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Abstract

The theory of open quantum systems deals with the inevitable interaction
between a quantum system of interest and its surrounding environment, the
resulting non-unitary dynamics of the system and its decoherence. On the
one hand, the interaction with the environment is a challenge for quantum
technologies that aim to provide fast and secure quantum computation and
communication. On the other hand, the open system dynamics is a natu-
ral framework to study thermodynamics of quantum systems, concerning
both fundamental aspects and applications such as miniaturized thermody-
namic machines. In this thesis, we utilize open quantum systems both to
perform quantum information protocols and to study the relation between
dynamical and thermodynamic properties of the quantum systems under
scrutiny.

After a brief review of some essential concepts of quantum theory, the
results of the original articles are summarized. The results are grouped
into two parts. The first part focuses on quantum information protocols
with open systems. Unlike the conventional approaches, here we actually
use the environment to perform the task of the protocols. The central
tool in this part is the non-local memory effects implemented by the two-
photon dephasing model. A master equation approach to this model is
presented which adds to the previous results based on the dynamical map
point of view. We then employ the non-local memory effects as a resource
to remotely generate polarization entanglement induced by interference in
the frequency degrees of freedom and also to experimentally realize a high-
fidelity quantum teleportation protocol with open systems.

The relation between the dynamics and the thermodynamics of the
quantum systems is explored in the second part of the thesis. A controllable
model for the transition from Markovian to non-Markovian dynamics of a
qubit is presented. We derived the corresponding master equation to cap-
ture the reduced dynamics of the qubit and found that non-Markovianity
suppresses the ability to perform work on it. Finally, the finite-time driving
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effects on the performance of a quantum Stirling heat engine is explored.
We found a direct relation between the performance of the heat engine and
the different time scales involved in the dynamics of the driven working
substance. In particular, a simultaneous efficiency and power boost is dis-
cussed and the effect of asymmetric driving protocols for expansion and
compression processes is addressed.



Tiivistelma

Avoimien kvanttisysteemien teoria késittelee kiinnostuksen kohteena ole-
van kvanttisysteemin vuorovaikutusta ympéristonséd kanssa. Vuorovaiku-
tuksesta seuraavaa systeemin epaunitaarista aikakehitysta ja koherenssien
katoamista, dekoherenssia. Ympéariston kanssa tapahtuva vuorovaikutus on
haaste kvanttiteknologioille, joiden tarkoituksena on tarjota nopeaa kvant-
tilaskentaa ja turvallista kommunikointia. Toisaalta, avoimen systeemin ai-
kakehitys on luonnollinen viitekehys tutkia kvanttisysteemien termodyna-
miikkaa, késitellen sekd perustavanlaatuisia ndkokohtia ettd kdytannon so-
velluksia, kuten miniatyyrimaisia termodynaamisia koneita. Tassa vaitos-
kirjassa avoimia kvanttisysteemeja hyodynnetdén seké kvantti-informaatio-
protokollien toteutuksessa ettd kvanttisysteemin aikakehitykseen liittyvien
ja termodynaamisten ominaisuuksien vélisen suhteen tutkimiseen.

Kvanttimekaniikan oleellisimpien kasitteiden lyhyen kertauksen jalkeen
esitetdan vaitostyon alkuperdisten julkaisujen tulosten yhteenveto. Tulok-
set on ryhmitelty kahteen osaan: Ensimmaéinen osa keskittyy avoimilla sys-
teemeilld toteutettaviin kvantti-informaatioprotokolliin. Toisin kuin tavan-
omaisessa lahestymistavassa, téssd ympéaristéd hyoédynnetddn protokollan
tavoitteen toteutumisessa. Tamén osan keskeinen tyokalu ovat epélokaa-
lit muisti-ilmiét toteutettuna kahden fotonin dephasing-melussa. Ensim-
maéisessé osassa esitellidn master-yhtaloon perustuva lahestymistapa té-
hén melutyyppiin, miké tuo lisdarvoa aikaisempiin tuloksiin, jotka perus-
tuvat dynaamisiin karttoihin. Sitten hyddynndmme epélokaaleja muisti-
ilmiGitd resurssina etédnd tapahtuvassa polarisaatiokietoutumisen generoin-
nissa toteutettuna taajuusvapausasteiden interferenssilld seké korkean fide-
liteetin kvanttiteleportaation kokeellisessa toteutuksessa avoimilla kvantti-
systeemeilla.

Viitoskirjan jalkimmaisessd osassa tutkitaan kvanttisysteemin aikake-
hityksen ja termodynamiikan suhdetta. Esitimme mallin, jossa kubitin
aikakehityksen muutosta Markovisesta epa-Markoviseksi voidaan hallita.
Johdimme vastaavan master-yhtalon ratkaistaksemme kubitin redusoidun
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aikakehityksen ja selvitimme, ettd epé-Markovisuus estdd tekemaésta ku-
bittiin tyota. Viimeisena tutkitaan aérellisessa ajassa tehtavin systeemin
ajon vaikutusta kvantti-Stirling-limpovoimakoneen suorituskykyyn. Loy-
simme suoran yhteyden ldmpdvoimakoneen suorituskyvyn ja tyotéd teke-
van aineen aikaskaalojen vélilla. Erityisesti késitellddn samanaikaista hyo-
tysuhteen ja tehon parannusta sekd epdsymmetristen ajoprotokollien kéyt-
toé laajenemis- ja kompressioprosesseissa.
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Chapter 1

Introduction

Quantum theory is a probabilistic theory describing the stochastic nature
of the universe at very small scales. In the quantum world, a particle can si-
multaneously follow in two different paths — behaving like a wave — until one
observes its location. Yet incompatible measurements can not be performed
accurately at a single experimental arrangement. The experimentalist needs
to decide which behavior of the quantum object she wants to observe, i.e, its
wave or particle behavior. Bohr denoted this complementary principle an
elementary quantum phenomenon. Miller and Wheeler illustrated this phe-
nomenon as a smoky dragon whose tail and head correspond respectively
to experimental arrangement and outcome of the experiment, whereas, the
body of the dragon in between is smoky and undefined to us [1, 2]. De-
spite its departure from our everyday life, predictions of quantum theory
have been realized with high accuracy in the experimental tests. Many new
possibilities have emerged that were out of imagination in classical physics.
This also led quantum mechanics to become intertwined with different fields
of physics, providing fundamental insights and technological advancements.
In particular, quantum information theory and quantum thermodynamics
have been of high importance.

The basic unit of information in a quantum system is called the qubit.
The quantum superposition principle makes qubits fundamentally different
to classical bits. Utilizing quantum superposition allows quantum algo-
rithms to outperform classical counterparts [3-11]. In addition, the su-
perposition principle in multipartite quantum systems leads to pure quan-
tum correlation [12], named entanglement by Schréodinger [13]. Quantum
entanglement is a resource in quantum information processing, enabling
teleportation of an unknown quantum state [14, 15], quantum superdence
coding [16, 17], and quantum secure key distribution [18-20]. Simulation
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16 Introduction

of physical systems on quantum devices is the other important aspect of
the quantum world [21, 22], especially when it comes to the tasks that can
not be simulated on a classical computer [23]. Thanks to recent technolog-
ical advancements, we live in the era of Noisy Intermediate-Scale Quantum
(NISQ) technologies [24]. Nowadays, quantum supremacy is claimed to be
realized on an actual quantum device [25], ground to satellite quantum
teleportation [26] and intercontinental quantum key distribution [27] are
implemented, and small scale quantum computers are available to public
by companies like IBM [28].

Despite all of these breakthroughs, we are still far from realizing large
scale fault tolerant quantum computers. This is mostly due the fact that
quantum systems are very prone to the noise induced by their interaction
with the surrounding environment. As perfect isolation of a system is out
of reach, all quantum systems are inevitably open to interact with their
surroundings. The system-environment interaction, also known as open
system dynamics, destroys coherence and entanglement of the system in a
process named decoherence [29-31]. Therefore, any quantum information
processing task has to be done on a time scale smaller than the decoherence
time of the qubits. These facts have attracted a lot of attention to the the-
ory of open quantum systems, aiming to first understand and then tackle
decoherence. For example, addressing memory effects in the dynamics of
open systems have attracted much attention both theoretically and experi-
mentally [32-36]. Lots of effort have been also done to minimize the effects
of decoherence via, for example, dynamical decoupling, decoherence-free
subsystems, and error-correction [37, 38].

The other interdisciplinary field in quantum theory deals with thermo-
dynamic properties of the quantum systems. From the birth of quantum
mechanics it has been a challenge to revisit the laws of thermodynamics,
governing the macroscopic world close to equilibrium, by starting from the
quantum realm, which deals with microscopic systems at finite sizes and
usually out of equilibrium. These challenges engendered the rise of the
so-called quantum thermodynamics. Thanks to recent advances in experi-
mental design and control of quantum systems and also to new theoretical
and numerical tools, quantum thermodynamics has received much attention
during the last two decades. There are a vast number of open questions
covered in the field, as it is listed in the recent book [39]. For example,
what is the right definition of process-dependent quantities like work and
heat in the quantum realm? How does equilibration of a quantum system
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arise from quantum properties? Are quantum thermal machines superior to
their classical counterparts due to the presence of coherence and entangle-
ment? Also many different research topics exist, for example, thermoelec-
tricity [40], resource theory of thermodynamics [41], information-theoretic
approaches [39], and quantum fluctuation relations [39, 42].

A powerful tool in quantum thermodynamics is the the theory of open
quantum systems [39, 43, 44]. The concept of an open system — with fac-
torized initial condition — provides a natural partitioning of the system and
the heat bath, which is required in thermodynamics. Once the separation
of the system and the bath is established, one can study flow of energy
and entropy between the two parts as well as generation of entropy in the
system and bath. Emergence of thermodynamic laws from quantum me-
chanics can be consistently formulated by semi-group Markovian dynamics
[39, 43], which is a pillar of the theory of open quantum systems. Thermo-
dynamics in a non-Markovian situation is also investigated for example in
Refs [45, 46]. Open system dynamics also allows for studying and imple-
menting quantum counterparts of the classical heat engines, where a single
quantum system plays the role of the working substance [39, 47, 48].

This thesis is developed around new results in the theory of open quan-
tum systems with direct applications in quantum information theory and
quantum thermodynamics. The structure of the thesis is the following.
In Chapter 2, we review the basics of quantum theory and present an in-
troduction to the concepts in quantum information theory and quantum
thermodynamics that have been used in deriving the results of the the-
sis. The main results of the thesis are accordingly divided in two parts,
presented in Chapter 3 and Chapter 4.

Chapter 3 is devoted to the quantum information protocols with open
quantum systems. Central to the results of this part is the concept of
non-local memory effects induced by initial correlations in the state of the
environment [49, 50]. A controllable experimental platform to implement
non-local memory effects is the two-photon dephasing model [51]. The main
objective of this part of the thesis has been to develop quantum informa-
tion protocols with open quantum systems enhanced by non-local memory
effects. Utilization of non-local memory effects to enhance a protocol with
noisy systems has been considered previously for example in superdense
coding [52]. Before presenting the protocols, we first shed some light on
the two-photon dephasing dynamics by deriving a master equation. Al-
though this dynamics has been studied earlier using the dynamical map
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approach [49, 50], a master equation point of view was missing. In Article
III, we derive such a master equation and discuss the effects of initial cor-
relations of the environment on the decay rates and operatorial form of the
master equation. In Article I, we present a protocol for generating polariza-
tion entanglement remotely. By utilizing non-local memory effects in the
two-photon dephasing model, we discuss how local photonic dephasing and
local frequency upconversion can be employed to generate entanglement be-
tween two distant photons. Interestingly, this protocol can be described by
an interferometric approach, where overlapping paths of an interferometer
allow for interference-induced generation of entanglement. In Article IV, we
experimentally realized the protocol to perform high-fidelity teleportation
with open quantum systems. The original idea has been introduced in [53],
where the authors have shown how the two-photon dephasing model and
non-local memory effects allow for perfect teleportation despite the pres-
ence of local noise. To make an experimental realization possible, we have
modified the protocol by encoding the Alice’s state on the spatial degrees of
freedom of her photon, instead of using the polarization degrees of freedom
of a third photon.

Chapter 4 is then dedicated to the discussion of the open system dy-
namics as a tool in quantum thermodynamics. In Article II, we introduce
a simple model based on two interacting qubits for implementing a control-
lable non-Markovian dynamics. We derive a master equation for this model
and discuss its validity concerning different physical parameters involved in
the dynamics. Using this master equation, we study the Markovian to
non-Markovian transition of the model by manipulating the qubit-qubit in-
teraction strength. Once the open dynamics is obtained, we examine it to
find a possible link between the extent of non-Markovianity of the dynamics
and the ability of an external drive to perform work on the system. Arti-
cle V is more involved with the thermodynamic ideas and is concentrated
on the study of a quantum thermodynamic cycle running at finite times.
Implementing thermodynamic machines that convert heat to work faces a
dilemma: efficiency of the machine is the highest when it is operating in
a quasistatic regime, at which the output power vanishes. We introduce
a model and analyze the open system dynamics of a driven qubit as the
working substance in a quantum Stirling cycle used as a heat engine. To
study the dynamics we derive a non-Markovian master equation without
any assumption on the separation of the time scales of the drive and the
qubit. Then the performance of the cycle, with regards to efficiency and
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power, is discussed in details considering different time scales of the drive
and the role of asymmetric driving speeds.

Finally, Chapter 5 concludes the results of the thesis and presents the
possible outlooks of the work.
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Chapter 2

Quantum systems

In this chapter, we recall the basic concepts and tools used in developing
the results of the thesis. In the first section, some basic elements of the
quantum theory are reviewed. Then we present the theoretical descriptions
for the dynamics of closed and open quantum systems in section 2. We
proceed to recall some selected concepts in quantum information theory
and quantum thermodynamics, respectively in section 3 and section 4.

2.1 Basics of quantum theory

In a physical theory we map physical concepts onto a mathematical lan-
guage according to some correspondence rules. For instance, momentum of
an object in classical mechanics is a physical concept that we map onto a
set of real numbers. In quantum theory, however, mathematical formalism
is not so trivial as we cannot predict the exact value of a physical con-
cept, but rather only the probability of observing a specific value is avail-
able. Moreover, unlike classical mechanics, where physical concepts usually
take a continuous spectrum, quantum quantities are often quantized, as the
word quantum suggests. Experiments in quantum physics usually consist
of three parts: state preparation, evolution, and measurement. In the state
preparation phase, the experimenter prepares an ensemble of identically
prepared systems which determines a well-defined probability distribution
for all given observables to be measured. The mathematical formalism
of quantum theory describing all the steps is based on the tools of linear
algebra and probability theory [54-56].

