addition they list
background_color as something that is required in the web app manifest. [34]

The installation requirements for Samsung Internet differ from Google Chrome’s
as they require only 1 icon the size of which has to be at least 144x144. The display

attribute has to be standalone or fullscreen. [35]

3.4 Service worker

A service worker is installed when a web page requests to register it. After installa-
tion the service worker acts as a proxy that can be used to cache assets and network
requests. This enables the app to work and serve the user with something even

when there is no network connection available. The service worker is also able to

CHAPTER 3. PROGRESSIVE WEB APP 20

intercept and alter any requests done within its scope, send push notifications and
do background synchronization. [22]

A service worker is a JavaScript worker. Therefore it runs on its own seperated
thread meaning that it cannot directly access or manipulate the DOM of the web
page. Instead it can receive and send responses to messages sent from the pages via
the postMessage interface. [22]

According to Gaunt [22] service worker is a successor of Application Cache which
has been previously used to support offline experience. The specification for Service
worker was published in 2014 and already by late 2015 many major browsers such
as Chrome, Firefox, Opera and Samsung Internet had added support for service
workers [7, p. 20]. From a github page by a Google employee Jake Archibald* we
can see that all of the major browsers currently support most of the features for
service workers except for background sync which is currently (June 2020) fully

available only for Google Chrome.

3.4.1 Installation

Service worker makes it possible to manipulate and filter web requests. This makes
the application vulnerable to so called man-in-the-middle attacks. Gaunt [22] states
that because of this it is not possible for an application to register a service worker
unless the application is served over HTTPS. The "https://” prefix in front of a
URL means that the web site is being served over a secure connection. The HTTPS
protocol is a combination of HT'TP and TLS/SSL protocols.
A service worker can be installed by calling navigator.serviceWorker.register

within the page. A simple example of registering a service worker can be seen in
Listing 3.3. A web app will not be classified as a PWA if it was not served over a

secure HT'TPS connection and did not register a service worker.

4715 service worker ready?” (https://jakearchibald.github.io/isserviceworkerready/)

CHAPTER 3. PROGRESSIVE WEB APP 21

1 if ('serviceWorker' in navigator) {
2 navigator.serviceWorker.register('/sw.js').then(function(registration

) o

3 console.log('Service worker registration succeeded:', registration)
5

4 }, function(error) {

5 console.log('Service worker registration failed:', error);
6 1)
7} else {

8 console.log('Service workers are not supported.');

o }

Listing 3.3: Installing Service Worker

3.4.2 Lifecycle

A service worker has its own lifecycle that is separated from the web page. To use
service workers properly it is important to understand the different states involved
in the process. The states involved in the lifecycle of a service worker are illustrated

in Figure 3.2

Installed/

waiting ' Activating Activated Redundant

Figure 3.2: The lifecycle and different states of a service worker

CHAPTER 3. PROGRESSIVE WEB APP 22

Installing

The lifecycle begins when a web page registers a service worker as shown in Section
3.4.1. At this state the service worker is in the installing state.

This is when all of the required assets are downloaded to the cache. If something
goes wrong the installation will fail and the service worker will immediately move
to the redundant state. For instance a missing asset could cause the installation to
fail. This behaviour makes sure that when the service worker is installed all of the

cached assets should exist without doubt. [7, p. 44]

Installed /waiting

After being installed the service worker is in a state where it waits to get activated.
The service worker cannot usually function unless it has been responsible for the
page from the very beginning of the session [7, p. 46]. During this state the page
may either have no active service worker at all or it may have an older version of
the service worker in control.

The new service worker will become active after all active tabs have been closed
and the page is visited again. If there was an older version of the service worker

that service worker would now enter the redundant state.

Activating

A service worker is in an "activating” state when the activate event of the service
worker has been fired but it has not yet completed.

The activation state is normally used for removing any old cached files. Older
service workers may have been using older versions of the cached assets. During
this state we can be sure that these service workers are in the redundant state and

therefore the old cached assets are safe to be removed.

CHAPTER 3. PROGRESSIVE WEB APP 23

Activated

When a service worker has been succesfully activated it enters the activated state
where it is able to do all its core functionality such as intercepting network requests
and sending push notifications etc.

At any point a service worker may become terminated by the browser to save
memory. This behaviour cannot be controlled in any way. When the service worker
receives a request it is restarted automatically. This means that global variables

should not be used to store data as they can get erased anytime. [22]

Redundant

When a new service worker is activated the old service worker enters the redundant

state. In this state the service worker has no impact on the page anymore.

3.4.3 Scope limitation

Because service workers are able to intercept and manipulate network messages
it is important that they are registered within a certain scope. If we place the
service worker file in a folder "www.example.com/servicel /” then that service worker
is able to function within that scope but it is not able to intercept requests for
"www.example.com/other-service/” for example. [7, p. 27|

This behaviour is useful in many cases. One example is a case where there is
a website that is hosting multiple different sub sites in different folders "sitel” and
"site2” for instance. If the scope of the servive worker would not be limited to the
folder it lives in the owner of the "site2” might use a service worker to redirect the
users of the ”sitel” without they knowing it. It would also mean that ”sitel” and
"site2” could not both have a service worker active at the same time but because of

the scope limitation they can. [7, p. 27]

CHAPTER 3. PROGRESSIVE WEB APP 24

3.4.4 Working offline

PWAs should function even when there is no internet connection. Of course it is not
possible for the app to have all the same functionality as it would if it was online.
It is important that the app can tell the user that the app is in offline state. The
offline functionality can be achieved with the help of a service worker. [27, p. 83]
Service worker enables the offline functionality because it is registered locally on
the users device. It can cache pages and other network request responses. When

offline the Service Worker can serve pages and responses from the cache to the user.

3.5 Saving data

With PWAs there are many alternatives when it comes to saving data. In one of
the articles on Web fundamentals they suggest using the Cache API for saving all
the assets and requests that are needed for loading a page offline. For all other data

they suggest using IndexedDB. [36]

3.5.1 CacheStorage

CacheStorage is used for storing requests and their corresponding responses for
quicker access and for enabling offline access. This API is usually accessed through
service worker. We will go into more detail with different caching strategies later in

this chapter in Section 3.6.

3.5.2 IndexedDB

IndexedDB can be used for storing things like application state or data generated by
the user. By using IndexedDB the startup of the application can be made faster as

the user does not have to wait for all the initial app state related data to be fetched

CHAPTER 3. PROGRESSIVE WEB APP 25

from the server. IndexedDB is ideal for storing larger structured data. Indexes
increase the performance when conducting searches on the stored data.

IndexedDB may not work with all browsers the same way. The user is also
able to delete or alter the data in the IndexedDB. This means that the code should
always be written that in mind. Have error handlers and never rely that the data
actually exists in the IndexedDB. This means that there should always be a fallback

for missing data. [37]

3.5.3 Web Storage

Web Storage API can be used for storing data to the user’s device in key/value
pairs. This is more convinient comparing to cookies and typically browsers allow
more storage space to be used with Web Storage API than with cookies. [38]

Web Storage consists of two objects: sessionStorage and localStorage. The first
is used for storing data that expires after the session ends in other words when the
browser or the tab is closed. The localStorage object can be used for data that

should be kept stored between sessions. [38§]

3.5.4 Browser differences

Different browsers allow different amount of data to be saved to the user’s device.
Chrome allows the browser to use up to 60% of the device’s total space. Firefox has
a limit of 2GB for each origin. Safari allows up to 1GB to be stored. Firefox and
Safari allow more space to be used but only after prompting the user to allow it.
[39]

Many of the browsers will automatically remove stored data on CacheStorage
and on IndexedDB if the browser runs out of allocated disk space. In Safari the
data used by a single site will be deleted if the user has not interacted with the site

for seven days [40].

2

6

3

9

10

CHAPTER 3. PROGRESSIVE WEB APP 26

3.6 Cache management

Service workers allow front-end developers to create their own patterns on how to
handle caching. The service worker has full control over the cache so the developer
can decide which items should be cached and how the cached items are updated and
deleted. [7, p. 31] Ttems in the cache will not expire and they have to be removed
within the code. Every browser has their own storage limit for cached data and if
this limit is exceeded the browser will start to remove cached items one complete
cache at a time until there is enough free space again. [41]

A Service Worker can be used in many ways. For instance one could save requests
to the cache so that even if the app is online new information would not be fetched
from the internet if the user asks for the same information within 5 minutes from
the actual request.

