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ABSTRACT 

Diffuse axonal injury (DAI) has been considered to be one of the main mechanisms 
leading to permanent disability in patients with traumatic brain injury (TBI) leading 
to disturbance in axonal function and neuronal damage. Conventional neuroimaging 
techniques such as computed tomography and magnetic resonance imaging (MRI) 
are useful in detection of macroscopic lesions. However, due to their lack of 
sensitivity, they are not sensitive enough to detect DAI. Diffusion-weighted (DW) 
MRI is a non-invasive imaging method that can be sensitive to subtle white matter 
(WM) alterations and it is capable of providing information about structural brain 
connectivity in vivo. The aim of the present research was to study microstructural 
WM abnormalities following TBI using DW-MRI and advanced analysis techniques 
e.g. high angular resolution diffusion imaging (HARDI). Patients with mild TBI 
(mTBI) and orthopedically injured (OI) patients that served as control subjects 
underwent brain imaging and clinical assessments during the TBICare study. Whole 
brain global and local WM abnormalities associated with DAI were investigated 
using diffusion tensor imaging analysis methods and probabilistic tractography. In 
addition, brain structural connectivity was evaluated following mTBI.  Furthermore, 
the associations of WM alterations and structural network properties with the 
outcome were assessed.  

Patients with mTBI showed lower anisotropy and higher diffusivity measures at 
acute or sub-acute, and chronic stages of mTBI compared with controls. These WM 
alterations were susceptible to the average fiber orientation. Additionally, structural 
network connectivity was altered only locally and no differences were found 
between patients and controls in the global network properties. However, WM 
alterations and network metrics were significantly associated with the outcome. This 
study highlighted that novel advanced HARDI methods are promising tools to detect 
WM alterations already at the early stage after mTBI. Furthermore, we showed that 
disruptions in structural brain networks are associated with outcome, and suggest 
that network properties in the acute/subacute stage are promising imaging 
biomarkers for prognostic purposes. 

KEYWORDS: Traumatic brain injury, diffuse axonal injury, diffusion-weighted 
magnetic resonance imaging, structural connectivity, outcome  
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TIIVISTELMÄ 

Diffuusi aksonivaurio on suurin syy pysyvään työkyvyttömyyteen traumaattisen 
aivovamman jälkeen, ja johtaa häiriöihin aksonien toiminnassa sekä hermosto-
vaurioihin. Tyypilliset aivokuvantamistekniikat kuten tietokonetomografia ja mag-
neettikuvantaminen (MRI) ovat hyödyllisiä makroskooppisten vaurioiden havait-
semisessa, mutta ne eivät ole riittävän herkkiä diffuusin aksonivaurion 
havaitsemiseen. Diffuusiopainotettu MRI on kajoamaton kuvantamismenetelmä, 
joka voi olla sensitiivinen hienovaraisillekin valkean aineen muutoksille ja se pystyy 
antamaan tietoa hermoratojen muodostamista rakenteellisista yhteyksistä in vivo.  

Tämän väitöstutkimuksen tavoite oli tutkia aivojen valkean aineen mikro-
rakenteellisia muutoksia traumaattisen aivovamman jälkeen käyttäen diffuusio-
painotettua MRI:tä sekä edistyneitä analyysimenetelmiä. Potilaat, joilla oli todettu 
lievä aivovamma sekä verrokkeina toimineet ortopedisesti loukkaantuneet potilaat 
kuvattiin ja tutkittiin osana TBICare EU-hanketta. Paikallisia sekä koko aivojen 
valkean aineen mikrorakenteellisia ominaisuuksia tutkittiin käyttäen diffuusio-
tensorimenetelmää (DTI) sekä probabilistista traktografiaa. Lisäksi aivojen 
rakenteellista konnektiivisuutta tutkittiin lievän aivovamman jälkeen. Myös valkean 
aineen muutosten ja rakenteellisten aivoverkostojen ominaisuuksien suhdetta 
aivovamman jälkeiseen oirekuvaan tutkittiin.  

Aivovammapotilailla oli alentunut anisotropia ja korkeampi diffusiviteetti sekä 
akuutissa/subakuutissa vaiheessa että kroonisessa vaiheessa verrattuna verrokkeihin. 
Nämä valkean aineen muutokset riippuivat myös hermoratojen suunnista. Aivojen 
rakenteellinen konnektiivisuus oli poikkeava vain lokaalisti eikä koko verkostoja 
kuvaavissa globaleissa mittareissa havaittu muutoksia. Valkean aineen muutokset ja 
sekä globaalit että paikalliset verkostomittarit liittyivät kuitenkin selvästi 
aivovamman jälkeisiin oireisiin.  

Tämä tutkimus osoitti, että uudet diffuusiomagneettikuvien analyysimenetelmät 
ovat lupaavia työkaluja diffuusin aksonivaurion havaitsemiseen jo aikaisessa 
vaiheessa lievän traumaattisen aivovamman jälkeen. Lisäksi havaitsimme, että 
rakenteellisten aivoverkostojan ominaisuudet liittyivät aivovamman jälkeisiin 
oireisiin vahvasti ja voivat auttaa jo aikaisessa vaiheessa myöhemmän oirekuvan 
ennustamisessa. 

AVAINSANAT: traumaattinen aivovamma, diffuusi aksonivaurio, diffuusio-
painotettu magneettikuvantaminen, rakenteellinen konnektiivisuus, oirekuva  
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1 Introduction 

Traumatic brain injury (TBI) is by definition any functional or pathological change 
to the brain that is caused by an external force (Menon et al., 2010) and with a rate 
of up to 40% deaths related to TBI either directly or indirectly, it is considered to be 
one of the foremost causes of death and disabilities across all ages (Hyder et al., 
2007; Maas et al., 2017; Ng and Lee, 2019; Shenton et al., 2012). The majority of 
TBI patients have mild TBI (mTBI), ranging between 75% – 90% of all cases (Prince 
and Bruhns, 2017; Shenton et al., 2012). Patients with mTBI are often not diagnosed 
properly due to the lack of standard objective measures and are often not referred to 
the outpatient follow-up after being discharged from the emergency department of 
the hospitals (McCrea et al., 2017; Prince and Bruhns, 2017; Shenton et al., 2012). 
Nevertheless, patients with mTBI could be suffering from cognitive impairments and 
may show clinical symptoms days or months after the injury and in some cases with 
permanent disabilities (Nolin and Heroux, 2006; Prince and Bruhns, 2017; Ruff, 
2005; Shenton et al., 2012; Vanderploeg et al., 2005). Studies have shown that a 
history of mTBI could result in Alzheimer’s or Parkinson’s later in the life of the 
patients even after complete recovery (Diaz-Arrastia and Vos, 2014; Perry et al., 
2016). 

One of the reasons that makes the diagnosis of mTBI challenging is that the 
conventional brain imaging methods such as computed tomography (CT) and 
magnetic resonance imaging (MRI) that are usually employed acutely to rule out 
severe pathologies such as intracranial bleedings or skull fractures, would indicate 
no abnormalities and are thus insensitive in detecting mTBI (Eierud et al., 2014; 
Mechtler et al., 2014; Shenton et al., 2012). Diffuse axonal injury (DAI) is suggested 
to be the main pathology behind mTBI (Browne et al., 2011). Several advanced brain 
imaging and analysis techniques are developed over the last two decades and are 
shown to be sensitive enough to detect subtle alterations that occur following mTBI 
(Kou et al., 2010; Shenton et al., 2012). In this doctoral research however, we 
focused on one particular MRI technique called diffusion-weighted MRI (DW-
MRI). In the “literature review” chapter of this thesis, DW-MRI, its concept, 
acquisition, and analysis techniques are explained. Furthermore, diffusion tensor 
imaging (DTI) (Basser et al., 1994a) is a DW-MR technique that has opened new 
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windows into the field of neuroscience and neurology and is widely used to 
characterize white matter (WM) abnormalities in several brain disorders and injuries 
(Soares et al., 2013). Several studies have shown that DTI is capable of detecting 
subtle WM alterations associated with DAI at different time points post-injury in 
patients with mTBI (Inglese et al., 2005; Koerte et al., 2016; Shenton et al., 2012). 
DTI is a non-invasive method to investigate WM damage both quantitatively and 
qualitatively (Zakharova et al., 2014). Fiber tractography (Basser et al., 2000; Mori 
and van Zijl, 2002) is a method developed to visualize WM fiber tracts and to 
investigate the fiber bundles quantitatively in vivo (Budde et al., 2011; Shenton et 
al., 2012). Recently, TBI has been reported to affect brain connectivity both 
structurally and functionally and is said to be a “disorder of brain connectivity” 
(Fagerholm et al., 2015; Hayes et al., 2016; Imms et al., 2019). In this doctoral 
research we used advanced DW-MRI and image analysis methods to investigate WM 
microstructural properties and structural brain connectivity at acute or sub-acute and 
chronic stages of mTBI. Additionally, we investigated the associations between 
microstructural and structural brain network properties and patients’ outcome. 



 12 

2 Review of the Literature 

2.1 Traumatic brain injury 
Any brain pathology or alterations in brain functionality caused by an external force 
is defined as TBI (Menon et al., 2010). TBI is a global health burden with an 
incidence of over two million cases annually in the European Union alone and it is 
estimated to be the prominent cause of neurodisability by 2030 (Maas et al., 2017). 
The annual incidence of TBI is increased by the rising number of concussions 
especially in youth sports and among war veterans who have been exposed to blast 
injuries (Laskowski et al., 2015) and also due to the aging population (Maas et al., 
2017). Motor vehicle accidents and incident falls are the main causes of TBI 
(Galgano et al., 2017; Peeters et al., 2015). The severity of the injury is traditionally 
assessed based on the 13-point Glasgow coma scale (GCS) (Teasdale et al., 1978). 
The GCS is a clinical assessment of the patient’s consciousness. TBI severity is 
classified into three groups, namely mild (GCS score ≥13), moderate (GCS score of 
9–12), and severe (GCS score ≤8). 

Despite the value of the GCS from a clinical standpoint in prognosis and 
management of TBI patients, the GCS score alone is not an ideal classification 
criterion as it is not specific for the type of pathophysiology of the TBI (Saatman et 
al., 2008). Criteria for ideal TBI classification are explained in more details in 
(Hawryluk and Manley, 2015), it is however beyond the scope of this doctoral thesis.  

TBI is a heterogeneous injury and has complex pathophysiological mechanisms 
(Maas et al., 2017). Neuropathological classifications fall into two categories, 
namely diffuse vs. focal and primary vs. secondary injury.  

Approximately 75%–90% of all TBI cases are classified as mTBI  (Bazarian et 
al., 2005; Cassidy et al., 2004; Maas et al., 2017; Prince and Bruhns, 2017; Te Ao et 
al., 2014) and according to the definition of American Congress of Rehabilitation 
Medicine, TBI patients with at least one of the following manifestations are 
considered as patients with mTBI: I) Loss of consciousness of less than half an hour. 
II) Initial GCS score between 13 and 15. III) Post-traumatic amnesia of no more than 
24 hours (American Congress of Rehabilitation Medicine Mild Traumatic Brain 
Injury Committee of the Head Injury Interdisciplinary Special Interest, 1993).  
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2.1.1 Pathology of traumatic brain injury  
The cerebral cortex consists of neuron cell bodies. These neurons communicate with 
each other on both short distance via dendrites and long distance via axons. Brain 
regions are connected via axonal clusters called fiber tracts that consist of the WM 
pathway between segregated brain regions. WM tracts fan out in the cortex and are 
terminated at synaptic terminal(s) (Douglas et al., 2019). 