Quantum states live in Hilbert space, denoted by H, defined as the
complex linear space of the vectors with finite norm with respect to their
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inner product. We indicate with d the dimension of the Hilbert space,
which gives the maximum number of linearly independent and orthogonal
vectors in the space. The set of normalized orthogonal vectors, denoted
by {|#:)}%_,, provides a complete basis for the vector space such that any
vector ) € H can be written as |[¢)) = Y, ¢i |¢;). The space of quantum
states is a linear operator space (L) of the self-adjoint non-negative and
trace class operators with trace 1 acting on H, i.e., S(H) = {p € L(H)|p' =
p, p >0, tr[p] = 1}. Non-negativity and trace 1 restrictions on the states
guarantee a well-defined probability distribution. States p are usually called
density matrices and are divided into two classes of pure and mized states.
A pure state cannot be written as a nontrivial convex combination of other
states and is of the form p = |¢) (¢|, whereas a mixed state can be written
as p = >, pipi, where >, p; = 1 and p; € S(H). To take care of multipartite
quantum systems, we need to consider the tensor product of the Hilbert
spaces of each party. For example, considering system A and system B
we have pap € S(Hap) with Hap := Ha ® Hp. One of the distinct
features of quantum mechanics is that there can exist density matrices
on the multipartite spaces, say on the bipartite space S(Hap), such that a
decomposition of the form pap = 3. pipt @ pP with pAB) ¢ S(Ha(p)) does
not exist. This class of quantum states have a quantum type of correlation
named entanglement. On the other hand, if a state can be written as the
tensor product of reduced states, we call it a factorized state which does
not possess any entanglement.

For each physical observable in quantum theory there is assigned a
Hermitian operator on £(#). Assume for example a variable named r which
takes a discrete set of possible values {r;}. Let’s call the corresponding
operator to the variable r by R. Then for a given density matrix p, the
averaged value (expectation value) of the operator R is given by (R), :=
tr[pR]. If we assume the spectral decomposition R = >, r;|r;) (r;| with
r; € R, the averaged value will be given by (R), := >, ritr[p|r;) (ri]] =
> ;i ripi, where p; is the probability of obtaining an outcome r;. The general
mathematical formalism describing a measurement is given by the so-called
positive operator valued measures (POVM). In this formalism, for the set
of possible outcomes {e;} one assigns a set of positive operators {E;} on
L(H), such that Y, E; = I and the probability of each outcome e; is given

by p; = tr[pE;].
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2.2 Dynamics of quantum systems

2.2.1 Closed systems

Time evolution of a closed quantum system — a system that is isolated from
the rest of the universe — denoted by the state vector |¢(t)) € H is given
by the Schrédinger equation (A= 1)

i (1) = H(t) [¢(2)) (2.1)

where H(t) is the Hamiltonian of the quantum system. The solution of the
Schrédinger equation gives a unitary operator which maps the initial state
at time ¢y to a final legitimate state at time ¢, such that

() = Ult to) [b(te)), Ulhto) = Te o™ (2.9)

Here 7 denotes the time-ordering operator in case the Hamiltonian does
not commute with itself at different times, i.e., [H(t2), H(t1)] # 0 for to # t1,
where [A, B] := AB — BA. Also note that U(¢;,t;) = I. Time evolution of a
pure state can be generalized to any mixed state p(to) = 3_; p; [v;(t0)) (¥;(to)l,
such that

p(t) = U(tv to)p(tO)U(ta tO)T = U(t, to)[p(tO)]’ (23)

where, U]-] is a superoperator acting on the operators on S(H), and plays
the same role as the unitary operator in Eq. (2.2) for the density matrices.
If we take derivative of Eq. (2.3) with respect to t, we get

9 p(t) = ~ilH (1) pl1), (2:4)

which is the equivalent of Schrédinger equation for a general mixed state
and is called Liouville-von Neumann equation.

2.2.2 Open Systems

The notion of a closed system presumes perfect isolation of the system
under scrutiny. Fulfilling this condition is often out of reach, urging us
to deal with open systems which inevitably interact with their surrounding
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environments. Suppose that we are interested in the dynamics of a quantum
system labeled by S. However, the system S interacts with its surrounding
environment denoted by E, which may incorporate the rest of the universe.
Despite of the size the environment F may have, the combined system
S + FE is closed and its dynamics is given by the Schrédinger equation.
However, at the end of the day we are only interested in the system .5, and
hopefully not the whole universe, so we need to derive the reduced dynamics
of system S by starting from the dynamics of the combined system S + F.
Let us introduce the dynamical map ®;[-] which maps the initial density
matrix pp to a final one at time ¢ > 0, such that p(t) = ®[p(0)]. To
guarantee physicality of the reduced dynamics, the dynamical map must
meet completely positivity (CP) and trace preserving (TP) requirements.
The CP condition means that for all p € S(Hs ® Hgim(r)) and any k € NT,
we have (®;®1x)[p] > 0. The TP condition requires that trace of the density
matrix does not change upon the action of the map, i.e., tr[®;[p]] = tr[p] for
all p € S(Hg). Moreover, the dynamical map is independent of the input
state and depends solely on the properties of the environment E and its
coupling to the open system.

Factorized initial state of the extended quantum system S + FE, i.e.,
pse(0) = ps(0) ® pp(0), is necessary for completely positivity of the map
[31]. Assume the factorized initial condition and let us set the initial time
to zero, i.e., tg = 0. We consider the unitary evolution of the system S+ E
corresponding to the total Hamiltonian of the combined system, denoted
by Hgg, and then take the partial trace with respect to the system F to
get

ps(t) = trp[U(t,0)ps(0) ® pp(0)U(t,0)1]. (2.5)

It can be shown that if the state of the environment is fixed, Eq. (2.5) can
be written as

ps(t) = Z K;(t)ps(0)K;(t)", (2.6)

where Y, K;(t)'K;(t) = I. The form given in Eq. (2.6) is called Kraus
representation. Strictly speaking, a dynamical map is CP if and only if it
has a Kraus representation [57].

Let us discuss in more detail how to derive the reduced dynamics of the
system S. Consider the state of the combined system denoted by pgg(t).
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Our aim is to find an equation of motion (the so-called master equation) for
the reduced state ps(t) = trg[pse(t)]. One should start by using Eq. (2.4)
with regards to the total system S + FE, thus

%trE[pSE(t)] — itrp[Hap, psp ()], (2.7)

where Hgp is the total Hamiltonian of the system S + F, including the in-
teraction between the two subsystems. A well-known procedure to proceed
from the equation above and derive a master equation is provided by the
Nakajima-Zwanzig method [29, 31]. Considering two orthogonal projection
operators P and Q@ = I — P, with Ppgp = trg[pse| ® pg, this method
follows formal steps to obtain an equation of motion for Ppgp. Assuming
the factorized initial condition pgr(0) = ps(0) ® pr(0) and a stationary
environment, one gets an equation of motion for pg(t) given by an integro-
differential equation of the form

%PS(t) = /Ot drK(t, 7)ps (7). (2.8)

Here K(t,7) is the memory kernel, meaning that the instantaneous evolu-
tion of the reduced state at time ¢t depends on a memory of the evolution
at previous times 7 < t. A wide class of physical models deals with weak-
coupling limit and non-structured environments. In that situation, applying
further assumptions such as the Born and Markov approximations relaxes
the dependency of the evolution on its past memory. It is usually possible
to transform the master equation in Eq. (2.8) into a time-convolutionless
form [29, 31, 58]

“ps(t) = LD)lps (1), (29)

where L(t) is a superoperator acting on the state of the open system at time

t. Actually, £(t) is the generator of the dynamics, such that one obtains
the dynamical map ®,[-] formally by

®, := T exp] /0 e (2.10)

Physicality constraint of the dynamical map ®; naturally puts some re-
strictions on the generator £(¢). The simplest case is when the generator
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is time-independent and the dynamics is memory-less, thus ®; = exp[tL].
A consequence of this simple form is that ®;,®;, = P 4+4,, which gives a
semigroup of dynamical maps. This is not a group due to the lack of a
CP inverse of the dynamical maps. The generator £ corresponds to a CP
semigroup dynamical map if and only if it has the so-called Lindblad form
[59, 60]

Llps(t)] = —i[Hs, ps(t) +Z% (t _,{ATA“ ®)}],  (2.11)

where {X,Y} = XY 4+ YX. Here operators A;, which act on S(Hg), are the
Lindblad operators and 7; € R™ are some constant transition rates. The
master equation above can be generalized to include time-dependent rates
and Lindblad operators, such that

0] = ~ilts,ps(0] + S A pOALE) — 5 (A, o))
(2.12)

with v;(¢) € R* [31]. If the rates in Eq. (2.12) take temporal negative val-
ues, some extra conditions must be fulfilled to guarantee complete positivity
of the map, for example see [61, 62].

Non-Markovian dynamics

Consider that the master equation in Eq. (2.12) is in the canonical form,
ie. tr [AZ(t)Aj(t)} = d;5, tr[A;(t)] = 0, and Hg is Hermitian; then the
generated dynamics is Markovian (memory-less) if and only if the decay
rates ;(t) be positive [63]. Strictly speaking, defining quantum Markov
processes is not as straightforward as in the classical realm due to disturbing
nature of the quantum measurement, which affects the posterior statistics
[32]. A common definition of a quantum Markov process is based on the
CP divisibility of the dynamical maps [64, 65]. Any CP dynamical map &
can be decomposed as ®; = A(t, s)®; for any 0 < s < ¢, where A(t, s) is a
propagator of the dynamics from time s to time ¢. A dynamical map is CP-
divisible (Markovian) if the propagator A(¢, s) is also CP for all s € [0, ¢]. If
it is not, the dynamics is non-Markovian. To witness non-Markovianity of
a dynamical map one takes an information measure which contracts with
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the CP maps [32, 33], for instance trace distance [66], volume of accessible
states [67], or quantum channel capacity [68]. Consequently, any temporal
increase of that measure indicates violation of CP divisibility, meaning the
dynamics is non-Markovian with respect to that measure.

For the sake of simplicity of the calculations in Article I, we have specif-
ically used the volume of accessible states as a witness of non-Markovianity
[67]. This is, however, just a witness of non-Markovianity as it may fail to
detect non-divisibility of the dynamical map. Nonetheless, non-Markovianity
detected by this approach always implies non-divisibility as well as back-
flow of information [69]. Assume an N-level quantum system with a density
matrix p(t) € S(Hy). Assume {G;}V 20_1 as the set of all normalized gener-
ators of SU(N) plus the normalized identity operator Go = Iy /+/N. Since
this set provides a complete operator basis on S(Hy), the density matrix
of the system can be decomposed as

p(t) = > ri(t)Gi, (2.13)

where 7; = tr[G;p] denotes the coordinates of a generalized Bloch vector
7(t) = (ro(t),71(t),...)T. Applying the same decomposition for the evolved
state p(t) = ®+[p(0)], with CPTP dynamical map ®;, gives an affine trans-
formation of the generalized Bloch vector given by

7(t) = F(t)7(0), (2.14)

where F(t) is a N2 x N? matrix corresponding to the map ®;. Providing
a geometric description for the density matrix by the generalized Bloch
vector allows us to assign a volume V(¢) for the accessible states during
the evolution. This volume has a relation dNV (t) = ||F;||[dN¥V (0), where
|| -|| denotes determinant. Since ||F;|| is a contracting function of time for a
CPTP dynamical map, any temporal increase in ||Fy|| corresponds to non-
Markovianity. Therefore, the authors of Ref [67] introduced a measure of
non-Markovianity given by

N = / | Fe]. (2.15)
8t||Ft||>0
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2.3 Information of quantum systems

2.3.1 Coherence and entanglement

In this subsection, we briefly review the concepts of quantum coherence
and entanglement. These peculiar properties of quantum systems, once
challenging our understanding about local-reality [12], turned to be the
most prestigious resources for developing quantum algorithms that do not
have a classical counterpart [5, 7, 8, 14, 16, 18-20].

Quantum coherence

Linearity of the Hilbert space means that if two states |11) and |19) are valid
state vectors on the Hilbert space H, then according to the superposition
principle any linear combination of them, e.g., [1)3) = a|¢1) + B |¢2) with
|a|? + 8| = 1, is also a legitimate state vector on H. The coherent super-
position of the two vectors is fundamentally different to a classical ensemble
of the states and leads to striking consequences like quantum interference.
Consider the density matrix p = |13) (¢3], therefore the expectation value
of an observable A is given by

(s Alups) = laf® (i Alepr) + 8] (o] Altha) + 2Re[af” (] A WJ?}]’ |
2.16

where Re[-] denotes the real part. The first two terms on the r.h.s of
Eq. (2.16) is the classical sum of the expectation values of observable A
w.r.t. the states |¢1) and |¢2) and a probability distribution {|a|?,|3]?}.
The last term, however, does not have any classical counterpart and corre-
sponds to the interference of the two states involved in the superposition.
Note that a state vector can be written as a coherent superposition of vector
basis, i.e., [) = Y, ¢; |¢i), thus the corresponding density matrix has the
form p =37, i cicj |¢i) (¢;]. In this regard, coherence is related to the off-
diagonal elements of the density matrix denoted by p;; := (¢i| p|¢;) with
i # j. Recently, a resource theory of quantum coherence (RTQC) has been
introduced which provides a systematic way to define a proper measure of
quantum coherence [70]. The two widely used functions that fulfill RTQC
requirements are relative entropy of coherence and li-norm. The latter is
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defined by

Ciu(p) = _ Ipisl, (2.17)
i#j

and will be used in this thesis as a measure of quantum coherence due to
its simple form.

Quantum Entanglement

An interesting consequence of quantum superposition which reveals itself
when considering multipartite systems is quantum entanglement. Assume,
for example, a bipartite system with Hilbert space Hap = Ha ® Hp. As
mentioned earlier, an entangled state on S(Hap) is unfactorizable, i.e.,
paB # 3 pipit @ pP with pAB) ¢ S(Ha(p))- Considering the local vector
basis of a two-qubit system denoted by {|0),|1)}, one can check that the
state vector [UF) = (|0) [1) + |1)|0)) /v/2 is indeed entangled.

When there is non-zero entanglement between the parties of a bipartite
pure state [t)), the reduced state obtained by papy = trpa)lpas] will
be mixed. This fact reflects itself to define entropy of entanglement as a
measure of entanglement [71]. Entropy of entanglement of a pure bipartite
state |¢) is defined by !

E(|Y)) == —tr(pacylog(pacs)))- (2.18)

Furthermore, for a general bipartite mixed state written as an ensemble
of pure states, namely pap = >, p;i |¥i) (¥i|, entanglement of formation is
defined as the least expected entanglement of such an ensemble [71, 72],
such that

E(pap) = {pmln Zpl ()] (2.19)

A systematic way to define proper measures of entanglement is character-
ized by resource theory of quantum entanglement (RTQE) [73, 74]. Ac-
cording to RTQE, a so-called entanglement monotone maps all separable
(non-entangled) states to zero and should be non-decreasing upon local op-
erations and classical communications (LOCC). The latter means that by

!Not to be mistaken with the notation previously used for denoting an environment.
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applying a CPTP map on a local qubit of a two-qubit entangled state the
entanglement of the bipartite state never increases. Entanglement of for-
mation is one of such monotones that fulfills these requirements. Although
handling the optimization in Eq. (2.19) is difficult in general, a compact
analytic form is available for two-qubit mixed states using concurrence [72].
For a given two-qubit state p one defines

p=(oy®oy)p*(oy @ 0y), (2.20)

where o, is the second Pauli operator. Then concurrence of the state p is
obtained by

C(p) = max{0,A\1 — A2 — A3 — M4}, (2.21)

where \; are the eigenvalues of the non-Hermitian matrix pp in decreasing
order. Having the concurrence, one calculates the entanglement of forma-
tion by E(p) = E(C(p)), where

Vi—ee

£(C) = h(:E ), (2.22)

and h(z) = —zlogx — (1 — z)log(1l — x).

