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Abstract

Quantum theory is a particularly important instance of an operational the-
ory. By looking at quantum theory from the perspective of more abstract
operational framework one is able to study its properties in a wider con-
text. This allows us to identify some of the physical features characteristic
of quantum theory and it helps us to understand what makes quantum the-
ory special among other theories. From the information-theoretic point of
view this might give us insight into the foundations behind the advantages
of quantum information processing over its classical counterpart.

In this thesis, based on Publications I — VI, we consider the properties
of measurements in quantum theory and other operational theories. Af-
ter having introduced the framework of operational theories, we consider a
communication scheme based on an experimental prepare-and-measure sce-
nario and demonstrate this with different communication tasks. This gives
us context for how the different communication tasks can be implemented
in different theories and how operational theories can be compared to each
other, in doing so establishing quantum theory intuitively as an operational
theory among other theories.

The main property of measurements we focus on in this work is the
simulation of measurements, which consists of manipulating the inputs
and outputs of the measurement devices. We study how using this pro-
cess on existing measurement devices can be used to operationally imitate
new devices, and what kind of structure the simulation process induces
on measurements. We look at the components of simulability, analysing
and demonstrating them in quantum theory as well as various toy theories.
This gives us structural information that differentiates quantum theory
from other theories.

We also consider applications of simulability. Firstly, we consider op-
erational restrictions imposed upon measurements. We argue that the re-
stricted set of physical measurements must be closed with respect to the
simulation process since the simulation of physical devices must lead to
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other physically feasible devices. We demonstrate different types of restric-
tions by classifying them and analysing their structure.

As a second application we see how the simulation of measurements
relates to joint measurability, i.e. compatibility of measurements, and how
it can be viewed as a generalisation of it. This allows us to present an
operational principle previously known to quantum theory, the no-free-
information principle, according to which any measurement that is compat-
ible with all other measurement must not provide any useful, and therefore
free, information about the system. Whilst this principle holds in quantum
theory, there are non-classical theories for which it is violated, and so en-
forcing this principle may be considered a way to exclude some unphysical
theories.



Tiivistelma

Kvanttiteoria on operationaalisten teorioiden térked erikoistapaus. Tarkas-
telemalla kvanttiteoriaa abstraktien operationaalisten teorioiden nakokul-
masta voidaan kvanttiteorian tarkeimpié piirteitd tutkia laajemmassa mit-
takaavassa. Tamén avulla voimme yrittda ymmértda kvanttiteoriaa karak-
terisoivia fysikaalisia ominaisuuksia, ja samalla pyrimme ndkeméin miké
tekee kvanttiteoriasta niin erikoisen ja térkedn. Informaatioteoreettisesta
nékokulmasta katsottuna tdma voi auttaa oivaltamaan mika antaa kvantti-
informaatiolle ja sen prosessoinnille edun klassiseen informaatioteoriaan
néhden.

Téassé véitoskirjassa, perustuen julkaisuihin I — VI, tutkin mittauksia
ja niiden ominaisuuksia kvanttiteoriassa ja muissa operationaalisissa teo-
rioissa. Operationaalisten teorioiden méarittelyn jilkeen jatkan tutkimal-
la fysikaaliseen koejérjestelyyn perustuvaa kommunikaatiota eri teorioissa.
Esittelen tahén viitekehykseen sopivia erilaisia kommunikointitehtéavié, sel-
vitdn miten hyvin niitd voidaan toteuttaa eri teorioissa ja tdmén perusteel-
la vertaan teorioita toisiinsa. Tamé auttaa ymmaéartdméaan kvanttiteoriaa
luonnollisena osana operationaalisten teorioiden joukkoa.

Viitostyossani keskityn erityisesti mittausten simulointiin, joka opera-
tionaalisesti tapahtuu manipuloimalla eri mittalaitteistojen sytte- ja tulos-
teportteja. Talld tavalla saatavilla olevia mittalaitteita manipuloimalla voi-
daan simuloidan jonkin toisen, mahdollisesti uuden mittalaitten toimintaa.
Simulonti synnyttdd mittalaitteiden teoreettiseen kuvaukseen matemaat-
tista rakennetta, jota tédssd tyOssd erityisesti tutkin. Analysoimalla simu-
lointia kvanttiteoriassa ja useissa leluteorioissa pystyn osittain erottamaan
kvanttiteorian luonteenomaista rakennetta.

Simuloinnin erdénéa sovelluksena tutkin kuinka mittauksille voidaan aset-
taa mahdollisia operationaalisia rajoitteita, joiden kuitenkin simuloinnin
operationaalisen luonteen takia pitaéd olla suljettuja simuloinnin suhteen.
Nain ollen simulointiprosessilla ei pystytd kiertdmaédn asetettuja rajoittei-
ta. Erityisesti annan esimerkkejé erilaisista operationaalisista rajoitteista,
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jaan rajoitteet eri luokkiin ja tukin néiden luokkien eroja.

Toisena sovelluksena linkitédn simuloinnin eri fysikaalisten suureiden yh-
teismittauksen (tai yhteensopivuuden) késitteeseen, jonka mukaan yhteen-
sopivat suureet voidaan mitatata samanaikaisella yhteismittalaitteella. Tal-
16in voidaan ndhda kuinka yhteismittaus on vain simuloinnin erikoistapaus.
Simuloinnin ja yhteensopivuuden yhteyden perusteella yleistan kvanttiteo-
riasta tutun operationaalisen periaatteen, jonka mukaan kaikkien mittauk-
sien kanssa yhteismitattavat suureet eivéit voi antaa olennaista tietoa mitat-
tavasta fysikaalisesta systeemistd. Muotoilemalla tdmén periaatteen opera-
tionaalisissa teorioissa pystyn osoittamaan, etté periaate ei pade kaikissa
teorioissa osoittaen, etta sen taytyy vangita jotain kvanttiteorialle ominai-
sia piirteita.
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Introduction

Historically quantum theory emerged from the pursuit of describing the
fundamental physical properties of Nature at the scale of atoms and sub-
atomic particles, where the laws of classical mechanics were shown to be
insufficient. Since its birth over 100 years ago, quantum theory has evolved
from just a theoretical curiosity into an experimentally applicable theory
of information and computation. In particular, it has been demonstrated
that quantum information theory holds the potential to make communica-
tion and computation more secure and more efficient. It is because of the
success of quantum information theory that the most important and most
studied quantum system is the qubit, a quantum version of the classical
unit of information, the bit. Similar to the bit, the qubit is a two-level
system, making it also the simplest non-trivial quantum system. By taking
into account the importance and the simplicity of the qubit, it is not hard
to see why the qubit has become the primary quantum system that we are
taught in modern-day introductory courses on quantum theory.

One of the first things we learn about qubits is that they can be param-
eterized with three real numbers and that the space of possible parameters
form a regular 3-dimensional ball, called the Bloch ball. This is contrary to
the much more intuitive classical bit which can be represented as a line seg-
ment whose end points correspond to the two possible values of the bit. As
both of these systems are two-level systems, i.e., at any given time it is only
possible to distinguish between two different states, what is it that distin-
guishes the qubit from its classical counterpart? And why is it specifically a
ball and not a disc, a regular polygon or a Platonic solid that Nature chose
to represent the possible qubit states? Which known and used quantum
properties are specifically because of the spherical shape, and what would
happen if the shape were to change? Why are not all higher-dimensional
quantum systems represented by higher dimensional balls? These are some
of the questions one might have after hearing about qubits and the Bloch
ball for the first time.
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16 Introduction

Whilst in basic courses these types of questions can be, to some degree,
answered by exploring the mathematical structure of the theory (such as
the superposition principle) given by the mathematical axioms of quantum
theory as laid out by Dirac [1] and von Neumann [2], the arguments in-
volving the physical and operational properties of quantum theory seems
to be lost and forgotten in the translation. To bridge this gap between
the clear and well-understood mathematical structure of the theory and
the possible physical principles either leading to or emerging from that
structure, one has to consider quantum theory in a wider class of opera-
tional theories. Based on the primitive concepts of physical systems, states
and measurements, an operational theory specifies what kind of states the
physical system can be prepared in, and it determines the rules on how
the outcome statistics of an experiment involving said primitives can be
calculated. In its simplest terms, operational theories aim to capture the
minimal requirements that one wishes an empirical physical theory to sat-
isfy.

By considering theories with different rules for the preparation and mea-
surement procedures one is able to study how these affect the resulting
physical properties of these theories. In particular, this allows us to con-
sider what is uniquely ‘quantum’ about quantum theory and what gives it
an advantage over the classical theory. Furthermore, we can formulate and
study the operational non-classical properties of quantum theory and see
how they behave in other theories to see how quantum theory is set apart
and how these properties can be used to characterize different theories.

The central ideas and motivation for operational theories were previ-
ously given in the works of Mackey [3], Ludwig [4-7], Déhn [8], Stolz [9, 10],
Davies & Lewis [11], Edwards [12, 13|, Mielnik [14, 15], and Gudder [16]
with the aim of finding an axiomatization for quantum theory. More re-
cent topics that have been studied in the framework of operational theories,
some of which are based more on information-theoretical concepts after the
success of quantum information theory, include (information-theoretic) ax-
iomatization of quantum theory [17-21], no-cloning and no-broadcasting
[22, 23], non-locality [24-26], joint measurability [27-35], steering [25, 31,
36], entropies [37-39], thermodynamics [40, 41], entanglement [40, 42, 43]
and contextuality [44, 45]. For more extensive historical and topical re-
views, see [46, 47].

As one of the primitives, measurements and their properties play a cen-
tral role in the research of different operational theories. As one of the
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most important examples, the concept of joint measurability, i.e., compat-
ibility of measurements (see, e.g., [48]), captures the idea that given a set
of measurement devices one is able to build a joint measurement device
capable of implementing all of the given devices simultaneously. It is an
elementary observation in quantum theory that there are measurements on
quantum systems that cannot be implemented jointly, the paradigmatic ex-
ample being the impossibility to sharply determine both the position and
momentum of a particle at the same time (rooted in the Heisenberg un-
certainty principle [49]). As we will see later this impossibility to measure
everything jointly is not only a property of quantum theory but in fact it
is a property of all theories that are not determined classical.

Another operational property of measurements is the simulation of mea-
surements (see, e.g., [30]). Defined as a combination of the operational
notions of mixing (using different measurement devices with different prob-
abilities in each round of the experiment) and post-processing (manipu-
lating the outputs of the measurement devices), simulation captures the
idea of how one can operationally obtain new measurement devices from
known ones. Thus, given a set of measurement devices, the simulation
process can be used to obtain new devices that might not be directly at
hand or that otherwise might be hard to implement or build. Furthermore,
in this context, jointly measurable devices can be simulated from a single
device so that simulability involving multiple devices can also be seen as a
generalization of joint measurability.

The main purpose of this thesis is to study the properties arising from
and the mathematical structures given by the simulation of measurements
in quantum theory and other operational theories, consisting of original re-
search conducted in Publications I — VI. In Chapter 1 we start by consid-
ering the basics of operational theories and present the convex formulation
of operational theories; namely the framework of general probabilistic theo-
ries (GPTs). We discuss the basic components (states, effects, observables,
channels, instruments and composite systems) of an operational theory and
demonstrate these in the context of quantum theory. We also present some
toy theories that we will use later on to demonstrate various concepts.

In Chapter 2 we study a physical communication scheme arising from
a prepare-and-measure scenario describing a standard physical experiment
and the structure it induces. Following Publication V, we use the commu-
nication scheme to demonstrate various concepts and communication tasks
that one may consider in operational theories, introduce a way to compare
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the difficulty of implementing such tasks and use this to compare different
theories to each other based upon which tasks can be implemented. This
helps us establish quantum theory as an operational theory among other
theories.

In Chapter 3 we start our journey towards the simulation of measure-
ments by considering one of the main components of the simulation scheme,
namely the post-processing of measurements. We start by considering the
classical manipulation of the measurement outcome statistics and then, fol-
lowing Publication VI, continue to generalize the post-processing relation
to measurements which output not only classical measurement outcomes
but also the post-measurement state, thereby accommodating sequential
measurements and their manipulation.

In Chapter 4 we present the full simulation scheme for measurements
with classical measurement outcomes, as described in Publication II. We
show that every measurement can be reduced into a simulation of simula-
tion irreducible measurements and characterize their structure and proper-
ties. Following Publication IV, we demonstrate measurement simulability
by considering possible operational restrictions on measurements that are
closed with respect to the process of simulation, characterize these restric-
tions in different classes and demonstrate their differences.