Brain injury not only refers to a single event but rather refers to the series of 
progressive events or processes that occur after the initial injury and there are several 
types of neuropathologies that ensue brain injury (Gennarelli and Graham, 1998). 
Two main mechanisms have been defined for TBI: contact and 
acceleration/deceleration (Gennarelli, 1983). DAI and petechial WM hemorrhages 
are two categories of diffuse injury, which is a primary characteristics of TBI 
neuropathology. Different categories of brain injury pathology are demonstrated in 
Table 1. 

Table 1.  Different classifications of TBI pathology (modified and adapted from Povlishock and 
Katz, 2005). 

 Focal injury Diffuse Injury 

Primary 
injury 

Focal cortical contusion Diffuse axonal injury 
Deep cerebral hemorrhage Petechial white matter hemorrhage 
Extracerebral hemorrhage  

Secondary 
injury 

Delayed neuronal injury Delayed neuronal injury 
Microvascular injury Microvascular injury 
Focal hypoxic-ischemic injury  Diffuse hypoxic-ischemic injury 
Herniation Diffuse hypometabolism 
Regional and diffuse hypometabolism Neuroinflammation 

Neurodegeneration 

 
Focal injuries are features of moderate to severe TBI caused by the alterations in 
intra/extra axial neuronal compartments (McGinn and Povlishock, 2016). Compared 
to focal injuries, diffuse injuries that are commonly seen in  patients with TBI of all 
severities, are more scattered throughout the brain hence damaged structures are 
widespread in the brain (McGinn and Povlishock, 2016). Milder head injuries (in 
most cases) are characterized by DAI. Furthermore, DAI is the main form of diffuse 
injury and it involves shearing and stretch of axons affecting axonal membrane 
stability and intracellular transport due to the acceleration/deceleration after TBI 
(Alexander, 1995; Katz et al., 2015). Diffuse neuronal damage and microstructural 
changes e.g. axonal disconnections are associated with DAI, which is shown to be a 
disease of axonal swelling and disconnection leading to disruption in excitatory and 
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inhibitory networks within the brain (McGinn and Povlishock, 2016). DAI can be a 
representation of axonal injury and could lead to axonal damage predominantly in 
deep white matter and sub-cortical structures of the brain persisting for a long term 
following TBI (Ng and Lee, 2019). 

2.2 Neuroimaging in traumatic brain injury 
Although imaging is not necessary for all patients with head injury (Glauser, 2004; 
Nagy et al., 1999), CT and MRI are the imaging modalities widely used at the acute 
phase of TBI to rule out the severe pathologies that require intervention and also to 
diagnose WM abnormalities associated with mTBI e.g. DAI. Early and as accurate 
as possible diagnosis of the injury could lead to a better rehabilitation/treatment plan 
(if needed) and would be helpful to improve the patient’s outcome and would lead 
to better management or even prevention of the secondary injury (Fakhry et al., 2004; 
Lee and Newberg, 2005). Furthermore, knowing more about the severity of injury 
and distribution of DAI throughout the brain could be extremely informative to the 
clinician who can associate localization with symptoms and also with more targeted 
treatment. A conventional CT scan is the modality of choice at the acute phase of 
TBI because of its availability and speed. Being cost-effective and having a short 
scanning time with a high sensitivity to evaluate bony structures e.g. skull fractures 
makes CT still the main modality after TBI especially in more severe cases as well 
as mTBI patients older than 60 (Kelly et al., 1988; Le and Gean, 2009; Lee and 
Newberg, 2005; Yealy and Hogan, 1991). MRI is usually performed after an initial 
CT scan (Yealy and Hogan, 1991) and it is superior to CT in detecting hematomas 
and other types of early bleeds (Lee and Newberg, 2005). Furthermore, CT scans 
and MRI can only show abnormalities in 10% and 30% percent of patients with 
mTBI respectively (Borg et al., 2004; Koerte et al., 2016; Mittl et al., 1994). 
Although conventional MRI is superior to CT in detecting abnormalities associated 
with mTBI, it still is not sensitive enough to detect the majority of abnormalities 
associated with mTBI e.g. DAI. The aforementioned conventional modalities are 
shown to suffer from poor sensitivity to more subtle changes following TBI, for 
instance, DAI (Koerte et al., 2016; Shenton et al., 2012). DAI is the main cause of 
cognitive impairments after TBI (Le and Gean, 2009) and CT lacks the sensitivity to 
detect it (Provenzale, 2010; Su and Bell, 2016).  MRI is superior to CT in detecting 
DAI (Jones et al., 1998; Lee et al., 2008; Niogi and Mukherjee, 2010) as shown in 
Figure 1 (Bigler, 2005). Acute DAI lesions are often seen as multiple foci of 
increased (hyperintense) and decreased (hypointense) signals on T2 and T1-
weighted MR images. Recently, the term traumatic axonal injury is used more often 
in the field due to the fact that these lesions are multifocal rather than diffuse. At the 
chronic phase of TBI, DAI lesions often consist of hemosiderin staining, gliosis, and 
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non-specific atrophies (Le and Gean, 2009). Furthermore, these lesions can be 
visible on T2*-weighted MRI as signal hypointensities (Douglas et al., 2018; Le and 
Gean, 2009; Levi et al., 1990). These lesions are often seen in the gray-white matter 
junction and within the WM in patients with mTBI (Koerte et al., 2016). There are 
great computer models out there that have tested and proven the vulnerability of the 
gray matter / white matter interjunction to shear injury and particularly the sulcal 
regions (Ghajari et al., 2017). 

 
Figure 1.  Magnetic resonance imaging (MRI) is better in detecting subtle abnormalities. 

Computed tomography (CT) scan (A); Fluid-attenuated inversion recovery (FLAIR) (B); 
Diffusion-weighted MRI (DW-MRI) (C) (adapted from (Bigler, 2005)).  

In conjunction with the conventional CT and MR images, more sensitive imaging 
modalities are often performed to shed more light on mTBI and the mechanisms 
behind the abnormalities associated with mTBI. Several advanced neuroimaging 
methods have been developed for better diagnostic and prognostic purposes. High-
resolution MR images (to evaluate brain structure), DW-MRI (to study 
microstructural architecture), dynamic susceptibility contrast MRI, single-photon 
emission tomography, and arterial spin labeling (to understand blood flow), 
susceptibility-weighted imaging (SWI) (to assess microhemorrhages) (Barnes and 
Haacke, 2009), positron emission tomography, and functional MRI (fMRI) (to 
evaluate brain metabolism and function) are the modalities that could facilitate our 
understanding of mTBI and have shown to be promising neuroimaging techniques. 
A summary of the modalities widely used in mTBI, their functions, and advantages 
are explained by Shenton et al. 
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2.2.1 Magnetic resonance imaging 
The principle of MRI relies in the magnetization properties of the hydrogen [1H] 
nucleus, which is found abundantly in the human body as free water to tissue-bound 
hydrogen hence making it a suitable candidate for clinical applications. In the 
absence of an external strong static magnetic field (B0), hydrogen nuclei have 
random orientations without any net magnetization. However, when B0 magnetic 
field is applied, these protons are aligned non-randomly parallel or anti-parallel to 
the direction of the B0 field, which would result in a net magnetic moment (Bushberg 
et al., 2012; Grover et al., 2015) as shown in Figure 2. The nucleus`s angular 
momentum causes the nucleus to precess around the B0 axis (Figure 3). This 
precession occurs at a specific angular frequency called the Larmor frequency 
proportional to the strength of the external magnetic field. Larmor frequency is 
described by the Larmor equation (2.1): 

 𝜔𝜔 = 𝛾𝛾B0 (2.1) 

where 𝜔𝜔 is the Larmor frequency, 𝛾𝛾 is the gyromagnetic ratio, which is 42.58 
(MHz/T) for [1H] in a 1 Tesla magnetic field, and B0 is the strength of the external 
magnetic field.  

 
Figure 2.  Distribution of hydrogen protons in both without and with the presence of an external 

magnetic field. A. Random orientations of the protons in the absence of an external 
magnetic field. B. Protons are aligned in the direction of the applied external magnetic 
field. 

When a radio frequency (RF) pulse is applied at the Larmor frequency, the net 
magnetization is flipped from its original direction at equilibrium (the direction of 
B0) and protons will be excited by absorbing energy. RF pulses are usually short. 
Excited protons will be dephased in order to return to the equilibrium and would 
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induce a signal called “free induction decay” (FID), after the RF pulse is applied. 
Applying several RF pulses would result in a number of FID signals, which then can 
be averaged to improve the signal to noise ratio. The averaged FID can then be 
transformed into an image using mathematical procedures. Flip angles of 90 and 180 
degree are the most common flip angles in MR imaging. Spin-echo pulse sequence 
is one of the most common sequences used to acquire MR images (Jung and Weigel, 
2013). 

 
Figure 3.  Nuclei precess around the axis of the external field (𝐵଴). 𝑀଴ is the direction of the net 

magnetization. 

2.2.2 Diffusion and diffusion-weighted magnetic resonance 
imaging 

Molecules are displaced freely in a liquid or a gas due to thermal energy when there 
are no obstacles in their way. This flux resulted by the random Brownian motion of 
particles can be characterized by a diffusion coefficient (D). Einstein’s equation 
defines that the distribution of the particles’ displacement follows a Gaussian 
function (Einstein, 1905) of time as shown in (equation 2.2). Where r2 is the 
particles’ mean squared displacement, D is the diffusion coefficient, and 𝑡 is the 
duration of diffusion. 

    𝑟ଶ ൌ 2𝐷𝑡 (2.2) 
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The human body has different types of tissues and all of them have both intracellular 
and extracellular compartments. Approximately 60% of the human body consists of 
water, two-thirds of which is considered to be intracellular (Bianchetti et al., 2009; 
Hill, 1990). DW-MRI (Le Bihan and Breton, 1985; Wesbey et al., 1984) is based on 
the Brownian motion of water molecules in the presence of a strong magnetic field 
(Le Bihan, 2010, 1991).  

Water molecules diffuse more freely in the extracellular environment as opposed 
to the more restricted diffusion in the intracellular environment e.g. in brain WM. 
Because of the various cellular characteristics of different tissues in the body, 
diffusion properties vary in different tissues, and different pathologies could affect 
these diffusion characteristics (Baliyan et al., 2016). Douek and coworkers suggested 
that the hindrance of diffusion of water molecules in brain WM is due to the presence 
of fiber tracts and it is anisotropic i.e. diffusion is faster along the direction of the 
fiber tracts and slower perpendicular to the tracts (Douek et al., 1991).  

DW images alone can only give qualitative information. However, by acquiring 
more than one DW image, one will be able to estimate the diffusivity quantitatively 
(Jones, 2004). DW-MR images have shown superiority over conventional MR 
images in detecting DAI quantitatively (Zheng et al., 2006). Signal intensity in the 
DW-MRI is described by equation (2.3). Where I0 the signal intensity without any 
diffusion weighting, TE is the time of echo, T2 is the transverse relaxation time 
(spin-spin), D is the diffusion coefficient, and b is the parameter known as the “b-
value” and denotes the amount of the diffusion-weighting (Jones, 2004). 

 I =  𝐼𝐼0𝑒𝑒−𝑇𝑇𝑇𝑇/𝑇𝑇2𝑒𝑒−𝑏𝑏𝑏𝑏 (2.3) 

Diffusion signal can be measured by MRI using a conventional spin-echo sequence. 
The diffusion-weighting is achieved by using two gradients before and after the 180 
degree RF pulse as shown in Figure 4 (Stejskal and Tanner, 1965). The first gradient 
is applied to dephase the spins of water molecules, and the latter gradient applied 
after the 180-degree pulse, will rephase the spins. If water molecules have displaced 
during the time between the two gradients, a signal loss related to diffusivity will be 
observed. Stejskal and Tanner showed that this signal loss can be defined according 
to equation (2.4) by assuming that the water molecules displacement follows a 
Gaussian distribution. In equation (2.4), S0 is the signal without any diffusion-
weighting (also known as b0), D denotes the diffusion coefficient, and b is the b-
value. A b-value of 800 – 3000 s/mm2 is commonly used in obtaining DW-MR 
images.  