2.3.2 Coherence and entanglement in an interferometric setup

Wave-particle duality is one of the most peculiar aspects of quantum me-
chanics. In a given experimental setup, a quantum object shows either
its wave or particle behavior by a priori adapting to that setup. In this
section, we briefly review the concept of wave-particle duality in a quan-
tum information context, namely duality relation between coherence and
which-path information. After that, we show how erasing the available in-
formation revives the coherence and allows for the interference to happen.
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Coherence versus which-path information

Assume a particle entering a generalized N-port interferometer, in a super-
posed state

N
= > Vmili). (229

where each |i) denotes a port of interferometer and Y, p; = 1. Let the
particle inside the interferometer interact with a detector which is initially
in the state |dy) available to all the ports. Consider now that the interaction,
governed by a unitary evolution, maps the initial state of the detector to
a final state that corresponds to the port that the particle has occupied,
namely U(|é) |dp)) = |i)|d;). This means that after the interaction with
the detector, the state of the particle plus the detector is evolved to a
potentially entangled state given by

N
= Z Vi i) |d;) - (2.24)

The reduced state of the particle, after tracing over the detector’s degrees
of freedom, reads

N
p= > Voipi{dildi) i) (5] (2.25)

2,j=1

The question is now how the particle’s coherence has evolved due to the in-
teraction with the detector? Using the [;-norm as the measure of coherence,
the particle’s state had an initial coherence

Cll W} Z \/PiDj, (2'26)

G

whereas, after interacting with the detector its coherence has changed to

Cu(p) = D v/pip;l{d;lds)|. (2.27)
i#j

The extent to which coherence of the system has changed depends on the
overlap of the detector vectors |d;), so the amount of which-path infor-
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mation available by measuring the detector’s state. Considering the most
informative scenario where (d;| d;) = d;5, we realize that the system’s state
has been evolved to a diagonal one with zero coherence. In this case, one
gains complete information about the path of the particle by performing a
measurement on the state of the detector which discriminates between the
vectors |d;).

There are different ways to quantify the information a detector carries
about the particle’s state (its path inside an interferometer), e.g., unam-
biguous state discrimination [75] or minimum-error state discrimination
method [76]. For a given measure of coherence denoted by C and a given
measure of path information denoted by P there holds an inequality relation
of the form

C? + P? < X2, (2.28)

where X is some finite constant. Consequently, there is always a trade-
off between coherence and path information; the more path information is
available, the less coherence is present in the system. We stress that the
discussion mentioned here is quite general and is not model-dependent. In
other words, for any physical model with an N-dimensional Hilbert space
Hn, a given vector basis spanning Hy can play the role of an N-port
interferometer.

Erasing the which-path information

What happens if we somehow discard the available which-path information?
Assume a two-level system on a Hilbert space spanned by the vector basis
{]|0),]1)}. Starting from a given state [¢)) = «|1) + 3|0) let the system
interact with another two-level system, playing the role of a detector with
the orthogonal pointer vectors {|0),,|1),}, to reach a correlated state

(W) = 1) [1)g + 50)[0)g - (2.29)

Due to the correlation between the two systems the reduced state of the
system is mixed, p = |a|? [1) (1| + |B8]?|0) (0]. Now consider a vector basis
of the detector Hilbert space that includes superposition of the old basis,
namely |£) = (|1), £ |0),)/v/2. Writing the total state in the new basis
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yields

1
W) = —= (1) + 810) [+) + (a[1) = B]0)) [-)]. (2.30)
V2
Consider a selective measurement with the projector Py = |+) (+|. The
outcome will be

Py |¥)

w0 Py [9)] [P) [+) (2.31)

which is a factorized state and does not possess any which-path informa-
tion. The aforementioned procedure is a simple example of a gquantum
eraser. Quantum erasure can be performed in different ways [77-80], but
the common feature of all procedures is erasing the correlation between the
system’s degrees of freedom and other degrees of freedom in order to dis-
card the available which-path information. Here, we introduced an eraser
based on selective measurement on the detector degrees of freedom, similar
to the method used in [80].

2.3.3 Quantum Teleportation

Quantum teleportation of an unknown state is a quantum algorithm based
on local operations and classical communication which relies on entangle-
ment as the resource. Here we briefly review the standard teleportation
protocol [14]. Assume that Alice and Bob share an entangled two-qubit
system in the state |®*)y; = (|00)y5 + |11)53)/v/2. Alice possesses a state
|¢); = «|0); + B|1); that she wants to teleport to Bob. Therefore, the
total state of the three qubits (two of Alice labeled by 1,2 and one of Bob
labeled by 3) reads

Z) 103 = \% [9)1 (100)95 + [11)43). (2.32)

Consider now the entangled basis on Alice’s two-qubit system given by
1
V2

(100) 15 £ 11)15), [ W%, = —=([01)y £ 10),5).  (2.33)

‘(I)i>12 = V2
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Rewriting the state in Eq. (2.32) with regards to the so-called Bell basis of
Alice defined above results in

Eizs = 5 [ 181 (@ [0} + B 1)) + 12713 (@]0)g — 1))

(2.34)

+ 10Ty, (@] 1) + B10)g) + [ 27 )1, (1) — B10)3)].
At this point Alice performs a measurement on her two-qubit system consid-
ering the Bell basis in Eq. (2.33). Suppose the outcome of her measurement
is the Bell state |®7), thereby Alice knows that the state of Bob’s qubit has
collapsed to |¢); = a'|0)5 — 3 |1),. However, if Bob does not know the result
of the measurement, he has to trace over the two qubits of Alice to get his
reduced state. This gives him a mixed state (due to the correlation between
Alice and Bob). Nonetheless, if Alice shares her result with Bob using a
classical communication line, Bob realizes that his state is |¢),. Having this
state, Bob only needs to apply a o, rotation on his qubit to fulfill a high
fidelity teleportation. Note that if Alice’s outcome was |®1), |0+ |¥U™),
Bob can complete the protocol by applying local unitaries I, 0,40, on his
qubit, respectively.

2.4 Thermodynamics of quantum systems

2.4.1 An open system point of view

The theory of open quantum system naturally describes the quantum ther-
modynamic framework since it starts from partitioning the total system into
the system of interest and its surrounding environment [43]. Once separa-
tion of the systems is established, we can define thermodynamic quantities
within each subsystem and their flow. Assume a quantum system interact-
ing with an external large system, namely a heat bath. The total state of
the system and the bath is denoted by pio(t) € S(H), with H = Hs @ Hp.
The total Hamiltonian of the composite system reads

H(t) = Hg(t) + Hp + Hy, (2.35)

where Hg(t) is a time-dependent Hamiltonian for the system, Hp is the
Hamiltonian of the bath and Hj is the interaction Hamiltonian between
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the two. The evolution of the total system is unitary and is given by

pror(t) = U)oU), U(t) = Te Jaar1), (2.36)

In general we are interested in the reduced dynamics and thermodynamics
of the system S. To have a legitimate CPTP map for the system S, one
requires the factorized initial condition pt(0) = ps(0) ® ply. Here pg(0) €
S(Hs) is some initial state of the system and p% € S(Hp) is the initial
state of the bath. Concerning thermodynamics, we usually assume that the
bath is in an equilibrium state at some inverse temperature 8 given by

o _ 0 2.37
PB = e Pa]" (2.37)
The reduced dynamics of the system can be given under certain conditions
by a general master equation of the form

© ps(t) = ~ilH5 (1), ps(t)] + Dulos ()], (2.39)

where the first term on the r.h.s. gives the unitary evolution of the system
S with the effective Hamiltonian H(t) = Hg(t) + A(t), where A(t) is the
Lamb shift in the energy of the system because of the coupling to the bath.
The second term on the r.h.s. is the dissipator which is responsible for the
non-unitary evolution of the system due to the interaction with the bath.

2.4.2 Average work, average heat and the first law

Once the density matrix of the system is obtained for a given time ¢ > 0,
we can calculate the expectation value of the internal energy stored in the
system. For a given Hamiltonian Hg(¢), the internal energy is obtained by

U(t) = tr[Hg(t)ps(t)]. (2.39)

Since the system is subjected to a time-dependent Hamiltonian as well as
interaction with a heat bath, it can exchange energy in the form of work
and heat. This means that the average internal energy is changing by time.
Taking the derivative of the both sides of Eq. (2.39) with respect to time



36 Quantum systems

yields

d d d

SU(0) =l Hs()ps ()] + blHs( (Tps()]. (2.40)
The first term on the r.h.s. of Eq. (2.40) gives the average power denoted by
P(t), while the second term is the average rate of heat dissipation denoted
by J(t). Furthermore, by using Eq. (2.37) one obtains a more detailed
expression for J(t) as

J(t) = tr[Hg (¢)De[p(2)]], (2.41)

where we have used the fact that the trace of a commutator is zero.

The change in the average internal energy of the system over a time
interval [t1,t9] is defined by AU := U(ta) — U(t1). Integrating both sides
of Eq. (2.40) gives

to t2
AU = drP(T) + drJ(t) =W +Q, (2.42)
t1 t1
with W and @ being the average work and average heat, respectively.
Eq.(2.42) in fact expresses the first law of thermodynamics derived for an
open quantum system [47, 81, 82].

2.4.3 Entropy and the second law

The entropy corresponding to a given observable and a given state is re-
lated to the ability of gathering information by performing a measurement
using the observable on the state. Consider an operator A with the spectral
decomposition A = Y, a; |a;) (a;|. Therefore, the probability of a given out-
come a; is pg; = tr[p|a;) (a;|] and the entropy of the probability distribution
concerning all the possible outcomes is given by

S{ap = = 2_Pa; N Pa;, (2.43)

where S is the Shannon entropy. Von Neumann has shown that for a given
density matrix p the operator that commutes with p minimizes the entropy
in Eq. (2.43). Thereby, entropy of a state p is determined by the von
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Neumann entropy [83]

Sun(p) == —tr[plnp] = sz In p;, (2.44)

where p; are the eigenvalues of the density matrix p.

The von Neumann entropy is invariant upon unitary transformations,
thus entropy of the total state is constant in time, i.e. Syn(pot(t)) =
Sun(prot(0)). As we consider initial factorized condition pin(0) = ps(0) @
p%, one has the relation

209101 (0) In pror(0)] = —trlps(0) n ps(0)] — tr[pfd n 58], (2.45)

However, a similar relation may not hold for ¢ > 0 due to the generation
of correlations between the system and the bath. We are interested in the
entropy change of the system that can be addressed as follows. Entropy is
a state function, therefore we have

ASyn(ps) = Sun(ps(t)) — Sun(ps(0)), (2.46)

where the reduced state of the system is obtained by tracing over the
bath’s degrees of freedom, i.e., ps(t) = trp[pit(t)]. Using Eq. (2.45) and
Eq. (2.46), one finds

ASun(ps) = —tr[pror(t) In ps ()] + tr[prot (t) In prot(t)] — tr[pf In p](2.47)

which can be simplified further to get [84]
ASun(ps) = S(peot(t)|lps(t) ® p) — trp[(pp(t) — pF) InpF],  (2.48)

where pp(t) = trg[pio(t)] and S(pillp2) = Sun(p1) — tr[p1Inps] is the
relative entropy, denoting the distance (distinguishability) of two density
matrices. According to Eq. (2.48), entropy change of the reduced system
has two parts, namely AS,n(ps) = Zirr + Xpev. The second term on
the r.h.s. of Eq. (2.48) is the reversible entropy flow due to the exchange
of heat with the bath, which by considering the exact expression for the
equilibrium state of the bath can be rewritten as X, = BQ(t). Xipr =
S(prot(t)|ps(t) @ p) denotes the irreversible entropy production within
the system due to generation of correlations between the system and the
bath [84]. Note that, since relative entropy is a non-negative quantity,
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entropy production is always positive or zero, as governed by the second
law of thermodynamics.

It is worth noting that the entropy production has an alternative defi-
nition given by [29, 85]

S = Sps(0)10) = S(ps®)lo), (2.49)

where p¢ is the invariant state of the dynamics, i.e. £[p¢'] = 0. Authors in
[84] have shown that the relation between this definition and the previous
one reads

Yy = i:i'r'r - B(tr[HIptot(t)] - tr[HIptot(O)]) > 0. (250)

Although the latter definition is more practical as it is dealing only with the
local reduced state of the system, it might be puzzling in some cases. In par-
ticular, it may become negative — as it is shown for a class of non-Markovian
dynamics in [46] — when the generator does not have a well-defined steady
state. Nonetheless, the latter definition is always non-negative when dealing
with Markovian semigroup class of dynamical maps, which have a steady
state of the Gibbs form [29].

2.4.4 Quantum thermal machines
General formulation

Quantum heat engines that work between two heat baths at different tem-
peratures absorb energy from the hot bath in the form of heat and transfer
a portion of this energy into the extractable work. A fundamental quantity
in heat engines is their efficiency in transferring heat to work. Consider
the net extractable work done by the working substance, given by (Wie).
Since we deal with a closed cycle, the change in the internal energy of
the system over a full cycle is zero and due the first law one concludes
(Whet) = —(Qnet), where (Qnet) is the overall heat transferred in a full
cycle. If we also consider the net average heat absorbed from the hot bath
during a full cycle denoted by (Qp,), efficiency of the cycle reads

_ <Wnet>
(@n)

(2.51)
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For a cycle working between two thermal baths at temperatures 7T, and T},
the Carnot efficiency 1. = 1—T./T}, gives an upper bound on the efficiency.
This bound corresponds to a reversible cycle, in which the least amount of
heat must be dissipated into the cold bath in order to close the cycle. It has
been shown, however, that efficiency of a cycle working with a non-thermal
bath, namely a squeezed bath, may exceed the Carnot bound [86].

A heat cycle can be described generally by a product series of CPTP
dynamical maps [39], i.e., Aprsni1)r = [T, ®;, where 7 is the duration
(period) of the cycle and n € Z". Each dynamical map ®; describes a
stroke of the cycle. As the cycle is closed, it has a steady state relation
Aprsnyrlp(n7)] = p(nT), where py = p(n7). Thus, at the end of each
period everything resets to its initial configuration. Considering an explicit
cyclic dynamical map one can obtain the state of the working substance
(WS) at a given time nT <t < (n+ 1)7 and calculate the energy flow in
the form of work and heat.