Listing 3.4 shows a very simple example of using the Cache API. Three URLs
for the application are stored in the cache when the service worker gets installed.

var CACHE_NAME = "cache_v1";

var CACHED_URLS = [
"/index.html",
"/styles.css",
"/logo.png"

=

self.addEventListener ('install', function(event) {
event.waitUntil (
caches.open (CACHE_NAME) . then(function(cache) {
return cache.addAll (CACHED_URLS);

1))

Listing 3.4: Saving assets to cache on install

CHAPTER 3. PROGRESSIVE WEB APP 27

Caching assets can be used for speeding up the application use by keeping some
content on the cache that does not change often. Other use case is to offer the user
some of the content even if there is no internet connection available at the time.

Next we will show different strategies for caching the assets and when to fetch
assets from the cache and when to fetch them from the internet. Typically different
strategies are used for different type of assets in an application. All strategies are

based on "Offline Cookbook” from Archibald [42] if not otherwise stated.

3.6.1 Caching strategies

This section presents some of the most common strategies for what to cache and

when to cache.

Cache on install

This strategy adds given assets to the cache when the service worker is installed.
This strategy should be used for static assets that do not change often. These assets

are also ones that are needed for offline access of the application.

Cache on user interaction

This strategy allows the user to choose what assets they want to store for offline
access. In this case the assets are being cached dynamically by what the user decides
to cache. A good example of this is a news app where the user can choose that they

want a certain article to be available for later offline reading.

Cache on network response

In this strategy the assets are being stored to the cache after they have been fetched
from the internet. This strategy works well for assets that change often but which

should still be available offline.

CHAPTER 3. PROGRESSIVE WEB APP 28

Stale-while-revalidate strategy

This strategy suits best for cases where it is not so important to show the user the
latest version of the asset. The idea is to get the asset from the cache if it exists and
then update the asset in the cache after in the background. The new version of the

asset will be available for the user the next time this resource is being requested.

Cache on push notification

This strategy opens the cache and stores assets in it in the background when the
user receives a push notification. This strategy is mainly used for caching assets
that are related to the push notification received. If the notification is about a news
article then the cached asset might be the content of the article so the user could
open it up instantly if they click the notification. Archibald [42] requests developers
to use this strategy with notifications as otherwise if the user is offline, clicking the
notification might simply cause the notification to be dismissed without showing

any content because as there is no connection, no data can be fetched and shown.

3.6.2 Strategies for serving assets

In this section different strategies are shown for serving assets that the browser
requests.

Network only strategy

This is the most basic strategy for serving assets. Assets are being fetched from the
internet and an error is thrown if the app is unable to fetch them for any reason.
Cache only -strategy

In this strategy the assets are being fetched from the cache only. Normally instead

of using this strategy some other strategy is used such as the following strategy.

CHAPTER 3. PROGRESSIVE WEB APP 29

Cache, network fallback strategy

In this strategy assets are fetched from the cache but if they are missing then they
will be fetched from the network instead. This strategy can also be called "offline

first” strategy.

Cache then network strategy

This strategy consists of two separate requests. First the content is fetched from the
cache and displayed to the user if it was found. At the same time another request
is sent for fetching the same asset from the network. When the response arrives,
the content will get updated and the user sees the fresh version of the content. The

cache also gets updated at the same time.

3.7 Background sync

We can imagine a case where someone is writing a comment on a webpage but after
hitting the ”"send” button the web page tells that there is no network connection
available and the action cannot be executed. With native apps this is not a problem
because they have the ability to work on the background even if they have been
closed by the user.

WhatsApp’s native app is a good example of an app that makes a good use of
this feature. While offline and sending a message on WhatsApp the message will
appear on the screen as usual but it will have a dim clock symbol on it. The symbol
indicates that the message has not yet been sent but will get send after the network
connection is established. This functionality can be tested by closing the app and
then restoring the network connection. In the background WhatsApp will send the
message and it will get delivered to the recipient without the sender having to re-

open the app. Progressive web apps can use background sync to achieve the same

CHAPTER 3. PROGRESSIVE WEB APP 30

functionality:.

Background sync is a web API which lets us send updates to the server from
the application even when the app is not in active state. This is useful for the
situations where the user makes some updates with the application while being
offine. The updates are then automatically sent to the server on the background
when the connectivity returns. The service worker is required for the background
sync to function.

Archibald [42] shows that background sync can also be used for fetching and
caching assets on the background even when the application is not open. This
means that the application will run faster when the user use it as assets have been
fetched on the background before. On the other hand this approach could possibly
cause much unnecessary battery usage as network requests and cache updates are
done on the background even if the user is not going to use the app for a while.

Ater [7, p. 136] thinks that Background sync is one of the most valuable tools
given to the developers lately and that it is one of the key components that make
up a modern progressive web app.

Listing 3.5 shows a simple example of registering a background sync task. The
execution of this task within a service worker can be seen in Listing 3.6.

navigator.serviceWorker.ready.then(function(swRegistration) {

return swRegistration.sync.register('myFirstSync');

3 1)

Listing 3.5: Registering a background sync task

self .addEventListener ('sync', function(event) {
if (event.tag == 'myFirstSync') {

event.waitUntil (doSomeStuff ());

5 1)

Listing 3.6: Running a scheduled background sync task on service worker

CHAPTER 3. PROGRESSIVE WEB APP 31

3.8 Push notifications

Push notifications can be used to send urgent messages to the user even when the
application is not actively running on their device. This is probably one of the most
visible features of PWA and something that only native and hybrid applications
were able to do in the past.

Push notifications in web apps are actually implemented using two separate
APIs: Push API and Notification API. The first is responsible for receiving messages
from the server and the latter is responsible for displaying notifications to the user.
[7, p. 184] A service worker is required for push notifications to work on mobile [7,
p. 191].

For being able to send push notifications the user must first accept the prompt
from the browser that asks for their approval. The browser will only ask the user
this once and if the user denies it the permission can no longer be obtained this
way. There are many web sites which ask this permission the very moment the
user enters the site for the first time. This usually leads for the user to deny the
permission as they don’t see the value of the notifications they are prompt to receive.
A survey conducted in 2015 showed that 52% of mobile users found notifications
as an "annoying distraction” [43]. More recent survey conducted in 2017 by the
same company shows that users are getting more perceptive towards receiving push
notifications [44].

For these reasons it is important to carefully plan when to ask the user for the
permission to send push notifications. The best way to do this is to make the user
see the value they are getting out from this choice. The permission prompt should
only be shown to the user after they have pressed a button that says "Enable push
notifications” for instance. A good habit is also to first show a custom dialog that
asks for the permission and only if they accept that show the real permission dialog.

This way if the user denies the first permission request the app is still able to ask

CHAPTER 3. PROGRESSIVE WEB APP 32

3. Send subscription info

v

Figure 3.3: Subscribing for receiving push notifications. Adapted from [7]

the user again as they have not denied the actual request.

3.8.1 Subscribing for push notifications

To be able to receive push notifications the browser must subscribe to a special
messaging server which will act as a proxy between the application server and the
user. This is done to protect the user from unnecessary spam of notifications.
There are three entities related to receiving and sending push notifications: a
browser, a server and a messaging server. The browser is responsible for subscrib-
ing as a push notification recipient to the messaging server and then sending the
information about the subscription to the application server. It is also responsible
for receiving and acting on the received push messages. A messaging server is re-
sponsible for receiving new subscriptions and forwarding messages from servers to
the right recipients. The server is responsible for keeping the record of subscription
information related to users and then sending a notification to a specific user at
a specific time. The phases of subscribing for push notifications can be seen from

Figure 3.3.

CHAPTER 3. PROGRESSIVE WEB APP 33

3.8.2 Sending push notifications

When the application server needs to send a push notification it uses the subscription
object provided by the browser before in the subscription phase. The subscription
object contains all the information needed for the application server to send a push
notification for the specific client. This information includes for instance the URL
of the messaging server.

There are libraries available that makes this process much easier. Without a
library, sending the request would require setting various HI'TP headers including a
JWT (JSON Web Token) authorization header to name one [7, p. 207]. The process

of sending a push notification can be seen from figure 3.4.

3.8.3 Security considerations

Push notifications pose a security threat as they can be used for malicious purposes.
Lee, Kim, Park, et al. [13] shows that push notifications can easily be used for
phishing someone’s password or to lure someone to the attacker’s website. All the
attacker has to do is to create a PWA, get the user to visit that PWA, get the
user to accept the prompt for the website to send notifications and after that the
attacker can freely send any push notification to the user at any time. They can

even pretend to be something they are not as the logo of the push notification can

2. Forward m‘ey '\Send message

Figure 3.4: Sending push message to a user. Adapted from [7]

CHAPTER 3. PROGRESSIVE WEB APP 34

be set to anything.

3.8.4 Facebook Messenger push notifications

Push notifications are supported in all other major browsers, but not in Safari. Face-
book offers a workaround for that with their Messenger push notifications . They
claim that these notifications are more effective compared to Web push notifications
by saying that the CTR (click-through rate) for Messenger push notifications is dou-
ble compared to regular Web push notifications [45]. Downside is that the user has

to have Facebook installed on their device to receive Messenger push notifications.