 S =  𝑆𝑆0𝑒𝑒−𝑏𝑏𝑏𝑏 (2.4) 
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Figure 4.  Schematic of Spin-Echo sequence. The first gradient with the magnitude of G and 

duration of δ would dephase the spins and the second gradient will be applied after the 
interval of Δ to rephase the phase that was introduced by the first gradient completely. 
The diffusion-weighted spin-echo signal is acquired after the rephasing of the spins 
introduced by the second gradient. TE: echo time, RF: radio frequency 

2.2.2.1 Diffusion tensor imaging (DTI) 

DTI is one of the commonly used methods for visualization and analyzing diffusion 
(Basser et al., 1994b, 1994a). In order to calculate the diffusion tensor, images in at 
least six different diffusion directions need to be acquired. The diffusion tensor, D, 
is a 3 by 3 symmetric matrix:  

 𝐷𝐷 =  �
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑥𝑥𝑥𝑥
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑦𝑦𝑦𝑦 𝐷𝐷𝑦𝑦𝑦𝑦
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑦𝑦𝑦𝑦 𝐷𝐷𝑧𝑧𝑧𝑧

�  (2.5) 

The diffusion tensor can be visualized as an ellipsoid and the diagonal elements are 
the diffusion eigenvalues along the three principal axes (Figure 5). Diffusion 
properties can be defined using these eigenvalues and their corresponding 
eigenvectors. The principal orientation of the diffusion is along the eigenvector of 
the largest eigenvalue (𝜆𝜆1) (Figure 5). Scalar matrix derived from the diffusion 
tensor, that describe anisotropy and diffusivity, are used to describe the 
microstructural properties underlying brain WM. Fractional anisotropy (FA) and 
mean diffusivity (MD) (Basser and Pierpaoli, 1996) are widely used metrics to 
describe diffusion quantitatively. FA value varies from 0 to 1 and it is a measure of 
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the directional coherence of the diffusion of water molecules. In isotropic diffusion, 
all eigenvalues are equal, and therefore, FA=0. Larger FA is associated with more 
anisotropic diffusion. FA of 1 happens when only one eigenvalue is non-zero. MD 
is an average of diffusion in all directions, i.e. average of all eigenvalues, and it is an 
indication of the overall diffusion. Furthermore, axial diffusivity (AD) and radial 
diffusivity (RD) are other measures of interest in DTI studies as they describe 
diffusion in a more direction-specific manner. AD describes the diffusion parallel to 
and RD diffusion perpendicular to the principal fiber orientation (denoted by the first 
eigenvector). All these measures are shown in Figure 5. 

 𝐹𝐹𝐹𝐹 = �
(𝜆𝜆1−𝜆𝜆2)2+(𝜆𝜆1−𝜆𝜆3)2+(𝜆𝜆2−𝜆𝜆3)2

2�𝜆𝜆12+𝜆𝜆22+𝜆𝜆32
 (2.6) 

 𝑀𝑀𝑀𝑀 =  𝜆𝜆1+𝜆𝜆2+𝜆𝜆3
3

= 𝐷𝐷𝑥𝑥𝑥𝑥+𝐷𝐷𝑦𝑦𝑦𝑦+𝐷𝐷𝑧𝑧𝑧𝑧
3

 (2.7) 

 𝐴𝐴𝐴𝐴 =  𝜆𝜆1 (2.8) 

 𝑅𝑅𝑅𝑅 =  𝜆𝜆2+𝜆𝜆3
2

 (2.9) 

 
Figure 5.  Diffusion ellipsoids and eigenvalues. Diffusion is equal in all direction in an isotropic 

diffusion Dis and FA is almost zero (A), Diffusion is anisotropic and is more than zero. 
Diffusion is along the direction of the longest eigenvalue (B). 
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Several more complex metrics, for instance, the Westin coefficients (Westin et al., 
2002), have been developed to characterize quantitatively the properties of the 
diffusion tensor. 

DTI was first used in mTBI by Arfanakis et al, (Arfanakis et al., 2002) and it has  
been shown to be helpful in understanding TBI (Bigler, 2011). Furthermore, 
computational models suggest that the orientation of WM fibers could predict the 
degree of injury in DAI (Wright and Ramesh, 2012).  

2.2.2.1.1 Tract-based spatial statistics 

Tract-based spatial statistics (TBSS) is a method to investigate the WM of the brain 
voxel-wise. It is a method that does not require a priori hypotheses regarding the 
localization of differences in WM microstructure.. TBSS is a DTI-based method and 
a part of the FMRIB Software Library (FSL) (Jenkinson et al., 2012; Smith et al., 
2004), suited for structural brain MR image analysis. TBSS creates a WM skeleton 
from the mean FA image of the whole sample. This WM skeleton consists of the 
centers of the fiber tracts present in all subjects of the whole cohort. In order to map 
each subject’s skeleton to the mean FA skeleton, TBSS first registers all subjects FA 
images non-linearly (Jesper L R Andersson et al., 2007; Jesper L.R. Andersson et 
al., 2007; Jenkinson and Smith, 2001) to a known target that is either derived from 
the study (study-specific) or is a pre-defined FA map present in the FSL library. 
Once all FA images are aligned to the target, a mean FA image of the sample is 
created depicting WM pathways that are on average common among all subjects. 
Skeletonization is then achieved by searching for the local voxel with the highest FA 
value in the perpendicular direction to the center of the tract for each subject. A 
threshold of FA value of 0.2 to 0.3 is usually applied to the voxels in the skeleton to 
exclude voxels from the gray matter (GM) or cerebrospinal fluid. Figure 6 shows a 
thresholded mean FA skeleton from our study. Each subject’s FA image is then 
projected to the thresholded mean FA skeleton. At the final stage of analysis, voxel-
wise analysis is performed using non-parametric general linear model (GLM).  

 
Figure 6.  Mean fractional anisotropy (FA) skeleton created from our cohort using tract-based 

spatial statistics. Threshold for FA value was set at 0.3. 
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TBSS has been widely used in Alzheimer’s (Liu et al., 2011; Patrick et al., 2020), 
stroke (Zuo et al., 2018), bipolar disorder (Linke et al., 2020), and TBI (Hashim et 
al., 2017; Ilvesmäki et al., 2014; Narayana et al., 2014; Wu et al., 2018; Yamagata 
et al., 2020) 

2.2.2.2 Crossing fibers and constrained spherical deconvolution 

Although DTI gives valuable information about the microstructural properties of the 
WM, it suffers from inherent limitations. In DTI, it is assumed that water diffusion 
follows a Gaussian distribution in each voxel (Alexander et al., 2000) hence it is not 
optimal especially for tractography purposes. Moreover, DTI is incapable of 
detecting complex fiber orientations (crossing fibers) in a voxel, which is a major 
shortcoming and present in the majority of WM voxels (Jeurissen et al., 2013). As 
presented in Figure 7, the tensor model estimates a highly isotropic diffusion, when 
multiple fiber orientations are present in a voxel. Novel high angular resolution 
diffusion-weighted imaging (HARDI) (Tuch et al., 2002) methods have been 
developed to address the crossing fiber issue and are shown to be more reliable than 
conventional DTI methods (Mori and van Zijl, 2002). There are different HARDI 
approaches that can be used to estimate the fiber orientations (Tuch, 2004; Tournier 
et al., 2004; Alexander, 2005; Wedeen et al., 2005; Dell’Acqua et al., 2007; 

Descoteaux et al., 2009). A 
widely used approach is to 
estimate the diffusion orientation 
distribution, where a larger 
density function is observed 
along the fiber orientations. 
Diffusion spectrum imaging 
(Wedeen et al., 2005) and Q-ball 
imaging (Tuch, 2004) are 
methods that estimate the 
diffusion orientation density 
function. Another approach is 
the direct estimation of the fiber 
orientation distribution function 
(fODF) via spherical 
deconvolution (SD) (Tournier et 
al., 2004). In SD, diffusion 
signal is modeled with a 
convolution of the fODF and the 
response function, which is the 

Figure 7. Diffusion ellipsoids in voxels with multiple 
fibers (a) multiple fiber orientations estimated using 
constrained spherical deconvolution (b) 
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estimated response from a single coherently oriented fiber population (Tournier et 
al., 2004) as illustrated in Figure 8 (Dell’Acqua and Tournier, 2019). It is shown that 
eliminating negative values of the fODF by using constraints in the deconvolution, 
could suppress the noise, therefore, improving the results (Tournier et al., 2007). 
This method is called constrained spherical deconvolution (CSD). The mathematics 
behind CSD is beyond the scope of this thesis. 

 
Figure 8.  An illustration of the spherical convolution approach: multiple fiber populations within a 

voxel contribute with additive signals (S 1, S 2) to the total DW signal (S tot). Under the 
assumption of a common fiber signal profile, this is equivalent to the convolution over 
the sphere of an fODF with a chosen fiber response function (R) (adapted from 
Dell’Acqua and Tournier, 2019). 

2.2.2.3 Fiber tractography 

Fiber tractography is a widely used method to reconstruct and visualize WM 
pathways in vivo (Basser et al., 2000; Mori et al., 1999) and has been considered one 
of the main applications of DW-MRI. Various DTI-based (Basser et al., 2000; 
Conturo et al., 1999; Mori et al., 1999) and HARDI or DSI-based (Behrens et al., 
2007; Jeurissen et al., 2011; Tournier et al., 2012; Wedeen et al., 2008) 
reconstruction methods have been developed to track WM pathways in vivo. 
HARDI-based tractography approaches have been shown to be superior to DTI-
based methods (e.g. Farquharson et al. 2013) especially when the aim is to 
investigate structural brain network (Gigandet et al., 2013). Using higher order 
models would result in more accurate and reliable WM fiber tracts compared to DTI-
based tractography algorithms (Farquharson et al., 2013). 

Streamline or fiber tractography is the integration of fiber orientations into 
connected pathways between brain regions (Behrens and Jbabdi, 2009). A streamline 
can be represented as a space-curve in three dimensions as shown in Figure 9 (Basser 
et al., 2000) where vector r denotes the streamline location as a function of length 
along the streamline s. Moreover, the tangent to streamline t(s) is the estimate of the 
local fiber orientation, which is the orientation of the principal eigenvector of the 
tensor in tensor models Fiber trajectories can be reconstructed by starting at a seed 
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point step-by-step following the local vector information (Behrens and Jbabdi, 
2009). Streamline tractography is performed with prior anatomical knowledge 
meaning that streamlines can be seeded from every voxel in the brain but they are 
only retained if the anatomical criteria are met. These streamlines usually pass 
through white matter regions for example from region A to an end at the final region 
B as depicted in Figure 10. In probabilistic tractography approaches e.g. CSD-based 
tractography, tracking algorithm is able to track through regions based on the 
percentage of confidence that diffusion from seed point A passes through region B. 

    

   

Figure 9. Representation of a white matter fiber 
trajectory as a space curve, r(s). The local tangent 
vector, t(s1), is identified with the eigenvector, 
ϵ1(r(s1)), associated with the largest eigenvalue of 
the diffusion tensor, D at position r(s1). Adapted 
from (Basser et al., 2000) 

Figure 10. Example of DTI streamlines 
on coronal slices of the human brain. 
The white streamline corresponds to the 
corpus callosum. 