Generally speaking, each stroke of a cycle can be associated to three
different situations: coherent drive on the WS without dissipation, coherent
drive together with dissipation, and pure dissipation. The first scenario is
described by a unitary evolution. Due to isolation of the system in this
case, the only source of energy exchange is the work pumped into the WS
by the external drive. The third case, on the other hand, is described by
a non-unitary dynamical map, which leads to dissipation of heat into the
bath. Considering a situation in between, the second case corresponds to
both nonzero work and nonzero heat. Having in mind these possibilities,
let us discuss some well-known thermodynamic strokes.

Adiabatic process — In an adiabatic process, the WS is subjected to a
very slow coherent drive while it is isolated from the heat bath. Hence
the evolution of the WS is unitary and there is no change in the en-
tropy of the system. In an ideal adiabatic process energy level populations
pi(t) = (Ei(t)] p(t) |E;) remain invariant, where |E;(t)) are the instanta-
neous energy levels. This means that if the state of the WS commutes
with the Hamiltonian at the beginning of the process, i.e. [H(0), p(0)] =0,
the same condition holds during the whole process, i.e. [H(t),p(t)] = 0.
Consider the spectral decomposition of the instantaneous Hamiltonian as
H(t) = >, Ei(t) |Ei(t)) (Ei(t)|. Thereby the rate of performing work on
the WS during an adiabatic process is obtained by P(t) = Y, p;dE;(t)/dt.
Since an ideal adiabatic process is ultimately slow, one has dE;(t)/dt ~ 0
and the power vanishes.
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Isochoric process — In an isochoric process the WS is brought into con-
tact with a heat bath. The two interact until the WS finally reaches a
thermal equilibrium with the bath. As the dynamics is non-unitary, the
entropy of the WS changes during the isochoric process. However, work is
zero due to lack of an external drive.

Isothermal process — An isothermal process corresponds to the case in
which we drive the WS while it is coupled to a heat bath. As the name of
the process suggests, during an ideal isothermal process the WS remains in
the thermal equilibrium with bath. Thus, while the level populations vary
in time, their ratio remains invariant. This ideal scenario requires again
a very slow drive which keeps the WS close to equilibrium. Therefore, an
ideal isothermal process has a vanishing output power.

Quantum Stirling cycle as a heat engine

The Stirling cycle includes two isothermal and two isochoric strokes. In
classical Stirling heat engines, direct coupling to the heat baths during
the isochoric strokes is usually replaced by interaction with an internal
substance with high heat capacity named regenerator. The purpose of the
regenerator is to absorb heat from the WS during the cooling isochoric
stroke and transfer the exact amount of energy back to the WS during the
heating isochor. This helps to minimize the waste heat and improve the
efficiency. However, in this thesis we do not consider a regenerative setup,
so the WS is directly coupled to the heat baths instead of the regenerator
during the isochoric strokes. A Stirling cycle working as a heat engine is
described as follows.

1- Isothermal stroke a — b: The WS is subjected to external drive while
it is coupled to the hot bath at an inverse temperature ;. The
Hamiltonian of the system is initially H(¢,) = H; and the state of
the WS is the thermal state p, = e Prt1 /tr[e=FrH1]. The external
drive changes the Hamiltonian slowly from H; to the final Hamilto-
nian H(#y) = Hg, such that during the process the WS remains in an
equilibrium state p(t) = e 1@ /tr[e=PrH®)] and finally reaches the
state p, = e~ PrH2 /tr[e=BrH2] The energy transferred during this pro-
cess includes an average work (W) done on the WS and an average
heat (Qqp) absorbed from the hot bath.

2- Isochoric stroke b — ¢: The WS disconnects from the hot bath and
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is brought into contact with the cold bath at an inverse temperature
Be. The two interact till the WS reaches thermal equilibrium with
the cold bath, so the state of the WS at the end of the process is
pe = e P2 Jtr[e=PeH2] - Ag the Hamiltonian is fixed, the only energy
transferred is an average heat (Qp.) dissipated into the cold bath.

3- Isothermal stroke ¢ — d: The WS is subjected to external drive while
it is coupled to the cold bath at the inverse temperature B.. The
Hamiltonian of the system is initially H(¢.) = Hs and the state of
the WS is the thermal state p. = e PH2 /tr[e=#H2]. The external
drive changes the Hamiltonian slowly from Hs back to H(ty) = Hj,
such that during the process the WS remains in the instantaneous
equilibrium state. At the end of the process the WS is in the state
pa = e PH/tr[e=PeH1] The energy transferred during this process
includes an average work (W.4) done by the WS and an average heat
(Qcq) dissipated to the cold bath.

4- Isochoric stroke d — a: The WS disconnects from the cold bath and is
brought back to interact with the hot bath at the inverse temperature
Br. At the end of the process, the WS reaches thermal equilibrium
with the hot bath and the state of the WS comes back to its initial con-
figuration at the beginning of the cycle, i.e. p, = e #rH1 /tr[e=FrH1],
As the Hamiltonian is fixed, the only energy transferred is an average
heat (Q4,) absorbed from the hot bath.

According to the description above, the efficiency of the Stirling cycle
is obtained by

— _(<Qab> + <ch> + <ch> + <Qda>)
<Qab> + <Qda>

The heat transferred during each stroke can be calculated analytically for an
ideal Stirling cycle [87]. Recalling the relation between entropy change and
the heat transferred at a constant temperature 7' given by AS = [(0Q)/T,
for an isothermal stroke ¢ — j at the inverse temperature 5 one has

n : (2.52)

<Qi%j>isothermal = B_I(SUN(pj) - SvN(pz)) (253)

For an isochoric stroke at a fixed Hamiltonian H, the situation is easy as
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the only way the system exchanges energy is in the form of heat, thus

<Qi—>j>isochoric = tr[Hpj] - tr[HPi]' (2'54)



Chapter 3

Quantum information
protocols with two-photon
dephasing model

In this chapter, we concentrate on those results of the thesis that deal with
implementation of quantum information protocols in presence of noise. Es-
sential to the results is the two-photon dephasing model and implementa-
tion of non-local memory effects. Thus, we first give a brief overview of
the model and then proceed to represent some original results concerning
a master equation approach to the open dynamics. After this theoretical
part, we discuss two protocols studied in the thesis. The first one gives a
theoretical framework to remote generation of polarization entanglement by
utilizing open system dynamics and interference. We note that an experi-
mental realization of this protocol is currently in development. The peculiar
mechanism allowing for generation of entanglement in this method is rooted
in the quantum interference, for which we give a brief discussion preceding
to the main results. The second protocol deals with the implementation of
perfect teleportation with open quantum systems. This part contains some
modification to the original theoretical proposal and, more importantly, the
original experimental results realizing the modified protocol.

3.1 Photonic dephasing model
Photonic systems provide a controllable platform to implement and realize
quantum information protocols. They are specifically interesting candidates

to develop quantum communication networks [27]. Different degrees of
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freedom of photons, e.g., polarization, spatial path, and orbital angular
momentum, can be utilized to implement multi-qubit quantum systems
[88], and they are also practical for simulating dynamics of open quantum
systems [51, 89-91].

Among different dynamics that can be implemented by photonic sys-
tems, dephasing is the focus of the thesis. In the photonic dephasing model,
polarization degrees of freedom of the photon is the open system and fre-
quency degrees of freedom of the same photon act as the environment.
Consider the initial polarization-frequency state

(W (0)) = [¥(0)) @), (3.1)

where, [¢(0)) is the initial polarization state on the Hilbert space H,
spanned by the horizontal-vertical polarization basis {|h) , |v)}, and

) = [ do g(e) ). (32

denotes the initial frequency state with g(w) being the probability ampli-
tude of the photon being at a given frequency w. If the photon travels
through a birefringent medium, like a quartz plate, its polarization and
frequency interact due to the Hamiltonian (A = 1)

H = (np [h) (h] + 1y |v) <v|)®/de\W> {wl, (3-3)

where ny, (n,) is the refraction index for polarization component h (v). Let
the two degrees of freedom interact for a given time ¢t. By tracing over
the frequency degrees of freedom, the reduced dynamics of the polarization
state will be obtained by a CPTP dynamical map p(t) = ®:[p(0)], such
that

) ( (hlp(0) ) w(t) (Al p(0) \v>> | )

K(8)" (0 p(0) [R) (vl p(0) v} -

where p(0) = [¢(0)) (¢(0)|. The dephasing dynamics is fully described by
the decoherence function

(t) = [ dw lg(a) oo, (3.5)
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where An = n, — ny. We note that 0 < |k(¢)] < 1 for all times ¢ > 0
and |k(0)| = 1. Besides the dynamical map approach, the dephasing model
discussed above can be described by a master equation given by

d v(t y(t
3oty = " Dioe o)+ "Dioptyo. — o), 36)
where, o, is the Pauli z operator and the rates v(¢) and (t) are obtained

by

(1) = —ReL(lt) d*;(:)}, u(t) = —Im[ﬁ(lt) d’;f)}, (3.7)

with Re[-] and Im[-] indicating the real and imaginary parts, respectively.

3.1.1 Two-photon dephasing model: dynamical map

Experimentally, a pair of photons can be created in the nonlinear spon-
taneous parametric down conversion (SPDC) process. In this process the
so-called pump photon with frequency wq annihilates due to interaction
with a nonlinear medium and results in the creation of two photons with
frequencies w; and ws. Due to conservation of energy, the frequencies of
the created photons fulfill the relation wy = wy + wo. However, since the
pump source always has some finite frequency width, there is always some
nonzero uncertainty in the sum of the frequencies of the created photons.
Two different designs of this process, namely type-I and type-I1 SPDC, are
widely being used to create entangled pairs of photons in the polarization
degrees of freedom.

Besides providing a source of entangled particles, two-photon model
has been used to implement nontrivial open system dynamics of bipartite
quantum systems, specifically with dephasing [49, 50, 92]. To generalize the
single-photon dephasing model discussed earlier to the two-photon case,
consider a pair of photons labeled by a and b whose total polarization-
frequency initial state reads

Vo) = [0 @ [ dwo [ iy glwnswn) i), (33)

where the initial two-photon frequency degrees of freedom has a joint-
probability distribution P(wg,ws) = |g(wa,ws)|? and the two-photon polar-
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ization Hilbert space is spanned by the bipartite basis {|a3)}, with «, 5 =
h,v. Letting polarization of each photon interact with its local frequency
degrees of freedom for some time t,(;) with the Hamiltonian in Eq. (3.3),
one obtains a unitary dynamics U(t,, tp) := exp(toHo @ I+t 1, @ Hp) which
maps the total polarization-frequency state as |U(tq, %)) = U(ta, ) |Vo).
Following the unitary dynamics of the total state, a reduced dynamical
map for the two-photon polarization state will be obtained by tracing out
the frequency degrees of freedom, i.e. p(tq,ty) = Pap(ta, tp)[| Vo) (Yol] :=
try, [| U (ta, tp)) (U(ta,ty)|]. Consequently, one gets [49, 50]

p(ta,ty) = (3.9)
Phh,hh kb (ty)Phi,ho Ka(ta)Phhoh — Kab(ta, ts)Phh,wvo
K (ty) Pho,hh Pho,ho Aap(tas to)Phowh  Kalta)Phowe
Ky(ta)Donpn — Nop(tas to)Donho Doh,vh kb (ty)Poh,vo
Koy (tasty)Povhh Koy (ta)Pov,ho kb (ty)* Pov,oh Pov,ov

Here, we have defined pog.op = (8 |¥(0)) (¥(0)| /B’ with «, 8,0/, 5" =
h,v. By recalling An = n, — ny, the local decoherence functions for the
photon j = a, b are given by

k;(t) = /dwa/ duwy P(wg,wp)e Bnwit, (3.10)

and the non-local ones — that appear in the two-photon dynamics, but not
in the reduced dynamics of each photon — are expressed by

Kab(ta,ty) = /dwa/ dwy, P(wa,wb)e*m"(“’“t“*“btb), (3.11)
and
A (fas ) = / des / dioy Pwa, wp)e iAn@ata=wnts). (3.12)

Let us briefly elaborate some properties of the dynamics above. The re-
duced dynamics of each photon, obtained by pu)(taw)) = trp)[o(ta;s th)]
is only dependent on the local decoherence functions x(¢;). Therefore, lo-
cal dynamics of the photons are controlled by the marginal probability
distributions P,(wq) = [ dwpP(wa,wp) and Py(wp) = [ dweP(we,wp). On
the other hand, dynamics of the two-photon system is dependent on the
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non-local decoherence functions k4 and Ay in addition to the local de-
coherence functions k;. This means that if the joint frequency probabil-
ity distribution does not factorize due to frequency-frequency correlations,
ie., P(wg,wy) # Palwe) X Pp(wp), the two-photon dynamical map given
by Eq. (3.9) can not be written in a factorized form, i.e., @y # P, ® Py
[49, 50].