In the final Chapter of this thesis, Chapter 5, we explore the connection
between simulability and compatibility. We show how joint measurability
can be seen as a particular instance of simulability, and derive a simulation-
based condition for joint measurability originally shown in Publication I.
Furthermore, we show how the structure given by the simulation scheme,
the simulation irreducible measurements in particular, can be used to char-
acterize the set of measurements that are jointly measurable with any other
measurement in a given theory. In accordance with Publication III, we
show that although such measurements provide no information about the
measured system in quantum theory, i.e., such measurements are trivial, in
general we might have theories where the no-free-information principle is
violated so that such non-trivial measurements exist and they can be thus
implemented freely with any other measurement.

In addition to Publications I — VI, this thesis consists of some new
unpublished or generalized results that are notated with a * in front of the
respective Proposition/Corollary.



Chapter 1

Operational theories

For an operational theory, the primitives are physical devices: state prepara-
tors, measurement devices and channels, which together can be used to
conduct experiments, giving information about the systems described by
the theory. A physical experiment is typically separated into two parts:
the preparation of the physical system followed by a measurement of the
system including the registration of the measurement outcome. In order for
the experiment to provide information about the physical system the mea-
surement outcome should depend (at least probabilistically) on the chosen
preparation and measurement. This is the premise of any statistical op-
erational theory [50-52]. In this Chapter we present the most important
operational notions and principles, and argue how they lead to the convex
formulation of the general probabilistic theories (GPTs) which we will use
as the framework for studying the operational properties of measurements
that form the content of this Thesis.

1.1 Basic operational notions and principles

Let us denote the set of possible preparations by P and the set of mea-
surements by M. Given a preparation P € P and a measurement M € M
with a set of possible outcomes Q (which is taken to be a finite set for
simplicity) there must be a probability distribution pﬂ over () such that
pﬂ(x) is the probability that outcome z € () is registered when the system
goes through the preparation P and is measured with M. When repeating
the same experiment with fixed P € P and M € M, the relative frequency
of registering each outcome x € 2 in each round should better approximate
pﬁ(w) as the number of repetitions increases. A schematic picture of a
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20 Operational theories

Figure 1.1: In a physical experiment a preparation device P prepares a
physical system in a state that is measured with a measurement device M
resulting in a measurement outcome probability distribution pf/[.

physical experiment is depicted in Fig. 1.1.

In an experiment, two preparations P and P are considered equivalent
if they produce the same measurement statistics for every measurement,
ie., pf/‘, = pf/‘, for all M € M. Similarly two measurements M and M
are equivalent if p]\]} = pjl\';[ for all preparations P € P. The equivalence
classes of preparations and measurements are called states and observables
respectively. The set of states that a given physical system can be prepared
in is denoted by S and the set of all observables that can be used to measure
the system is denoted by O.

One of the most basic operational properties is the probabilistic mizing
of states and observables. If we are measuring an observable O € O and
have two different preparators preparing states s; € S and so € S, we can
assign a probability A € [0,1] and decide that with probability A we will
use the preparator with state s; and with probability 1 — A we will use the
preparator with state so in each round of the experiment. The result of
the experiment thus leads to a probability distribution Apg + (1 — A)pg.
The mixing procedure described above can also be considered as a recipe to
prepare a state, and this resulting state s({\, s1, s2}) must therefore satisfy
pso({)"sl’”}) = A\pg + (1= N)p5. We call s({\, s1,s2}) the mizture of s; and
s9. Similarly to state preparators, one can choose to mix the measurement
devices. If a system is prepared in a state s € S and we have two observables
01 and Oy that we mix with weights A € [0,1] and 1 — X respectively, the
resulting probability distribution reads as Apg,, + (1 — A)pp,. This can be
interpreted as a new mixed observable O({\, O1,O2}) that is dependent on
A, O1 and O and satisfies p, 1y o, 0,3) = AP0, + (1 = A)pp,-

By accepting the mixing procedure as a new way to prepare states we
impose a convez structure on the set of states S. These kinds of structures
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can be formalized in various ways (see [16, 53-56]) but under some reason-
able assumptions they can be reduced to the typical notion of convexity in
real vector spaces [53, 56, 57]. This leads to one of the most common for-
mulation of operational theories, namely the convex formulation of general
probabilistic theories (GPTs).

1.2 The framework of general probabilistic theo-
ries

General probabilistic theories constitute an operational framework for con-
sidering quantum theory in a more abstract setting. In addition to quantum
theory, GPTs include classical theory as well as countless toy theories. Once
formally defined, one can start to consider various non-classical features of
quantum theory in a more general setting, see how these features manifest
themselves in different theories, quantify them and use them to compare
theories to each other with the goal of understanding more about these
features and what they tell us about quantum theory. We start by intro-
ducing the basic components of GPTs; for a more detailed presentation of
the present convex formulation of GPTs, see [46, 47, 58]. For the math-
ematical details of the notions and results in convex analysis we refer to
[59].

1.2.1 States

As was described in the previous section, the set of states S consists of
equivalent preparation procedures of physical systems. The mixing of state
preparators imposes a convex structure on S and this structure can be
expressed as a convex set within a real vector space! (under some natural
assumptions). Thus, we make the following formal definition for S.

Definition 1. A state space S is a compact convex subset of a real finite-
dimensional vector space V.

We assume that the underlying vector space V is finite-dimensional in
order to simplify the treatment of the theory. The purpose of this work
is to examine various features of quantum theory in a broader operational

LA subset C of a real vector space V is convex if tx 4 (1 — t)y € C for all ,y € C and
t € 0,1].
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context, and we focus on achieving this in the finite-dimensional setting
without getting too lost in the technicalities that would arise in the infi-
nite dimensional case. It is worth pointing out that the most recent ap-
plication of GPTs focuses heavily on information theory and processing
information where finite-dimensional classical and quantum systems have
been traditionally considered. Works on infinite dimensional GPTs include
[33, 34, 46, 60, 61].

We also make some technical assumptions about the topological prop-
erties of S. Firstly, we assume that the underlying vector space is Haus-
dorff: if we have a limit of converging states we want the limit to be a
unique state. Another technical assumption that we make is the compact-
ness of the state space. In our finite-dimensional setting this is equivalent
with closedness and boundedness of S [62]. By the Krein-Milmann theorem
[59], the compactness guarantees that the convex state space S can be com-
pletely characterized by its extreme points?, or pure states, so that every
state has a convex decomposition into pure states. However, this convex
decomposition is not unique unless S is a simplez, i.e., a convex hull of its
finitely many affinely independent extreme points [59]. A state that is not
pure is called a mized state.

Given a d-dimensional state space S, i.e., dim(aff(S))) = d, where aff(S)
denotes the affine span of S, one can choose the vector space V such that
dim(V) = d+ 1 and S is a compact base for a closed generating proper
cone V3. The proper cone V, induces a partial order on V: for z,y € V
we denote x >y (or x >y, y if we want to be more specific) if and only if
x —y € V4. Thus, V4 is the set of positive elements in V with respect to
this order. Then S can be expressed as

S={zeV|z>0, ulx) =1}, (1.1)

where u is a strictly positive functional on V. This is depicted in Fig. 1.2.

2An element x € K of a convex set K is extreme (or extremal) if any convex decom-
position of the form = = ty 4+ (1 — t)z for some y,z € K and t € (0,1) implies that
T=y==z

3A subset C C V of a vector space V is a (convex) cone if C+C C C and oC C C
for every « € R4. Furthermore, C is a proper cone if C N (—C) = {0} and generating if
C—C=V. A subset B C C is a base of C if for every x € C \ {0} there exists unique
B >0 and b € B such that x = 3b.
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Figure 1.2: State space S as a base for a cone V, in a vector space V.

Example 1 (Quantum theory). Let H be a d-dimensional Hilbert space.
The state space S(H) of a d-dimensional quantum system is defined as [63]

SH)={0€ Ls(H)|o> O, trlo] =1},

where L£4(#H) denotes the real vector space of self-adjoint operators on H,
O is the zero operator on ‘H and the partial order used is induced by the
proper cone of positive semi-definite matrices on H. The elements in S(H)
are often called density operators or density matrices on H.

1.2.2 Effects and observables

The most basic types of measurements are the ‘yes-no’ type of questions re-
garding some property of the systems. These are represented by effects [64].
Mathematically we describe them by affine functionals giving probabilities
on states.

Definition 2. The set of effects £(S) consists of affine functionals e : S —
[0, 1].

We interpret the positive number e(s) € [0, 1] as the probability that
the event described by the effect e € £(S) is detected when the system is
in the state s € §. The affinity of effects follows from the basic statistical
interpretation of a physical experiment [50] so that when we measure mixed
states, the measurement statistics are constructed from measurements of
the states used in the mixture, i.e.,

e(As1 + (1 — N)s2) = Xe(s1) + (1 — Ne(s2)
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Figure 1.3: Effect space £(S) as an intersection £(S) = Vi N (v — V7).

for all A € [0,1], 51,52 € S and e € E(S).

The assumption of treating all mathematically valid affine function-
als that give probabilities on states as physical effects is called the no-
restriction hypothesis [65]. Even though this hypothesis holds in quantum
and classical theories, in principle there is no operational justification to re-
quire it to hold in every theory. We will take a closer look at theories with
operational restrictions beyond the no-restriction hypothesis in Chapter 4,
but unless otherwise stated, we take our set of effects to be unrestricted.

Let us consider a d-dimensional state space S as a compact base for a
positive cone V4 in a (d + 1)-dimensional vector space V as in Eq. (1.1).
Since the state space S is a base for V; and since V, is a generating cone for
V), we can extend the effects to the whole vector space V. By interpreting
the elements of the form as € Vy with a € [0, 1] as subnormalized states,
where « denotes the probability of success in the preparation of the state
with an imperfect preparation device, we can set ¢(0) = 0 as the probability
for the empty measurement where an event is trying to be detected on a
system that was never prepared. For the affine functionals this means
fixing the origin so that, in particular, we can consider the effects as linear
functionals, which means that £(S) C V* , where V* is the dual of V. It
follows that we can represent the (extended) set of effects as

ES)={eeV'|o<e<u} =ViN(u-Vy), (1.2)
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where the partial order is induced by the proper dual cone Vi4 of V., and
where the zero effect o and the unit effect u are defined as o(s) = 0 and
u(s) =1 for all s € S respectively. This is depicted in Fig. 1.3.

An important class of effects are the indecomposable effects [37]. We
say that a non-zero effect e € £(S) is indecomposable if e decomposes
into a sum e = f + g of any other two effects f,g € £(S) only when
f and g are proportional to e, i.e., when there are o, > 0 such that
e = af = Bg. It is known that every effect can be decomposed into a
finite sum of indecomposable effects [37]. Together with extreme effects the
indecomposable effects are an essential part of the geometric picture of the
effect space as indecomposable effects correspond to the extreme rays® of
the dual cone V7.

Example 2 (Quantum theory). In d-dimensional quantum theory with a
d-dimensional Hilbert space H the set of effects £(S(#H)) as linear func-
tionals on states can be shown [63] to be isomorphic to the set of positive
semidefinite unit-bounded selfadjoint operators on H:

E(SMH))=EM) ={E € Ls(H)|O<E <1},

where O and 1 denote the zero and identity operators on H. The iso-
morphism is given my the map £(S(H)) > e — E € E(H) defined by
e(0) = tr[Ep] for all p € S(H). The previous equation for obtaining prob-
abilities in quantum theory is often called the Born rule. The indecompos-
able effects are exactly those that have rank equal to one [37].

Example 3 (Qubit states and effects). An example of a quantum system
worth considering is the qubit system. In this case the Hilbert space that
we consider is C2. The elements of £s(C?) are given by Hermitian 2 x
2 matrices; such matrices can be parametrised in terms of the so-called
Bloch representation (see [63] for details): An operator A € £4(C?) can be
expressed in the form

1
A=S(aly+3d- ), (1.3)

“The dual cone C* C V* of a cone C C V on a vector space V is defined as C* = {f ¢
V*| f(z) > 0Vz € C}.

A face F of a convex set K is a convex subset F C K such that if tx + (1 — t)y € F
for some z,y € K and ¢t € (0, 1), then also z,y € F. An extreme ray of a convex cone C
is a face that is a half-line emanating from the origin.
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Figure 1.4: The Bloch ball.

where 1o is the 2 x 2 identity matrix, @ is referred to as the Bloch vector
of the operator, and ¢ = (oy,0y,0y) is composed of the traceless Pauli
matrices. The eigenvalues of such an operator are 3(a % ||@|,), where |||,

1/2 " From this we

refers to the standard Euclidean 2-norm ||Z|, = (3; %)
see that an operator A is positive semidefinite if ||d@]|, < a.