B 
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Tractography methods can be categorized based on the number of fiber orientations 
(single or multiple fiber orientations), global or local estimation of the fiber tracts, 
or deterministic or probabilistic tractography (Bastiani et al., 2012). Choosing the 
right tractography algorithm and tuning its parameters could largely affect the results 
of tractography (Bastiani et al., 2012). Probabilistic whole brain CSD-based 
tractography is conducted in this doctoral research as illustrated in Figure 11.  

CSD-based tractography is extensively used in neuroscience and clinical 
research for example in Alzheimer’s disease (Mito et al., 2018; Reijmer et al., 2012), 
autism spectrum disorder (Dimond et al., 2019; U. Roine et al., 2015), multiple 
sclerosis (Lipp et al., 2020), Parkinson’s disease (Petersen et al., 2017), Huntington 
disease (McColgan et al., 2017), TBI (van der Horn et al., 2017), and stroke (Snow 
et al., 2016).  

   

2.2.2.4 Structural brain connectivity and graph theory 

Recently, researchers have been capable of investigating brain structural 
connectivity due to the development of novel DW-MRI techniques and novel 
tractography algorithms. Structural brain connectivity networks, also referred to as 
“connectome” or “connectomics”, can be presented as a connectivity matrix and can 
be investigated by using graph theoretical network analysis methods (E. Bullmore 
and Sporns, 2009; Hagmann et al., 2008, 2007; Iturria-Medina et al., 2007; Mears 
and Pollard, 2016; Sporns et al., 2005; Tournier, 2019). Structural “connectome” 
analysis is a robust method (Bonilha et al., 2015; Roine et al., 2019) and has been 
applied in different brain diseases and disorders such as Alzheimer’s disease (La 
Rocca et al., 2018; Tucholka et al., 2018), healthy aging (Hirsiger et al., 2016), 
Parkinson’s disease (Tessitore et al., 2016), and TBI (Chung et al., 2019; Spielberg 
et al., 2015; van der Horn et al., 2017; Wang et al., 2019; Xiao et al., 2015; Zhou, 

Figure 11. Whole brain tractogram using 
constrained-spherical deconvolution-based 
tractography 
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2017). Structural connectome not only could provide useful information as to how 
these brain disorders could affect the connectivity between different brain regions, 
but also would facilitate the early diagnosis of these disorders (Liu et al., 2017).  

Choosing the seeding locations is known to have an effect in reconstructing brain 
network (Buchanan et al., 2014; Li et al., 2012; Zalesky et al., 2010).  A connectivity 
matrix consists of nodes and edges, where parcellated cortical and subcortical GM 
regions are considered as nodes, and streamlines from the whole brain tractography 
are the edges of the graph (E. Bullmore and Sporns, 2009; Mears and Pollard, 2016). 
GM parcellation is usually performed on T1-weighted MR images. Numerous 
methods have been employed to parcellate the brain (Tournier, 2019) (Huo et al., 
2018; O’Muircheartaigh and Jbabdi, 2018; Tzourio-Mazoyer et al., 2002). 
FreeSurfer’s surface based parcellation (Desikan et al., 2006; Fischl, 2012; Fischl et 
al., 2002) has been shown to be robust (Desikan et al., 2006) and is commonly used 
to anatomically parcellate and label brain images (Li et al., 2013). A FreeSurfer 
parcellated T1-weighted MR image of a control subject is illustrated in Figure 13. 

The brain is considered to be a complex network of neurons that are 
interconnected, and the behavior of such a network can be studied using graph 
theoretical analysis methods (Sporns, 2012). Once nodes and edges are defined, a 
graph can be formed. The existence of edges between two (or more) nodes indicates 
that they are connected. The connections between nodes can be directed/undirected 
and weighted/unweighted as shown in Figure 12  (Bullmore and Bassett, 2011; Hart 
et al., 2016; Rubinov and Sporns, 2010). The weighted undirected graph model 
(Figure 12. C), is used to investigate brain structural connectivity. In a structural 
brain network, for example, the number of streamlines between two connected brain 
regions could be assigned to edges as weights (Hagmann et al., 2008). Characteristics 
of a brain network can be investigated both globally and locally using mathematical 
and topological analysis approaches (Hart et al., 2016; Rubinov and Sporns, 2010).  

 
Figure 12.  Examples of an undirected and unweighted graph (A), A directed but not weighted graph 

(B), and a weighted undirected graph (C). 
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Numerous network properties have been defined to describe the structural 
connectivity. The metrics that are used in this study are explained in more details 
below. 

Degree: The degree of a node is simply the number of connections that the node 
has with other nodes and the degree distribution of all nodes could be a representation 
of the network density  (Rubinov and Sporns, 2010). 

Global strength: The strength of a complex network can be characterized by 
averaging the degree of all nodes in the network (Liu et al., 2017).  

Local strength: Local strength of a node is the sum of the weights linking that 
node to other nodes in the network (Onnela et al., 2005).  

Clustering coefficient: The clustering coefficient of a node is defined as a 
fraction of the connected edges between a node and its neighbors to the all possible 
links between the node and its neighbors, and can be a measure to investigate the 
segregation of the network when averaged across all nodes i.e. global network 
clustering coefficient (Rubinov and Sporns, 2010; Watts and Strogatz, 1998). 

Characteristic path length: Mean of the shortest path length for any chosen 
pair of nodes in the network is defined as characteristics path length and could be an 
indication of the network integrity (Rubinov and Sporns, 2010; Watts and Strogatz, 
1998). Characteristic path length will be larger if there is a disruption in the 
connection between the nodes. For example, if the direct connection between two 
nodes is disrupted, then the connection (if any) between the nodes will be via another 
node hence a longer path. 

Betweenness centrality: Betweenness centrality is defined as a fraction of 
shortest path lengths passing through a node, and shows how often a node is included 
in the shortest path between any pair of nodes, meaning that a node is effective in 
the flow of the information within the network (Brandes, 2001; Freeman, 1978; Liu 
et al., 2017; Rubinov and Sporns, 2010). 

Global efficiency: Global efficiency is a network measure indicating the 
integrity of the network that could characterize the capability of information 
exchange in the network. It is defined as the mean inverse of the shortest path length 
(Achard and Bullmore, 2007; Latora and Marchiori, 2001; Liu et al., 2017; Rubinov 
and Sporns, 2010).  

Local efficiency: Local efficiency of a node is defined as the global efficiency 
of a selected sub-network that includes the node itself and its neighbors. The local 
efficiency of the whole graph is the average of local efficiency calculated from all 
nodes (Latora and Marchiori, 2001; Liu et al., 2017; Rubinov and Sporns, 2010). 

Small-worldness: A small-world network is a network that is both highly 
integrated i.e. short characteristic path length and segregated i.e. high clustering 
coefficient. A network is considered to be small-world if the ratio of the 
characteristic path length divided by the clustering coefficient is more than 1(Achard 
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and Bullmore, 2007; Bullmore and Bassett, 2011; Hagmann et al., 2007; Latora and 
Marchiori, 2001; Rubinov and Sporns, 2010; Sporns and Zwi, 2004; Watts and 
Strogatz, 1998). Brain structural network is considered to be a small-world network 
(E. T. Bullmore and Sporns, 2009; Hilgetag and Goulas, 2016). 

Graph theoretical network analyses have been used in different brain disorders 
and brain injuries to investigate the structural brain network connectivity e.g. in 
stroke (Lee et al., 2019; Sotelo et al., 2020; Yang et al., 2019; Zhang et al., 2017), 
Parkinson’s disease (Barbagallo et al., 2017; Horn et al., 2017; Mishra et al., 2020; 
Mosley et al., 2019; Zhou et al., 2020), Alzheimer’s (Feng et al., 2019; Matthews et 
al., 2013; Shigemoto et al., 2018), Schizophrenia (Yeo et al., 2016), and TBI 
(Caeyenberghs et al., 2014; Fagerholm et al., 2015; Imms et al., 2019; Jolly et al., 
2020; van der Horn et al., 2016). 

 
 



 29 

3 Aims 

The aim of this research was to look for imaging markers for DAI in patients with 
mTBI. We aimed to identify imaging biomarkers both for diagnostic and prognostic 
purposes. To this end, we studied microstructural properties of WM following mTBI 
and investigated the difference in these properties between patients with mTBI and 
orthopedically injured (OI) controls using CSD-based probabilistic tractography, 
graph theoretical network analysis, and TBSS. General and specific aims of each 
part of this study are as follows: 

• To identify a sensitive analysis approach to be used as a diagnostic tool to detect 
WM abnormalities associated with DAI in patients with mTBI. To this end, we 
studied the whole brain global differences in WM microstructure using brain’s 
skeletonized FA, whole brain tractography, and a fiber-orientation invariant 
approach in patients with mTBI at the acute/sub-acute phase compared with OI 
controls. (I) 

• To assess the diagnostic and prognostic ability of structural brain network 
metrics in patients with mTBI. To this end, we investigated the structural 
network connectivity of the brain in acute/sub-acute and chronic phase in 
patients with mTBI compared with OI controls and the association of the 
network properties with the patients’ outcome (II). 

• To assess the ability of TBSS, as a commonly used DTI-based approach, to 
detect WM abnormalities associated with DAI in the chronic stage in patients 
with mTBI and also to evaluate the directional susceptibility of WM 
abnormalities following mTBI. To this end, we studied the local voxel-wise 
differences in WM microstructure using TBSS, and investigated directional 
susceptibility of the differences in patients with mTBI compared with OI 
controls (III). 
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4 Materials and Methods 

4.1 Study Subjects 
This study was a clinical study including approximately 200 patients with TBI that 
were recruited during the years 2011-2014 as part of the TBICare project in Turku 
University Hospital, Turku, Finland. In this study, patients were chosen according to 
the following inclusion and exclusion criteria that are explained in detail in Takala 
et al., 2015 (Takala et al., 2015).  

Patients who were older than 16 years old and diagnosed clinically as patients 
with TBI were included in this study. Patients with the following criteria were 
excluded from the study:  “chronic subdural hematoma, inability to live 
independently because of preexisting brain disease, TBI or suspected TBI not 
needing head CT scan based on the NICE criteria, >2 weeks from the injury, not 
living in the district and thus preventing follow-up visits (Turku), not speaking the 
native language, and no consent received” (Takala et al., 2015). 

Patients were divided into four categories of OI trauma controls (who had 
extracranial injuries but no signs or history of any CNS damage), patients with mTBI 
who had not recovered completely and who did not have any visible traumatic 
abnormalities on both CT and MRI scans(symptomatic DAI), patients with mTBI 
who had completely recovered and had no visible abnormalities in their MR scans 
(recovered DAI), and patients with mTBI who had visible macroscopic lesions of 
less than 1 mm3 in their conventional MR images (complicated DAI). The reason 
behind choosing OI trauma controls over healthy controls was that using OI trauma 
controls could yield results closer to the reality. Also, imaging was only one part of 
this large study (TBICare), and one of the main aims was to assess TBI biomarkers, 
that is why we needed extracranial injuries as controls in order to find out what 
biomarkers are related to TBI and what to trauma in general. Furthermore, all 
patients were then pooled into one cohort of patients with mTBI. Patients with mTBI 
were further divided into two groups based on the duration of their PTA (I). 
Demographics of the subjects included in this study are presented in Tables 2 and 3. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/subdural-hematoma
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Table 2.  Characteristics of the study subjects and injury to MR imaging intervals (Publication I). 