It is therefore clear that the dynamics is highly dependent on the prop-
erties of the joint frequency probability distribution P(wg,wp). For most
experimental situations it is justifiable to model the joint frequency prob-
ability distribution with a bivariant Gaussian distribution. It is specifi-
cally handy to use Gaussian distributions since they are fully described
by their first two moments, namely the mean and the variance. For a
distribution P(wg,wp) one defines covariance matrix C' = (Cj;), such that
Cij = (wiwj) — (wi)(w;) for 4,5 = a,b. Frequency-frequency correlation is
quantified by the so-called correlation coefficient K = Cyp/+/CrqChp, such
that —1 < K < 1. Thus, a fully anti-correlated initial frequency distri-
bution has K = —1, which results in w, + wp = wp, with some constant
frequency wg. The mean frequency of the photons are given by the vec-
tor (Wq,@p)T and we introduce the separation between the local peaks by
Wq — wp = Aw and their sum as W, + &p = wp. This formulation let us gain
some more intuition about the properties of the dynamics. We note that
while the local decoherence functions x; do not depend on the correlation
coefficient, the non-local decoherence functions are dependent on it. Espe-
cially, k4, shows an interesting property, such that when K = —1 one has
we+wp = wo and |kep(t, )| = 1. This means that if the interaction times on
two sides are identical and the frequency distribution is fully anti-correlated,
the subspace spanned by |hh) and |vv) is a decoherence-free subspace. Now
suppose a single-peak bivariate Gaussian frequency distribution. We first
let the photon a dephase for some time ¢, = t while nothing happens for the
other photon. In this case one finds that |kqs(t,0)| < 1, so the coherence
within the subspace spanned by |hh) and |vv) decreases. At this point, if
we turn on the interaction for photon b for some interaction time t; < ¢,
we find that |kq| starts to increase. This means that the lost coherence
revives, and consequently the dynamics has to be non-Markovian [49, 50].
Although the two-qubit polarization dynamics is non-Markovian, the re-
duced dynamics of each photon is still Markovian as the local dynamics are
only dependent on the local decoherence functions.
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3.1.2 Two-photon dephasing model: master equation

In addition to a CP map description of the dephasing dynamics given by
Eq. (3.9), one can seek for a master equation description which sheds some
more light on the relation between the properties of the frequency dis-
tribution and the polarization reduced dynamics. For the sake of sim-
plicity, we set t, = t, = t and define the corresponding CP map by ®;.
Consider the generator of the map denoted by L;, which formally fulfills

d; = exp { fg dT,CT} . The master equation we want to construct is given by

< olt) = Lip(t), (313)

so the aim is to find an expression for £; corresponding to the dynamics
in Eq. (3.9). If ®, is invertible and its derivative is well-defined, we obtain
the generator by

Ly = %(I% o®; L (3.14)
A systematic way to calculate the generator is to provide a suitable matrix
representation for Eq. (3.14) with regards to a complete operator basis
on S(Hy), where Hy is the 4-dimensional Hilbert space of the two-photon
polarization. Let us choose the set of operator basis constituted by the
fifteen generators of SU(4) plus F; = I/v/4, such that Tr[FIFj] = 0jj.
Therefore, the operatorial relation in Eq. (3.14) will be transformed to a
matrix relation

£ = S [ (3.15)

To obtain an explicit expression for the generator, we consider a general
Lindblad form. Recalling the operator basis {F;}, we have

16 16
Llp(t)] = ~ilH(0), p(0)] + D2 D Ras(t) (Fapl)FS — 2 (FiFa, p(t)}),
a=2 =2
(3.16)
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where

H(t) = 57 3 [Ror(t)Fa — Ria(t)'FL], (3.17)
a=2

and R is a 15 x 15 matrix whose elements R,3 € R give the transition
rates of the master equation. Consequently, a matrix representation of the
generator will be obtained by

(Li]ap = Tr[FIYEt[Fﬁ]]. (3.18)

By elementwise comparison of Eq. (3.18) and Eq. (3.15) one finds the rates
of the master equation in Eq. (3.16) in terms of the decoherence functions
in Egs. (3.10-3.12). It turns out that the rate matrix has only a 3 x 3 non-
zero subspace. If we diagonalize this matrix, the second term on the r.h.s
of Eq. (3.16) — which encapsulates the non-unitary dynamics — simplifies to

i O [Jep®T] ~ 50w p0)]. (319)

Naturally, the rates v; and the operators J; are dependent on the joint
frequency distribution P(wg,wp). One specific distribution that is exper-
imentally realizable and is utilized in this thesis is constituted by sum of
two single-peak Gaussian distributions, i.e., P(wa,ws) = Y21 Pi(Wa,ws)/2-
Let the two have the mean value vectors (wp/2 — Aw/2,wo/2+Aw/2)T and
(wo/2+Aw/2,wp/2—Aw/2)T, identical standard deviation vectors (o, o),
and identical correlation coefficient K. Accordingly, the decay rates and
operators in Eq. (3.19) will be obtained respectively as

Y1(t) = 2(1 — K)o?An’t + tan(tAnAw) AnAw, (3.20)
Y2(t) = 2(1 + K)o*Ant, (3.21)
1 tAnAw

73(t) = Qtan( 5

) [1 — sec(tAnAw)|AnAw, (3.22)
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Figure 3.1: Transition rates of the master equation plotted as a function of
the interaction time. Dashed green lines indicate K = —1, solid black lines
for K = 0, and dot-dashed red lines when K = 1. Here we set Aw/o = 2.

and
J1 = 2\f(12®03+02®12) (3.23)
Jo = 2\/>(12®0'Z—UZ®12), (3.24)
1
J3 = §oz ® o,. (3.25)

The explicit expressions of the decay rates are clearly dependent on the
properties of P. If the two single-peak Gaussian distributions are identical,
e., Aw = 0, we always have 73 = 0. This means that with a single-peak
Gaussian distribution the channel governed by the operator J3 is absent and
dynamics is solely governed by the local operators J; and Jo. Interestingly,
with a single-peak distribution the decay rates are always non-negative, and
the dynamics is Markovian. In contrary, whenever Aw # 0 the first and
third rates can take negative values, indicating a non-Markovian dynamics.
Furthermore, one realizes that while 3 is independent of K and o, the
other two rates are functions of the local correlation coefficient and width
of the distribution. Specifically, with a fully anti-correlated distribution
(K = —1), the second rate always vanishes, whereas, ; vanishes with
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K =1 and Aw = 0. A special situation happens with Aw = 0 and
uncorrelated frequency distribution with K = 0, when one has v; = v and
~v3 = 0. One can check that in this case the generator is fully local and the
dynamical map factorizes, i.e. @y = @, ® ®p. The other striking feature
is that v, and 3 diverge at some isolated points in time, as depicted in
Fig. (3.1). This may suggest that the map is not invertible and therefore
the master equation obtained is not valid. Nonetheless, we note that the
divergence happens at some isolated points at which the elements of the
generalized Bloch vector of the two-photon polarization state, given by
r;(t) = tr[F;p(t)], happen to be zero. Therefore, the product of divergent
rates and zero inputs provides a finite rate of change of the Bloch vector,
which allows us to follow the evolution of the state unambiguously.

3.2 Interference-induced generation of entangle-
ment

In chapter 2, we introduced a general interferometric approach that involves
any quantum system with a finite and discrete Hilbert space. An interesting
situation considering this general picture arises when the system or the
detector coupled to it are multipartite. Suppose we use a generalized beam
splitter (or any other method) to overlap the paths of an interferometer.
What happens then if the detector is a two-qubit system? This actually
can lead to generation of entanglement. The idea of superposing different
states of a multipartite system to generate entanglement has been reported
for example in [93, 94]. However, an interferometric formulation has not
been explored so far. By adapting the simplest scenario, we roughly discuss
the requirements for entanglement generation with interference and leave a
generic formulation for later studies. We proceed then to present our results
for polarization-entanglement generation using the two-photon dephasing
model and interference in frequency domain.

3.2.1 The simplest case: 2-port interferometer and a two-
qubit system as the detector

Presume a hypothetical two-port interferometer with the paths denoted by
the orthogonal vectors |0) and |1) on the Hilbert space H;. We recall that
these two vectors need not to be associated only with spatial degrees of
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B11) ® |¢1)D 7 BS — ® (“|¢0>D - ﬁ|¢1>D) — 1)

Figure 3.2: An interferometer with two ports 0 and 1. The beam splitter
(BS) makes a 50/50 superposition of the two paths. As a consequence, the
two detector states |¢g) , and |¢1) , that have been coupled respectively to
|0); and |1); superpose.

freedom. Thus, in general there might be no actual particle or a physically
existing interferometer, but rather it is just the state vector of a quantum
system spanned by the two vector bases. Nonetheless, to help comprehend-
ing the situation we assume an actual interferometer depicted in Fig. 3.2,
with the two paths |0) and |1). A hypothetical particle inside the interfer-
ometer takes a general pure state [¢) = « [0); + 3|1);, with |a]?+|8]? = 1.
Now consider a two-qubit system as a detector labeling the paths of the
interferometer by building correlation with it. The 4-dimensional Hilbert
space of the detector is denoted by Hp = Hp, ® Hp,, which is spanned
by the four orthogonal vectors {|00),,|01),[10)p,|11)}. From the ele-
ments of this set only two vectors would be enough to get full which-path
information. Nonetheless, our goal here is not labeling the paths, but rather
generation of entanglement in the detector system. Assume the detector is
initially in a global state |¢,4) and after the interaction with the interferom-
eter the total state evolves to

W) = a|0); ® |do)p + B1); @ |d1)p - (3.26)

The which-path information (system-detector correlation) is maximum when
(¢o|#1) = 0. Let us now put a 50/50 beam splitter on the way of the two
paths. For example consider applying a Hadamard gate H on the two vec-
tors |0) and |1), such that H|0) = %(|O> +]1)) and H|1) = %(|0> —11)).
Due to overlapping of the two paths, the state vectors |¢;),, superpose in
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the output paths of the interferometer, such that
1

HIY) = =

[10); @ (a|o) p + Blo1) p) + 1)) @ (aldo) p — B 1) p)]-
(3.27)

Consequently, detecting the system at either of the output ports 0,1 gives
a superposition of the two detector state vectors |¢o), and |¢1). The
intuitive question thus is whether the resulting states |¢4) = a|¢po)p £
B |¢1), contains entanglement.

Let |¢i) p = a;]00), + b; |01) ;) + ¢; [10) , + d; |11) . Accordingly, one
has

|¢i>D = A4 ’00>D + B4 ‘01>D + Cx |10>D + D4 ‘11>D , (3.28)

where X4 := axg+ x;. Entanglement of these states depends on all of the
amplitudes involved in the total state in Eq. (3.26). These amplitudes also
determine the distribution of correlations among the interferometer and the
detector before the action of the beam splitter. In particular, consider

1

W) >3

[10); @ (100)p +[01) p + [10) p + [11) )
+[1); ® (|00)p, — [01) p — [10) p + [11) p)]- (3.29)

The state above includes maximal entanglement between the interferome-
teric paths and the two-qubit detector system. However, the reduced states
prp, = trp,[|¥) (¥|] and prp, = trp,[|¥) (¥|] contain no entanglement,
which is expected considering the monogamy of entanglement [95]. Now
applying the Hadamard transformation results in

H[V) = %HOM ® (100)p +[11)p) + 1) @ (|01)p +[10)p)].  (3.30)

Thus measuring the system on either of the paths 0, 1 provides a maximally
entangled state of the two-qubit detector system.
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Figure 3.3: A schematic description of the protocol and the corresponding
optical set-up. (a) The initial total state of the photon pair is prepared
in a spontaneous parametric down-conversion process, such that the polar-
ization state (black circles) is factorized, while the frequency state (grey
circles) is entangled due to narrow frequency width of the laser pump. (b)
When the photons travel through quartz plates, their polarization become
coupled with the frequency. (c) The length of the quartz plates (so the
interaction time) is fixed to prepare the desired total state. (d) The distin-
guishability of the frequency paths is erased due to frequency up-conversion
and interference happens in frequency domain.

3.2.2 Remote polarization-entanglement generation by local
dephasing and frequency up-conversion

We introduce an experimentally realizable protocol to implement interference-
induced generation of entanglement based on the two-photon dephasing
model, pictorially depicted in Fig. 3.3. In this scenario, frequency degrees
of freedom of the photons provide the interferometric paths and polariza-
tion of the photon pair corresponds to the two-qubit detector system in
which we want to create entanglement. The first crucial step is to control
polarization-frequency correlation by manipulating the two-qubit polariza-
tion state coupled to each frequency path.  This can be done by local
dephasing dynamics of each photon. The second step is to overlap the
frequency paths to enable the interference. We do so by erasing distin-
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guishability of frequency paths by local frequency up-conversion of each
photon. As the whole protocol is relying only on the local operations, it
can be used to generate entanglement between distant photons.

Although the main mechanism of this protocol is similar to what we dis-
cussed using the 2-port interferometer, there are also some complications
involved in comparison to that toy model. First of all, frequency degrees of
freedom is continuous, hence we deal with infinite frequency paths. Second,
instead of making a superposition of different paths in order to enable inter-
ference, we erase distinguishability of the paths by frequency up-conversion
and make them overlap. Consider the initial total state of the photon pair
given by

[Wo) = ;/dwa/dwbg(wmwb) |wa, wp) @ (|Rh) + |hv) + |vh) + !vv(>3).31)

Comparing this state with Eq. (3.26), we associate each vector |wq, wp) with
a path of a hypothetical interferometer. At this stage, the polarization
reduced state is separable and it contains no correlation with the frequency
paths. To prepare the desired correlation between the frequency paths
and the polarization of the photon pair we use local dephasing dynamics
with identical interaction times t, = t, = t. We recall that, although the
dephasing interactions are local for each photon, the overall dynamical map
of the two-qubit polarization system will be non-local if the initial frequency
distribution is correlated. After the local interactions, the total state of the
photon pair evolves to

1 , .
|U,) = 3 /dwadwbg(wa,wb) |wa, wp) @ (e”"h(“’“"r“’b) |hh) + it (nhWa+nuws) |hv)

+eit(newatnnwy) |vh) + et (wa+ws) lov) ).
(3.32)

The distribution of correlations between different parties in the state above
depends on the properties of the frequency distribution |g(wq,ws)|? and
also on the interaction time t. At this stage we take it as general as it is
and proceed to discuss how to overlap different frequency paths. We use
frequency up-conversion, where the pump photon with frequency w, and
a local photon with frequency w; are annihilated to create a photon with
higher frequency w, = w;+w,. Generally speaking, the up-conversion pump



Quantum information protocols with two-photon dephasing
56 model

has a frequency distribution P(w,,) with a finite width. Therefore, the out-
put frequency follows the frequency distribution of the pump. Accordingly,
frequency up-conversion results in the local map

;) — / dupP(wy) |wp + wi) (3.33)

which adds some uncertainty to the initial frequency. To make it clear
assume two orthogonal vectors |wg,ws) and |w),w;). The overlap of these
vectors after local frequency up-conversion with identical pump distribution
P(wp) is given by E(wg — w),) X E(wp — wy), where

E(w) = /dpr(wp)P(wp +v). (3.34)

For example if the pump photon has a normal distribution with width o,
we get E(v) = exp(—v?/407)/(20,1/7). The range of w; — wj is restricted
by the width of the frequency distribution of the photon pair. Interestingly,
for w; —w] < o, overlap of the up-converted frequency paths approaches to
a non-zero constant, which means their distinguishability has been erased.

Suppose that all the frequency paths overlap idealistically. Thus, the
frequency degrees of freedom in Eq. (3.32) would be factorized from the
polarization reduced state. Nonetheless, the phases generated during the
local dephasing dynamics still exist and combine to get

1) o /dwadwbg(wa,wb)(eit”h(w”wb) \hh) + it (nhwa+nows) |hv)
+eit(nvwa+nhwb) ‘?)h> + eitnv(wa+wb) ’1)1)> ) (3.35)

Interestingly, if the initial frequency distribution of the photon pair is max-
imally anti-correlated (w, + wp = wp for all given pair of frequencies) the
integration over all the phases for the subspace spanned by |hh) and |vv)
results in a constant relative phase. This also means that this subspace
has not been correlated with the frequency degrees of freedom before the
up-conversion. However, the result for the orthogonal subspace will be a
decaying function of the width of the distribution and interaction time. In
other words, while the interference for the former subspace is constructive,
it is destructive for the latter subspace. This fact let us ultimately empty
the amplitude of the |hv) +|vh) subspace and get an entangled polarization
state.
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Figure 3.4: Concurrence of the reduced polarization state after mapping
the frequency paths (generated entanglement) plotted in solid blue as a
function of effective interaction time. Dashed-red line is AE.

The initial frequency-frequency correlation is crucial in the current pro-
tocol. If £ > —1, the sum of the frequencies of the two photons is not
constant and the subspace spanned by |hh) and |vv) does not remain fac-
torized from the frequency paths. This means that destructive interference
due to the sum of out of tuned phases happens also for this subspace and
we do not have a desired control over the two-qubit polarization vectors.
In fact, non-locality of the two-photon dephasing dynamics (due to initial
frequency-frequency correlation) is a resource here. Although the non-local
dephasing dynamics can not create polarization entanglement, it provides
the rightful distribution of correlation within the total system that enables
us to generate entanglement by interference.