Shttps://www.izooto.com/facebook-messenger-push-notifications-definitive-guide

4 PWA versus native

Results of a study conducted by Fransson [46] on 2017 show that taking a picture
with a native app is considerably faster compared to a similar solution using a PWA.
On the other hand apps that need geolocation services work actually slightly faster
with PWA compared to a native app.

In this chapter, we will cover what features are currently available only on native
apps and how PWAs performance compare to the native apps in different features.
After that we will take a look at some new APIs which will enable to use features on
PWASs that only native applications used to have in the past. Most of these features
are available only in experimental versions of browsers so they are not officially

supported at the moment (June 2020).

4.1 Benefits of PWA compared to native

A major advantage with PWAs is that the app has to be coded once and it will work
with basically any modern browser on any device. With native apps one is forced
to create separate apps — one for each platform they want their app to support.
Development is also faster and it will cost less money compared to creating a native
application. There are much more people out there who are capable of doing web
development than those who are able to code native Android or iOS apps. In many
cases it would require hiring a separate person to handle the code for a different

platform. [8], [47] There are also more code libraries and components available that

CHAPTER 4. PWA VERSUS NATIVE 36

can be used to speed up the development process.

PWAs work everywhere and do not depend on any specific market place and
they do not require user to download them before use [8]. They are also always up
to date if the user is not in offline mode as the app is just an enhanced web page.
This also makes the development process faster and little cheaper as the developer
does not have to submit the app to any app store. Deploying the app only requires
setting up a web server.

PWASs take significantly less storage space on users device compared to similar
native apps. One example of this is Twitter. Their progressive web app, Twitter
Lite, takes less than 3% of the device storage space compared to their native app
[48]. Another advantage is that PWAs do not download everything related to the
app when the user first visits the page. Instead they gradually download all the
needed assets based on what the user does within the app. PWAs also usually start
up faster compared to native apps. As we mentioned in Chapter 1, Tinder saw that
the start time of their app was cut to half thanks to the shift from native app to
PWA [3].

In top of all this, PWAs are easier to reach compared to native apps. Progressive
web apps can be shared as easily as sharing a web page. By clicking the link the new
user gets an instant access to the app as no installation is required. As all PWAs are
regular web sites they can also be indexed by search engines which makes it possible

for anyone to find them easily by conducting a search online.

4.2 App distribution

Native apps are always distributed through app stores while PWAs are accessed
using the URL pointing to them. It is currently (June 2020) not possible to deploy
a PWA automatically to any other marketplaces than Microsoft Store. If the PWA

meets all the required criterion for app installation, the Bing crawlers will automat-

CHAPTER 4. PWA VERSUS NATIVE 37

ically import the PWA and make it an installable Windows 10 app to Microsoft
Store!. One can also wrap their existing PWA in a Trusted web activity on Android
Studio to create an app that can be published on Google Play Store. Rybczonek
[49] explains the steps required for this on his article "How to Get a Progressive

Web App into the Google Play Store”.

4.3 Drawbacks compared to native

How well PWAs work depends on the browser the user is using. For example Safari
for iOS does not support Push API at the moment of writing this (June 2020). This
means that these users are not able to receive push notifications through the PWA.
This is one reason why someone would want to make a native app instead of a PWA.
It is also not as easy to monetize progressive web apps as it is native apps. Because
PWAs are essentially web pages anyone with the URL can access them. With native
apps it is possible to set a price that users must pay before they can install the app.

Native apps are also considered to be more safe in terms of data security. A
recent study shows some of the reasons behind these claims. They found out that
push notifications can easily be used to trick people by pretending to be something
else as the sender of the push notification can customize the look of the notification.
They also noticed that service workers can be abused by the fact that they can keep

running on the background?. [13]

Thttps://docs.microsoft.com /en-us /microsoft-edge/progressive-web-apps-edgehtml /microsoft-

store

20ne way to abuse service workers is to keep them running in the background and use them to

mine bitcoins or something similar without the user noticing.

CHAPTER 4. PWA VERSUS NATIVE 38

Feature iOS Safari Chrome for Android
Service Worker v v
Push API X v
Background Sync API X v
IndexedDB v v
File API v v
MediaStream API v v
Web Bluetooth X v
Geolocation API v
Web Share API v

Table 4.1: Browser comparison

4.4 Features coming to web

There are still some features not currently available for Progressive web apps. Table
4.1 represents a summary of what features are already supported in iOS Safari and
in Chrome for Android. The data shown in the table is based on the data available
on the caniuse.com site3. The name of the feature is typed to the search field on
the web site and then the table is inspected for iOS Safari and Chrome for Android.
The results have been updated in June 2020. From the results we can see that iOS
Safari is missing support for Web Bluetooth, Push API and Background Sync API.
These features already work with Chrome for Android.

Geofencing is a feature that exists in native applications where the device notifies
the user if they exit or enter a certain defined georegion. According to the website,
whatwebcando.today?, this feature is not implemented by any of the browser ven-

dors and the proposition is abandoned. The same functionality can be achieved by

3https://caniuse.com/

“4https: //whatwebcando.today /geofencing.html

N

CHAPTER 4. PWA VERSUS NATIVE 39

periodically querying the Geolocation API.

4.4.1 Google Chrome origin trials

Origin trials give developers a chance to experiment with new features coming to
Google Chrome which have not yet been officially released. By opting in for an
origin trial the developer will get an experimental feature to work on their origin for
any user accessing it with Chrome. The features available as an origin trial can be

tested but can not be used in production yet.?

4.4.2 Native File System API

Accessing the file system of the user’s device is currently not possible with PWAs
but will be possible when the Native File System API is launched. Currently it is
available as an origin trial with Chrome version 78 or later.

The main function of the API is window.chooseFileSystemEntries() which
opens up a file picker dialog. The function only works when used within a secure
origin and by reacting to a action performed by a user such as clicking a button.
Listing 4.1 shows an example usage where a file picker is opened when a user clicks

a button. The contents of the file is then read and outputted to a textarea.

let fileHandle;

butOpenFile.addEventListener ('click', async (e) => {
fileHandle = await window.chooseFileSystemEntries();
const file = await fileHandle.getFile();
const contents = await file.text();

textArea.value = contents;

B

Listing 4.1: Reading a file with the Native File System API

SMore information about Google Chrome origin trials can be found here:

http://googlechrome.github.io/OriginTrials/developer-guide.html

CHAPTER 4. PWA VERSUS NATIVE 40

With the API it is also possible to save files. Another feature is possibility to
prompt the user to select a folder which content can then be enumerated in the
application. As this API is quite powerful it has been designed to be as transparent
for the user as possible. In Google Chrome an icon is shown on the navigation bar
to indicate that the user has given permission for the application to access the file

system. [50]

4.4.3 Contact Picker API

The Contact Picker API is a new API that enables accessing the contact list of the
user’s device. This API is not widely supported yet but was launched with Google
Chrome version 80 [11]. It is not supported on any other browser yet so it is only
available on Android [51].

With Contact Picker API the app is not able to access these contacts directly.
The user will be shown a dialog instead where they can choose exactly which con-
tacts they want to share with the app. Typical use-cases for this API are email
applications and all other apps related to messaging to name some examples. Also
social networking apps may use user’s contact list to see which of these contacts are
already using the app or to send out invites to them.

We created a simple test app for using the Contact Picker API. The code can be
seen from Appendix B. The code was tested on Samsung S7 phone running Android
8.0 with Google Chrome version 80.0.3987.147. Picking the contacts worked as

expected.

4.4.4 Badging for App Icons

One feature that is currently (June 2020) not supported in PWAs is badging. In
native applications it is possible to add a small badge to the app icon that can for

example notify the user of how many unread messages they currently have. This

CHAPTER 4. PWA VERSUS NATIVE 41

S0 6

Puhelin WhatsApp Kalenteri Sovell.

Figure 4.1: Badging on WhatsApp

behaviour is illustrated in Figure 4.1.

At the time of writing the Badging API is available in Chrome 79 and later in a
form of origin trial [52]. With the API it is possible to either clear the badging from
an app icon or set it to any given number. How the API works is shown on Listing

4.2.

// Set the badge

const unreadCount = 24;

3 navigator.setExperimentalAppBadge (unreadCount) ;

5 // Clear the badge

6

navigator.clearExperimentalAppBadge () ;

Listing 4.2: Using the Badging API

5 Implementations and testing

In this chapter we introduce a practical experiment where we test how fetching a
geolocation differes between a PWA and a native application. We will also discuss
what improvements were made to HRMobi when we turned it from a regular web

app to a progressive one.