Study group Number of 
subjects 

Age (years) 
(mean±std) 
(min-max) 

Gender Imaging time (days) 
(mean±std) 
(min-max) 

mTBI patients  
(GCS>=13) 

102 47±20 
18-84 

70 M 
32 F 

21±15 
1-52 

mTBI patients  
(GCS>=13 & PTA<24 hours) 

78 45±20 
18-84 

52 M 
26 F 

21±15 
2-51 

mTBI patients  
(GCS>=13 & PTA>24 hours) 

24 55±16 
20-78 

18 M 
6 F 

21±16 
1-52 

Orthopedically-injured Controls 30 50±20 
22-90 

14 M 
16 F 

 

Table 3:  Demographic and characteristics of mild traumatic brain injury and orthopedic control 
subjects (Publications II, III). 

Characteristic mTBI (n=85) Orthopedic controls (n=30) P-value 
Age (mean [SD] years) 47 (20) 50 (20) 0.472* 

Sex (number [%])   0.026** 
 Male 59 (69) 14 (46.7)  
 Female 26 (31) 16 (53.3)  

Glasgow Coma Scale (number [%]) 
GCS = 13 3 (3.5) -  
GCS = 14 21 (24.7) -  
GCS = 15 61 (71.8) -  

Cause of injury (number [%]) 
 Road Traffic accident  27 (31.8) -  
 Incident fall    43 (50.6) -  
 Other non-intentional 
injury 5 (5.9) -  

 Violence/assault 8 (9.4) -  
 Other 2 (2.4) -  

extended Glasgow Outcome Scale (GOSE) (number [%]) 
GOSE = 8 31 (36.5) -  
GOSE = 7 29 (34.1) -  
GOSE = 6 11 (12.9) -  
GOSE = 5 3 (3.5) -  
GOSE = 4 5 (5.9) -  
GOSE = 3 5 (5.9) -  
Missing 1 (1.2) -  

WM hyperintensity Fazekas score (number [%]) 
Absent 49 (57.6) 21 (70) 0.50** 
Punctate foci 17 (20) 6 (20)  
Beginning confluence 14 (16.5) 2 (6.7)  
Large confluent areas 5 (5.9) (3.3)  

*student t-test significance; ** Chi-square significance. 
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4.1.1 Outcome 
Patient’s outcome was assessed using Glasgow Outcome Scale Extended (GOSE) 
(Wilson et al., 1998) at the time of the second scan approximately eight months post-
injury. GOSE scale classifies patients into eight groups ranging from death 
(GOSE=1) to complete recovery (GOSE=8).  

In this thesis, when the outcome is mentioned, it refers to GOSE. 
A dichotomized outcome was defined to classify patients into patients with 

mTBI that have completely recovered and those with incomplete recovery after 
injury (II). 

4.2 MRI acquisition 
One-hundred and two patients with mTBI underwent MR imaging within the first 
two months (2 1.2 ± 14.9 days) (I) and eighty-five of these patients have been 
scanned again on average eight months after the injury (II, III). Additionally, 30 OI 
controls were scanned (II, III), 21 of whom were scanned a second time 
approximately 6 months after the initial MR imaging (I). It should be noted that 
patients with TBI who required acute CT scans were included in this study and the 
MRI was performed additionally as part of the research protocol. 

MR acquisition was performed utilizing a Siemens 3T scanner (Magnetom Verio 
3T, Siemens Healthcare, Erlangen, Germany). Structural T1-weighted images were 
obtained using MPRAGE sequence in 176 axial slices with a voxel size of 1 × 1 ×1 
mm. Other parameters for 3-D T1-weighted images were TE = 2.98 ms, TR = 2.3 s, 
flip angle = 9°. DW-MR images were obtained using spin-echo echo-planar imaging 
in 77 axial slices with a voxel size of 2 × 2 × 2 mm. TE and TR were 106 ms and 
11.7s, respectively. Diffusion gradient with a b-value of 1000 s/mm2 was applied in 
64 directions. 

Additional sequences were acquired from all subjects including SWI, PD-T2-
weighted, axial FLAIR, and gradient-echo images. Furthermore, WM hyperintense 
lesions were graded using Fazekas score (Fazekas et al., 1987) to account for the 
WM abnormalities due to chronic small vessel disease. 

4.3 Image analysis 
DW-MR images were analyzed using ExploreDTI (Leemans et al., 2009) (I-III), 
MATLAB (Mathworks, Natick, MA, USA) (I-II-III), FSL (Jenkinson et al., 2012) 
(III), MRtrix 3 (Tournier et al., 2012) (II),  and FreeSurfer (Fischl, 2012; Fischl et 
al., 2004) (II). DW-MR data were denoised, corrected for bias field, subject motion, 
and eddy current distortions prior to analysis in all publications included in this 
doctoral research (all references). FA skeleton was reconstructed based on the TBSS 
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approach (I, III). fODFs were estimated with CSD using up to 6th order spherical 
harmonics (lmax = 6) (Tournier et al., 2004, 2007) (I, II) and with the recursive 
calibration of the single-fiber response function (Tax et al., 2014) (I). Analysis 
methods will be explained in more detail separately for each of the publications in 
the following paragraphs. 

Fiber crossing invariant global approach (I) 

In this study, a whole brain fiber tractography was performed using CSD-based 
probabilistic tractography with an angular threshold of 45 degrees, fODF of more 
than 0.1, and a step size of 1mm (I). Anatomically constrained CSD-based 
probabilistic tractography was utilized to generate 10 million streamlines for 
investigating brain structural connectivity (II).   

Because diffusion metrics are affected by the complex fiber configurations as an 
inherent shortcoming of DTI, we decided to look only into voxels that have only one 
fiber orientation within the WM skeleton i.e. a fiber-orientation invariant approach 
(I). Additionally, whole brain CSD-based probabilistic tractography was performed 
and generated on average 360,000 and 380,000 streamlines in patients with mTBI 
and OI controls respectively (I). Average microstructural properties of the 
tractograms were calculated by calculating the weighted average sum of voxel-wise 
multiplication of a track density image and microstructural values in the native space. 
Global microstructural properties were calculated using the aforementioned 
approaches in the whole cohort, compared to OI controls. In addition, 
microstructural properties were compared with patients with mTBI with PTA of 
more than 24h and less than 24h as well as patients. Global FA values were 
calculated from the whole skeletonized WM, WM skeletons with a single-fiber, and 
from the whole brain tractogram. The diffusivity measures were calculated only from 
the single-fiber WM skeleton. 

Structural brain network connectivity (II) 

Parcellated T1-weighted images and CSD-based probabilistic tractography were 
used to construct a brain structural network. T1-weighted images were parcellated 
utilizing FreeSurfer (Fischl et al., 2004; Fischl, 2012). Desikan-Killiany atlas 
(Desikan et al., 2006) was then used to define a total of 84 GM brain regions that 
constituted the nodes of the structural network. A connectivity matrix of 84 × 84 was 
then constructed for each subject by assigning tracts to the 84 GM areas (Figure 13). 
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Figure 13.  Brain cortical and subcortical gray matter parcellation, whole brain tractography using 

constrained-spherical deconvolution and the reconstructed structural brain network 
(Roine et al. 2021) 

Graph theoretical analysis (II) 

The structural brain connectivity networks were investigated by using graph 
theoretical analysis with the Brain Connectivity Toolbox  (Rubinov and Sporns, 
2010). We investigated seven global network properties: betweenness centrality 
(Freeman, 1978; Brandes, 2001), normalized clustering coefficient (Watts and 
Strogatz, 1998; Onnela et al., 2005; Saramäki et al., 2007), normalized global 
efficiency (Latora and Marchiori, 2001), normalized characteristic path length 
(Watts and Strogatz, 1998), small-worldness (Watts and Strogatz, 1998), degree and 
strength (Bullmore and Sporns, 2009); and three local network properties: 
betweenness centrality, local efficiency, and strength. The network properties are 
explained in the literature review chapter of this thesis. Normalization of the 
networks was performed by comparing them to 100 randomized networks with equal 
weight, degree, and strength distributions (Rubinov and Sporns, 2011).  

Tract-based spatial statistics following mTBI (III) 

TBSS approach (explained in chapter 2 of the current thesis) was used to investigate 
WM abnormalities following mTBI at the voxel level. Microstructural properties 
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(FA, MD, RD, and AD) were calculated along the skeletonized WM. FSL’s 
randomize tool was then used to perform voxel-wise statistics with 5000 
permutations and a cluster free threshold enhancement technique (Smith and 
Nichols, 2009). In order to rule out the possibility of WM hyperintensities driving 
the results, we repeated the analyses in the same manner, restricted to patients and 
controls who had no WM hyperintensities i.e. a Fazekas score of zero. This reduced 
the number of subjects to 49 patients with mTBI and 21 OI controls. We used a 
cluster-based analysis, and clusters with more than 10 voxels were investigated 
further. JHU ICBM DTI WM atlas (Mori et al., 2008) consisting of 48 WM regions 
was then used to define the regions within each cluster.  

Orientation susceptibility analysis (III) 

We hypothesized that fibers with the same average orientation might be affected in 
a similar way. To this end, we analyzed the principal eigenvector of the diffusion 
tensor in the WM areas that showed abnormalities in the TBSS analysis. Similar to 
microstructural properties, principal eigenvectors were projected into the WM 
skeleton and they were rotated to balance for the difference in image orientation 
between all subjects before calculating the average orientation of the tensors within 
voxels. We mapped the frequency of the significant voxels on a unit sphere, based 
on the average orientation to visualize the susceptibility of these WM abnormalities 
to certain fiber orientations. We used K-means clustering to define clusters based on 
the specific directionality of the voxels. The optimal number for the number of 
clusters was calculated as k=4 using the Silhouettes method (Rousseeuw, 1987). 
Then, the average of all microstructural properties with statistically significant 
results was calculated within each directionally-dependent cluster in patients and the 
association between average microstructural values and patients’ outcome was then 
assessed. 

4.4 Statistical analyses 
Normality of all the data used in this doctoral research were assessed using the 
Kolmogorov-Smirnov test as well as Levine’s test to assess the equality of variance. 
Consequently, appropriate statistical tests were chosen accordingly. 

In publication (I), GLM and repeated measures analysis of variance 
(rmANOVA) were used to evaluate the WM microstructural properties using the 
whole brain global approach. Group and analysis approach were used as between 
and within subject factors in rmANOVA analyses. Age and Fazekas were used as 
covariates in all the statistical models. Results of rmANOVA were corrected for 
multiple comparisons using Bonferroni correction. Furthermore, the association 
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between microstructural properties and outcome, scanning time from injury, and age 
were assessed using parametric Pearson’s correlation. A non-parametric Spearman’s 
rank correlation was used to investigate the association of microstructural properties 
and Fazekas score. Additionally, intraclass correlation coefficient (ICC) analysis 
(Owen et al., 2013; Shrout, 1998; Shrout and Fleiss, 1979) was performed to assess 
the reproducibility of the three analysis approaches in 21 controls with repeated 
scans.  

In publication (II), GLM with age and gender as covariates was used to 
investigate the differences in network properties between patients with mTBI and OI 
controls. Partial correlations accounting for age and gender were used to evaluate the 
correlation between network properties and patients’ outcome. Results were 
corrected for multiple comparisons using Bonferroni correction and false discovery 
rate (FDR) correction. 

In publication (III), GLM was used to assess the microstructural properties 
voxel-wise. Age, gender, and Fazekas score were accounted for in the analyses. 
TBSS results were corrected for multiple comparisons using family-wise error 
(FWE) rate. Partial Spearman’s correlation was used to assess the correlation 
between microstructural properties and outcome accounting for age, gender, and 
Fazekas score. Results were corrected for multiple comparisons using Bonferroni’s 
correction for the number of clusters.    