To clarify this point we use a toy model in which the initial frequency
distribution is fully correlated and is made of two sharp peaks |wi,ws) and
|wa, w1) with wi +we = wp and w1 —wy = Aw. Thus, the total state can be
considered a three-qubit system: one for the frequency degrees of freedom
labeled by @ and two-qubit polarization state labeled by Q,, and @Qp,.
After local dephasing for some identical interaction times t, = t, = t, the
total state reads

einhwot

T 22
+ |(JJ2,W1> ® (|hh> + eiAnwlt ’h’()) + eiAnwgt |’Uh> + eiAnwot |U’U>)} )
(3.36)

| W) [\wl,wz) @ (|hh) + eIANWzt | pgy) o @ATWLE ) | giAnwol lvv) )
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Assume perfect mapping of the two frequency vectors to some fixed vec-
tor |wy,wy), which removes the frequency-polarization correlation and let
the polarization vectors interfere. Before the frequency mapping, the dis-
tribution of entanglement in the three-qubit system fulfills the monogamy
of entanglement, i.e., C(psp,)? + C(prps)? < C(Pfprps))?> With pry being
the two-qubit reduced state obtained by tracing |W;) (V| over the third
qubit and C being the concurrence. As depicted in Fig. 3.4, an interesting
observation is that the generated entanglement is upper-bounded by the
residual entanglement of the three-qubit system before the frequency map-
ping, defined by AE = C(pf(p1ps))° —C(pfp1 ) —C(pgp,)?. For example, when
eibnwit — _ gidnwat there is maximal correlation between Q ¢ and the two-
qubit system Q1 ® @Qp2, but the frequency paths are not entangled with the
polarization of each photon separately. This means that C (pf(plm))2 =1
and C(pyp, )2 = C(pgp,)* = 0. Exactly at this point we get the highest value
of entanglement generation since the amplitude of |hv) 4 |vh) is zero due
to the completely destructive interference.

3.3 Perfect teleportation with open quantum sys-
tems

In reality, implementing the quantum teleportation protocol has to deal
with a main challenge. As the time scale of the protocol is usually larger
than the decoherence time of the qubits, the noisy channels have enough
time to deteriorate the initial entanglement shared between Alice and Bob.
By decreasing the entanglement, the fidelity of the teleported state de-
creases too. It has been shown that the maximum fidelity that can be
achieved by using a fully mixed state and local operations and classical
communication (LOCC) is 2/3 [96]. Nonetheless, it is shown that harness-
ing non-local memory effects allows for a high-fidelity teleportation protocol
even with mixed states [53]. In what follows we present a modified version
of the original protocol introduced in [53]|, and present a corresponding
experimental realization.

3.3.1 Theoretical description

The protocol contains the following steps. Assume Alice and Bob initially
share the maximally correlated polarization state |¢T) , = %(|hh> +|vv)).
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The total state of the photon pair with respect to the polarization and
frequency degrees of freedom is given by

6(0)) = |¢*)., @ / dw, / o (was wp) |wa, ) - (3.37)

The protocol begins with local dephasing dynamics on Alice’s side. After
Alice’s photon went through a dephasing evolution for some time t,, the
total polarization state shared between Alice and Bob gets mixed, so we
lose the entanglement resource in the polarization degrees of freedom.

After the local noise, Alice prepares the state she wants to send to Bob
as |¢), = a|0) + |1) on the spatial degrees of freedom of her photon. One
can rewrite the full quantum state with respect to the path-polarization
Bell states of photon a, such that

W) = 510 )y () + B0y 6n(ra))]  (338)
b 187 0 ) () — B 1)y Euulta))]
£ 510 1B 1)y 6w () + o[y ()]
b))y Euelta)) — B 1) [unlta)

where [9F),, = Z5(|0) [H) £ [1)|V)) and %), = (10)|V) £ [1)|H))
and [Exr(ta)) = [ dwadwpg(wa,wy)e™@ata |wy wy), with A = h, v. Now Al-
ice performs the polarization-path Bell-state measurement (BSM) on her
photon and communicates the outcome result to Bob, whose local state col-
lapses into one of the four possibilities. A standard teleportation protocol
would be completed then if Bob applies a unitary operation to his pho-
ton (corresponding to the measurement outcome). However, the achieved
fidelity will be limited due to the local noise on the Alice’s side.

The situation can be different if we employ non-local memory effects
induced by correlation between the frequencies of the two photons. Af-
ter doing the Bell-state measurement, Alice’s photon is eliminated and its
frequency degrees of freedom do not exist anymore. This means that the
information available in the local frequency state is discarded and we need

to take the trace over w,. Assume that Alice’s outcome has been |[®7)_



Quantum information protocols with two-photon dephasing
60 model

thus, Bob’s reduced polarization state collapses to

po = |a? [h) (k] @ ppi, + aB* |h) (0] @ pry + B [v) (b @ pon
+HBI [v) (0] © pow, (3.39)

with

Phh = / dwpdwyduseg(Wa, wp)g™ (Wi, wWp) [wp) (Wh] = puo,

pro = [ dndusen, ) o) h] = gl (3.40)
and §(wp, w}) = [ dwag(Wa,ws)g* (Wa,wy)e~*Anawata The state above is al-
ready correlated between polarization and frequency of Bob’s photon, de-
spite the fact that no local noise has been applied on Bob’s side yet. The
peculiar thing happens if Bob also subjects his photon to a local dephasing
dynamics for a duration t,. Interestingly, when the initial joint frequency
distribution is correlated, the Bell-state measurement followed by the clas-
sical communication allows Bob’s local polarization state to be affected

not by the local decoherence function kp, but by the non-local decoherence
function k4 defined in Eq. (3.11), such that

po = laf? |h) (h] + aB*kap(ta, 1) |h) (0] (3.41)
+0 Bap(tas to)* [0) (] + |BI* [0) (v].

We already presented a formulation of the frequency distribution by the
bivariant Gaussian distribution. Suppose a bivariant Gaussian distribution
with correlation coefficient K, symmetric standard deviation vector (o, o)”
and mean vector (wop/2,wp/2). We know that whenever K = —1, one has
|kap(t,t)] = 1. Therefore, the only thing Bob needs to do is to set the
dephasing time on his side to ¢, = t, = 7 to get the pure state |h) +
e TA™0 |4 The extra phase factor would be eliminated easily by a local
unitary on Bob’s side and the teleportation is done perfectly. Note that,
for all of the four possible outcomes of the BSM, Bob can complete the
protocol perfectly. He just needs to apply the corresponding unitary gates
(as done in a standard protocol) and then add the dephasing noise with the
same duration, but with the difference that if the outcome is [¥'*) he must
consider Any, = —An,,.
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Figure 3.5: Realized experimental setup of the high-fidelity teleportation
protocol with non-Markovian open system. The legend for the optical com-
ponents used in the setup: HWP: half wave plate, BF: bandpass filter,
SMF': single mode fiber, MRP: motor rotating plate, QP: Quartz plate,
PBS: polarizing beam splitter, LAA: linear adjustable attenuator, SPD:
single photon detector.

3.3.2 Experimental realization

The realized photonic setup for implementing the teleportation protocol
with open quantum systems is illustrated in Fig. 3.5. A pair of polarization
entangled photons are created in the type-I spontaneous parametric down-
conversion process. The photon pair is also correlated in frequency due
to the narrow width of the down-conversion laser pump. Using 3nm full
width at half maximum bandpass filters, we prepare finite local frequency
width for the photons with the peaks at 808nm. Then to implement the
dephasing noise (on Alice’s side or on the other side) we put quartz plates
with specific thicknesses that correspond to the desired interaction times.
The state to be teleported is prepared by employing the path degrees of
freedom of Alice’s photon in a specific Sagnac interference ring, which also
allows for path-polarization Bell-state measurement. The ring contains a
specific component called NPBS that is half beam splitter (BS) and half
polarization beam splitter (PBS). To prepare the desired state of Alice we
use linear adjustable attenuator (LAA) that allows for adjusting arbitrary
amplitude ratio of the two paths of Alice. The polarization-path Bell-state
measurement is done by overlapping the two paths of Alice in the PBS half
of the specific beam splitter and then using other PBS at 45°. Finally, the
local unitaries on the polarization state of Bob is implemented by using
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Figure 3.6: The teleportation fidelity including the error bars as a function
of the interaction time, denoted by the total optical path difference with
the unit of 808nm. On the left panel, the experimental results regarding
the first case discussed in the main text are presented when Alice’s state is
prepared as |¢), = 0.811|0) + 0.585 |1). On the right panel, we plotted the
results of the second experimental situation. The dashed red lines are the
theoretical fit, and the black horizontal line indicates the classical limit of
the fidelity with value of 2/3.

half wave plates (HWP).

We performed the experiment for all of the four outcomes of the Bell-
state measurement and considering two scenarios. In the first case, we begin
with realizing that increasing the noise on the side of Alice without adding
any noise on the side of Bob decreases the teleporting fidelity, given by
s(D|pp|d)s. We increase the noise till the maximum optical path difference
235.6 g with A\g = 808nm is reached. The achieved fidelity of the teleported
state in the experiment is plotted in the left panel of Fig. 3.6 as a function
of the optical path difference and considering |¢), = 0.811]0) + 0.585 |1).
As we expected, the fidelity goes down by increasing the noise and crosses
the classical limit of 2/3. Then after fixing the noise on Alice’s side at its
maximum, we start to add noise also on the Bob’s side and increase it till
reaching the exact amount of noise on the Alice’s side. As we observe in
the second half (denoted by the vertical dashed lines) of the plots in the left
panel of Fig. 3.6, the fidelity starts to revive and eventually reaches some
high values (for example 0.969 + 0.021 for |®~)) when both sides have the
same amount of noise.

In the second case, we add noise to the both sides in a stepwise manner
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and with the same amount. The experimental results are given in the right
panel of Fig. 3.6. When there is the same amount of noise on the two sides,
the fidelity does not decrease and remains basically constant. Even though
the initial polarization entanglement is destroyed due to high amount of
noise, this is a proof of principle experiment showing that one can achieve
high-fidelity teleportation when exploiting useful resources available in the
other degrees of freedom of an open quantum system.
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Chapter 4

Open system dynamics as a
tool in quantum
thermodynamics

In this chapter, we utilize dynamics of open quantum systems to examine
thermodynamic properties of the systems under scrutiny. We focus on two
main goals. Firstly, we present a simple model which allows for control-
ling the non-Markovianity of the open dynamics. We derive the master
equation for this model and discuss the relation between the degree of non-
Markovianity of the dynamics and the ability of performing work by the
external drive. The corresponding results are presented in Section 4.1. Sec-
ondly, we introduce a model for implementing a quantum Stirling cycle and
use it as a heat engine. We derive the master equation that allows to calcu-
late the real-time dynamics of a driven working substance in contact with
a heat bath and we use it to study thermodynamic performance of the heat
engine operated at finite times. These results are summarized in Section
4.2.

4.1 Open system dynamics and thermodynamics
in a system of coupled two-level systems

4.1.1 The two-qubit model

We present a simple model that allows for non-Markovian dynamics. The
model consists of a system of two coupled qubits, denoted by ()1 and Q2,
with @2 weakly coupled to a Markovian reservoir. While )1 makes the
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Theoretical Model Non-Markovian Environment

Implementation

Figure 4.1: A simple model for implementing non-Markovian dynamics,
shown in the upper panel, and a potential experimental setup based on
superconducting qubits depicted in the lower panel. Here the resistor R
plays the role of the environment and the capacitors, denoted by C', couple
the superconducting qubits.

open system of interest, its effective non-Markovian environment is made
of the combined system of ()2 and the Markovian reservoir, such that the
second qubit is the part of the environment keeping the memory. Moreover,
we allow for coherent weak driving of Q1 by an external field. Therefore,
energy is pumped into the first qubit in the form of work and then from
the second qubit dissipates into the environment (heat bath) in the form
of heat. The theoretical model and a potential implementation based on
superconducting qubits are illustrated in Fig. 4.1.

The total Hamiltonian of the two-qubit system and the heat bath is
given by

2 .
H(t) = Z ﬂa;ﬁj) + Zwb:[)bw + JJS)JQ) + )\(t)ag(ﬂl)
J=1 w (4.1)
+ K Zgw(af)bw + a(,Q)bL),
w

where 0, are the Pauli operators, and o4+ are the inversion operators. Also
wj is the frequency of the jth qubit, b, bIJ are the annihilation and creation
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operators of the environment mode at frequency w, J is the coupling con-
stant between the two qubits, A(¢) is a time-dependent driving protocol and
g(w) is the spectral function of the environment. We specifically consider
a periodic driving field acting on @1, such that \(t) = Ao sin[wpt].

Master equation

Since the bipartite system of Q1 and @5 is weakly coupled to the heat bath,
it is intuitive to use a Markovian master equation for the reduced dynamics
of the two-qubit system. Once the density matrix of the bipartite system
is obtained, one can get the reduced state of ()1 by tracing over the second
qubit. To make things much simpler, we restrict ourselves to a weak driving
of (Q1, such that the change in the energy levels of the bipartite system due
to the external drive is small. In that case, we can ignore the effect of
the drive in the dissipator of the master equation. We use specifically a
phenomenological master equation of the form

d . 1
Zpra(t) = —ilHo(8), pra()+9Y (0@ p(t)0l? = S{o P, p1a(1)})

1
++0 (Uf)plz(t)g(—Q) - 5{0(_2)03'2)’[)(75)})’
(4.2)

in which Y = (R/2)ws[1 + coth(weB/2)] = YMel2 with & = r%wy are
decay rates of the second qubit. Note that the accuracy of this master
equation decreases by increasing the value of J, as a strong qubit-qubit
interaction would influence the energy structure of the second qubit as seen
by the bath. Accordingly, in addition to the restriction on the strength of
the driving field, we also avoid strong qubit-qubit interactions.