5.1 Performance testing with geolocation

To find out if there are any significant performance differences we decided to exper-
iment how PWA compares with native application. Two separate similar looking
applications were developed to test the differences between PWA and native appli-
cation. The implementations for these applications can be found from github!. All
of the tests were conducted by using Samsung S7 device.

We chose to do performance testing with geolocation as this feature exists in
HRMobi. Our test for geolocation is very simple. We fetch the geolocation of the
device using the API available and we measure how long it takes between the request
and getting the location data. With PWA we are using the Geolocation API? and

with native Android app we are using the LocationManager?.

'PWA: https://github.com/Ziigur /pwa-android-comparison
Android: https://github.com/Ziigur/PWACompareApp
2https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_ APT

3https://developer.android.com /reference/android /location /LocationManager

CHAPTER 5. IMPLEMENTATIONS AND TESTING 43

At first our tests showed that fetching geolocation with our web app would take
only 80 milliseconds in average. Later we found out that this was possibly because
of the Geolocation API using the last known location instead of fetching a new
location. We arranged a new test where the location services of the device was
toggled off and then back on between each test runs. We made 30 test runs with
the web app and with the native Android app. By leaving out ten fastest and ten
slowest times and calculating the average from rest of the times we got these results:
With the web app, fetching geolocation takes 1 130 milliseconds and with the native
app it takes 770 milliseconds.

Timings varied a lot especially with the native Android app. With the web app
the timings were more predictable as the longest delay was 2 950 millisecons as with
the native Android app it was 27 700 milliseconds. All benchmark results can be
found from Appendix C.

It is hard to say anything conclusive of the results. The results also contra-
dict with the test conducted by Fransson [46] as their results showed that fetching

geolocation with PWA is significantly faster compared to native Android app.

5.2 HRMobi

HRMobi is a web application where employees are able to see the schedule, when
their shifts start, where they should be working and so on. Employees are also able
to change the working times on completed shifts and write a note for the foreman
if their shift was longer or shorter than it was planned to be.

The app also contains a bulletin board where foremen can leave messages for
employees. Bulletins can even require an acknowledgement from employees so that
the foreman can be sure that all employees have received and seen the message.
There are also features targeted for employees whose working hours vary much

and who work at many different places which is common in cleaning industry for

CHAPTER 5. IMPLEMENTATIONS AND TESTING 44

instance. The app contains a system where employees click a "Work begins” button
when they start working and then "Work ends” button when they are done. This
way the real time spent on the work is recorded and used as a base when checking
who has worked for how many hours.

In this section we will cover what changes were made to HRMobi and see how
it compares with how it functioned before the changes. There were some challenges
especially with offline functionality which we discuss in more detail later in this
section. Adding push notifications on the other hand was quite straightforward as

there are some libraries available that simplify the process.

5.2.1 Challenges

The current design of HRMobi presents some challenges for converting the appli-
cation to a progressive web app. The deployment structure of the app is not very
suitable for PWAs because the app is divided between multiple origins. There are
also challenges caused by the lack of PWA support on different platforms that should

be supported.

Multiple origins

The architectural structure of the application is clustered in a way that there are
currently three different production builds at three different servers. Each of these
servers has a backend application that serves the client side files from a folder within
that server.

When a new user starts to use HRMobi there are two steps. First the user
navigates to https://www.hrsuunti.fi/hrmobi/. This page prompts the user to pick
the company that he/she works on. When the company is selected the user is
redirected to one of the three separate servers depending on the company they

chose. This behaviour is illustrated on Figure 5.1. The problem here is that the

CHAPTER 5. IMPLEMENTATIONS AND TESTING 45

HEMcbl “rieevalne

Domain A Domain B Domain C

Figure 5.1: Multiple origins in HRMobi

PWA installation and usage must take place within a single domain. This means
that the installation / "add to home screen” has to take place on the second domain
and not on the one where the company selection is presented. In practice this means
that the user should be well informed about this behaviour. The first page should
not actively prompt the user to install the app but instead this should be done
within the second domain where the real application lives. This also means that
there should be different web app manifests for different production builds as the
absolute URL must be supplied within each of them. Renzulli [53] discuss this issue

in his article "Progressive Web Apps in multi-origin sites”.

iOS Safari support

Supporting PWA features on Safari poses some challenges as some of the features
do not work as well. One of the main issues is that it is very hard to share session

data between installed PWA and the browser version of the app. On Safari when

CHAPTER 5. IMPLEMENTATIONS AND TESTING 46

PWA is installed all of the session, cookie and local storage data is lost that was
stored with the browser version of the app. [54] With HRMobi it is important that
the cookie data would be shared as the ID of the organization is stored in cookies.
Losing the data causes at least the frustration for the user having to type it in again.

Caputa [54] suggests a solution to this problem. The solution is based on the
fact that cache content is shared between the browser and the standalone version of
the app. By creating a fake endpoint with service worker we can share data between
instances. By using POST commmand we can save the body data to the cache and

with GET command this same data can be retrieved.

Offline access

Another challenge is related to the offline usage of the application. Currently the
application redirects to the login page of the app every time the page is refreshed.
When logging in many company related settings along with other information such
as employee lists are downloaded from the server. If the application was to work
offline then the application should let the user somehow login without checking the
credentials against the server. The best way would be to change the whole login
process in a way that the application would store all required information locally

and this information is then showed to the user if they are offline.

5.2.2 Service worker

The first thing to do when upgrading an existing web app to PWA is to make the
app register a service worker. The basic use of a service worker is to make it cache
some files during the installation making the app offline capable. This will also make
the app load faster by downloading some files from the service worker cache instead
of fetching them from the real server. The cache management is a bit tricky as when

updating the app it might not be enough to refresh the page to get the updates.

CHAPTER 5. IMPLEMENTATIONS AND TESTING 47

It might require closing all tabs where the app is currently open and then opening
it up again. This is caused by the service worker’s life cycle which we discussed in
Chapter 3.

When we implemented a service worker for HRMobi we ran into problems with
the cache management but finally found a solution suggested by Fabulich [55]. The
solution we chose was to force the service worker skip waiting when it has registered
a new version of itself and after that refresh all open tabs so that the new service
worker will get updated on all tabs. The issue with this approach is that if there is
anything in progress in other tabs the forceful refresh might cause the user to lose
their progress. In our case the situation where the app is open in multiple tabs at
the same time is not very common and there are not many places where the user
could be in the middle of any progress that long.

We conducted some measurements to test how much the load time was affected
by adding a service worker. We used the network tab of Google Chrome’s Developer
console to see how long it takes for the page to load. First we added the development
build of HRMobi to home screen to ensure that the service worker was working.
Then we refreshed the app 30 times and wrote down the load time. Then we opened
the current production build of the app on browser, refreshed the page 30 times
and wrote down the load time between each refresh. We used Chrome’s option to
simulate "Fast 3G” connection on both cases so that we could see how long it takes
for the app to load if the connection speed is little slower.

Our results show a significant difference in load times. PWA version of the app
takes only 830 milliseconds to load in average as the non-PWA version of the app
takes 3 500 milliseconds. In other words the PWA version is four times faster
compared to the non-PWA version of the app. All of the timings can be seen from

Appendix D.

CHAPTER 5. IMPLEMENTATIONS AND TESTING 48

5.2.3 Offline access

By loading assets from the cache we were able to add offline support to HRMobi. The
offline access for HRMobi was succesfully implemented by using both IndexedDB
and LocalStorage. Arrays of objects such as the list of shifts and the list of em-
ployees were saved to IndexedDB. Other data such as login response were saved to
LocalStorage. Normally one would use cache storage for saving HT'TP responses
but the LocalStorage was chosen in this situation because the login request may be
called with varying query parameters. Using to LocalStorage it is easier to define in

what format and where the response is saved.

5.2.4 Push notifications

One of the main benefits of upgrading HRMobi to a progressive web app is that it
allows us to add push notifications to the application. We came up with a list of
situations where push notifications could be used in HRMobi. Here is the list of

these scenarios.

e An employee will receive a notification when a foreman creates a new bulletin
board message which is marked as "urgent” and the employee is one of the

receivers for that message.

e An employee will receive a notification when a foreman publishes new shifts

that can be seen by the employee.

o An employee will receive a notification when a foreman chooses to send a push
notification for certain employees to notify them about an extra shift that can

be taken.

o A foreman will receive a notification when an employee catches one of the

extra shifts available.

CHAPTER 5. IMPLEMENTATIONS AND TESTING 49

We decided to implement a separate Node.js server to handle user subscription
and sending push notifications to users. This approach was chosen because of the
case of developing a push server with Node.js. There is an existing npm package?
which contains functions for generating VAPID keys and sending push notifications.
VAPID stands for Voluntary Application Server Identification and is a method used
for making sure that only single application server is able to send push notifications
[56].