Statistical analyses were performed in SPSS (versions 23, 24, 25, SPSS, IBM, 
New York, NY), and a 95% confidence interval was used to assess the significance 
of the results (I, II, III). MATLAB (versions R2017a, and 2018b, MathWorks, MA, 
USA) (I, II, III) and Python 3.6 (III) were used for visualization of the results and 
creating the plots. 
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5 Results 

5.1 White matter microstructural abnormalities in 
mTBI 

5.1.1 Whole brain global approach (Publication I) 
Lower FA and higher RD were observed in patients with mTBI compared to 
controls. Patients with mTBI had lower FA (P=0.002) and higher RD (p=0.011) 
compared with control subjects. A similar trend was found when patients were 
divided into two groups with a PTA of less than a day and more than a day. Lower 
FA was found in patients with mTBI with a PTA of less than a day (P=0.006) and in 
patients with a PTA of more than a day (P=0.003) compared with controls. RD was 
higher in patients with mTBI with a PTA of less than a day (P=0.033) and in patients 
with mTBI with a PTA of more than a day (P=0.006) compared with controls. 

Furthermore, voxels with lower FA were more dominant in patients with mTBI, 
while controls had more voxels with high FA values in FA histograms (Figure 14). 
No differences were found in MD or AD between patients with mTBI and controls. 
Microstructural properties in patients with mTBI and controls are shown in Tables 4 
and 5. Additionally, we showed that when the analysis is restricted to voxels with a 
single fiber in the WM skeleton, more significant results are yielded compared to the 
whole skeleton and whole brain tractography approaches (Table 4). Histograms of 
FA values calculated, using each of the three methods, showed that higher mean FA 
values are found using the single-fiber approach compared to the other two 
approaches (Figure 15).  

ICC showed that FA and RD of the single-fiber approach were the most robust 
and reproducible microstructural properties with an ICC of 0.970 and 0.979 
respectively. ICC results are shown in Table 6. 
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Figure 14. Histograms of FA values in patients with mild traumatic brain injury and control subjects 

 
Figure 15. Histogram of FA values calculated from single-fiber skeleton, whole skeleton, and 

tractogram (A) and comparison of these FA values with any of the approaches between 
patients with mild traumatic brain injury and controls (B). 

p =0.002 

p =0.034 

p =0.01 
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Table 4.  Global fractional anisotropy (FA) values measured with the three different methods in 
acute or sub-acute mild traumatic brain injury (mTBI defined as GCS≥13, GCS≥13 and 
post traumatic amnesia (PTA) less than 24 hours, GCS≥13 and PTA more than 24 
hours) vs controls. Age and white matter hyperintensities (measured by Fazekas scale) 
were used as covariates. 

Study group FA skeleton, single-
fiber only 

FA skeleton FA tractogram 

mean ± SD F-value 
(P-value) 

mean±SD F-value 
(P-value) 

mean±SD F-value 
(P-value) 

All mTBI 
(GCS>=13) 

0.576±0.042 9.917 
0.002 

0.412±0.025 4.606 
0.034 

0.521±0.047 6.764 
0.010 

Controls 0.591±0.034 0.419±0.021 0.534±0.043 
mTBI (GCS>=13 
& PTA<24 h) 

0.582±0.040 7.808 
0.006 

0.416±0.022 3.195 
0.077 

0.527±0.048 4.806 
0.031 

Controls 0.591±0.034 0.419±0.021 0.534±0.043 
mTBI (GCS>=13 
& PTA>24 h) 

0.556±0.042 9.497 
0.003 

0.399±0.030 5.954 
0.018 

0.501±0.040 6.565 
0.013 

Controls 0.591±0.034 0.419±021 0.534±0.043 

Table 5.  Global mean (MD), axial (AD) and radial (RD) diffusivity values measured with the 
single-fiber skeleton approach in acute or sub-acute mild traumatic brain injury (mTBI 
defined as GCS>=13, GCS>=13 and post traumatic amnesia (PTA) less than 24 hours, 
GCS>=13 and PTA more than 24 hours) vs controls. Age and white matter 
hyperintensities (measured by Fazekas scale) were used as covariates. 

Study group MD 
(×10-3 mm2/s) 

AD 
(×10-3 mm2/s) 

RD 
(×10-3 mm2/s) 

mean±SD F-value 
(P-value) 

mean±SD F-value 
(P-value) 

mean±SD F-value 
(P-value) 

All mTBI 
(GCS>=13) 

0.783±0.073  2.801 
0.097 

1.389±0.081  1.528 
0.219 

0.560±0.105  6.672 
0.011 

Controls 0.765±0.058  1.368±0.073  0.525±0.085 
mTBI (GCS>=13 
& PTA<24 h) 

0.775±0.073  1.677 
0.198 

1.383±0.083  0.808 
0.371 

0.546±0.103  4.671 
0.033 

Controls 0.765±0.058  1.368±0.073  0.525±0.085  
mTBI (GCS>=13 
& PTA>24 h) 

0.809±0.066  3.99 
0.051 

1.411±0.074  2.403 
0.127 

0.604±0.103  8.087 
0.006 

Controls 0.765±0.058  1.368±0.073  0.525±0.085  

Table 6.  Reproducibility measured with intraclass correlation coefficient (ICC) of the global 
microstructural properties (In 21 control subjects with repeated scans). 

Microstructural property ICC 
FA, single-fiber skeleton 0.970 
FA, whole skeleton 0.920 
FA, tractogram 0.958 
MD, single-fiber skeleton 0.939 
RD, single-fiber skeleton 0.979 
AD, single-fiber skeleton 0.863 

FA: fractional anisotropy; MD: mean diffusivity; RD: radial diffusivity; AD: axial diffusivity 
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5.2 Structural brain network connectivity 
(Publication II) 

No significant differences were found in global network properties between patients 
with mTBI (n = 85) at either of the acute/sub-acute or the chronic stage compared to 
controls (n = 30) (Figures 16 and 17). However, there were differences between 
patients with mTBI in both acute/sub-acute and chronic stages compared to controls 
in all three local network properties investigated in this study (Figure 18). These 
differences were found in several brain areas, although only an increased 
betweenness centrality in patients with mTBI at the chronic stage in the right pars 
opercularis was statistically significant after correcting for multiple comparisons. 

 
Figure 16. Boxplots of global network measures in patients with mild traumatic brain injury at the 

acute/sub-acute stage compared to controls. 
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Figure 17.  Boxplots of global network measures in patients with mild traumatic brain injury at the 

chronic stage compared to controls. 
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Figure 18.  Local differences in the structural brain connectivity networks between patients with mild 

traumatic brain injury and control subjects. The size of the nodes corresponds to the 
volume of the gray matter area and the color describes the statistical significance (P-
value) of the differences. Age and gender were used as covariates. Significant 
differences after Bonferroni correction for multiple comparisons are emphasized with 
red circles. 

5.3 Tract-bases spatial statistics and fiber 
orientation susceptibility (Publication III) 

Patients (n = 85) had significantly lower FA and higher MD and RD compared to 
controls (n = 30) in various WM regions, as shown in Figure 19. No significant 
differences were found in AD between patients with mTBI and controls. Significant 
clusters and their belonging brain areas are demonstrated in Tables 7, 8, and 9 in 
more detail. When only subjects with a Fazekas score of zero were only considered, 
differences were found between patients and controls in MD and RD (Figure 20). 
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Figure 19. Voxel-wise analysis of diffusion-weighted images shows significantly decreased fractional 

anisotropy (FA) and increased mean (MD) and radial diffusivity (RD) in patients with mild 
traumatic brain injury in the chronic stage compared with orthopedically injured controls. 
Significant voxels are overlaid on T1-weighted MR image. 

 
Figure 20. Voxel-wise analysis of diffusion-weighted images shows significantly increased mean 

(MD) and radial diffusivity (RD) in patients with mild traumatic brain injury without any 
white matter hyperintensities in the chronic stage compared with orthopedically injured 
controls. Significant voxels are overlaid on the T1-weighted MR image. 
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Table 7. The brain regions in the clusters with significant differences in fractional anisotropy 
(P<0.05, corrected for family-wise error rate) between patients with mild traumatic brain 
injury in the chronic stage and orthopedic control subject in tract-based spatial statistics 
analysis. The regions according to JHU white matter atlas with at least 5 % cluster 
volume or peak significance are included in the table. 

Cluster size 
(#voxels) 

Regions in the cluster (% of the cluster)  mTBI Control P-value 

2654 Superior corona radiata L* (12.96) 
Body of corpus callosum (33.04) 
Splenium of corpus callosum (26.04) 
Superior corona radiata R (14.62) 
Posterior corona radiata R(6.29) 

0.521 ± 
0.082 

0.60 ± 
0.08 

0.031 

1937 Retrolenticular part of internal capsule L* (11.15) 
Anterior limb of internal capsule L (12.91) 
Posterior limb of internal capsule L (21.22) 
Superior corona radiata L (11.20) 
External capsule L (29.32) 

0.60 ± 
0.07 

0.64 ± 
0.07 

0.034 

469 Sagittal stratum (include inferior longitudinal 
fasciculus and inferior fronto-occipital 
fasciculus) L* (57.99) 
Posterior thalamic radiation (include optic 
radiation) L (39.87) 

0.63 ± 
0.08 

0.68 ± 
0.07 

0.037 

310 Superior longitudinal fasciculus L* (100) 0.48 ± 
0.09 

0.52 ± 
0.08 

0.033 

204 Retrolenticular part of internal capsule L* 
(38.72) 
Posterior corona radiata L (27.45) 
Posterior thalamic radiation (include optic 
radiation) L (33.82) 

0.64 ± 
0.05 

0.67 ± 
0.06 

0.034 

168 Superior longitudinal fasciculus L*(100) 0.62 ± 
0.09 

0.68 ± 
0.06 

0.032 

120 External capsule L* (90.83) 
Retrolenticular part of internal capsule L (9.17) 

0.56 ± 
0.08 

0.59 ± 
0.07 

0.04 

74 Cerebral peduncle L* (100) 0.74 ± 
0.06 

0.77 ± 
0.04 

0.038 

34 Anterior limb of internal capsule L* (100) 0.35 ± 
0.07 

0.39 ± 
0.09 

0.039 

24 Splenium of corpus callosum* (100) 0.68 ± 
0.06 

0.72 ± 
0.06 

0.037 

* Region with the maximum significance in the cluster. 
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Table 8:  The brain regions in the clusters with significant differences in mean diffusivity (P<0.05, 
corrected for family-wise error rate) between patients with mild traumatic brain injury in 
the chronic stage and orthopedic control subject in tract-based spatial statistics analysis. 
The regions according to JHU white matter atlas with at least 5 % cluster volume or 
peak significance are included in the table. 