In the case of states we require that they are both positive semidefinite
and of unit trace. The second of these conditions implies that &« = 1 and
so, by the positivity condition, we require that its Bloch vector satisfies
|ldll, < 1. This collection of vectors define the so-called Bloch ball (see
Fig. 1.4). Normalised Bloch vectors correspond to pure states, as it can
be readily calculated that such vectors lead to idempotent operators, i.e.,
projections, whilst subnormalised Bloch vectors describe mixed states. In
the case of @ = 0 our state is mazimally mized.

For an effect F, we not only require positivity but also that £ < 1,
which is equivalent to the eigenvalues of F being less than or equal to
1. This means that we require ||d||, + @ < 2. Combining this with the
positivity requirement, we have that for an effect E € £(C?) given by the
Bloch representation (1.3), the parameters (@, ) satisfy

lally < <2 —dll;- (1.4)

As in the case with states, if we possess a normalised Bloch vector then
a = 1 and the effect is a rank-one projection. Furthermore, we call an
effect unbiased when o = 1 so that the probability given by the Born rule
with the maximally mixed state is exactly half. If we have an effect E
given by parameters (d, a), then the complement effect I — F is given by
(—ad,2 — a).
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As we mentioned earlier, the effects correspond to the simplest ‘yes-no’
-type dichotomic measurements. For more general types of measurements,
namely observables, we make the following definition.

Definition 3. Let S be a state space. An observable A with a finite number
of outcomes is a mapping A : z +— A, from a finite outcome set €2 to the
set of effects £(S) such that >, cqAz(s) =1 forall s € S.

The set of observables on & with an outcome set {2 is denoted by
O(€2,S), and the set of all observables on S by O(S). In terms of the unit
effect u the normalization criteria can also be expressed as } o A; = u.
The definition of an observable captures the idea that each effect A, of
an observable A corresponds to some possible measurement outcome z in
the measurement of that observable. The normalization criteria then guar-
antees that some measurement outcome is always registered. Thus, we
interpret A;(s) as the probability that outcome = € Q was observed when
the system in state s € S was measured with an observable A.

We note that observables with countably infinite or continuous outcome
sets can be considered by defining the observables on some o-algebra of €2
(see, e.g., [34]). However, in this work we only consider observables with a
finite number of outcomes for simplicity. As a special class of obervables we
consider the set of trivial observables T (S) that consists of observables of
the form T, = p,u for all outcomes x € () for some probability distribution
(pz)zeq over Q. As T,(s) = p, for all states s € S they do not pro-
vide any information about the state when measured. Another important
class of observables are the indecomposable observables which consists of
observables whose every nozero effect is indecomposable. We will consider
indecomposable observables more closely in Chapter 3.

Example 4 (Quantum theory). In a d-dimensional quantum theory with
a Hilbert space H an observable A with a finite outcome set € corresponds
to a positive operator-valued measure (POVM) [63] A defined as a mapping
A:x— A(z) from Q to £(H) such that -, .o A(x) = 1. Thus, we see that
the definition of an observable is a direct generalization of that of a POVM.
The trivial POVMs then are of the form T'(z) = p,1 for some probability
distribution (pg).eq. Indecomposable observables are exactly the rank-1
observables, i.e., observables with rank-1 effects.
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1.2.3 Operations, channels and instruments

In addition to preparations and measurements, the third type of device
operational theories are built on are the channels that can transform the
system from one state to another. Mathematically this means that the
channel must preserve the positivity as well as the normalization of the
states. Whilst positivity is always required, we can relax the normalization
when considering probabilistic transformations, known as operations, where
we only require that the normalization does not increase:

Definition 4. Let S C V; C V and &' C V| C V' be two state spaces.
An operation is a linear mapping ® : V — V' such that ®(z) € V| and
u'(®(z)) < u(x) for all x € V;.

For an operation ®, we interpret u(®(s)) as the probability that the
transformation succeeds when the system is in a state s € S. We call ®
a channel if the equality «'(®(x)) = u(x) holds for all € V; so that the
transformation is deterministic instead of probabilistic. The set of channels
from S to &’ is denoted by Ch(S,S’), or simply by Ch(S) if ' = S.

We can also use state transformations to define measurement devices
that allow for sequential measurements. In the measurement of an observ-
able we were only interested in the (classical) measurement outcomes, but if
we wish to make further measurements on the already measured system, we
must be able to describe how the measurement device has interacted with
the system and how that transformed the system. To this end, we consider
this type of measurement device, instruments, to consist of a collection of
probabilistic state transformations (operations) such that the realization of
one of these transformations is considered to be the measurement outcome.

Definition 5. Let S and &’ be two state spaces. An instrument Z with a
finite outcome set €2 is a mapping Z : x — Z,, from € to the set of operations
from S to &’ such that >, .qZ, € Ch(S,S’).

The set of instruments with outcome set  from S to S’ is denoted by
Ins(2, S, S’), or simply by Ins(£2,S) if S’ = S. The observable AZ defined
by AL(s) = u/(Z,(s)) for all z € Q and s € S is called the induced observable
of Z. The interpretation is that when measured with an instrument Z, a
system initially in state s € § is transformed into the conditional output
state 3L := T,(s)/u'(Z,(s)) with probability u/(Z,(s)) (in the case that
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u/(Z,(s)) > 0) while an outcome x € © is obtained for the observable AZ.
Thus, instruments can also be considered as conditional state preparators.

An important class of instruments are the measure-and-prepare instru-
ments which perform a (demolishing) measurement of some observable and
prepare a new state based on the measurement outcome. Formally, an in-
strument Z € Ins(Q, S,S’) is a measure-and-prepare instrument if it is of
the form Z,(s) = A (s)s., for all z € § for some observable A € O(2, S) and
some set of states {s),},cq C S’. We note that in this case the conditional
output state & = T,(s)/u'(Z(s)) = s’ whenever A,(s) # 0 is indepen-
dent of the input state and only depends on the measurement outcome.
Furthermore, as a special case we have the trash-and-prepare instruments
when the measured observable is trivial, i.e., A, = p,u for all z € Q for
some probability distribution (ps)zeq, so that Z,(s) = pys, for all z € Q.
We will consider measure-and-prepare and trash-and-prepare instruments
more closely in Chapter 3.

Example 5 (Quantum theory). Let H and K be two finite-dimensional
Hilbert spaces. In quantum theory an operation from S(#H) to S(K) is
described by a completely positive (CP) and trace-nonincreasing map ® :
L(H) — L(K) meaning that id ® ® is positive on L(H' ® H) where id is the
identity channel on H' for all finite-dimensional H’, and tr [®(p)] < tr[g]
for all p > O [63]. While being trace-nonincreasing corresponds to not
increasing the normalization in Def. 4, the notion of complete positivity
is strictly stronger than positivity: not only are completely positive maps
positive but in addition they are positive on a larger system when considered
as transformations on a subsystem of the larger system where rest of the
system is left unchanged. A quantum operation ® is a quantum channel
if it is trace-preserving (TP), i.e., tr [®(p)] = tr[p| for all p € L(H). The
definition of quantum instruments mirrors Def. 5 as mappings from an
outcome set to the set of quantum operations. In particular, a measure-
and-prepare quantum instrument Z € Ins(Q, H, K) is of the form Z,(p) =
tr[A(z)o] o, for all x € Q for some POVM A € O(Q,H) and some set of
states {0z }zco C S(K).

Quantum channels and operations have a well-known representation in
an operator-sum form [63]: a linear map ® : £L(H) — L(K) is a quan-
tum operation if and only if there are linear operators K; : H — K for
all i € {1,...,n} for some n € N such that ®(p) = > ;" K;pK} for all
o€ L(H) and >7 | KFK; < 1y, where K} is the adjoint of Kj;. Further-
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more, ® is a channel if >°7' | KK; = 14. The operator-sum form is often
called the Kraus representation of ® and the operators K; are called the
Kraus operators of ®. While the Kraus representation is not unique, it can
be shown that it is possible to choose dim(#) dim(K) or fewer Kraus oper-
ators [63]. The minimal number of Kraus operators for a given operation is
called the Kraus rank of the operation. For the operations Z, of an instru-
ment 7 € Ins(Q2, H, ) with Kraus representations Z,(0) = %y KyioK;
it follows that the induced POVM AZ € O(Q,H) can be expressed as
Al(z) = Y r K} Ky for all z € Q.

1.2.4 Composite systems

So far we have considered only the single-system theory and, although the
focus of this work is to consider measurements on single systems, we give a
brief outlook on how composite systems are formed and treated in the GPT
framework. After all, composite systems are an essential part of the theory
as in many cases, instead of an indivisible system, we may have multiple
subsystems interacting with each other or its environment. We refer to [46]
for more detailed analysis on composite systems.

Let SA C Vf c V4 and SP C Vf C VB be the state spaces of systems
A and B respectively. Considered as a composite system A 4+ B, one must
be able to define the joint state space S48 ¢ VfB C V4B Under the non-
signalling principle and the local tomography principle® one can show (see
[66, 67], also [68, 69] for details) that that the joint state space S4# can be
considered as a subset of the tensor product V4 ® VE. We note that there
are also ways of forming composites without assuming the local tomography
principle (see, e.g., [18, 65, 70]) but we will not focus on them here. As
an example, in real quantum theory S(RY), where the field of complex
numbers is replaced with real numbers, the local tomography principle is
not satisfied.

Although we now have that S48 ¢ VAP = Y4 @ VB, we still have
to specify the positive cone VfB which S4P is the base of. It turns out
that this choice is not unique. Namely, the only operationally motivated
requirements are that one should be able to prepare states and perform mea-

5The non-signalling principle states that the marginal probability distribution for the
outcomes of a measurement on one of the systems is not affected by the measurement per-
formed on the other system. According to the local tomography principle any joint state
of the whole system is uniquely determined by local measurements on the subsystems.
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surements on each subsystem independently. This means that the products
s4® sB of local states s4 € S4 and s® € SP should be valid states in S48
and the products e ® eP of local effects et € £(S4) and B € £(SP)
should be valid effects in £(S4P).

Motivated by only considering the mixtures of product states, we first
consider the minimal tensor product cone, denoted by (VA @min V)4,
consisting of all positive linear combinations of products of elements that
are positive in their respective subsystem. This leads to the minimal state
space 8 @min SB that must be included in any joint state space of the
composite system A + B:

S @i SP = {Z Nisit @ sP

VZ'ZS?ESA,SiBGSB’)\iZO’Z)\i:]_},

which now forms a compact base for the cone (V4 @i VP)4.

On the other hand, we can maximally require that our states should
just consist of normalized elements that are positive on all product effects.
In this case we take the mazimal tensor product cone (VA Rmaz VB)Jr =
(VA* @min (VB)*)’_"|r which leads to the mazimal state space S @pmaz ST
defined as

5 @mar 8P = {s €V @ VP | (u @ uP)(s) = 1, (" @ P)(s) 2 0
vel € £(84), eF e £(SP)}.

It is clear that S @min S® C S @mas SB, and it has been shown
recently in [42] (see also [71]) that equality holds if and only if either one of
the state spaces S AorSBisa simplex. We call the elements of S A Rmin SE
separable and the elements of 8? @pas SP \ SA @min SB entangled. To
conclude the discussion on composite systems, we make the following formal
definition:

Definition 6. Let S4 C Vf c VA and 8B ¢ Vf C VB be state spaces of
systems A and B respectively. Any state space SAZ of the form

SAB =z eVvieVi|a 2y 0, (v @ uP)(x) = 1}

for some proper positive cone VfB C VA ® VP satistying (VA Omin V)1 C
VfB C (VA @maz VB) 4 is a joint state space of the system A + B.
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Example 6 (Quantum theory). Let S(H4) and S(Hp) be the set of den-
sity operators of two quantum systems A and B respectively. The joint
state space of the composite system A + B is built around the Hilbert
space Ha ® Hp, where the inner product is defined on the product el-
ements as (Y4 ® Yplpa ® ¢B) = (Yaloa) (VBlep) for all Ya,pa € Ha
and Yp,op € Hp and then extended to other elements via linearity [63].
Thus, consequently the joint state space of the system A+ B is taken to be
S(Ha®Hp). It is a basic result of entanglement theory that in this case we
have that S(HA) @min S(HB) S S(HA Q@ Hp) € S(Ha) @maz S(HE) as all
separable states and some entangled states are included in S(H4®Hp) but
nevertheless not all elements in S(H 4) ®maz S(Hp), such as entanglement
witnesses, are included in S(H4 ® Hp) [63].

Remark 1. For quantum operations, in addition to being positive, we
required them to be completely positive. The reason why complete positivity
is not required or even often considered in the GPT framework is twofold:
first, as we saw above, the composite state space is not uniquely determined
so that positivity on extended systems is not uniquely determined, and
second, while the requirement of a map being positive for larger extended
systems of all sizes makes sense in quantum theory, where the size of the
extension is dictated by the dimension of the Hilbert space, in GPTs there
is no clear way to define a unique extension of a state space, let alone
an extension of a given size, or even uniquely define the size of the system.
Namely, while so far we have only considered the affine dimension of a state
space, there are other more physical indicators of the size of the system,
and some of these other notions of ‘dimensions’ are explored in Chapter 2.
Thus, in order to define complete positivity in GPTs one has to address
which ancillary state space and which tensor product, i.e., which composite
state space, one is using. One sees that in this case complete positivity is
no longer just a property of the channel alone. This type of consideration
has been recently studied in [47, 58].