Our Node.js implementation has two API endpoints. One endpoint is for sub-
scribing a new user and the other is for sending push notifications for given users.
We chose to use SQLite as our database format for storing the data of subscribed

users.

5.2.5 Background sync

We decided that we will not add background sync support for HRMobi at this
point. Some events require to take place in real time and therefore by enabling
background sync we found that the app might just become needlessly complicated
for developers and end users. Background sync might easily give the user a feeling
that something works and something they sent went through while in reality the
thing might not have been sent to the server because of network issues. Other

reason for not implementing this is that it is not yet supported on iOS Safari.

5.2.6 Performance improvements

Progressive web apps should perform as well as possible. For this reason we made
other changes to HRMobi to make it function better. Google offers a tool called

Lighthouse® which can be used to measure different qualitative aspects of a web

4https://www.npmjs.com/package/web-push
Shttps://developers.google.com/web /tools/lighthouse

CHAPTER 5. IMPLEMENTATIONS AND TESTING 50

Performance Accessibility Best SEO Progressive
Practices Web App

Figure 5.2: Current performance with Lighthouse tool

page. This tool contains five metrics it uses to evaluate the page. These metrics are
performance, accessibility, best practices, SEO and progressive web app. We used
the tool to analyze the current production version of HRMobi. The results obtained
from the Lighthouse tool are shown in Figure 5.2. The tool also tells the developer
which things there are that need to be fixed. We then used these quidelines to make
the improvements on HRMobi.

Performance score was improved from 87 to 97 by making most of the JavaScript
and CSS load asynchronously and therefore not block the initial page render. We
moved critical CSS code to the <head> element of the page so that some styling
is applied to the page when it loads. To make other CSS code load asynchronously
we used a trick® where we added the attributes shown in Listing 5.1 to the <1link>

elements fetching the external CSS files.
media="print" onload="this.media='all'"

Listing 5.1: Trick for fetching CSS asynchronously

Accessibility score was improved from 50 to 100 by adding alt attributes to
images so that the text will be rendered if the image file is missing or fails to load.
We also added aria-label attributes to inputs so that screen readers will work with
them.

Best practices score was improved from 79 to 93 by switching from older HTTP /1.1

to newer HTTP /2. The Lighthouse tool suggests that we should remove external

Shttps://www.filamentgroup.com/lab/load-css-simpler/

CHAPTER 5. IMPLEMENTATIONS AND TESTING 51

ONCRONOR

Performance Accessibility Best Progressive
Practices Web App

Figure 5.3: Performance with Lighthouse tool after changes

libraries such as jQuery and jQuery Mobile as they have some known vulnerabil-
ities. There is a newer version of jQuery with no known vulnerabilities but the
newest version of the jQuery Mobile is from 2017 and it still contains some known
vulnerabilities. After experiementing with these we found out that these versions of
jQuery do not function properly together. We decided that we will later attempt to
gradually replace all jQuery code with native JavaScript.

Finally SEO score was improved from 75 to 100. Adding alt attributes for images
also affected this score and on top of that we added a missing meta description for
the page.

After our changes the Lighthouse tool also classifies our page as a PWA because
the page registers a service worker, loads offline and serves a manifest that meets
the installation criteria”. The improved results of the Lighthouse audit can be seen

in Figure 5.3.

5.2.7 Future work

Progressive web apps can easily be deployed on Google Play store by creating a
Trusted Web Activity. This is not achievable before we have solved the problem
with multiple origins and versions of the app. One possible way to avoid the multi-
origin issue would be to create the shell of the app in one domain and then make

it fetch different version of files from different places depending on the organization

"https://web.dev /installable-manifest/

CHAPTER 5. IMPLEMENTATIONS AND TESTING 52

chosen. We experimented with this a bit already and were able to create a working
setup where all client side files were served from one server and all fetch requests
were made to other server.

The startup time on first load is another things that could be improved further.
This can be achieved by splitting the JavaScript to multiple files. The HTML
document should also be splitted as every page of the app is currently inside a

single large HTML file.

6 Discussion and conclusion

In this chapter, we will discuss the implications of our results, give the conclusion

of this thesis and then present some topics which could be researched further.

6.1 Discussion

It is not clear what it takes for a web page to be classified as a web app and if a
web page that registers a service worker and has a valid web app manifest should
be classified as a progressive web app or not. Should there be a term ”progressive
web page”? The term "progressive web page” or "progressive web site” is used in
some articles on the Internet [47]. In one article they even point out that the term
"progressive web app” is a successor of the term "progressive web page” [57].

As PWAs are replacing native apps we are moving in a direction where browsers
begin to act as operating systems themselves hosting other apps [57]. This feels
counterintuitive as it can be thought of just adding additional layer of complexity.
On the other hand this change brings web pages on the same level with native
applications. Browsers also enable cross-platform functionality and other handy
features such as possibility to share the link for a certain app.

Progressive web apps are still missing some of the features that exist on native
but PWAs are quickly catching up. Contact Picker API was added to the mobile
version of Chrome in early 2020 [11]. Access to the file system through the File

System API is currently available on Chrome as an origin trial and will probably be

CHAPTER 6. DISCUSSION AND CONCLUSION 54

released in the near future.

6.2 Conclusion

As we conducted a systematic literature review we found out that there has not been
much research on the subject of progressive web apps yet. For this reason most of
our information presented on this thesis is based on online sources.

To answer RQ 1 we have presented different definitions found for Progressive
web apps. For some reason the definition of progressive web app is not clear for
many. Definitions range from strict technical definitions to ones describing the non-
technical aspects like the user experience. Based on what we have learned from
literature and through our own experiments we suggest that the technical definition

of Progressive web app should be the following.

A progressive web app is a website which registers a service worker and

serves a valid web app manifest.

This is basically the same definition as what Keith [30] presented on 2017. The
only difference is that our definition does not contain the need for HT'TPS. Because
registering a service worker always requires the site to be served over HTTPS it is
not needed in the definition of PWA.

Progressive web apps seem to compete against native apps pretty well at the
time of writing this thesis (June 2020). Only major browser that does not quite yet
support all the main features of PWAs is Safari on iOS. Push notifications are not
supported by Safari yet which might still lead into having to build a native app for
iOS even though other platforms could work with PWAs as complete replacements
for native apps.

To answer RQ 2.1 we did some research where we compared the features avail-

able for progressive web apps with features available for native applications. These

CHAPTER 6. DISCUSSION AND CONCLUSION 55

findings are presented on Chapter 4. Currently some of the most important missing
features from Chrome browser are ability to access the file system and adding a
badge to the app icon. Ability to view user’s contacts is missing from iOS Safari.
This feature was just recently added to Chrome [11].

Safari does not support Push API either but there is an interesting workaround
for this using Facebook Messenger Push Notifications. This require Facebook mes-
senger application to be installed on the users device to start with.

Some other features which Safari does not support at the time of writing (June
2020) include Background Sync, Bluetooth, Speech Recognition, Touch ID, Face ID
and accessing battery information. [28]

There are possibly even more of these missing features as there are certainly
some less often used native features that have not been taken into consideration in
native — PWA comparisons. Also the feature support for PWA varies with different
browsers.

In Chapter 4 we found out answer for RQ 2.2 by studying whether some of the
features on native are still more performant compared to the implementations with
progressive web apps. According to the study conducted by Fransson [46], taking a
picture is still something where native apps perform better than PWAs.

In Chapter 5 we did some performance testing with fetching Geolocation with
native Android app and with a PWA implementation. Based on our results there is
no significant difference between the two.

In the same chapter, we showed the steps that it took for us to transform an
existing web app HRMobi to work as a progressive web app. We did not have time
to implement all beneficial aspects of PWA for HRMobi within the scope of this
thesis. Neither did any of the implementations yet get to the production build so
we can say nothing about how these changes will affect actual users. Our own tests

with the development build shows that the changes to the app make the app start up

CHAPTER 6. DISCUSSION AND CONCLUSION 56

faster and make it possible to use some of the features even if offline. We were also
able to implement push notifications which was one of the most requested feature

to be implemented in HRMobi.

6.3 Suggestions for further work

As this topic evolves in a fast pace and the browser support changes it might be
interesting after year or two to research this same topic and find out if the support
is better and if there are still any reasons to build native applications. A specific
topic that could be researched is whether the Facebook Messenger notifications can
be used to replace regular push notifications or not. The overall support for PWA
in iOS Safari is also one subject that could be researched further as our tests and
implementations were mainly run on Chrome for Android.

The effects of upcoming 5G network could be one topic of interest as they say that
5G might make fetching files from network even faster than fetching files from local
storage. This might negate some benefits that PWA delivers as cached files becomes
less important when network is available. On the other hand faster connections
could boost up the use of web based applications even more.