Cluster size 
(#voxels) 

Regions in the cluster  
(% of the cluster) 

mTBI  
(× 10-3 mm2/s) 

Control  
(× 10-3 mm2/s) 

P-
value 

5933 Uncinate fasciculus L* (0.89) 
Body of corpus callosum (12.54) 
Splenium of corpus callosum (18.62) 
Anterior limb of internal capsule L (7.26) 
Posterior limb of internal capsule L (7.74) 
Retrolenticular part of internal capsule L (6.69) 
Anterior corona radiata L (9.00) 
Superior corona radiata L (8.19) 
Posterior thalamic radiation (include optic radiation) L (0.62) 
External capsule L (12.74) 

0.76 ± 0.11 0.69 ± 0.15 0.019 

3379 Cerebral peduncle R* (6.51) 
Anterior limb of internal capsule R (8.35) 
Posterior limb of internal capsule R (11.63) 
Retrolenticular part of internal capsule R (9.06) 
Anterior corona radiata R (14.80) 
Superior corona radiata R (13.76) 
External capsule R (16.54) 

0.85 ± 0.12 0.79 ± 0.11 0.027 

740 Inferior cerebellar peduncle R* (18.65) 
Middle cerebellar peduncle (53.92) 
Medial lemniscus R (4.60) 
Superior cerebellar peduncle R (22.84) 

0.73 ± 0.10 0.65 ± 0.10 0.024 

655 Middle cerebellar peduncle* (74.81) 
Inferior cerebellar peduncle L (20.46) 
Superior cerebellar peduncle L (4.73) 

0.61 ± 0.06 0.54 ± 0.06 0.033 

217 Sagittal stratum (include inferior longitudinal fasciculus 
and inferior fronto-occipital fasciculus) L* (95.85) 

0.77 ± 0.11 0.71 ± 0.10 0.020 

162 Superior longitudinal fasciculus L* (100) 0.73 ± 0.10 0.70 ± 0.09 0.026 
157 Superior longitudinal fasciculus L* (96.18) 0.71 ± 0.12 0.67 ± 0.12 0.035 
113 Sagittal stratum (include inferior longitudinal fasciculus 

and inferior fronto-occipital fasciculus) L* (1.77)  
Posterior thalamic radiation (include optic radiation) L (98.23) 

0.77 ± 0.11 0.73 ± 0.11 0.034 

86 Superior cerebellar peduncle L* (86.05) 
Medial lemniscus L (13.95) 

0.76 ± 0.08 0.71 ± 0.06 0.038 

77 Posterior thalamic radiation (include optic radiation) L* (100) 0.81 ± 0.14 0.77 ± 0.08 0.034 
66 Superior longitudinal fasciculus L* (100) 0.70 ± 0.11 0.66 ± 0.10 0.037 
53 Middle cerebellar peduncle* (81.13) 

Pontine crossing tract (a part of MCP) (18.88) 
0.69 ± 0.09 0.65 ± 0.08 0.039 

48 Superior longitudinal fasciculus L* (100) 0.70 ± 0.10 0.66 ± 0.09 0.037 
45 Anterior corona radiata R* (88.89) 

Genu of corpus callosum (11.11) 
0.78 ± 0.11 0.73 ± 0.10 0.038 

41 Medial lemniscus R* (100) 0.73 ± 0.14 0.68 ± 0.14 0.039 
20 Anterior corona radiata L* (100) 0.74 ± 0.09 0.70 ± 0.09 0.037 
18 Superior longitudinal fasciculus L* (100) 0.71 ± 0.09 0.69 ± 0.09 0.038 
17 Superior longitudinal fasciculus R* (100) 0.73 ± 0.08 0.67 ± 0.09 0.034 
17 Anterior corona radiata R* (100) 0.73 ± 0.10 0.70 ± 0.10 0.035 
17 Anterior limb of internal capsule L* (100) 0.77 ± 0.13 0.72 ± 0.13 0.031 
16 Superior longitudinal fasciculus L* (100) 0.70 ± 0.12 0.66 ± 0.15 0.038 
16 Posterior limb of internal capsule R* (100) 0.68 ± 0.08 0.63 ± 0.08 0.031 
15 Superior longitudinal fasciculus L* (100) 0.71 ± 0.09 0.65 ± 0.08 0.037 
14 Splenium of corpus callosum* (78.57) 

Posterior thalamic radiation (include optic radiation) L (21.43) 
0.82 ± 0.10 0.77 ± 0.11 0.034 

13 Posterior corona radiata R* (100) 0.79 ± 0.11 0.75 ± 0.08 0.038 
13 Cerebral peduncle R* (30.77) 

Posterior limb of internal capsule R (69.23) 
0.72 ± 0.07 0.70 ± 0.05 0.036 

12 Anterior corona radiata L* (100) 0.73 ± 0.11 0.68 ± 0.10 0.042 
10 Superior longitudinal fasciculus L* (100) 0.73 ± 0.11 0.69 ± 0.09 0.026 

* Region with the maximum significance in the cluster. 
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Table 9:  The brain regions in the clusters with significant differences in radial diffusivity (P<0.05, 
corrected for family-wise error rate) between patients with mild traumatic brain injury in 
the chronic stage and orthopedic control subject in tract-based spatial statistics analysis. 
The regions according to JHU white matter atlas with at least 5 % cluster volume or 
peak significance are included in the table. 

Cluster size 
(#voxels) 

Regions in the cluster (% of the cluster) mTBI  
(× 10-3 mm2/s) 

Control  
(× 10-3 mm2/s) 

P-
value 

8592 Uncinate fasciculus L* (0.65) 
Body of corpus callosum (9.23) 
Splenium of corpus callosum (13.90) 
Posterior limb of internal capsule L (5.96) 
Anterior corona radiata L (7.68) 
Superior corona radiata R (5.24) 
Superior corona radiata L (7.29) 
External capsule L (9.85) 

0.55 ± 0.11 0.49 ± 0.13 0.017 

1225 Posterior limb of internal capsule R* (4.49) 
Anterior limb of internal capsule R (18.53) 
Anterior corona radiata R (28.98) 
Superior corona radiata R (17.47) 
External capsule R (28.57) 
Superior fronto-occipital fasciculus (could be a part of 
anterior internal capsule) R (1.88) 
Uncinate fasciculus R (0.08) 

0.39 ± 0.07 0.35 ± 0.09 0.033 

310 Superior longitudinal fasciculus L* (98.39) 0.53 ± 0.10 0.49 ± 0.06 0.019 
216 Superior longitudinal fasciculus L* (99.54) 0.44 ± 0.12 0.37 ± 0.07 0.019 
204 Posterior thalamic radiation (include optic radiation) R* (78.92) 

Sagittal stratum (include inferior longitudinal fasciculus 
and inferior fronto-occipital fasciculus) R (21.08) 

0.49 ± 0.08 0.43 ± 0.08 0.042 

178 Cingulum (hippocampus) R* (100) 0.49 ± 0.10 0.43 ± 0.05 0.042 
164 Superior cerebellar peduncle R* (17.68) 

Middle cerebellar peduncle (26.83) 
Medial lemniscus R (6.71) 
Inferior cerebellar peduncle R (48.78) 

0.58 ± 0.13 0.50 ± 0.11 0.047 

147 Middle cerebellar peduncle* (100) 0.51 ± 0.09 0.46 ± 0.08 0.047 
90 Superior longitudinal fasciculus R* (91.11) 

Superior corona radiata R (8.89) 
0.62 ± 0.17 0.56 ± 0.14 0.033 

76 Fornix (cres) / Stria terminalis (cannot be resolved with 
current resolution) L* (100) 

0.58 ± 0.11 0.54 ± 0.12 0.024 

72 Superior longitudinal fasciculus L* (100) 0.52 ± 0.10 0.46 ± 0.09 0.026 
68 Posterior thalamic radiation (include optic radiation) L* (100) 0.54 ± 0.17 0.45 ± 0.08 0.034 
57 Superior longitudinal fasciculus R* (100) 0.50 ± 0.11 0.46 ± 0.09 0.045 
53 Cingulum (cingulate gyrus) L* (54.72) 

Splenium of corpus callosum (45.28) 
0.46 ± 0.07 0.41 ± 0.07 0.027 

50 Splenium of corpus callosum* (80) 
Posterior corona radiata R (20) 

0.40 ± 0.09 0.36 ± 0.10 0.045 

49 Cingulum (cingulate gyrus) R* (81.63) 
Splenium of corpus callosum (18.37) 

0.46 ± 0.09 0.41 ± 0.07 0.043 

46 Posterior thalamic radiation (include optic radiation) R* (100) 0.53 ± 0.14 0.49 ± 0.10 0.038 
40 Superior longitudinal fasciculus L* (100) 0.51 ± 0.10 0.48 ± 0.09 0.027 
32 Superior longitudinal fasciculus R* (100) 0.45 ± 0.10 0.42 ± 0.09 0.040 
32 Middle cerebellar peduncle* (100) 0.32 ± 0.06 0.27±0.05 0.050 
27 Cingulum (hippocampus) R* (100) 0.47 ± 0.07 0.45 ± 0.08 0.045 
25 Anterior limb of internal capsule L* (100) 0.64 ± 0.15 0.58 ± 0.14 0.030 
23 Cingulum (hippocampus) L* (100) 0.46 ± 0.09 0.42 ± 0.07 0.022 
17 Cingulum (cingulate gyrus) L* (100) 0.44 ± 0.09 0.39 ± 0.07 0.027 
16 Superior longitudinal fasciculus L* (100) 0.45 ± 0.10 0.42 ± 0.09 0.046 
16 Anterior corona radiata R* (100) 0.54 ± 0.11 0.51 ± 0.09 0.033 
16 Posterior limb of internal capsule R* (100) 0.52 ± 0.09 0.46 ± 0.08 0.033 
15 Cingulum (cingulate gyrus) L* (100) 0.39 ± 0.08 0.37 ± 0.07 0.031 
15 Superior longitudinal fasciculus L* (100) 0.45 ± 0.09 0.39 ± 0.08 0.031 
13 Superior longitudinal fasciculus L* (100) 0.56 ± 0.12 0.53 ± 0.13 0.035 
13 Posterior corona radiata R* (100) 0.56 ± 0.14 0.52 ± 0.13 0.022 
12 Cerebral peduncle R* (100) 0.40 ± 0.09 0.37 ± 0.07 0.033 
11 Superior longitudinal fasciculus R* (100) 0.48 ± 0.08 0.45 ± 0.09 0.043 
11 Cingulum (cingulate gyrus) R* (100) 0.45 ± 0.08 0.41 ± 0.08 0.043 
11 Sagittal stratum (include inferior longitudinal fasciculus 

and inferior fronto-occipital fasciculus) L* (100) 
0.62 ± 0.28 0.58 ± 0.12 0.024 

*Region with the maximum significance in the cluster. 
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Analysis of the principal fiber orientation resulted in 4 clusters in voxels with similar 
average fiber orientations. Similar clusters were found for all the microstructural 
properties that showed significant differences between patients with mTBI and 
controls. The frequency of the voxels with similar average orientations, as well as 
the four orientation-dependent clusters, are shown for each measure in Figure 21. 

 
Figure 21. Directional analysis of the significant microstructural differences in the chronic stage of 

TBI compared to control subjects. The number of voxels with significant differences is 
mapped onto the unit sphere according to the principal fiber orientation in the 
corresponding voxel. Four clusters of significant changes in fractional anisotropy (FA), 
mean diffusivity (MD), and radial diffusivity (RD) are found in certain orientations. 
Anterior-Posterior (A-P); Left-Right (L-R); Superior-Inferior (S-I). 

5.4 Correlation analyses 

5.4.1 Correlation between global FA, age, Fazekas, time of 
scan post-injury, and outcome (Publication I) 

In the whole cohort, FA was positively correlated with the outcome (r=0.363, p 
<0.001), and it was negatively correlated with Fazekas (r=-0.619, p<0.001) and age 
(r=-0.787, p<0.001). FA was significantly correlated with the outcome (r=0.341, 
p=0.004), Fazekas (r=-0.646, p<0.001), and age (r=-0.814, p<0.001) in patients with 
mTBI and PTA ≤ 24 h. In patients with PTA of more than a day, FA was only 
correlated with age (r=-0.639, p<0.001). No significant correlations were found 
between FA and the time of scan post-injury, neither in the whole cohort nor in any 
of the dichotomized patient groups based on PTA. 
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5.4.2 Correlation between global and local network 
properties and outcome (Publication II) 

Local efficiency and strength in the left putamen were significantly associated with 
outcome in both acute/sub-acute and chronic stages in patients with mTBI. Higher 
local efficiency and strength were associated with better outcome in the left putamen 
in acute/subacute stage of mTBI (local efficiency: r=0.43, P<0.0001; strength: 
r=0.50, P<0.00001) and in the chronic stage (local efficiency: r=0.40, P<0.001; 
strength: r=0.45, P<0.0001). Local betweenness centrality in the left postcentral 
cortex in acute/sub-acute stage was negatively correlated with the outcome (r=-0.39, 
P<0.001). Furthermore, in the chronic stage, higher local strengths in the left 
parahippocampal cortex (r=0.38, P<0.001) and the left entorhinal cortex (r=0.39, 
P<0.001) were associated with better outcome. Correlation between local network 
measures and the outcome are shown in Figure 22. 