1.3 Non-quantum theories

In the previous Section we defined the key concepts and elements of the
GPT framework and demonstrated these in the context of quantum theory.
Next we will introduce and consider some of the other important theories
that we will use later.
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Figure 1.5: The first few simplices in the lowest dimensions.

1.3.1 Classical theory

The only other actually physical operational theory besides quantum theory
is classical theory. Let us consider the traditional phase space representa-
tion of a classical system [50] where each dimension of the phase space
corresponds to a degree of freedom of the system so that the points of the
phase space determine the state of the system uniquely. By considering this
representation as a statistical (operational) theory, we see that the notion
of states must be extended to include all probability distributions on the
phase space. This is exactly what the notion of a simplex captures: if € is
a (finite) phase space with d + 1 points, then the set of probability distri-
butions on €2 is a d-simplex, i.e., it is the convex hull of its d 4+ 1 affinely
independent extreme points. Thus, a theory is said to be classical if and
only if the state space is a simplex.

For example, we have that the O-simplex is a point, a 1-simplex is a
line segment (a bit), a 2-simplex is a triangle (a trit) and a 3-simplex is a
tetrahedron. The characteristic feature of simplices is that every point of
the simplex has a unique convex decomposition into the extreme points, a
feature not shared by any other compact convex set [59]. Some of the first
few simplices are depicted in Fig. 1.5.

In the usual representation of the state space of a GPT we consider
a d-simplex embedded as a compact base for a positive cone in a d + 1-
dimensional real vector space. We denote the state space that is a d — 1-
simplex by Sgl and call it the state space of a d-dimensional classical system.
The set of effects and observables are defined as in the previous section. The
set of channels Ch(S%, S¢) can be shown to coincide with the set of n x m
row-stochastic matrices M7’ (see for example [47]). As was pointed out
earlier, a composite system of two classical systems (or even a composite of
a classical system and any other system) results in a state space with only
separable states.



34 Operational theories

Figure 1.6: A regular octagon is point-symmetric.

1.3.2 Point-symmetric theories

Let us generalize the Bloch representation of qubit states and effects consid-
ered in Example 3 to a larger class of theories. We start with the following
definition.

Definition 7. A state space S is point-symmetric if there exists a state
sg € S such that for all s € S, we have that s’ := 25y — s € S. This means
that for each state s € S there exists a state s’ € S such that sq is an equal
mixture of them, i.e., so = 3(s+ ).

Let S be a point-symmetric state space with dim(aff(S)) = d. We can
embed S in R? such that we can fix the inversion point s = 0 € R
This means that for each § € S, we also have —5 € §. From the theory
of point-symmetric convex sets (Theorem 15.2 in [59]) we then have that
the Minkowski functional v(5|S) = inf{\ > 0|5 € AS}, defines a norm
|]ls :=7(-|S) in R? such that S = {5 € R¢| ||5]|s < 1}.

We can further embed S in R%*! by identifying S with

S={(1) eR™ |55 <1}.

Point-symmetric (or often also called centrally symmetric) GPTs form an
important class of toy theories whose obvious advantage is the symmetric
and simple structure. Point-symmetric theories have been considered in
[35, 43, 46, 72, 73]. We will denote the state spaces embedded in R? and
R both by S, but we make the distinction by denoting the elements of
S in R? by the vector notation 5§ € S C R? but omit it when considering
elements in R*1 | so that s € S € R*!. An example of a point-symmetric
state space is depicted in Fig. 1.6.

For the effects we can show the following ‘Bloch’ representation (see
also [35]):
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*Proposition 1. For a point-symmetric state space S we have that

1, R L
&) = {5 @a) er™ | Jal, <a<2-lalsf.  (15)
where || - ||¢ : RY — R is defined as ||d@||¢ = supges @ - 8 is a norm in RY,

The result follows directly from the fact that the polar of the norm ||| ¢
is also a norm in RY due to the point-symmetry of S (Theorem 15.2 in [59]).
Furthermore, because ||-||g is finite everywhere, the polar of ||| g, denoted
by ||-||¢, can be expressed as above, and the derived expression for the effect
space £(S) is just an application of this to the condition o < % (d,a) < u.
Similarly to the qubit case, we call the state sg = (6, 1) the maximally mixed
state, an effect (@, 1) an unbiased effect, and for each effect £ (d, ) € £(S)
we have the complement effect 1(—a,2 — ) € £(S).

1.3.3 Polygon theories

A regular n-sided polygon (or n-gon) state space S,, embedded in R? is the
convex hull of its n extreme points

(2kﬂ
Ty cos [ ——
ok
Sk = rnsin(ﬂ) s k:L...,n,
n
1
where we have defined 7, = y/sec (I).

Clearly, we now have the zero effect o = (0,0,0)” and the unit effect
u=(0,0,1)T. Let us denote so = (0,0,1)”. Depending on the parity of n,
the state space may or may not be point-symmetric around sg. As a result
of this the effect space £(S,,) has different structures for odd and even n.
For even n we have the non-trivial extreme points

(2k — 1)m

Ty, COS

1 n
e =3 | 1, sin Ck—Dm\ |, k=1,...,n, (1.6)
n
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Figure 1.7: The odd (pentagon) and even (hexagon) polygon state spaces
and their effects spaces.

so that £(S,) = conv({o,u,e1,...,ep}). All of the non-trivial extreme
effects lie on a single (hyper)plane determined by the unbiased effects.
In the case of odd n, the effect space has 2n non-trivial extreme effects

2k

Ty, COS

1 ok
9k = 1+72 Tp, Sin <n7r> ’ Jo=u—gi (1.7)

1

for k =1,...,n. Now &(S,) = conv({o,u,g1,--.,9n, f1,.--, fn}) and the
non-trivial extreme effects are scattered on two different planes determined
by all those points g and f such that g(sg) = =: o, and f(sg) =
1_’;’2;% = 1— o0,. We note that the case n = 3 corresponds to the classical
state space Sgl since S3 is a triangle, i.e., a 2-simplex.

The state and effect spaces for even and odd polygons are depicted
in Fig. 1.7. We will use the polygon theories as toy theories to study
and demonstrate various properties of measurements in later chapters. We
note that one of the useful features of the polygon theories is that in the
limit when n — oo, the state space S, becomes a disc, which can be
considered as the Bloch disc S(R?) that represents the state space of the
real qubit, namely the rebit. The rebit shares many of the same properties
of the standard (complex) qubit so in some cases one is able to make direct
comparisons between polygons, rebit and qubit. The polygon theories were
first introduced in [24] and have been used to study various concepts, such as

non-locality [24-26], incompatibility [29], self-testing [26], etc., ever since.

1
1+r2




Chapter 2

Communication tasks

Any kind of communication requires the transmission of a physical system
and thus every communication scheme requires a physical theory that it
is implemented in. For an operational theory communication between two
parties Alice and Bob can be conveniently described as an experiment: Alice
wants to communicate some message to Bob and for that Alice has access
to some physical systems of a given theory along with a communication line
(a channel) that can be used to transmit those systems to Bob. What Alice
does is she encodes her message into the systems and sends them to Bob.
The task for Bob is then to perform a measurement on the systems that
Alice sent him and, based on the measurement outcomes, interpret Alice’s
intended message. In this Chapter, based on Publication V, we consider
these kinds of communication schemes in general probabilistic theories and
see how various communication tasks can be used to characterize different
theories. By considering these types of tasks and comparisons one sees
what kinds of features of physical theories it is possible to study in the
GPT framework. This also helps us establish quantum theory intuitively
as an operational theory among other theories.

2.1 Communication matrices

In the communication scheme described above we have Alice preparing sys-
tems in certain states and then Bob measuring these states. Such schemes
are commonly called as prepare-and-measure scenarios and they have been
used in several active research areas [74-81]. Let us consider a particular
prepare-and-measure scenario in an operational theory determined by the
state space S. Alice has access to states s1,...,s, € S of which she sends
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C—/— s

Figure 2.1: A prepare-and-measure scenario and the resulting communi-
cation matrix C for some three states and some 4-outcome observable.

a state s; to Bob. Bob measures the state with some m-outcome observ-
able M and obtains an outcome j € [m]| := {1,...,m}. After repeating
the scenario enough times, they have obtained the full measurement out-
come statistics for all states described by the probabilities M;(s;) for all
i€ [n]:={1,...,n}and j € [m] :=={1,...,m}. This type of prepare-and-
measure scenario is depicted in Fig. 2.1.

Let us denote the n x m row-stochastic matrix, i.e., a matrix with
nonnegative elements such that each row sums to one, that is formed of
the probabilities by C' so that C;; = M;(s;). We call C' a communication
matriz (also called a channel matriz in [82, 83]) and denote the set of all
n X m communication matrices that can be implemented with n states in
S and observables in O([m],S) by Cpm(S), and all finite communication
matrices in the theory described by S by C(S), i.e., C(S) = Up menCnm/(S).

The given prepare-and-measure scenario can be used to describe various
communication tasks and the corresponding communication matrices char-
acterize the specifics of that task. By seeing which tasks can be achieved
in a given theory we can start characterizing the theory. Furthermore, by
considering different theories and the tasks applicable in each of them, we
are able to compare theories to each other. As a concrete example, the task
of perfectly distinguishing n states {s1,...,s,} corresponds to the commu-
nication matrix 1, so that there exists an observable M € O([n],S) such
that M;(s;) = d;; for all ¢, j € [n]. For more examples see Publication V.

Remark 2 (Behaviour). We note that in this prepare-and-measure sce-
nario we only give Bob one choice of observable to measure so that the
entire scheme is described by the corresponding communication matrix.
The resulting collection of communication matrices in the case where Bob
has multiple observables to choose from is often called a behaviour, and
works on them can be found in [74-79, 81]. However, we will not focus on
behaviours in this work.
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Remark 3 (Convexity). Often in this type of prepare-and-measure sce-
nario it is assumed that Alice and Bob have access to a common source of
randomness which they can use in the implementation of their task. In the
case where there is this type of shared randomness between Alice and Bob
one can mix communication matrices (of same size) so that the set of com-
munication matrices (of a given size) is convex. With shared randomness
it can be shown that the set of communication matrices in d-dimensional
quantum theory is the same as in d-dimensional classical theory [82]. As we
will see later, this is a drastic difference to the case where shared random-
ness is not part of the prepare-and-measure scenario, and because of this
difference one can view shared randomness as an additional resource. For
an explicit example showing the non-convexity of the set of communication
matrices (without the shared randomness), see Publication V.

2.2 Ultraweak matrix majorization

Next we will consider when a communication task is more difficult than
some other task by introducing a preorder on the set of communication
matrices. We will see that a given task can be used to implement all
other tasks that correspond to communication matrices that are below the
communication matrix of the given task with respect to this preorder.

In order to proceed with the formal definition of the preorder let us
denote the set of n x m row-stochastic matrices by M7°" and the set of all
finite row-stochastic matrices by M"" so that M"™" = Up ynen M.

Definition 8. A matrix D € M%7 is ultraweakly majorized by matrix
Ce M" if there exist two other matrices L € M“’w and R € M”’“’ such
that LCR D. In this case we denote D < (', and 1f also C <X D, then we

say that C' and D are ultraweakly equivalent and denote it C' ~ D.

The ultraweak majorization relation was first introduced in [84] as I/0
degradation but in the current physical context it was only considered (and
renamed) recently in [85]. The reason behind the term ultraweak matrix
majorization comes from the earlier investigation into matriz majorization
[86] and weak matriz majorization [87]: the previous definition reduces to
that of the matrix majorization in the case when n = j and L = 1,,, and
weak matrix majorization when & = m and R = 1. Hence, if a matrix
D is majorized or weakly majorized by another matrix C, then D is also
ultraweakly majorized by C.
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2.2.1 Operational interpretation

The operational interpretation of ultraweak matrix majorization is the fol-
lowing [85]. Let us consider a communication task that produces a com-
munication matrix C' € Cy;(S) with states {s1,...,s;} and an l-outcome
observable M such that C,, = My(s,). Given row-stochastic matrices
L e M%) and R € Mj77 we see that

(LCR)w = 3" LaMy(s) R — |3 R, (ZL) M (5L
7 7

1,J

where {s/, := Y, LaiSi}q are convex combinations of the states {si,...,si}
due to the stochasticity of L, and M, defined by My := >=; RyM; for all
b € [m], is a new m-outcome observable given as a post-processing of M by
the matrix R whose element Rj, is interpreted as a transition probability
for an outcome j to be transformed into outcome b. While we take a closer
look at the post-processing of measurements in Chapter 3, in this context
we only need it as a classical manipulation of measurement outcomes to
produce new observables out of known ones.