A web component framework called Accelerated mobile pages (shortened AMP)
is something that can be used alongside with PWA to enhance its capabilities even
further. The framework was announced by Google in 2015. The idea is to create light
weight and fast web pages that operate fluently on mobile and on other devices that
have less processing power. Combining these techniques can have a positive impact
as AMP and PWA have also been referred as "the mobile’s new power couple”. [58].
This topic should be researched further to find out what results can be achieved.

WebAssembly can be used to translate higher level languages such as C, C++ or
Rust to work on the web. WebAssembly enables programs to run faster compared

to JavaScript. One could research whether WebAssembly can be used to enable

CHAPTER 6. DISCUSSION AND CONCLUSION 57

web apps to perform as well as native apps also with applications that require more

computing power.

References

A. Holst, Number of smartphone users worldwide from 2016 to 2021, Avail-
able at: https://www.statista.com/statistics/330695/number-of -

smartphone-users-worldwide/, 2019.

A. Russell, Progressive web apps: FEscaping tabs without losing our soul, Avail-
able at: https://infrequently.org/2015/06/progressive-apps-escaping-

tabs-without-losing-our-soul/, 2015.

A. Osmani, A tinder progressive web app performance case study, Available
at: https://medium.com/@addyosmani/a-tinder-progressive-web-app-

performance-case-study-78919d98ece0, 2017.

C. Love, Why progressive web apps should be your business choice over a native
app, Available at: https://love2dev.com/pwa/progressive-web-app-vs-

native/, 2019.

A. Khan, A. Al-Badi, and M. Al-Kindi, Progressive web application assess-
ment using AHP, Available at: https://www.sciencedirect.com/science/

article/pii/S187705091930955X, 2019.

C. Moll, Apps are faltering. but progressive web apps seem pretty legit. Available
at: https://neatly.io/an-advanced-progressive-web-apps-and-amp-

seo-guide-2019/, 2016.

T. Ater, Building Progressive Web Apps. O’Reilly, 2017.

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://medium.com/@addyosmani/a-tinder-progressive-web-app-performance-case-study-78919d98ece0
https://love2dev.com/pwa/progressive-web-app-vs-native/
https://love2dev.com/pwa/progressive-web-app-vs-native/
https://www.sciencedirect.com/science/article/pii/S187705091930955X
https://www.sciencedirect.com/science/article/pii/S187705091930955X
https://neatly.io/an-advanced-progressive-web-apps-and-amp-seo-guide-2019/
https://neatly.io/an-advanced-progressive-web-apps-and-amp-seo-guide-2019/

REFERENCES 29

8]

[10]

[11]

[13]

[14]

[15]

Z. Anastasia, Should you choose a PWA or native app for your ecommerce
business? Available at: https://rubygarage.org/blog/pwa-vs-native-

app, 2019.

smArtapps, Native application VS progressive web app: Which one should you
choose? Available at: https://medium. com/inside-smartapps/native-
application-vs-progressive-web-app-which-one-should-you-choose-

5eeaaf6eed2d, 2018.

Google, Unlocking new capabilities for the web (Google 1/0 °19), Available at:

https://www.youtube.com/watch?v=GSiUzuB-PoI, 2019.

P. LePage, A contact picker for the web, Available at: https://web.dev/

contact-picker/, 2020.

T. Kerssens, Applicability of progressive web apps in mobile development, Avail-
able at: https://staff . fnwi.uva.nl/a.s.z.belloum/MSctheses/

MScthesis_Tjarco.pdf, 2019.

J. Lee, H. Kim, J. Park, I. Shin, and S. Son, “Pride and prejudice in progres-
sive web apps: Abusing native app-like features in web applications,” English,
in Proceedings of the ACM Conference on Computer and Communications

Security, Cited By :1, 2018, pp. 1731-1746.

W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M. Wahba, “Taxonomy
of cross-platform mobile applications development approaches,” Ain Shams
Engineering Journal, vol. 8, no. 2, pp. 163-190, 2017, 1ssN: 2090-4479. DOTI:
https://doi.org/10.1016/j.asej.2015.08.004. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S2090447915001276.

L. Corral, A. Janes, and T. Remencius, Potential advantages and disadvantages

of multiplatform development frameworks — a vision on mobile environments,

https://rubygarage.org/blog/pwa-vs-native-app
https://rubygarage.org/blog/pwa-vs-native-app
https://medium.com/inside-smartapps/native-application-vs-progressive-web-app-which-one-should-you-choose-5eeaaf6ee92d
https://medium.com/inside-smartapps/native-application-vs-progressive-web-app-which-one-should-you-choose-5eeaaf6ee92d
https://medium.com/inside-smartapps/native-application-vs-progressive-web-app-which-one-should-you-choose-5eeaaf6ee92d
https://www.youtube.com/watch?v=GSiUzuB-PoI
https://web.dev/contact-picker/
https://web.dev/contact-picker/
https://staff.fnwi.uva.nl/a.s.z.belloum/MSctheses/MScthesis_Tjarco.pdf
https://staff.fnwi.uva.nl/a.s.z.belloum/MSctheses/MScthesis_Tjarco.pdf
https://doi.org/https://doi.org/10.1016/j.asej.2015.08.004
http://www.sciencedirect.com/science/article/pii/S2090447915001276
http://www.sciencedirect.com/science/article/pii/S2090447915001276

REFERENCES 60

[16]

[17]

[19]

[20]

[21]

22]

23]

[24]

Available at: https://www.sciencedirect.com/science/article/pii/

S1877050912005303, 2012.

Statista, Number of apps available in leading app stores as of 2nd quarter 2019,
Available at: https://www.statista.com/statistics/276623/number-of-

apps-available-in-leading-app-stores/, 2019.

S. Hyrynsalmi, T. Makila, A. Jarvi, A. Suominen, M. Seppénen, and T. Knuu-
tila, “App store, marketplace, play! an analysis of multi-homing in mobile soft-
ware ecosystems,” vol. 879, Jan. 2012, pp. 59-72. por: 10.13140/RG.2.1.

2540.5524.

A. Osmani, The app shell model, Available at: https://developers.google.

com/web/fundamentals/architecture/app-shell, 2019.

C. Love, What is an app shell and do you need one? Available at: https:

//love2dev.com/blog/app-shell/, 2019.

E. Bidelman, A beginner’s guide to using the application cache, Available at:

https://www.htmlbrocks.com/en/tutorials/appcache/beginner/, 2010.

J. Archibald, Application cache is a douchebag, Available at: https://alistapart.

com/article/application-cache-is-a-douchebag/, 2012.

M. Gaunt, Service workers: An introduction, Available at: https://developers.

google.com/web/fundamentals/primers/service-workers/, 2019.

Mozilla, Remove support for appcache, Available at: https://bugzilla .

mozilla.org/show_bug.cgi?id=1237782, 2019.

ScandiPWA, History of progressive web apps, Available at: https://medium.
com/progressivewebapps/history-of-progressive-web-apps-4c912533a531,
2019.

https://www.sciencedirect.com/science/article/pii/S1877050912005303
https://www.sciencedirect.com/science/article/pii/S1877050912005303
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://doi.org/10.13140/RG.2.1.2540.5524
https://doi.org/10.13140/RG.2.1.2540.5524
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/architecture/app-shell
https://love2dev.com/blog/app-shell/
https://love2dev.com/blog/app-shell/
https://www.html5rocks.com/en/tutorials/appcache/beginner/
https://alistapart.com/article/application-cache-is-a-douchebag/
https://alistapart.com/article/application-cache-is-a-douchebag/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://bugzilla.mozilla.org/show_bug.cgi?id=1237782
https://bugzilla.mozilla.org/show_bug.cgi?id=1237782
https://medium.com/progressivewebapps/history-of-progressive-web-apps-4c912533a531
https://medium.com/progressivewebapps/history-of-progressive-web-apps-4c912533a531

REFERENCES 61

[25]

[26]

[30]

[31]

33]

[34]

A. Romo, Seriously, though. what is a progressive web app? Available at:
https://medium. com/@amberleyjohanna/seriously-though-what-is-

a-progressive-web-app-56130600a093, 2018.

S. Kapoor, Progressive web apps 101: The what, why and how, Available at:
https://www.freecodecamp.org/news/progressive-web-apps-101-the-

what-why-and-how-4aa5e9065ac2/, 2018.
J. Grigsby, Progressive web apps. A Book Apart, 2018.

M. Firtman, Progressive web apps on 10OS are here, Available at: https :
/ /medium . com/ @firt / progressive - web - apps - on - ios - are - here -

d00430dee3a7, 2018.

Google, Progressive web apps, Available at: https://developers . google.

com/web/progressive-web-apps/, 2019.

J. Keith, What is a progressive web app? Available at: https://adactio.

com/ journal/13098, 2017.