For a stronger coupling, however, a microscopic derivation for the mas-
ter equation should take the whole two-qubit system as the effective open
system. Consequently, such a master equation would involve non-local tran-
sition operators acting on the two-qubit system, and not only Q2. Let us
partition the total Hamiltonian in Eq. (4.1) as H(¢t) = Hg+Hp(¢)+Hp+H;y,
where we define Hg = ?:1 %UEJ) + JO-;(El)O-;(U2), Hp = >, wabw, and

Hp(t) = )\(t)a;gl). Following a standard derivation based on Born and
Markov approximations and up to the second order in the interaction
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Hamiltonian [29], one gets

Spia(t) = ~ilitn(0). o) — [ dsten{[Er(e), (e — 5).pia(t) @ pl)

dt
(4.3)

where tilde denotes the interaction picture w.r.t. the free Hamiltonian of the
two-qubit system and the bath, ie., A(t) := e*(HstHB) ge—it(Hs+Hp) T
recast the master equation above in a Lindblad form, the secular approx-
imation should be applied. The spectral decomposition of the two-qubit
free Hamiltonian is given by Hg = .1 | E; |E;) (Ey|, with By = —E; =
VJ?2+ Q%2 /4and Ey = —FE3 = \/J? + A? /4, where we used Q) = wy+w9 and
A = w1 —ws. Thus, the bipartite system is subjected to two different transi-
tions with frequencies €1 = Fy— F3 = Fs— FE1 and e = B4 — Fy = E35— F;.
The secular approximation requires that |e; — ea| ™! < 75, where 75 is the
relaxation time of the open system. This requirement restricts the value of
J and A. For example, for resonant qubits (A = 0) the secular approxima-
tion may fail when J is comparable to the coupling to the bath. In this case,
the master equation can not be recast in the Lindblad form. Nonetheless,
the phenomenological master equation given in Eq. (4.2) seems reliable in
that regime, as in the limit of J — 0 the dissipator must act only on the
second qubit. It is worth also mentioning that if we decompose Eq. (4.2)
w.r.t. to the non-local transition operators of the two-qubit system, one
finds that the phenomenological master equation contains both rotating
and counter rotating terms.

4.1.2 Non-Markovianity of the dynamics

Although the dynamics of the two-qubit system is always Markovian in our
setting, the reduced dynamics of the first qubit might be non-Markovian
due the interaction with the second qubit. When J — 0 the two qubits
disconnect and ()1 is basically isolated from the bath. For a non-zero value
of J the first qubit interacts with the bath indirectly through the second
qubit. A natural question would be to ask what is the smallest value of
the ratio J/k with which non-Markovianity kicks in. To answer to this
question we consider the undriven system, in order to rule out any effect of
the drive on the dynamics. Reduced dynamics of (1 then can be obtained
by having its state p1(t) = tra[pi2(t)] at all times ¢ > 0, considering that
the two-qubit state pi2(t) can be achieved by solving the master equation
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in Eq. (4.2).

To capture non-Markovianity in the dynamics of ()1 we use the ap-
proach based on the volume of accessible states [67]. This method pro-
vides us a computationally simple way to explore the relation between the
non-Markovianity of the system and the qubit-qubit coupling strength J.
Consider the evolution of the Bloch vector of the first qubit’s state gov-
erned by a transformation matrix A plus a possible translation T', such
that 7(t) = A(t)7(0) + T(t). As we discussed in Chapter 2, any temporal
increase in the determinant of the transformation matrix A is a witness
of non-Markovianity. We plot |A(¢)| as a function of the interaction time
and for different values of the ratio J/k in Fig. 4.2 considering resonant and
non-resonant qubits. As expected, non-monotonic behavior appears in the
volume of accessible states as we increase J/k. There is a slight difference
between resonant and non-resonant cases though. Intuitively, when the
qubits are resonant the first qubit is effectively coupled to the Markovian
bath, thus a larger value of J/k is required to observe non-Markovianity.
The other parameter playing a role in the transition from Markovian to
non-Markovian dynamics is the temperature of the bath. Let us describe
the smallest value of J/k for which the volume of accessible states behaves
non-monotonically by (J/k),. In Fig. 4.3 we have plotted the value of
(J/R)s, as a function of the inverse temperature of the bath. As we ex-
pected the detuned setting comes with a higher value of (J/k)y, for most
of the temperature range. We also observe that the threshold value of J
increases as the bath gets warmer, as expected.

4.1.3 The average work done on the system

An active research topic is to address whether non-Markovianity of the
dynamics can be used as a resource in quantum thermodynamics, for ex-
ample see [39, 97-99]. In this spirit we investigate if non-Markovianity of
the dynamics and the ability to perform work on the working substance
are related. The simple model we introduced here allows us to control the
extent of non-Markovianity by changing the coupling strength J. Thus,
having the work done on the first qubit allows us to shed some light on this
matter.

The average work done by the external drive on the two-qubit system
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Figure 4.2: Temporal behavior of |A(t)| for three different values of J/k.
In the panel (a) qubits are resonant, A/k = 0, while in the panel (b) we
set A/k = 11. In both of the panels we set wy/3 = 0.35 and & = 0.01.

in the interval [0, ] is given by

WDz = [ ds tralfip(s)pia(s). (4.4)

Since Hp is a local operator acting only on the first qubit, the expression
above also gives the average work done on the first qubit. For a periodic
driving protocol as Hp(t) = Agsin(wpt), the average work is consequently
dependent on the frequency wp. A relevant question here is whether setting
wp in resonance with the first qubit as a distinct entity or consider the level
structure of the two qubit system. In Fig. 4.4, we take into account both
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Figure 4.3: Threshold value of J for Markovian to non-Markovian crossover
denoted by (J/k)¢, versus temperature of the Markovian bath (in log scale).
The large-dashed black line corresponds to the resonant case, while the
small-dashed red line presents the non-resonant case with A/k = 11.

cases by setting wp = w; and wp = €;. The average work done on the sys-
tem is plotted as a function of interaction time. The bold feature regarding
both cases here is a suppression (damping of the oscillations) of the average
work when the dynamics moves from Markovian to non-Markovian regime
(due to increasing the value of J/k). Because of the sinusoidal driving the
average work shows oscillations which are damped due to the interaction
with the bath. This behavior is apparent for small values of J/k at which
the dynamics is Markovian. However, for stronger values of qubit-qubit
coupling (blue and green lines) the average work does not show the same
behavior. This effect is more enhanced in the case of bare-frequency driv-
ing (upper panel). One may interpret this suppression as the consequence
of out of resonance driving — due to the fact that the driving frequency is
fixed but the energy levels are influenced by J. However, the same behavior
also exists for wp = €1, where the driving frequency is also J-dependent.
At longer times, the system reaches a time-dependent steady state and the
average work changes linearly in time.
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Figure 4.4: The average work performed on @ considering wef8 = 0.2,
A/k = 0 and for J/k = 1 (dotted black marked by star), 2 (dashed red
marked by square), 20 (dotted blue marked by circle), 30 (dashed green
marked by diamond). In the lower panel we set wp = €1 while in the upper
panel wp = w1.

4.2 Finite-time quantum Stirling heat engine

Any realistic heat engine that transfers heat to extractable work has to
operate with a finite cyclic period, considering both the fact that the engine
is supposed to operate in a desired finite time window and the fact that
the output power goes to zero for an everlasting period. However, we
also know that reversible thermodynamic processes that give the maximum
extractable work are quasi-static. Therefore, a natural goal is to seek for a
trade-off between power and efficiency in the processes performed at finite
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times.

In particular, finite-time adiabatic processes and thereby finite-time
Otto cycle have attracted much attention, for example in [98, 100-102].
Comparing adiabatic and isothermal processes, the latter is more difficult
to handle at finite times due to the simultaneous coherent driving and non-
unitary dissipation. Consequently, a slow drive is usually assumed when
the working substance is connected to the bath, such that the non-adiabatic
effects of the drive on the dissipator can be ignored. Provided that the time
scales of the external drive and those of the coupling to the bath are sepa-
rated, non-adiabatic effects can also be addressed using a time-dependent
Markovian master equation [103].

In this part of the thesis, we study the real-time open dynamics of a
driven qubit coupled to a heat bath. For this aim, a non-Markovian master
equation is employed which does not assume a separation of the time scales
involved in the dynamics [104, 105]. We use this tool specifically in studying
performance of a finite-time quantum Stirling heat engine.

4.2.1 Physical model and open system dynamics
The Stirling cycle

As we discussed earlier, the Stirling cycle contains two isothermal strokes
and two isochoric thermalization strokes. In classical settings, isochoric
strokes usually involve the interaction of the working substance with a so-
called regenerator. However, the model considered here does not include a
regenerative setting, instead, we assume a direct interaction of the working
substance with the heat baths. Inverse temperature versus level separation
and polarization versus level separation diagrams for the quasistatic cycle
are depicted respectively in the panels (a) and (b) of Fig. 4.5, where po-
larization is defined as n(t) = tr[Hg(t)p(t)]/w(t). We discussed the four
strokes of the ideally slow cycle in section 2.4. Note that however, the sit-
uation here can be different as the term isothermal refers now to the open
system dynamics of a driven system in contact with a bath at constant
temperature. One should note that the actual trajectory of the working
substance can be away from the manifold of the equilibrium states due to
the finite-time driving. By denoting the duration of each stroke by 7;;, the
period of a full cycle is T' = 744 4+ Tpe + Ted + Tda-

To implement the Stirling cycle we suggest using a superconducting
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circuit, schematically shown in the panel (e) of Fig. 4.5, which has been
also suggested as a possible implementation of the Otto refrigerator [101].
The free Hamiltonian of the qubit and its coupling to the hot/cold bath

are respectively denoted by Hg(¢) and th/ 2 (t) and are given by (h=1)

Hg(t) = wolq(t)os + Acy], H () = Aa(t)oy @ Ba, (4.5)

where wy denotes a reference energy scale for the non-driven qubit. The
operator B, acts on the bath with a = ¢, h denoting the cold and the hot
baths. Moreover, A\, (t) is a piece-wise continuous function which is used
to switch the coupling between the two baths, as shown in the panel (d)
of Fig. 4.5. We note that, to implement the switching of the interaction
between the qubit and the baths at steps b and d in the cycle, a tunable
coupler is required. This can be realized, for example, by using an extra
qubit or a resonator between the main qubit and the baths and tuning the
corresponding frequencies in resonance or out of resonance. For the sake of
simplicity, however, we do not take into account a detailed physical model
for the coupler and instead assume an ideal case which can be given by a
piece-wise continuous function. As depicted in the panel (d) of Fig. 4.5,
we choose the driving protocol ¢(t) such that the instantaneous level sep-
aration of the qubit, denoted by w(t) = 2wp+/q(t)? + A?, changes linearly
within the interval [w1,ws] with a given fixed speed. One finds accordingly
q(t) = w(t)?/4 — A2. Moreover, the coupling spectrum of the bath is
given by G(w) = [T dse™*(B(s)B). A relevant expression for the cou-
pling spectrum regarding the aforementioned setup is shown in the panel
(c) of Fig. 4.5 and is given by [101, 106]

2
g; w
Gﬁagi<w Z 0) = 1 + fQ(il _ ﬂ)2 X 1 _ e_ﬁw’
1 \w;

w

(4.6)

where i = ¢, h refers to the quantities of the cold and hot baths, g; denotes
the coupling strength, w; = 1/1/L;C; gives resonance frequency of the baths,
and f; = R;'/\/L;/C; is the quality factor of the bath’s resonator [101].
We also have the relation G ,(—w) = e #“Gg 4(w). Here, we assume that
the two baths have the same quality factor f and also the same resonance
frequency w,. In addition, values of the coupling strengths g. and g; are
set such that the corresponding spectra have the same amplitudes at w,
(see panel (c) of Fig. 4.5).
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Figure 4.5: The quantum Stirling cycle used as a heat engine and its im-
plementation using superconducting circuits. The temperature and the
polarization versus the level separation diagrams of the ideally slow cycle
shown in the panel (a) and the panel (b). Panel (c) shows the coupling
spectra of the two heat baths. Panel (d) shows the time-dependent cou-
pling to the heat baths and the linear driving of the two-level system as
a function of time. In the panel (e) we propose an implementation of the
cycle by a superconducting qubit that is capacitively coupled to two RLC
circuits (including the resistors R;, inductors L;, and capacitors C;), play-
ing the role of the cold and hot baths. External driving is done by changing
the magnetic flux over the qubit.

Dynamics

To obtain the real-time dynamics of the driven qubit in contact with the
heat bath, a general non-Markovian master equation has been derived based
on the Nakajima-Zwanzig method and assuming weak coupling and Born
approximations [104, 105]. This master equation does not require a sepa-
ration of the time scales of the drive and those of the baths and it includes
both rotating and counter-rotating contributions.

We first briefly introduce the master equation and discuss its general
form. Consider a driven qubit in contact with a thermal bath at an inverse
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temperature 5. The total Hamiltonian of the system reads
H(t) = Hs(t) + H(t) + Hp, (4.7)

where Hg(t) and Hp(t) are the free Hamiltonian of the open system and
the bath respectively. By writing the interaction Hamiltonian as Hy(t) =
S(t) ® B the master equation reads [104, 105]

Lolp(t)] = —i[Hs(t), p(t)] + /0 dr (@t = 7)[S(t,7)p(t), S(B)] + hie|, (4.8)

where
S(t,T) = Ul(t, T)S(T)U(t,T)T, (4.9)
Ut,r) = Ty Jr dsHls(s) (4.10)
D(t) = (eMB!Be~HBIR), (4.11)

The key to solve the master equation above is to obtain a solution for the
unitary propagator U(t,7). In general this can be handled numerically,
specifically when the system’s Hamiltonian does not commute with itself
at different times. Also note that the contribution of two different baths
are additive by construction if one assumes that the baths are initially
uncorrelated, as we consider in this thesis.

Now we consider the specific system given by the total Hamiltonian in
Eq. (4.5). To have more intuition about the operatorial form of the master
equation, let us decompose all the operators in the master equation w.r.t.
the instantaneous eigenvectors of Hg(t) given by

lec(t)) = cos b |e) +sinby |g) ,

leg(t)) = sin by |e) — cosby|g), (4.12)

with 6; = (1/2) cot™1(q(t)/A) and |e(g)) as the eigenbasis of o,. By defin-
ing the transition operator L(t) = |e4(t)) (€c(t)| between the instantaneous
energy basis of the qubit, the master equation contains a rotating and a



Open system dynamics as a tool in quantum thermodynamics 77

7 (w=Ta=7p) op 7 (Ta=7a=067p) op 7 (Fa=Ta=23D) op

15 = 7N
5

= 0 /- = 0 —r—
& \U == \u
= o = 02 = 02
5 0 = Of——— A = 0
Sug2 S -0.2 £2-02
tats tta ta ty te ta ta ty te ta
t t t

Figure 4.6: Numerical values of the transition rates (in the unit of 1072) as a
function of time for three different driving speeds denoted in the title of each
plot. The two upper rows show the instantaneous transition rates plotted
in solid curves, while the dashed lines are their asymptotic Markovian limit
27G(£w(t)). The two lower rows depict the rotating and counter-rotating
Lamb shift contributions as a function of time.

counter-rotating part and takes the explicit form
Lp(t)] = =i [(1+ 67 ) Hs(t) + 6170 (1) (Ao — q(t)o), p(1)]
A [LEPLIE) — LWL, p(1)}]

FAD@[LHpOL() — SLOLI), p(1)}] + Do)
(4.13)

Here §(#/CR) are the bath-induced rotating/counter-rotating Lamb shifts,
A (/1) (t) are the transition rates in the rotating part of the dissipator and

DgCR) is the counter-rotating part of the dissipator. Note that, the rotat-
ing Lamb shift is proportional to Hg(¢), but the counter-rotating contri-
bution does not commute with the free Hamiltonian of the qubit. We set
the duration of the isochoric strokes fixed and study the temporal behav-
ior of the transition rates during the isothermal strokes by changing the

speed of compression and expansion ramping. The numerically calculated
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Figure 4.7: Polarization versus level separation diagram for different driving
speeds. In panel (a) the ideal slow cycle follows the adiabatic trajectories
ab and cd, whereas the diabatic trajectories are depicted by ab and cd.
Trajectories for three different values of the finite-time compression and
expansion speeds are shown by ab’ and c¢d’ in the rest of the panels.

rates are plotted in Fig. 4.6. The rates fy(\L/ ) approach their Markovian
limit 277G (£w(t)), plotted using the dashed lines, when the duration of the
isothermal strokes is large. For the faster processes, however, one notices a
deviation of the rates from the Markovian limit.