Hence, since C' is a communication matrix and can be realized by a
prepare-and-measure scenario, LCR can also be realized via a prepare-
and-measure scenario by using the mixtures of the states {si,...,s;} given
by the matrix L and the post-processed measurement M’, where the post-
processing is given by the matrix R. This makes also LC R a communication
matrix. If there exists a communication task with a communication matrix
D such that D = LCR, by using the previous interpretation of L and R
we see that the communication task and matrix D can be reproduced by
the prepare-and-measure scenario of C', and thus by implementing C' we
also get D as well. This means that D itself must be at least as easy to
implement as C'. A demonstration of the ultraweak majorization is depicted
in Fig. 2.2.

Based on the operational interpretation of ultraweak matrix majoriza-
tion of communication matrices it is straightforward to see why two row-
stochastic matrices related to two prepare-and-measure scenarios are ultra-
weakly equivalent in the cases where one of them is obtained from the other
one by relabeling bijectively states and measurement outcomes, by adding
the zero effect to the measurement device, by adding a state that is a mix-
ture of the existing states or by splitting an outcome of the measurement
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Figure 2.2: The prepare-and-measure scenario that implements C' is used
to implement D via ultraweak matrix majorization so that D = LC'R. The
matrix L (R) holds the information of how the states (measurement) that
are used to implement C' are manipulated in order to implement D.

device into several outcomes possibly with different probabilistic weights.
We note that since we are considering ultraweakly equivalent matrices the
reverse operations of the ones listed above also lead to the equivalence. We
note that with the operations listed above every row-stochastic matrix can
be reduced into a form where there are no zero columns, no row is a mixture
of any other rows and where no two columns are proportional.

2.2.2 The order structure

The relation of ultraweak majorization is reflexive and transitive and thus
it is a preorder on the set of row-stochastic matrices M"". By consider-
ing the equivalence classes consisting of ultraweakly equivalent matrices the
preorder can be extended to a partial order between the equivalence classes.
A natural task is to consider the minimal and maximal elements with re-
spect to this partial order. It was shown in [85] that for a row-stochastic
matrix M € M7°) we have that

Vmin(n,m) = Vmax(n,m) =M= ]]-min(n,m) = ]lmax(n,m)a (21)

where Vi denotes the k x k matrix with all entries 1/k. The last inequality
is strict if n #% m. Thus, in general it means that the set M™% has no
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maximal elements but it does have a unique minimal element, i.e., the least
element, namely V; = 1.

More interestingly, by considering a theory with a state space S, we can
examine the maximal and minimal elements on the set of communication
matrices C(S) C M"™". While the least element stays the same, maximal
elements can also now exist. In particular, the communication matrices in
a d-dimensional classical theory are all majorized by one maximal element.

Proposition 2. For a row-stochastic matriz C we have that C' < 14 if and
only if C € C(S$).

The proof relies on the facts that there are d pure states in Sgl and that
every other state has a unique convex decomposition into those pure states,
as well as that there exists a d-outcome observable M that distinguishes
those pure states and that every other observable is a post-processing of M
(see Chapters 3 and 4). We can now express C(S$) as

C(SSy={C e M™|C <14}

What follows is that for other theories, such as quantum theory, there must
be other maximal elements as well.

2.3 Ultraweak monotones and physical dimensions

To study the set of communication matrices and their order structure in
different theories we consider the monotones related to the ultraweak order.

Definition 9. A function f : M™ — R is an ultraweak monotone if
D =< C implies f(D) < f(C) for any C,D € M"".

The ultraweak monotones can be used to detect when there is not an
ultraweak majorization relation between two matrices and, in particular,
when the matrices are not equivalent. Namely, if we have an ultraweak
monotone f and two row-stochastic matrices C and D and we have that

f(D) > f(C) (or f(D) # f(C)), then we know that D £ C (or D # C).
2.3.1 Operationally motivated monotones

Next we introduce some ultraweak monotones and see how they link to
some important mathematical and physical properites of different theories.
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Distinguishability monotone

As was mentioned earlier, the task of errorless distinguishing of n states
corresponds to the communication matrix 1,. By the operational inter-
pretation of ultraweak matrix majorization, all communication matrices C'
with 1,, = C can also be used for this task as well. Thus, if we set

1(C) :=max{n e N|1, < C}

we see that it gives the maximum number of messages that can be sent
and perfectly distinguished by implementing the matrix C. We call ¢ the
distinguishability monotone and it is easy to see that it is a monotone.

The operational dimension d,,(S) of a theory with state space S is deter-
mined as the maximum number of (pure) states that can be distinghuished
(see, e.g., [88]). Thus, in the language of communication matrices, it is
defined as the maximum d € N such that 1; € C(S). Equivalently, we
can express the operational dimension as the maximum value of the distin-
guishability monotone in the whole theory, i.e.,

dop(S) = sup{¢(C) | C € C(5)}.

For calculating the distinguishability monotone, we can prove the fol-
lowing result:

Proposition 3. For a row-stochastic matrix C' we have that 1, < C for
some k € N if and only if C has k orthogonal rows.

Thus, ¢(C) is then just the maximum number of orthogonal rows of C'.

Max monotone

Instead of considering perfect distingusihability of states, we can allow for
some error in the distinguishing process and try to minimize that error.
This is known as the minimum-error discrimination of states, and we will
see how our next monotone is related to it. We define the maxz monotone
Amax @8 Amax(C) == ;j max; C;j for any nonnegative matrix C'. Once again
it is straightforward to check that Apax indeed is an ultraweak monotone.

We will show how A\ax is related to the task of minimum-error discrimi-
nation and decoding information. Suppose Alice is encoding n equally likely
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messages into n states {s1, ..., s,} C S and Bob decodes the message by us-
ing an n-outcome observable M € O([n],S) so that the standard minimum-
error discrimination success probability reads as % > Mi(si). By fixing the
observable M and optimizing over the states, we can consider the decoding
(or discrimination) power of M by defining Amax(M) := 37, maxses M;(s)
so that the average success probability for decoding using M is given by
Amax(M)/n for the optimal set of states. Now if we have a communica-
tion matrix C € C(S) so that C;; = Mj(s;) for some states {s;}; C S
and an observable M € O(,S), we see that Apax(C) = > jeq max; M;(s;).
Furthermore, if {s;}; are the maximizing states for the effects of M, then
Amax(C) = Amax(M).

Let us generalize the definition of Ay.x for the whole operational theory.
If we maximize Apax over the communication matrices (or equivalently over
the observables) of the whole theory, i.e.,

Amax (S) = sup{Amax(C) | C € C(S)} = sup{Amax(M) |M € O(S)},

we can generalize what is known as the basic decoding theorem in quantum
theory [89] to any operational theory with state space S: in the decoding
task of n states, Bob’s probability of error Pp is bounded by

where Amax,n(S) 1= sup{Amax(M) |M € O(Q,S) : 2] < n}. We note that in
[73] Amax(S) was called the information storability of S and they were able
to relate it to the point-asymmetry of the state space so that in particular
if S is point-symmetric, then we have A\pax(S) = 2.

Min monotone

On the other end of the previously defined max monotone we have the min
monotone Apin defined by Apin(C) := — >, min; Cy; for all C € M™™.
By considering the possible values of Ay we see that the minimum value
it attains is —1 and it is attained on all matrices that have only identi-
cal columns, i.e., if they are considered as communication matrices, the
measured observables are trivial on the measured states as they provide no
distinguishing information between them. On the other hand, the maxi-
mum value is clearly zero and can be attained for example on an identity
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matrix of any size.

Although the maximal value of Apin is not found to be so useful as it is
always attained in every theory, we see that Ay, can still be linked to an
important operational concept, namely the noise content of an observable.
For a subset N C O(S) and an observable A € O(Q, S) let us define

w(A;N) :=sup{t € [0,1]|IN e N,Be O(S): A=tN+ (1 —-t)B} (2.2)

which we call the noise content of the observable A with respect to the noise
set N'. The noise content w(A; N') thus quantifies how much of A is in N,
and is taken to describe noise in the measurements. Contrary to external
noise, i.e., noise that is added to the observables, the noise content gives us
the amount of intrinsic noise that is already contained in the observable.

The typical choice for the set of noisy observables is N' = T := T(S),
the set of trivial observables. In this case we can show the following (proof
can be found in Publication I):

Proposition 4. Let A € O(§2,S). Then w(A;T) =3 ,cqinfses Ax(s).

Since S is compact, the infimum in the previous proposition is always
attained. Now, let us consider Ay, similarly to Apnax as a property of the
observables: if C' € C(S) so that Cj; = M,(s;) for some observable M €
O(2,S) and some states {s;}; C S, we have Apin(C) = — 3, min; My (s;)
so that for observables we can define Apin(M) := — 3=, cq minges M;(s). By
the previous proposition we then have that Apin(M) = —w(M;7T) and the
interpretation of Ay, as characterizing the intrinsic noise follows.

Rank

Our next ultraweak monotone is the rank of a matrix. Denoted by rank(C),
the rank of an n X m matrix C is defined as the smallest integer kK € N
such that C can be factored as C = LR, where L is an n X k matrix
and R is a k x m matrix. Since rank of a matrix cannot be increased
in matrix multiplication, rank is indeed an ultraweak monotone. Rank is
an easily computable and important mathematical quantity but without a
clear physical meaning. However, if we consider the maximum rank that
can be achieved in the set of communication matrices of a given theory with
a state space S C V, we see that it can be related to the linear dimension
djin(S) of the theory defined as dj;,,(S) := dim(aff(S)) + 1 = dim(V) in the
following way:
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Proposition 5. dj;,(S) = sup{rank(C)|C € C(S)}.

The proof relies on the fact that we can find at most dj;,(S) affinely
independent states and an observable with maximally dj;,(S) linearly in-
dependent effects such that the dj;,(S) X djjn(S) communication matrix
formed using those states and that observable is full rank. This also shows
that the supremum is always attained.

Nonnegative rank

Another rank-like quantity is the nonnegative rank of a nonnegative ma-
trix, i.e., a matrix with nonnegative elements. Denoted by rank(C'), the
nonnegative rank of a nonnegative n x m matrix C is defined as the smallest
k € N such that C can be decomposed as C = LR, where L and R are
n X k and k X m nonnegative matrices, respectively. If C' € M7°% then L

n,m»

and R can also be chosen such that L € MJ%" and R € M5 [90].

k,m
The definition of nonnegative rank for a row-stochastic matrix C' €

M™% can be expressed as ranky (C') = min{k € N|C < 1}, from which
it becomes clear that rank, is an ultraweak monotone. If we define the
classical dimension of the state space S as

dy(S) := inf{d € N|C(S) C C(S$)},
then we can conclude from Prop. 2 the following result:
Proposition 6. d.(S) = sup{rank, (C)|C € C(S)}
It is clear from the definition of the nonnegative rank that
rank(C) < rank, (C') < min(n,m) (2.3)

for any nonnegative n x m matrix C. However, calculating the exact non-
negative rank of a matrix turns out to be a computationally hard problem
[91].

Positive semidefinite rank

Our last rank-like quantity is the positive semidefinite rank of a nonneg-
ative matrix. Denoted by rankpsq(C), the positive semidefinite rank of a
nonnegative n X m matrix C' is defined as the smallest k£ € N such that C
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can be decomposed as Cj; = tr [A;Bj], where A;,..., A, and Bi,...,Bp,
are k X k positive semidefinite matrices [92]. Based on the definition of
rankpsq, it is straigtforward to show that it is an ultraweak monotone.

Let us denote by SJ the state space of a quantum system with a d-
dimensional Hilbert space. The physical meaning for the positive semidef-
inite rank was shown in [93]: a row-stochastic matriv C € M™" has
rankpsq(C) < d if and only if C € C(S}). Thus, if we define the quan-
tum dimension dg(S) of a state space S as the dimension of the minimal
quantum system that can produce all the communication matrices of that
theory, or more precisely as

dg(S) :=inf{d e N|C(S) C C(S])},
we arrive at the following result
Proposition 7. d,(S) = sup{rank,sq(C) |C € C(S)}

Compared to the other ranks, we have the following inequalities [92]:

rank(C') < rankpgq(C) < rank, (C) (2.4)

for all nonnegative matrices C'. Similar to the nonnegative rank, calculating
the positive semidefinite rank of a matrix is also a computationally hard
problem [94].