 
Figure 22. Correlations of the local graph theoretical properties with the neurological outcome in 

mild traumatic brain injury. The size of the nodes corresponds to the volume of the gray 
matter area and the color indicates the statistical significance (P-value) of the correlation 
with the neurological outcome measured with Extended Glasgow Outcome Scale 
(GOSE). Age and gender were used as covariates. Significant differences after 
Bonferroni correction for multiple comparisons are emphasized with red circles. 
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5.4.3 Correlation between microstructural properties, 
average fiber orientation and outcome (Publication III) 

FA was positively correlated with GOSE in the left retrolenticular part of internal 
capsule (Spearman’s rho = 0.34, p=0.002) and the left cerebral peduncle 
(Spearman’s rho = 0.2, p = 0.009). MD and RD were negatively correlated with 
outcome in the left superior longitudinal fasciculus (Spearman’s rho = -0.35, p = 
0.001) and (Spearman’s rho = -0.4, p < 0.001) respectively. RD was also negatively 
correlated with outcome in the right posterior limb of internal capsule (Spearman’s 
rho = -0.4, p < 0.001) and the left cingulum (cingulate gyrus) (Spearman’s rho = -
0.39, p < 0.001). 

Additionally, better outcome was associated with higher anisotropy and lower 
diffusivity in all clusters with similar average fiber orientations. 
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6 Discussion 

Patients with mTBI had lower anisotropy and higher diffusivity measures compared 
to controls using a global approach in the acute/sub-acute stage in Publication I, and 
the local voxel-wise TBSS approach in Publication III in the chronic stage. The 
results of decreased anisotropy and increased diffusivity at the acute/sub-acute stage 
are in line with previous studies (Arfanakis et al., 2002; Messé et al., 2011; Narayana 
et al., 2014; Toth et al., 2013). Furthermore, decreased FA and increased MD, and 
RD in patients with mTBI at the chronic stage is in accordance with previous studies 
(Jorge et al., 2012; Kraus et al., 2007; Wada et al., 2012).  

Increased diffusivity and reduced anisotropy could be indications of brain edema 
at the acute/sub-acute phase (Iffland et al., 2014) or axonal demyelination or 
degeneration (Song et al., 2003). Mac Donald et al., have shown that the degradation 
of axons is the primary pathology at the acute stage of TBI (Mac Donald et al., 2007). 
Decreased FA could be a reflection of demyelination or damaged axonal integrity 
(Beaulieu, 2002; Harsan et al., 2006; Song et al., 2003). Increased RD in the chronic 
stage could be because of the demyelination (Hutchinson et al., 2018). A 
combination of the primary and secondary injury at the chronic stage could be caused 
by Wallerian degeneration (Narayana, 2017). 

6.1 Global approach (Publication I) 
 

In Publication I, we showed that this difference between groups in microstructural 
properties is dependent on the analysis approach. Using CSD-based tractography, 
the analysis approach restricted to single-fiber voxels within the WM skeleton 
showed the highest sensitivity and reliability compared to complete WM skeleton or 
the tractogram. Furthermore, higher FA was associated with better outcome in all 
patients with mTBI and in patients with mTBI with a duration of PTA less than a 
day.  

In the whole brain histogram analysis, we demonstrated that the differences 
between patients with mTBI and controls are visible, at both high and low FA values. 
Inglese et al., however, did not report such trends and they showed no differences in 
whole brain histograms between patients with mTBI and control subject in their 
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study (Inglese et al., 2005). . Ilvesmäki and colleagues also reported that DTI is not 
capable of detecting WM changes associated with DAI in patients with mTBI at the 
acute stage (Ilvesmäki et al., 2014). It is noteworthy to mention that both of these 
studies were limited regarding the number of diffusion gradient directions. This 
would suggest that common DTI-based approaches such as TBSS may not be 
sensitive enough to the subtle changes in association with DAI after TBI at the 
acute/sub-acute stage due to the choice of acquisition parameters or post-processing 
techniques. Choosing proper acquisition parameters such as increasing the number 
of applied diffusion gradients could enhance the sensitivity, although the inherent 
limitations of DTI will not be resolved. 

6.2 Structural brain connectivity (Publication II) 
In Publication II we showed that brain connectivity is altered after mTBI but not at 
the global level, although global network metrics at both acute/sub-acute and chronic 
stages correlated with outcome. Finding no global difference in brain network 
metrics between patients with mTBI and OI controls could be because by looking at 
the brain as a network, patients with mTBI do not significantly differ from the 
controls. Therefore, it is expected that no difference in global brain structural 
network metrics is found in mild cases of TBI compared with OI controls. 

Furthermore, local structural network was disrupted at both stages after mTBI, 
and similar to the global network metrics, local network measures were also 
associated with outcome. Local network disruption was prominent at the chronic 
stage and in the right pars opercularis region of the brain. The right pars opercularis 
is known to be part of the Broca’s area (Broca, 1861) that is involved in speech 
production (Hickok, 2012; Indefrey and Levelt, 2004). Studies have shown that the 
disruption of right pars opercularis is found in major depressive disorder (Qiu et al., 
2014), autism spectrum disorder (Rudie et al., 2012), and anxiety (Hölzel et al., 
2013).  

Investigation of structural brain connectivity after TBI mostly focused on 
patients with moderate to severe TBI. Only a few studies have assessed the structural 
brain network disruption after mTBI (Dall’Acqua et al., 2017, 2016; van der Horn et 
al., 2017). Our findings of no significant differences in global network metrics 
between patients with mTBI and controls are in accordance with these recent studies 
(Dall’Acqua et al., 2016; van der Horn et al., 2017). Despite showing no difference 
in global measures compared to controls, global network metrics at both acute/sub-
acute and chronic stages were associated with the outcome. Furthermore, local 
network properties in several nodes were correlated with the outcome. Left putamen 
was the prominent region showing a significant correlation between local network 
measures (strength and efficiency) and the outcome. The disruption of structural 
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connectivity in putamen after TBI has not been reported in the literature before, but 
volumetric changes in putamen after TBI have been reported previously (Gooijers et 
al., 2016; Zagorchev et al., 2016), and the decreased putamen volume is shown to be 
associated with deficits in motor skills after TBI (Gooijers et al., 2016). 

Our findings of correlation between local and global network metrics and the 
outcome could indicate that brain structural connectivity could be a predictor of the 
outcome after TBI. Although stronger correlations were found between network 
measures and outcome at the chronic stage, some of these network measures could 
provide clinically valuable information and could perhaps be used for outcome 
prediction already at the acute/sub-acute stage after TBI. 

6.3 TBSS approach and the analysis of the 
principal fiber orientation (Publication III) 

Whiter matter microstructural abnormalities were found in several brain regions 
showed. Patients with mTBI had lower anisotropy compared to OI controls. In 
addition, MD and RD values were higher in patients compared to controls. This 
could mean that diffusion properties are not affected along the axons, and diffusivity 
is altered most prominently perpendicular to axons and our findings suggest that the 
diffusion perpendicular to axons drives the results. Furthermore, microstructural 
properties were correlated with patients’ outcome. Better outcome was associated 
with higher FA and lower MD and RD. Similar to average regional microstructural 
properties, mean FA, MD, and RD values from the clusters with similar average fiber 
orientations were associated with the outcome. High anisotropy and low diffusivity 
were associated with better outcome. In the post hoc analysis to see if the differences 
between patients with mTBI and controls are indeed due to the trauma, and to 
eliminate the effects of WM hyperintensities, we found no differences in anisotropy 
between patients and controls (with Fazekas score of 1). However, this could be 
because of the sample size as the results were similar to the results in subjects without 
WM hyperintensities when a more strict significant level (p<0.025) was introduced 
to the results of the whole cohort. This indicated that sample size could in fact be the 
reason for the difference in the results. 

Four distinct clusters of voxels with significant WM abnormalities were found 
that had similar average fiber orientations. As there is no such study in patients with 
mTBI to our knowledge, it is unclear that these findings are because of the 
prevalence of these fiber orientations in the FA skeleton or they could indeed indicate 
the orientation susceptibility of these WM abnormalities due to brain trauma.  
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6.4 Limitations 
It is worth mentioning that our TBI cohort does not represent the general population 
of patients with mTBI and our findings may not translate to all patients with mTBI. 
Furthermore, regardless of having available data for both acute/sub-acute and 
chronic stages after mTBI, we only performed cross-sectional analyses hence lacking 
the longitudinal analysis to assess abnormalities and their trajectory over time. The 
reason was an agreement between us and our collaborators that only cross-sectional 
results would be included in this doctoral dissertation. In addition, we only included 
patients scanned at the acute or sub-acute stage in Publication I, which could have 
had an impact on our results. Nevertheless, we found no association between our 
findings and the time of scan after injury. Also, we could not assess the handedness 
of the patients and controls as structural brain network or even WM tracts might have 
been slightly different between right-handed and left-handed subjects.  

Recently, Wilde et al. showed that using healthy controls in contrast to OI 
controls would yield results that are closer to reality and reliable(Wilde et al., 2018). 
Patients with extracranial orthopedic injuries were used as controls in this doctoral 
research and although careful considerations were considered when recruiting 
patients, the possibility of any indirect impact on the head cannot be completely ruled 
out.  

Furthermore, while a b-value of 1000 s.mm-2 is not the optimal amount of 
diffusion weighting for CSD-based tractography (Tournier et al., 2013), 64 diffusion 
gradients with this rather low b-value were sufficient to detect crossing fibers with a  
lmax = 6.  Single-shell diffusion data was utilized in all of the studies included in this 
doctoral research while using multi-shell DW-MR data would have improved the 
characterization of WM tracts (Jeurissen et al., 2014).  

CSD-based approach and DTI approaches are affected by partial volume effects 
(Alexander et al., 2000; Roine et al., 2014; T. Roine et al., 2015). By using 
skeletonized WM (in Publications I, III), however, we tried to minimize these 
effects. It is noteworthy that WM skeletonization suffers from inherent limitations 
(Bach et al., 2014), though it is still useful as it mitigates the partial volume effect 
problem.  
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7 Summary/Conclusions 

We aimed to look for imaging markers for DAI in patients with mTBI for both 
diagnostic and prognostic purposes by investigating WM microstructural 
abnormalities associated with DAI in patients with mTBI at the acute/sub-acute and 
chronic stages. Consequently, we focused on using a commonly used DTI technique 
called TBSS as well as more advanced HARDI methods. Although each of these 
methods has its advantages and disadvantages, we showed that HARDI methods at 
the acute/sub-acute phase could be sensitive enough to detect WM abnormalities 
while commonly used DTI-based approaches (TBSS in this book) lack such 
sensitivity. Furthermore, we demonstrated that the structural brain network is altered 
locally (and not globally) following mTBI. We showed that these WM 
microstructure and structural network alterations following mTBI are associated 
with the outcome. 

As the next step, combining blood biomarkers and imaging could help us better 
characterize axonal injury and would be one step forward to achieving a prognostic 
model for patients with mTBI. 
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