Two asymptotic cases can be considered: (1) adiabatic slow driving
leading to an ideal isothermal trajectory and (2) diabatic driving which is so
fast that the state of the qubit does not have time to change its configuration
at all. In the first case the process is quasistatic, allowing the state of the
qubit to maintain its equilibrium configuration during the process. For
example, for the processes a — b one would have p(t) = e/s(MF /tr[¢Hs (18]
with ¢ € [ta,t5]. On the other hand, when the process is diabatic the state
of the qubit does not change and holds its initial configuration, i.e., p(t) =
eMs(ta)B /ty[eMs(ta)P] with t € [t,,ty]. In this work, we set the duration of
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the isochoric strokes long enough to let the qubit reach equilibrium with
the baths at the end points @ and ¢. Thus, these two points are always fixed
in our analysis. Accordingly, the adiabatic and diabatic are shown in the
panel (a) of Fig. 4.7, with the trajectories a — b and ¢ — d denoting the
ideal isothermal processes while a — b and ¢ — d representing the diabatic
limit. One expects that the finite-time processes will lead to trajectories
that are confined within the abb and cdd triangles. We label the trajectory
of a finite-time cycle by ab’'cd’a. Thus, at the end of the compression and
expansion processes, the qubit will end up at the points b’ and d’, instead
of b and d. In the other panels of Fig. 4.7, we plot the real-time trajectories
of the qubit dynamics (black solid curves) for different speeds of driving.
The dashed orange curves correspond to the instantaneous steady state of
the qubit. The latter is obtained by fixing the generator of Eq. (4.13) at its
configuration at a given time ¢ and then letting the dynamics continue till
reaching a steady state, which we label by p;. Accordingly, the end points
corresponding to pj, and pj, are labeled respectively by b* and d*.

4.2.2 Performance of the heat engine running in the finite
times

Our main goal is to investigate the possible advantages in the performance
of the heat engine when changing the driving speed, thereby changing the
trajectory ab’cd’'a between the adiabatic and diabatic limits. Specifically, we
can seek for enhancement in the output power or in the efficiency comparing
to the adiabatic cycle abcda.

Before presenting the main results, let us clarify some points. Firstly,
note that, due to the time-dependency of the rates, we need to set t, =T
and exclude the first cycle with 0 < ¢ < 7. This guarantees that the gen-
erator of the dynamics and the state of the qubit both reset to their initial
configurations at t = 27T. Secondly, since the cycle is not a regenerative
one and the qubit directly interacts with the baths, the net heat absorbed
during a full cycle includes contributions from both the processes a — v/
and d — a. Thirdly, the presence of Lamb shifts has some non-trivial
consequences. In particular, the work done on the qubit may have a part
coming from the time-dependent Lamb shifts, in addition to the external
drive as the main source.

We consider first identical speed of compression and expansion pro-
cesses, i.e., T = Tq. Efficiency is plotted as a function of 74 .4 using
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Figure 4.8: The efficiency and the output power as a function of driving
speed for different values of the relaxation/correlation time. The relax-
ation time is twice when considering the coupling strengths denoted by
g1. In the plots of efficiency, the solid curves correspond to the symmetric
driving with 7., = 7.4q. The asymmetric cases are shown using the large
dashing red and the small dashing blue lines, corresponding respectively to
(1) T4 being fixed and (2): 7.4 being fixed. In the upper panel, the thick
curves correspond to the effective Hamiltonian and the thin lines to the
free Hamiltonian. The power is calculated using the free Hamiltonian. The
dashed black horizontal line shows the analytic value of the efficiency of
the asymptotic slow (adiabatic) cycle, denoted by nss. Also, 7, f(fs) is the
analytic value of efficiency for adiabatic(diabatic) compression followed by
diabatic(adiabatic) expansion.
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the solid curves in the upper panel of Fig. 4.8, where we did the calcula-
tions considering both the effective Hamiltonian that includes the Lamb
shifts (thick green curves) and the free Hamiltonian (thin green curves).
An interesting result is a peak that exceeds the efficiency of the adiabatic
cycle abcda. The relevant question is now what is the relation between
the observed efficiency enhancement and different time scales involved in
the dynamics of the qubit, e.g., the relaxation time 7r, bath correlation
time 7¢, and bath resonance time scale 7g. To understand this, we have
plotted the efficiency considering two different values of the relaxation time
(one being twice the other), and two different values of the correlation time
(with the ratio 1.43), which are set by choosing f = 2 and f = 3. Moreover,
we keep the value of 75 fixed for all the four mentioned cases. Looking at
Fig. 4.8, it is clear that the relevant parameter for the observed peak is
the bath resonance time 7, such that the efficiency boosts when 7,4y are
close to 7p. On the contrary, it seems that when the time scale of the drive
is close to the bath correlation time 7o the efficiency decreases.

Let us now turn our attention to output power. We calculate the power
by using the free Hamiltonian Hg(t) and exclude the Lamb shifts. The
output power of the cycle for the same settings as discussed for the effi-
ciency are plotted in the lower panel of Fig. 4.8. Interestingly, the average
output power benefits from enhancement when 74, .4 ~ 7p too, although
the peak in the power comes at a slightly larger time scale than those for
the efficiency. As expected, the output power decreases by increasing the
duration of processes. The same thing also holds for very fast driving situ-
ations because the extractable work diminishes due to the higher extent of
irreversibility in the processes.

The average heat transferred, the average work and the net average work
are plotted in Fig. 4.9 considering the effective Hamiltonian in the left panel,
and the free Hamiltonian in the right panel. Using the effective Hamiltonian
to calculate the energy terms leads to some non-zero amount of average
work for the isochoric strokes due to the time-dependent Lamb shifts. In
addition, the average work in the ¢ — d’ is higher when considering the
effective Hamiltonian. This is also due to the non-zero Lamb shift which
leads to a larger effective frequency span than Aw = ws — wi. As we
expected, the average net work approaches its adiabatic limit as we increase
Tab,cd @nd decreases by speeding up the drive. Moreover, by speeding up the
processes, the qubit has less and less time to interact with the baths. This
results in the vanishing heat transferred at fast driving. Finally it is worth
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Figure 4.9: The average heat, the average work and the net average work
as a function of the driving duration considering both the free Hamiltonian
and the effective Hamiltonian. In the plots of the average heat and the
average work, the thick dashed red curves correspond to the a — b process,
the thin solid blue curves to the b — ¢ process, the thin dashed blue to the
¢ — d process and the thick red curve to d — a process.

mentioning that the heat transferred during the isochoric strokes reaches
its non-zero minimum by approaching the diabatic limit (points b and d in
Fig. 4.7).

Besides these asymptotic scenarios, we see a dip in the heat transferred
and the net average work at some scale of 7, ¢ matching with the peak in
the efficiency. This basically indicates suppression of the heat transferred
to the cold bath. If the qubit dissipates less to the cold bath it means
that the work done is higher and thereby the efficiency would be higher as
well. This may suggest that a faster a — b’ process in Fig. 4.7 would be
in general beneficial, since the state at the end point b’ gets closer to the
equilibrium state at the point ¢ and there would be less dissipated heat to
the cold bath. Nonetheless, the faster is the a — b’ process, the less heat
will be absorbed from the hot bath, which in turn results in less extractable
work. A similar situation also happens for the ¢ — d’ process, considering
the heat dissipated during the expansion and the heat absorbed during the
d" — a process. Thus, there must be some trade-off in some intermediate
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Figure 4.10: The net average work and net heat transferred as a function
of driving duration. The solid green curves describe the symmetric driving
scenario, the large dashed red represents the asymmetric driving case when
Tap 18 fixed, and the small dashed blue shows the asymmetric case with 7.4
being fixed.

situation that provides the optimum efficiency.

A final issue we investigate is whether asymmetric speed of the compres-
sion and expansion would have some non-trivial effect on the performance
of the engine. To make this clear, we analyze two different situations. In
the first case we set 7, fixed while we change 7.4, whereas, for the second
case we fix 7.4 and alter 7,,. The fixed values considered here are identical
to the relaxation time of the qubit. The efficiency and the average out-
put power of these cases are plotted in Fig. 4.8 by using large dashed red
and small dashed blue lines, respectively. Similar to the case of symmet-
ric driving, the thick curves correspond to calculating the energies w.r.t.
the effective Hamiltonian and the thin curves to the free Hamiltonian. In-
terestingly, efficiency of the asymmetric cycles is always higher than the
symmetric ones. Superiority of the two asymmetric cases with respect to
each other depends non-trivially on the time scale of the driving though.
Energy flow into and from the qubit regarding the asymmetric cycles are
shown in Fig. 4.10. The net average work is dependent on the total time
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of the expansion and compression processes, Tiot = Tub + Ted, Such that the
faster we drive the higher is the irreversibility and thus extractable work
decreases. Note that, the two asymmetric cycles with the same value of
Tyot Provide slightly different amount of the net average work. This again
highlights the importance of the finite-time effects in the performance of
the heat engines.



Chapter 5

Conclusions

In this thesis, we presented our results on the open dynamics of quantum
systems in the framework of both new quantum information protocols and
quantum thermodynamics. Conventional quantum information protocols
with open systems require to control and, more importantly, to suppress
decoherence. On the contrary, in this thesis the focus is on the theoret-
ical and experimental know-how that allow us to utilize the environment
to better perform the protocols. We also studied the open dynamics of
driven quantum systems with the goal of finding the relations between the
dynamical and thermodynamic properties of the systems.

In Chapter 2, we recalled some basic concepts of quantum theory related
to the results of the thesis. Specifically, we reviewed the dynamics of quan-
tum systems, some basic topics in quantum information theory and also a
dynamical approach to quantum thermodynamics. After this introductory
part, the results of the thesis were presented, depending on their relation
to either quantum information or thermodynamics, in two chapters.

Chapter 3 covered the results about quantum information protocols
with two-photon dephasing model, which are related to the original results
of the papers I, III, and IV. After recalling the single-photon dephasing
model and its implementation, we discussed two-photon polarization open
dynamics and presented a related master equation approach based on the
results of paper III. The master equation, derived in the Lindblad form,
allowed us to investigate the role of initial frequency-frequency correlation
(initial correlation within the environment) in the dynamics. We discussed
how both the transition rates and the operators are dependent on the prop-
erties of the environment modeled by bivariant Gaussian distributions. We
showed how the two-photon polarization open dynamics is governed by the
local (at the level of single photon) or the global operators depending on

85
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the initial correlations in the environment. Besides the local versus global
nature of the open dynamics, we also discussed how initial correlations lead
to non-Markovianity in the dynamics, which reflects itself in the negative
transition rates of the master equation.

In the second section of Chapter 3, we concentrated on the paper I
which provides a protocol to generate polarization entanglement remotely
due to interference in the frequency domain. We first briefly discussed how
superposing different paths of an interferometer can lead to generation of
entanglement in an ancillary quantum system coupled to the interferomet-
ric degrees of freedom. For implementing this idea we proposed a protocol
based on a two-photon system subjected to local dephasing and frequency
up-conversion processes. In this protocol, frequency of the photon pair
provides an interferometric degrees of freedom, to which we couple the
two-photon polarization using local dephasing dynamics. To generate the
polarization entanglement, we utilized local frequency up-conversion pro-
cesses which erase the frequency distinguishability and lead to interference
in the frequency domain. We showed that the key to the protocol is the ini-
tial frequency-frequency correlations that lead to non-local memory effects.
These allow us to prepare the desired total polarization-frequency state and
control the constructive/destructive interference for different polarization
subspaces of the two-photon system. The peculiar feature of this protocol
is that the required operations are local on each photon. Thus, in principle
this protocol can be used to generate polarization entanglement between
two distant photons.

We dedicated the third section of Chapter 3 to present the results of
the paper IV. There we experimentally realized a high-fidelity quantum
teleportation protocol by an open quantum system. Quantum entanglement
is the resource for teleporting an unknown quantum state. Thus, the fidelity
of a successful teleportation with open systems goes down as a consequence
of the decoherence-induced loss of entanglement. However, it has been
proposed that the non-local memory effects implemented in a two-photon
dephasing model can be employed to compensate the harmful effects of noise
and fulfill a perfect teleportation. We adapted these theoretical know-how
in an experimental setup and realized the protocol with high fidelity. We
first showed that by adding the dephasing noise on the side of Alice fidelity
behaves as expected. As a proof of principle, we managed to undo the
harmful effects of the noise on the Alice’s side and reach high teleportation
fidelities by adding controlled dephasing noise on the side of Bob when
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initial frequency-frequency correlations and the non-local memory effects
were employed.

The second part of the thesis contains the results related to the ther-
modynamics of open quantum systems, gathered in Chapter 4. In the first
section of this Chapter, we summarized the results of the paper II, where
we examined the relation between non-Markovianity of the dynamics and
the ability to perform work on the open system. We discussed how to ma-
nipulate the open dynamics of a qubit, moving from a Markovian dynamics
to a non-Markovian one, by controlling its coupling to an ancillary qubit
that is weakly coupled to a Markovian reservoir. Interestingly, we showed
that in the non-Markovian situation, the ability of performing work on the
first qubit is suppressed in comparison to the Markovian regime.

The second section of Chapter 4 focused on addressing the finite-time
driving effects in dynamics and thermodynamics of a two-level system uti-
lized as a working substance in a quantum Stirling cycle. We specifically
concentrated on a cycle working as a heat engine. The main outcome of
this study was two-fold. First, we showed that different time scales related
to the working substance and its coupling to the heat baths are influential
in the performance of the Stirling heat engine. In fact, the efficiency and
output power enjoy a boost when we drive the working substance with a
time scale on resonance with the baths. Interestingly, we also discussed
that to get the benefits of finite-time effects, one should in principle opti-
mize the compressing and expanding driving protocols asymmetrically and
with respect to the individual properties of the bath to which the working
substance is coupled during a process.

As a conclusion, the outcomes of this thesis provide new insight into
using the open dynamics of quantum systems in different areas of quan-
tum technologies. Especially, controlling the distribution and dynamics of
the quantum correlations is an important tool for quantum communication
technologies. We showed that in a noisy situation using other degrees of
freedom in addition to the open system of interest can be resourceful. An
interesting outlook of this thesis could be to investigate different physi-
cal platforms suitable for interference-induced generation of entanglement
from a practical point of view, and also the required conditions to do so in
a general theoretical context from a fundamental point of view.
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