2.3.2 Physical dimensions

Next we will demonstrate how one can use the introduced monotones to
characterize different theories via the physical dimensions they induce. Let
us start by collecting and comparing the values of the introduced mono-
tones.

Proposition 8. For an operation theory with a state space S we have
Amin(C) < 1(C) < Amax(C) < rankpsa(C) < rank (C) (2.5)
and
rank(C) < rankpsq(C)?, rank(C) < rank, (C) (2.6)

forallC € S.
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S dop(S) Amax(S) de(S) | da(S) | dun(S)
59 d d d d d
s d d d | > ()| &
Sp, even n 2 2 (%) > 2 >
Sp, odd n 2 l+sec(F)e(2,3) ()| =3 >3

Table 2.1:  The values (or bounds) of the physical dimensions for d-
dimensional quantum and classical theories and polygon theories for n > 4.
Our conjecture is that the inequality (x) is an equality. The value in (x)
was shown in [73] to hold for all point-symmetric state spaces, while the
value in (t) is an unpublished result and part of a future manuscript that
is currently in development.

The first inequality from Eq. (2.5) is clear since Amin(C) € [—1,0] and
t(C) > 1. The second inequality follows from the fact that C' > L) so
that Amax(C) = Amax(L,cy) = ¢(C). The third inequality was shown in
[93] and the fourth is the same as in Eq. (2.4). The inequalities in Eq.
(2.6) are just from Eq. (2.4) and (2.3). Taking the supremum over all
communication matrices we arrive at the following Corollary:

Corollary 1. For an operational theory with a state space S we have that

dop(S) < Amax(S) < dy(S) < da(S),
dlm(S) < dq(8)27 dl'm(S) < dcl(’s)

As was discussed earlier, each monotone has an important physical (or
mathematical) interpretation so the maximal values of the monotones are
helpful when characterizing a given theory. One can use the introduced
physical ‘dimensions’ induced by the monotones to form classes of theories
where certain communication tasks are possible to implement. Using this
type of characterization one can compare theories to each other based on
the communication they can be used to perform. We demonstrate this
concept by presenting the values for the dimensions in the known cases (and
bounds given by the above Corollary in the unknown cases) for quantum
and classical theory as well as the polygon theories in Table 2.1.



Chapter 3

Post-processing of
measurements

As a step towards simulating a measurement with some collection of (differ-
ent) measurements, we first look at the case of simulating a measurement
with a single measurement. This is what is usually called the post-processing
of measurements. Post-processing captures the idea that after a measure-
ment process, having obtained the output(s) of a measurement device, one
may want to process the classical information and other outputs that were
obtained. Ome can, for instance, see if it is possible to reveal some other
property of the system by manipulating the measurement outcome data
(or other outputs) and obtain the outcome statistics of some other mea-
surement (or alter the possible post-measurement state). We start this
Chapter by considering the post-processing of measurement devices with
only classical outputs, i.e., observables, and then continue to generalize the
post-processing relation to instruments as well in accordance with Publica-
tion VI.

3.1 Post-processing of observables

In the measurement of an observable we are only interested in the classical
measurement outcomes. Hence, for post-processing this means that we
must consider a way to process these outcomes. As was mentioned in
Chapter 1, the transformations between classical states are performed with
classical channels that correspond to row-stochastic matrices. Thus, for the
post-processing of observables we make the following formal definition:

49
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Figure 3.1: The system is measured with an observable B and after obtain-
ing an outcome y it is mapped to an outcome x of an observable A = v o B
with the transition probability v,.

Definition 10. An observable A € O(Q2, H) is a post-processing of an ob-
servable B € O(A,H), denoted by B — A, if there exists a row-stochastic
post-processing matrix v = (Vyz)yen zeq € M such that Ay = 37 o) v4aBy.

The post-processing of an observable is demonstrated in Fig. 3.1. We
may also denote A = voB if A is a post-processing of B via a post-processing
matrix v. The matrix element v, is interpreted as the transition probabil-
ity that an outcome y is mapped to outcome z. If both B — A and A — B
hold we say that A and B are post-processing equivalent and denote it by
A < B. In quantum theory the post-processing relation of POVMs in the
current context was first considered in [95]. For the case of POVMs with
more general outcome sets, as well as a historical note, see [96] and the
references therein.

Example 7. As an example of a post-processing we consider the case of
relabeling where all of the elements of a post-processing matrix are either
0 or 1. Formally, following [97], we say that an observable A € O(Q2,S) is a
refinement of an observable B € O(A, S) if there exists a function f : Q@ — A
such that By = " c;-1(,) As for all y € A. Relabeling thus consists of not
only literal bijective relabeling of outcomes but also merging of different
outcomes.

3.1.1 Post-processing partial order and structure

Post-processing is a reflexive and transitive relation, and so it is a preorder
on the set O(S) of all observables on S. Furthermore, it can be extended
to a partial order on the equivalence classes of post-processing-equivalent
observables. Let us consider this partial order more carefully. For POVMs
in quantum theory this partial order has been studied in [95, 98].
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First of all, it is easy to see that the trivial observables are the minimal
elements with respect to this preorder: if A € O(€2,S) is an observable and
T € O(A,S) is any trivial observable defined as T, = pyu for all y € A
for some probability distribution (py)yca, then we have T = v o A by a
post-processing matrix v defined as v, = p, for all x € Q and y € A so
that A — T. Furthermore, the trivial observables form a single class of
post-processing observables because if B € O(T',S) is an observable such
that B = poT for some trivial observable T € O(A,S) by a post-processing
matrix u, then B, = (ZyEA ,uyzpy> u for all z € ', i.e., B must be trivial.
Thus, any trivial observable can be post-processed from any observable and
the set of trivial observables is closed with respect to post-processing. This
shows that the only minimal element, i.e., the least element, in the set of
equivalence classes with respect to the post-processing partial order is the
equivalence class of trivial observables.

For the maximal elements, we make the following formal definition
which was first considered in [95] and later renamed in [98]:

Definition 11. An observable A is post-processing clean if, whenever we
have B — A for some observable B, then A — B also holds.

We saw that the minimal elements formed a single equivalence class such
that the least element is the equivalence class of trivial observables. To see
that this is not the case with maximal elements, i.e., the post-processing
clean observables, we give the following characterization (see Publication
IT for the proof):

Proposition 9. An observable is post-processing clean if and only if it is
indecomposable.

We recall that in quantum theory a POVM is indecomposable if and
only if it is rank-1. The previous result was first proved for POVMs in [95].

Example 8. Let us consider two indecomposable, i.e., rank-1, 4-outcome
qubit POVMs A € O([4],C?) and B € O([4],C?) defined by

AQ) = Slen) (i, AR) = Sleaeal, AB) = Sl AW = 1) (vl

B() = Slen)(gil, BR) = 5lead(gal, BE) = Shind (], BUA) = 2 lia) (),
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where {¢1,p2} and {¢1,12} are some two orthonormal bases of C? such
that none of the vectors @1, @9, 11,19 € C? are proportional to each other.
With this rather trivial example we want to raise two points: First, although
both POVMs are indecomposable, it is straightforward to see that they are
not post-processing equivalent in that there is no single maximal element,
i.e., a greatest element, with respect to the post-processing partial order in
the set of equivalence classes of observables. Second, although the effects
of A and B are proportional to each other, it is not a sufficient condition
for A and B to be post-processing equivalent. We will discuss this point
later.

As we saw in the previous example, there is no greatest element in
the post-processing partial order but rather a class of maximal elements,
namely the post-processing clean, i.e., the indecomposable, observables. As
was mentioned in Chapter 1, indecomposability is an important concept for
the structure of the theory because indecomposable effects characterize the
extreme rays of the positive dual cone within which all the effects lie in.
As is evident by now, another important structural concept is extremality
since all the basic structures (states, observables, channels) we consider
are convex and characterized by their extreme points. For indecomposable
observables we can show the following necessary and sufficient condition for
extremality (see Publication II for the proof or [99] in the quantum case):

Proposition 10. A post-processing clean observable is extreme if and only
if its nonzero effects are linearly independent.

Having characterized the minimal and maximal elements of the post-
processing partial order and the structures they have, next we will take a
closer look inside the equivalence classes of observables.

3.1.2 Minimally sufficient observables

In addition to considering post-processing as a way to construct new ob-
servables out of known ones, one can look from the resource theoretic point
of view, according to which the relation A — B can be interpreted as the
observable A is more useful or more informative than the observable B. As
we consider post-processing as a partial order, the comparison is between
the equivalence classes of observables, so post-processing equivalent observ-
ables A and B can be seen as equally informative. However, even though
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A and B can be seen having essentially the same information content, the
notion of minimal sufficiency captures the idea that inside the equivalence
class there are observables with minimum informational redundancy.

Definition 12. An observable A is minimally sufficient if, whenever A is

post-processing equivalent with some observable B, then B is a refinement
of A.

The concept of minimal sufficiency originates from minimally sufficient
statistics [100, 101] and was generalized to POVMs in [102] and observables
in GPTs in [34]. It has been established that in every equivalence class there
exists a minimally sufficient observable, called the minimally sufficient rep-
resentative, and that it is unique up to isomorphic relabeling of outcomes.
Furthermore, an observable A € O(£2, S) is minimally sufficient if and only
if it is non-vanishing, i.e., A, # o for all x € , and it is pairwise linearly
independent, i.e., Ay # cA, for any ¢ > 0 for all x # y, z,y € Q [95, 102].
We can construct such observable as follows: Let A € O(Q,S) and let us
define an equivalence relation ~ in 2 by denoting x ~ y if and only if
A, = cA, for some ¢ > 0. We denote the set of equivalence classes 1/ ~
by Q and define a minimally sufficient observable A € O(Q,S) by setting
A; = > oyei Ay for all T € Q. Tt can be easily checked that A is pairwise
linearly independent and that A < A.

In particular, the uniqueness of the minimally sufficient representative
in each equivalence class implies the following result (the proof can be
extracted from [102] and is explicitly shown in Publication VI for POVMs):

Proposition 11. If A € O(Q,S) and B € O(A,S) are two post-processing
equivalent observables, then for all x € Q such that A, # o there is y, € A
and ¢y, > 0 such that Ay = czy, By, .

Furthermore, one can actually construct the post-processings v and p
for A — B and B — A respectively such that the post-processing elements
Vgy and py, are nonzero only if A, and B, are proportional. However, as
we saw in Example 8 not all observables whose effects are proportional are
post-processing equivalent.

3.2 Post-processing of instruments

Let us generalize the concept of post-processing to instruments. The essence
of post-processing is that by manipulating the output(s) of a measurement
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Figure 3.2: The system in state s is measured with an instrument Z and
an outcome z is obtained so that the (unnormalized) conditional output
state is Z,(s). Based on the classical outcome z, the output state of 7
serves as an input for the instrument R(*), which measures it and obtains
an outcome y so that the (unnormalized) conditional output state is then

R?(f) (Zz(s)). The total resulting instrument is denoted by J.

device one wishes to learn some new information about the measured sys-
tem. In this way one can think of the post-processed device as a new
measurement device altogether and the act of post-processing as a recipe
to obtain new devices out of a known one. For observables this meant
stochastic processing of the classical outcomes but for instruments we have
to also consider the post-measurement output state and post-process that
as well.

In Publication VI we consider the post-processing of a quantum instru-
ment to be a sequential measurement, described by a set of other quan-
tum instruments, conditioned on the measurement outcome of the original
instrument. This way the classical outcome of the original instrument de-
termines the resulting post-processing instrument and the output state is
transformed accordingly. The post-processed classical outcome is obtained
as the classical output of the post-processing instrument.

In this work we consider the same post-processing relation in the GPT
framework and generalize some of the results in Publication VI while ex-
plicitly denoting the results which hold (at least so far) only in quantum
theory. To formalize the above discussion, we make the following definition:

Definition 13. An instrument J € Ins(A,S,8”) is a post-processing of
an instrument Z € Ins(Q2,S,S’) if there exists a collection of instruments

(R@1,eq C Ins(A, S, 8") such that J, = 3 ,eq RS 0 T, for all y € A,
where o denotes the composition of maps.

Similarly to the case of observables, if J is a post-processing of Z, we
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denote it by Z — 7, and if also J — Z, then Z and J are post-processing
equivalent which we denote by Z «» J. The post-processing of instruments
is demonstrated in Fig. 3.2.

In the case of channels our definition reduces to the relation considered
in [103, 104] for quantum channels and [34, 47] for channels in GPTs: a
channel D € Ch(S,S”) is a post-processing of a channel C € Ch(S,S’) if
there exists another channel £ € Ch(S’,8”) such that D = £ o C. Next we
will see how the defined post-processing relation for instruments relates to
the post-processing of observables.