P. LePage, Provide a custom install experience, Available at: https://web.

dev/customize-install/, 2020.

E. Navara, Progressive web apps on windows, Available at: https://docs.

microsoft.com/en-us/microsoft-edge/progressive-web-apps, 2018.

P. LePage, Add to home screen, Available at: https://developers.google.

com/web/fundamentals/app-install-banners.

Mozilla, Add to home screen, Available at: https://developer .mozilla.

org/en-US/docs/Web/Progressive_web_apps/Add_to_home_screen, 2019.

Samsung, Ambient badging, Available at: https://hub.samsunginter.net/

docs/ambient-badging/.

https://medium.com/@amberleyjohanna/seriously-though-what-is-a-progressive-web-app-56130600a093
https://medium.com/@amberleyjohanna/seriously-though-what-is-a-progressive-web-app-56130600a093
https://www.freecodecamp.org/news/progressive-web-apps-101-the-what-why-and-how-4aa5e9065ac2/
https://www.freecodecamp.org/news/progressive-web-apps-101-the-what-why-and-how-4aa5e9065ac2/
https://medium.com/@firt/progressive-web-apps-on-ios-are-here-d00430dee3a7
https://medium.com/@firt/progressive-web-apps-on-ios-are-here-d00430dee3a7
https://medium.com/@firt/progressive-web-apps-on-ios-are-here-d00430dee3a7
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
https://adactio.com/journal/13098
https://adactio.com/journal/13098
https://web.dev/customize-install/
https://web.dev/customize-install/
https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps
https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps
https://developers.google.com/web/fundamentals/app-install-banners
https://developers.google.com/web/fundamentals/app-install-banners
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Add_to_home_screen
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Add_to_home_screen
https://hub.samsunginter.net/docs/ambient-badging/
https://hub.samsunginter.net/docs/ambient-badging/

REFERENCES 62

[36] M. Cohen, Web storage overview, Available at: https://developers.google.

com/web/fundamentals/instant-and-offline/web-storage, 2019.

[37] P. Walton, Best practices for using IndexedDB, Available at: https://developers.
google . com/web/fundamentals/instant - and-offline/web-storage/

indexeddb-best-practices, 2019.

[38] Mozilla, Web storage api, Available at: https://developer .mozilla.org/

en-US/docs/Web/API/Web_Storage_ API, 2020.

[39] P. LePage, Storage for the web, Available at: https://web.dev/storage-

for-the-web/, 2020.

[40] J. Wilander, Full third-party cookie blocking and more, Available at: https:
//webkit .org/blog/10218/full-third-party-cookie-blocking-and-

more/, 2020.

[41] Google, Caching files with service worker, Available at: https://developers.

google.com/web/ilt/pwa/caching-files-with-service-worker, 2019.

[42] J. Archibald, The offline cookbook, Available at: https : // developers .
google.com/web/fundamentals/instant-and-offline/offline-cookbook,

2019.

[43] C. O’Connell, The inside view: How consumers really feel about push notifica-
tions, Available at: http://info.localytics.com/blog/the-inside-view-

how-consumers-really-feel-about-push-notifications, 2016.

[44] R. Gibb, How consumers perceive push notifications in 2018, Available at:
http://info.localytics.com/blog/push-notification-survey-2018,

2018.

[45] iZooto, Getting started with facebook messenger push notifications, Available
at: https://www.izooto.com/facebook-messenger-push-notifications-

definitive-guide, 2020.

https://developers.google.com/web/fundamentals/instant-and-offline/web-storage
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/indexeddb-best-practices
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/indexeddb-best-practices
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/indexeddb-best-practices
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://web.dev/storage-for-the-web/
https://web.dev/storage-for-the-web/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://developers.google.com/web/ilt/pwa/caching-files-with-service-worker
https://developers.google.com/web/ilt/pwa/caching-files-with-service-worker
https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook
https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook
http://info.localytics.com/blog/the-inside-view-how-consumers-really-feel-about-push-notifications
http://info.localytics.com/blog/the-inside-view-how-consumers-really-feel-about-push-notifications
http://info.localytics.com/blog/push-notification-survey-2018
https://www.izooto.com/facebook-messenger-push-notifications-definitive-guide
https://www.izooto.com/facebook-messenger-push-notifications-definitive-guide

REFERENCES 63

[46]

[47]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

R. Fransson, Comparing progressive web applications with native android ap-

plications: An evaluation of performance when it comes to response time, 2017.

Hipster, What is a progressive web app? — progressive web app (PWA), Avail-
able at: https://hipster-inc.com/what-is-a-progressive-web-app-

pwa/, 2019.

N. Gallagher, How we built twitter lite, Available at: https://blog.twitter.
com/engineering/en_us/topics/open-source/2017/how-we-built -

twitter-lite.html, 2017.

M. Rybczonek, How to get a progressive web app into the google play store,
Available at: https://css-tricks.com/how-to-get-a-progressive-web-

app-into-the-google-play-store/, 2019.

P. LePage, The native file system API: Simplifying access to local files, Avail-

able at: https://web.dev/native-file-system/, 2019.

A. Bar, Contacts, Available at: https://whatwebcando . today/contacts.

html, accessed: 2020-04-22.; 2020.

P. LePage, Badging for app icons, Available at: https://web.dev/badging-
api/, 2018.

D. Renzulli, Progressive web apps in multi-origin sites, Available at: https:

//web.dev/multi-origin-pwas/, 2019.

M. Caputa, How to share cookie or state between progressive web application
in standalone mode and safari on i0S, Available at: https://www.netguru.
com/codestories/how-to-share-session-cookie-or-state-between-

pwa-in-standalone-mode-and-safari-on-ios, 2018.

D. Fabulich, How to fiz the refresh button when using service workers, Available
at: https://redfin.engineering/how-to-fix-the-refresh-button-

when-using-service-workers-a8e27af6df68, 2017.

https://hipster-inc.com/what-is-a-progressive-web-app-pwa/
https://hipster-inc.com/what-is-a-progressive-web-app-pwa/
https://blog.twitter.com/engineering/en_us/topics/open-source/2017/how-we-built-twitter-lite.html
https://blog.twitter.com/engineering/en_us/topics/open-source/2017/how-we-built-twitter-lite.html
https://blog.twitter.com/engineering/en_us/topics/open-source/2017/how-we-built-twitter-lite.html
https://css-tricks.com/how-to-get-a-progressive-web-app-into-the-google-play-store/
https://css-tricks.com/how-to-get-a-progressive-web-app-into-the-google-play-store/
https://web.dev/native-file-system/
https://whatwebcando.today/contacts.html
https://whatwebcando.today/contacts.html
https://web.dev/badging-api/
https://web.dev/badging-api/
https://web.dev/multi-origin-pwas/
https://web.dev/multi-origin-pwas/
https://www.netguru.com/codestories/how-to-share-session-cookie-or-state-between-pwa-in-standalone-mode-and-safari-on-ios
https://www.netguru.com/codestories/how-to-share-session-cookie-or-state-between-pwa-in-standalone-mode-and-safari-on-ios
https://www.netguru.com/codestories/how-to-share-session-cookie-or-state-between-pwa-in-standalone-mode-and-safari-on-ios
https://redfin.engineering/how-to-fix-the-refresh-button-when-using-service-workers-a8e27af6df68
https://redfin.engineering/how-to-fix-the-refresh-button-when-using-service-workers-a8e27af6df68

REFERENCES 64

[56]

[59]

[62]

[63]

M. Thomson and P. Beverloo, Voluntary application server identification (VA-
PID) for web push, Available at: https://tools.ietf.org/id/draft-ietf-

webpush-vapid-03.html, 2017.

Beyond Java, Progressive web apps, Available at: https://www.beyondjava.

net/progressive-web-apps, 2016.

A. Habeeb, An advanced! progressive web apps and AMP SEO guide 2019,
Available at: https://neatly.io/an-advanced-progressive-web-apps-

and-amp-seo-guide-2019/, 2019.

S. Priyadarsini, J. M. Varghese, A. Mahesh, and T. S. George, “Shopping
spree: A location based shopping application,” English, International Journal

of Engineering and Advanced Technology, vol. 8, no. 6, pp. 1451-1455, 2019.

G. De Andrade Cardieri and L. A. M. Zaina, “PWA-EU: Extending PWA
approach for promoting customization based on user preferences,” English,
Proceedings of the ACM on Human-Computer Interaction, vol. 3, no. EICS,
2019.

F. Fonseca, H. Peixoto, J. Braga, J. Machado, and A. Abelha, “Smart mobile
computing in pregnancy care,” English, in Proceedings of 34th International
Conference on Computers and Their Applications, CATA 2019, Cited By :1,

2019, pp. 219-224.