3.2.1 Observables as measure-and-prepare instruments

Let A € O(£2,S) be an observable on a state space S. We can identify the
points of 2 with the extreme points {0 },cq of a simplex SICS'IZI’ which allows
us to consider the observable A as an instrument A € Ins(Q2, S, S‘Cslu) with
operations A, : S — S‘CSZM defined as A;(s) := Ay(s)d, for all z € Q and
s € 8. Clearly the induced observable A4 of A is A. As we recall from
Section 1.2.3, the instrument A defined above is a measure-and-prepare
instrument, and thus all observables can be identified with measure-and-
prepare instruments whose outcome space is a simplex and whose prepared
states are the pure states of the simplex.

A direct generalization of the proof given in Publication VI shows that
in the case of measure-and-prepare instruments, the post-processing re-
lation is completely characterized by the post-processing relation of the
induced observables.

Proposition 12. Let Z and J both be measure-and-prepare instruments.
Then T — J if and only if AT — A7,

For the more specific class of measure-and-prepare instruments that are
associated to the observables, we can show a stronger result which also
characterizes the specific form of the instruments that one uses for post-
processing.

*Proposition 13. Let A € O(2,S) and B € O(A,S) be two observables
and A € IDS(Q,S,S‘%') and B € Ins(A,S,Sﬁ&) their associated measure-
and-prepare instruments. Then A — B if and only if there exist instruments
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{R(z)}xeﬂ C IHS(A,S‘%‘,S&‘) such that

RS (82) = vaydy (3.1)

for all x € Q for which A, # o and ally € A for some row-stochastic matriz
v E MT{%ﬁA\ such that B =voA.

Proof. First let B = v o A hold for some v € MITSI\UI Al and let us define
the post-processing instruments {R®},cq C Ins(A,S‘%‘, ﬁl\‘) by setting
Rém) (0) = vgyby for all 6 € ‘S|c§lz|’ z € Q and y € A so that in particular Eq.
(3.1) is satisfied. Now we see that

DR (A(9)) = D0 Au(s)RY(6:) = D vayAu(5)dy = By (s)6, = By(s)
€N z€eQN z€)
foralls€ Sand y € A, and so A — B.

Now let A — B so that there exists instruments {R®)},cq C Ins(A, S‘Cfl”,
S‘Cf\l) such that for all s € S and y € A we have that

B, (5)dy = By(s) = Y REAs) = L ARPG)  (32)

€ €N

=22 uA(R?(f)(6$))AI(3)pZ}/;I)5yH (3.3)

y' EA zEQ

(z)

where RZ(/‘T) (0z) = uA(R@(,I) (02)) {Zy’EA pzlz,y %z} is the unique base and con-
vex decomposition of the subnormalized state Rg(/x) (0z). Because {0y} en
is linearly independent in the |A|-dimensional vector space that S‘% is em-

bedded in as a (|JA| — 1)-simplex, we must have for all s € S and y € A
that

B, (55, = [Z u“(Réx)wx))p?f)Ax(s)] By (3.4)

e

Let us denote g = {z € Q|A; = o}. For all z € Q\ Qp we denote
(=)
1/;% = uA(Rg(,m)((Sx))piy € [0,1] for all y € A, and for all = € Qy we denote

1/;% := qy for all y € A for some fixed probability distribution (gy)yeca. By
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taking the unit functional u® on both sides of Eq. (3.4) we get that

By(s) = Z V@AI(S) (3.5)

e

for all s € S and y € A. We still have to check the row-stochasticity of .
Clearly >, cp 1/;% =1 for all x € Q. To see this also for all z € Q\ Qp, let
us take the sum over A in Eq. (3.5) so that

> (Z y§y> As(s) =1 (3.6)

z€Q\Qo \YeA

for all s € S. We can fix a state s € S such that A;(s) > 0 for all
x € Q\ Qo so that from the normalization of A and Eq. (3.6) it also follows
that 3, ca 1/;% =1forall z € Q\ Q.

To see Eq. (3.1) let us denote A§ = {y € A| uA(Rg(f) (65)) = 0} for all
z€Q\ Q. Ifye A\ AZ, then u(R{(5,)) > 0, and it follows from the
row-stochasticity of v that

x R(x>
S WM RO E,))p = 1. (3.7)
yEA\A

Because }_ Rg(f) is a channel for all z € Q) so that }_ 5 uA(RZ(f) (02)) =
(z)

D yeA\Az uA(Rg(f) (05)) = 1, it follows from Eq. (3.7) that p;zy =1 for all

y € A\ A for all z € Q\ Q. Hence, RS (6,) = vR6, = 0 for all y € A9

and Rg(,x)(&&) = V;E(Sy #0 for all y € A\ AY for all z € Q\ Qp, hence Eq.
3.1) is satisfied. O
(3.1)

We see from the previous proposition that not only is the post-processing
relation of the associated instruments of observables completely charac-
terized by the post-processing relation of the observables themselves, but
also the post-processing instruments R(*) are limited to just classical post-
processing of outcomes given by a row-stochastic matrix. A similar result
for the post-processing of channels is given in [58]. Hence, we have recov-
ered the traditional notion of post-processing of observables as a special
case of the post-processing of instruments.
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3.2.2 Order structure of instruments

Just as in the case of observables, the defined post-processing relation in-
duces a partial order on the equivalence classes of instruments. This means
that once again the first things to consider are the order structure and the
maximal and minimal elements with respect to the post-processing partial
order.

For observables the least element was seen to be the equivalence class
of all trivial observables. By considering trivial observables as instruments
in the manner that was presented in the previous section, one sees that
they correspond to the trash-and-prepare instruments (with simplex out-
put spaces), i.e., measure-and-prepare instruments that measure a trivial
observable. We can also show that in the general case of post-processing of
instruments the situation is the same (the proof is a direct generalization
of the one presented in Publication VI for quantum instruments):

Proposition 14. Any instrument can be post-processed into any trash-and-
prepare instrument, and the set of trash-and-prepare instruments is closed
with respect to post-processing.

For the maximal elements we make the same definition of post-processing
cleanness that we made for observables: An instrument Z is post-processing
clean if whenever J — I for some other instrument J, then T — J. Un-
like in the case of observables, for the general case of instruments we find
that there exists a unique maximal element. Again the proof is a direct ana-
logue of the one given in Publication VI for quantum instruments. This
coincides with the result known for (quantum) channels [47, 103, 104].

Proposition 15. An instrument Z € Ins(Q2,S,S’) is post-processing clean
if and only if it is post-processing equivalent with the identity channel id €

Ch(S).

Obviously the difference in the maximal elements of observables and
instruments comes from the structural difference of observables (considered
as instruments) as the post-processing is only limited to the specific type of
instruments given by *Prop. 13, whilst in general we have no limitations.

Furthermore, in quantum theory we can give the following characteri-
zation for the equivalence class of the identity channel.
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Proposition 16 (Quantum theory). A quantum instrumentZ € Ins(Q2, H, K)
is post-processing equivalent with the identity channel id € Ch(H) if and
only if for all x € Q and o € S(H) it is of the form

i=1

for some n, € N, some probability distribution (pﬂ?i>xEQ,iE[nz] and some
isometries Vy; : H — IKC such that VI’ZVM =0 foralli#j,i,5 € [ngl.

We note that from the previous result it is clear that the induced POVM
of a post-processing clean quantum instrument is trivial: if Z is a post-
processing clean instrument of the form Eq. (3.8), then A% (x) = 3, pui Vi Vi
= > ;i Pzilly for all z € Q because V,; is an isometry, i.e., V;V,; = 1y for
all i € [ny] and = € Q.

3.3 Case study: indecomposable instruments

For observables the indecomposable elements were seen to be the maximal
ones with respect to post-processing, so we find it meaningful to consider the
concept of indecomposablility in the case of instruments as well. We start
by generalizing indecomposability of effects and observables to operations
and instruments.

Similarly to the case of effects, we call a (nonzero) operation M inde-
composable if M = N + N for some other (nonzero) operations only when
there exists a, o’ > 0 such that M = aN = o/N’. An instrument is said
to be indecomposable if all of its nonzero operations are indecomposable.

3.3.1 Existence of indecomposable instruments

The result proved in [37] showing the decomposability of any effect into
a finite sums of indecomposable effects (thereby showing the existence of
indecomposable effects) can be directly generalized to operations as well so
that, in particular, every operation can be represented as a finite sum of
indecomposable operations.

*Proposition 17. Every nonzero operation can be decomposed into a finite
sum of indecomposable operations.
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Proof. The set of all positive linear maps (which operations are a sub-
set of) from a state space S C V4 C V to a state space S’ C V| C
V' forms a closed proper cone, denoted by P(Vi,V)), so that by [105,
Thm. 3.3.15] it has a convex compact base B that can be expressed as

= {N € PV, V) |g(N) = 1} for some positive linear functional
g € P(V4,V\)*. If we now take a nonzero operation N from P(Vy, V),
it has a base/convex decomposition (due to convexity and compactness of
B) of the form N' = AY, po Ny, where A > 0, (p;), is a (non-vanishing)
probability distribution and {N,}, is some finite set of extreme points of
B. Let us denote N, = Ap, N, for all z so that " = 3", A. From the sub-
normalization criteria u/(N(v)) < u(v) for all v € V4 for the operation N
it follows that also u/(N;(v)) < u(v) for all z and v € Vy so that also N, is
an operation for all z. What remains to show is that N, is indecomposable
for all . Suppose that for some y we have that N, = M, + Q, for some
nonzero operations M, and Q,. Since M,,Q, € P(V4,V’), they have
base decompositions M, = myM and Qy = qy Qy for some m,, g, > 0 and
M,, Qy € B so that we can now write A}, = my/()\py)/\/l +qy/(Apy) Q-
Since Ny, M, Q, € B so that g(N,) = g(M,) = g(Q,) = 1, it follows
that my/(Apy) + ¢y/(Apy) = 1 so that the former expression is a convex
decomp081t10n for ./\f Because ./\/ is an extreme point of B, we must have

My = Qy so that Ny, My and Q, are all proportional to each other, and
the claim follows. O

Furthermore, in quantum theory the indecomposable POVMs are ex-
actly those that are rank-1, and, indeed, in the case of quantum instruments
we can show the following:

Proposition 18 (Quantum theory). A quantum instrument is indecom-
posable if and only if it is Kraus rank-1.

3.3.2 Indecomposability # post-processing cleanness

From the previous result (for quantum instruments) it is immediate that
unlike in the case of observables, for instruments the set of indecomposable
elements does not coincide with the post-processing clean elements in gen-
eral. In order to emphasize this point and make it explicit, we present the
following Corollary for quantum instruments:

*Corollary 2 (Quantum theory). An indecomposable quantum instrument
T is post-processing clean if and only if the induced POVM A% is trivial.
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The result can be easily seen as a consequence of Prop. 16 and 18. What
we also see is that a quantum instrument Z € Ins(Q, H, K) is post-processing
clean and indecomposable if and only if it is of the form L, (o) = paVzoV,
for all x € Q and o € S(H) for some probability distribution (p;)zcq and
some isometries Vy : H — K.

By using the above results for quantum instruments, we immediately
see that not all indecomposable instruments are equivalent with the identity
channel and so the notion of indecomposability does not characterize the
notion of post-processing cleanness like it did in the case of observables. As
a concrete example we give the following class of quantum instruments.

Example 9 (Quantum theory). Let A € O(Q,H). We define the Liiders in-
strument T4 € Tns(Q, H) of the POVM A by setting Z2(o) := /A(z)o/A(x)
for all z € Q and ¢ € S(H). Since \/A(z) is the only Kraus operator of Z2,
the instrument Z# is indecomposable. However, it is not post-processing
clean unless A is a trivial POVM.

Remark 4. Although in general indecomposability of instruments does
not coincide with maximality with respect to the post-processing partial
order, we can still obtain every instrument as a post-processing of some
indecomposable instrument: Let Z € Ins(€2, S, S’) be an instrument so that
by *Prop. 17 every operation Z, has a decomposition into a sum of some
indecomposable operations Z,; such that Z, = Zz‘e[nﬁ] Z.; for some n, € N

for all z € Q. If we now define the detailed instrument I of T related
to the decomposition {Zy;}i, by setting i(m,i) = 7, for all i € [n,] and
z € Q, we see that clearly 7 is indecomposable and furthermore Z — Z,
where the post-processing is given by just a classical merging of outcomes.
Hence, every instrument can be obtained as a post-processing of its detailed
instrument.

We note that in quantum theory it is known that every instrument
can be expressed as a composition of the Liiders instrument related to its
induced POVM with some channel (see, e.g., [106]). This is another way
of post-processing all quantum instruments from the indecomposable ones.