U. Paul, M. Nekrasov, and E. Belding, “EmerGence: A delay tolerant web
application for disaster relief,” English, in HotMobile 2019 - Proceedings of the

20th International Workshop on Mobile Computing Systems and Applications,
2019, p. 167.

C.-T. Yeh, T.-M. Chen, and M.-C. Chen, “A progressive web app for evaluating
occupation indicator,” English, Journal of Internet Technology, vol. 20, no. 7,

pp. 2217-2223, 2019.

https://tools.ietf.org/id/draft-ietf-webpush-vapid-03.html
https://tools.ietf.org/id/draft-ietf-webpush-vapid-03.html
https://www.beyondjava.net/progressive-web-apps
https://www.beyondjava.net/progressive-web-apps
https://neatly.io/an-advanced-progressive-web-apps-and-amp-seo-guide-2019/
https://neatly.io/an-advanced-progressive-web-apps-and-amp-seo-guide-2019/

REFERENCES 65

[64]

[66]

[68]

[69]

[70]

D. Teran, F. Tapia, J. Rivera, and H. Aules, “Use of e-health as a mobility
and accessibility strategy within health centers in ecuador with the aim of

reducing absenteeism to medical consultations,” English, in CEUR Workshop

Proceedings, vol. 2486, 2019, pp. 319-333.

G. de Andrade Cardieri and L. M. Zaina, “Analyzing user experience in mo-
bile web, native and progressive web applications: A user and HCI specialist
perspectives,” English, in ACM International Conference Proceeding Series,

Cited By :3, 2018.

D. Fortunato and J. Bernardino, “Progressive web apps: An alternative to
the native mobile apps,” Portuguese, in Iberian Conference on Information

Systems and Technologies, CISTI, Cited By :1, vol. 2018-June, 2018, pp. 1-6.

H. Wijaya and R. A. Abbas, “Animation effectiveness for e-learning with pro-
gressive web APP approach: A narrative review,” English, International Jour-

nal of Engineering and Technology(UAE), vol. 7, no. 4, pp. 112-120, 2018.

K. Hu and J. Zhu, A progressive web application on ancient roman empire
coins and relevant historical figures with graph database, English, ser. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). 2018, vol. 11197 LNCS,

pp- 235-241.

P. Loreto, J. Braga, H. Peixoto, J. Machado, and A. Abelha, “Step towards
progressive web development in obstetrics,” English, in Procedia Computer

Science, vol. 141, 2018, pp. 525-530.

L. E. Nugroho, A. G. H. Pratama, I. W. Mustika, and R. Ferdiana, “Devel-
opment of monitoring system for smart farming using progressive web app,”

English, in 2017 9th International Conference on Information Technology and

REFERENCES 66

[71]

Electrical Engineering, ICITEE 2017, Cited By :2, vol. 2018-January, 2017,
pp. 1-5.

A. Bigrn-Hansen, T. Majchrzak, and T.-M. Grenli, “Progressive web apps:
The possible web-native unifier for mobile development,” English, in WEBIST
2017 - Proceedings of the 13th International Conference on Web Information

Systems and Technologies, Cited By :13, 2017, pp. 344-351.

Appendix A Scopus search results

APPENDIX A. SCOPUS SEARCH RESULTS A-2

Paper Year Type Topic of the study

[59] 2019 case study Shopping Spree: A Location Based Shopping Ap-
plication

[60] 2019 theoretical PWA-EU: Extending PWA Approach for Promot-
ing Customization based on User Preferences

[61] 2019 case study / theoretical ~Smart Mobile Computing in Pregnancy Care

[62] 2019 case study EmerGence: A Delay Tolerant Web Application for
Disaster Relief

[63] 2019 case study A progressive web app for evaluating occupation
indicator

[64] 2019 case study Use of e-Health as a Mobility and Accessibility
Strategy within Health Centers in Ecuador with the
Aim of Reducing Absenteeism to Medical Consul-
tations

[65] 2018 theoretical Analyzing User Experience in Mobile Web, Native
and Progressive Web Applications: A User and HCI
Specialist Perspectives

[13] 2018 theoretical Pride and Prejudice in Progressive Web Apps:
Abusing Native App-like Features in Web Appli-
cations

[66] 2018 theoretical Progressive Web Apps: an alternative to the native
mobile Apps

[67] 2018 case study Animation Effectiveness for E-Learning with Pro-
gressive Web App Approach: a Narrative Review

[68] 2018 case study / theoretical A Progressive Web Application on Ancient Roman
Empire Coins and Relevant Historical Figures with
Graph Database

[69] 2018 case study / theoretical Step Towards Progressive Web Development in Ob-
stetrics

[70] 2017 case study Development of Monitoring System for Smart
Farming Using Progressive Web App

[71] 2017 theoretical Progressive Web Apps: The Possible Web-native

Unifier for Mobile Development

Table A.1: Search results

1

2)

6

10

20

Appendix B Contact Picker API

<IDOCTYPE html>
<html>
<head>
<meta name="viewport"
=1.0">
</head>
<body>

<script>

content="width=device-width, initial-scale

async function openContacts() {

if (!navigator.contacts) {

alert ("not supported!")

return;

3

const props = ['name', 'email', 'tel'l;

const opts = {mult

try {

const contacts =

alert (contacts) ;
} catch (e) {

alert(e);

iple: truel;

await navigator.contacts.select (props,

opts)

2

2

APPENDIX B. CONTACT PICKER API

B-2

1 </script>

<button onclick="openContacts()">Contacts</button>

26 </body>

27 </html>

Listing B.1: Testing Contact Picker API

Appendix C Benchmark timing

results

APPENDIX C. BENCHMARK TIMING RESULTS

PWA Geolocation Samsung S7

Android Geolocation Samsung S7

Runs | Milliseconds
1 2950
2 2470
3 2531
4 2421
5 865
6 712
7 776
8 395
9 936
10 229
11 1044
12 246
13 2470
14 355
15 840
16 2485
17 1052
18 2566
19 831
20 2601
21 2578
22 291
23 349
24 2571
25 1072
26 494
27 592
28 2466
29 507
30 1461

Runs | Milliseconds
1 7239
2 10344
3 10468
4 3127
5 27719
6 5544
7 3170
8 3605
9 966
10 210

11 243
12 70

13 95

14 524
15 2383
16 842
17 809
18 403
19 356
20 238
21 531
22 1004
23 242
24 517
25 848
26 990
27 462
28 760
29 578
30 881

Table C.1: Geolocation timings with PWA and native Android application

Appendix D Benchmark load

time results on HRMobi

APPENDIX D. BENCHMARK LOAD TIME RESULTS ON HRMOBI

D-2

non-PWA version of HRMobi

PWA version of HRMobi

Runs | Milliseconds Runs | Milliseconds
1 3320 1 842
2 3730 2 867
3 3320 3 827
4 3670 4 838
5 3320 5 860
6 3730 6 826
7 3760 7 824
8 3320 8 844
9 3320 9 827
10 3750 10 825
11 3790 11 841
12 3730 12 832
13 3720 13 825
14 3330 14 825
15 3330 15 801
16 3330 16 841
17 3670 17 850
18 3790 18 825
19 3660 19 816
20 3670 20 822
21 3330 21 826
22 3350 22 810
23 3740 23 825
24 3710 24 820
25 3640 25 832
26 3350 26 820
27 3650 27 831
28 3320 28 830
29 3320 29 836
30 3310 30 948

Table D.1: HRMobi app load time

	List Of Abbreviations
	Introduction
	Motivation
	Objective
	Research questions
	Outline

	Background
	Previous research
	App development approaches
	Native applications
	Hybrid applications
	Web applications

	Application shell architecture
	Application cache
	History of progressive web apps

	Progressive Web App
	Technical requirements for PWAs
	Web app manifest
	Installation
	Service worker
	Installation
	Lifecycle
	Scope limitation
	Working offline

	Saving data
	CacheStorage
	IndexedDB
	Web Storage
	Browser differences

	Cache management
	Caching strategies
	Strategies for serving assets

	Background sync
	Push notifications
	Subscribing for push notifications
	Sending push notifications
	Security considerations
	Facebook Messenger push notifications

	PWA versus native
	Benefits of PWA compared to native
	App distribution
	Drawbacks compared to native
	Features coming to web
	Google Chrome origin trials
	Native File System API
	Contact Picker API
	Badging for App Icons

	Implementations and testing
	Performance testing with geolocation
	HRMobi
	Challenges
	Service worker
	Offline access
	Push notifications
	Background sync
	Performance improvements
	Future work

	Discussion and conclusion
	Discussion
	Conclusion
	Suggestions for further work

	References
	Scopus search results
	Contact Picker API
	Benchmark timing results
	Benchmark load time results on HRMobi