3.3.3 Measure-and-prepare instruments

As was explained in Chapter 1, in addition to being measurement devices,
instruments can also be considered as conditional state preparators, and in-
struments whose conditional output state is only dependent on the classical
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measurement outcome form the class of the measure-and-prepare instru-
ments. As a particular case of indecomposability we take a closer look at
indecomposable measure-and-prepare instruments and the post-processing
equivalence of indecomposable and measure-and-prepare instruments.

As we know, if Z € Ins(Q2,S,S’) is a measure-and-prepare instrument,
then Z is of the form Z,(s) = A,(s)s,, forallz € Qand se S CV, CV
for some observable A € O(Q,S) and some set of states {s/.},cq C S C
V!, C V'. In what follows, if we consider an instrument Z € Ins(2,S,S’) to
be measure-and-prepare, we use the previous expression to represent it.

*Proposition 19. A measure-and-prepare instrument Z € Ins(Q,S,S’) is
indecomposable if and only if the induced observable AT is indecomposable
and the prepared states s, € S’ are all pure for all x € Q for which AL # o.

Proof. Let first AT = A be indecomposable and the states {s’,},cq be pure.
For any = € Q such that Z, # 0 (which holds if and only if A, # o) let
T, = N; + M, for some nonzero operations N, and M, from S to &'
Thus, A;(s)sl, = Nz(s) + M,(s) holds for all s € S. Let s € S be such
that M;(s) # 0 and M,(s) # 0 and hence A;(s) # 0. Since s, is a pure
state, A;(s)s), lies on the extreme ray of V', that is generated by s/,. Thus,
it follows that also NV, (s) and M, (s) lie on the same extreme ray so that
in particular they can be expressed as

Ni(s) = u/(Na(s))sy,  Ma(s) = v/ (Ma(s))s). (3.9)

Also, if we have a state s € S such that AM;(s) = 0 and/or M,(s) = 0,
then Eq. (3.9) also holds. It follows that functionals N, and M, defined
by N.(s) = u/(Nz(s)) and M,(s) = u/(My(s)) for all s € S are effects on
S so that N, M, € £(S). Furthermore, since Z, = N, + M., we have that
A, = N, + M,. Because A, # o is indecomposable there exist n,,m, > 0
such that A, = n, N, = m,M,. Then we see that also Z, = n Ny = my M,
so that Z, is indecomposable.

On the other hand, if A is not indecomposable and/or the states {s, } 0
are not pure, it is straightforward to use some decomposition of some de-
composable effect A, into a sum of indecomposable effects and/or some
nontrivial convex decomposition of some mixed state s/, into pure states to
construct operations A, and M, such that Z, = N, + M., where N, and
M, are not proportional so that Z, cannot be indecomposable. O

Having characterized the measure-and-prepare instruments that them-
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selves are indecomposable we are next interested in the measure-and-prepare
instruments that may not be indecomposable but that are post-processing
equivalent with an indecomposable instrument. We saw earlier that even
though the indecomposable instruments are not maximal with respect to
the post-processing partial order in general, every instrument can still be
post-processed from the indecomposable ones. In the case of measure-and-
prepare instruments we want to consider which cases the equivalence with
an indecomposable instrument also holds.

Because J — Z always holds for some instruments Z and 7 where J
is indecomposable, let us continue by considering the relation Z — J when
J is indecomposable. We can show the following.

*Proposition 20. Let Z € Ins(Q,S,8’) and J € Ins(A,S,S8") be two
instruments such that J s indecomposable. If T — J, then AT — AT,
Furthermore, if T is a measure-and-prepare instrument then so is J.

Proof. Since T — J, there exist post-processing instruments {R(x)}a:efz €
Ins(A, S, 8”) such that J, = > ,cq Rg(f) oZ, for all y € A. Let us denote
Ao ={y e AT, =0}and Q¥ = {z € QR 0T, = 0}. Since J is
indecomposable, we must have that Rgﬂ) 0L, = vy, Jy for some numbers

vy > 0 forallz € Qand y € A\ Ay, where v, = 0 if and only if z € Qf for
some y € A\ Ag. We note that for all y € A\ Ag we must have Q\ Qf # 0.

For y € Ag it is clear that Rz(f) 0Z, = 0= Jy for all x € € so that we
can set vy, = p, for all y € A for some fixed (non-vanishing) probability
distribution (p;)zeq, and we see that Rgm) 0T, = vypJy still holds. Clearly
also Y ,cqVys =1 for all y € A so that v := (Vgy)z,y € M. We now see

that

AL(s) =/ (Zo(s)) = " ((Z Rgﬁ) <Ix<s>>) =Y (RY(Z(5)))

yeEA yeA
= Z u” (VyaTy(s)) = Z VywAi/j(S)
yeA yeA

for all z € Q and s € S so that AT — AL,

Now let Z be a measure-and-prepare instrument. For each y € A\ Ay

let us fix some z, € Q\ Qf. By following the previous part of the proof,

we see that if we denote Pz, 2= 1/1/yxy > 0, then J, = uyzle(fy) 0T, for
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all y € A\ Ag. Let us set sy, = Rg(fy)(s;y)/u”(ngy)(s’xy)) € 8" for all
y € A\ Ag, where now u” (Rz(/my)(s;y)) # 0. It follows from the uniqueness of
the base decomposition of 7, (s) that we can express J, as J,(s) = ij (s)sy,
for all s € S, where A (s) = unyAxy(s)u”(Rz(/my)(s’ )) and sj) := s, € S”

Ty YTy
are independent from the choice of z,, € \ ©Qf. On the other hand, if we
take y € A such that J, = 0, then also Ag = 0 so that we can set s, = s”
for some fixed state s” € 8" and J,(s) = A (s)s) still holds for all s € S.

Hence, J is a measure-and-prepare instrument. ]

To conclude this chapter, as a Corollary of our results we are able to
characterize those measure-and-prepare instruments that are post-processing
equivalent with an indecomposable instrument and even the form of that
indecomposable instrument.

*Corollary 3. A measure-and-prepare instrument I is post-processing equiv-
alent with an indecomposable instrument J if and only if the induced ob-
servable AT is indecomposable. In this case also J is a measure-and-prepare
instrument.

Proof. First let A = AT be indecomposable. Let us take some set of pure
states {t, }zcq C S’ and let us define instruments {R*)},cq C Ins(Q, S’) by
setting Rg(f)(s’) = gyt!, forall s’ € 8" and z, y € Q, where ¢ is the Kronecker
symbol. Now we see that J,(s) := > ,cq R(yx) (Z:(s)) = Ay(s)ty, forall s € S
and y € Q defines a measure-and-prepare instrument J € Ins(Q2,S,S’)
such that AY = A is indecomposable and the prepared states are pure so
that by Prop. 19 we have that J is indecomposable. Furthermore, if we
define instruments {Q®)},cq C Ins(Q,S’) by setting Qggy)(s’) = dyusy, for
all s € §" and =,y € Q, we see that 3°, ¢ Qg(cy)(jy(s)) = A,(s)sl, = T,(s)
for all s € S and = € Q). Thus, Z +» J, where J is indecomposable.

Now let Z be post-processing equivalent with an indecomposable in-
strument J € Ins(A,S,S8”). From *Prop. 20 it follows that also J is a
measure-and-prepare instrument so that by *Prop. 19 the induced observ-
able A7 is indecomposable. Since Z <+ J, by Prop. 12 we then have that
A = AT & A7 so that Prop. 11 implies that also A is indecomposable. [



Chapter 4

Simulation of observables

In the previous Chapter we considered how to obtain a new measurement
device from a known one by the means of post-processing the output(s)
of the known device. In the case of observables this meant that we are
relabeling the classical measurement outcomes with conditional probabil-
ities given by a stochastic matrix. Unlike in the case of instruments, the
post-processing of observables is purely a classical process and thus does
not require any additional resources to be implemented (apart from some
source of randomness). Similarly to classical post-processing, the mixing of
observables is also a purely classical process in this sense. The scheme of
combining these two classical operations on a set of observables has been
coined the simulation of observables [30, 107]. Simulation thus captures
the idea of classically manipulating a set of observables in order to obtain
some new observables.

In the beginning of this Chapter we present the simulation scheme and
the structure it imposes, as was studied in Publication II. As an applica-
tion of simulability we consider the topics of Publication IV, where along
with providing examples of the simulation process, theories beyond the
no-restriction hypothesis are considered. We argue that all operational
restrictions on observables must be closed with respect to the simulation
process. Other works on the simulation of observables include [108-110].

4.1 Simulation scheme and structure
Following Publication II, we start by formalizing the simulation process,
and then proceed to show that the simulation of all observables can be

reduced to a particular class of observables and study their structure.

65
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Figure 4.1: Simulation of observable A with observables B, C and D by
using post-processings vB, v and P and mixing weights pg, pc, pp € [0, 1]
such that pg + pc + pp = 1.

Let us consider a set of n observables {B(®}?_, such that B®) € O(Q;,S)
for all ¢ € [n]. The chronological process of simulation then goes as follows:
after preparing a system i) we pick an observable B with some probability
pi, ii) we measure the system with the observable B, iii) we obtain an
outcome x € €2;, and iv) we perform a post-processing v@ Q= Q for
some other outcome set {2 so that the obtained outcome x € €2; is mapped
to outcome y € € with probability Vé? We can formalize this process with
the following definition:

Definition 14. A set of observables A C O(S) can be simulated by another
set of observables B C O(S) if for all A € A with an outcome set {25 there
exist a finite set of observables {BA’(i)}ie[nA} C B with outcome sets €;
for some na € N, a probability distribution (piA)ie[nA] and row-stochastic
post-processing matrices {I/A’(i)}ie[nA} - M\qu/f\,lﬂi\ such that

A= g (PO 0 BAOY. (4.1)
=1

The simulation scheme is depicted in Fig. 4.1. We denote the set of
all observables simulable by a subset B C O(S) by sim(B), and call the
observables in B simulators. We note that in the case when B = {B} for
some single observable B € O(S), the mixing part of the simulation scheme
becomes trivial so that sim(B) consists just of post-processings of B.

Considered as a map on the power set 20(5) of all subsets of observables,
sim(+) can be shown to be a closure operator on O(S) such that it satisfies
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the following properties for all subsets B,C C O(S):
(siml) B C sim(B),
(sim2) sim(sim(B)) = sim(B),
(sim3) BCC = sim(B) C sim(C).

If equality holds in (siml), i.e., B = sim(B), we say that B is simulation
closed. As we see from (sim2), sim(B) is always simulation closed for any
B C O(S). In particular this means that sim(B) is convex and closed with
respect to post-processing.

4.2 Simulation irreducible observables

We have seen separately in the case of mixing and post-processing of observ-
ables that all other observables can be reduced into convex decompositions
of extreme observables and post-processings of indecomposable observables.
Let us now consider the task of reducing all observables into simulations of a
specific class of observables, namely the simulation irreducible observables.

As a first (trivial) remark, we note that every observable A can be
simulated by a set of simulators B whenever A belongs to B. The property
of those observables for which this is (essentially) the only way that they
can be simulated is captured by the following definition:

Definition 15. An observable A is simulation irreducible if whenever A €
sim(B) for some subset B C O(S) then there exists a single observable
B € B such that A < B.

Thus, a simulation irreducible observable can only be simulated by it-
self (up to post-processing equivalence). The set of simulation irreducible
observables on S is denoted by O;,(S). As was mentioned, the tasks of mix-
ing and post-processing can be reduced to only mixing and post-processing
extreme and indecomposable observables, respectively. We can show that
in the task of simulating observables, all other observables can be reduced
to simulations of simulation irreducible observables.

Proposition 21. For every observable A € O(S) there exists a finite set
of simulation irreducible observables BA C O, (S) such that A € sim(B?).
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The proof, presented in Publication II, is an adaptation of the one given
in [111], and is based on the following characterization of the simulation
irreducible observables:

Proposition 22. An observable is simulation irreducible if and only if it is
indecomposable and post-processing equivalent with an extreme observable.

Thus, perhaps unsurprisingly, the task of simulating all observables can
be reduced to that of simulating just those observables that are ‘maximal’ in
both of its main components, namely mixing and post-processing, so that
simulation irreducible observables are post-processing clean and extreme
(up to post-processing equivalence).

Example 10 (Quantum theory). In quantum theory the indecomposable
observables correspond to POVMs with rank-1 effects. To check if such a
POVM A is simulation irreducible, we can construct the minimally sufficient
representative A and check if it has linearly independent effects, i.e., if it
is extreme. For the d-dimensional quantum theory 87 = S(H) for some
d-dimensional Hilbert space H we have that dj;,(S1) = d? so the maximal
number of outcomes for an extreme simulation irreducible POVM is d?.
In fact, it can be shown that for any n € {d,...,d?} one can construct
an extreme simulation irreducible POVM with n outcomes [111]. For the
case n = d, we can take any orthonormal basis {¢;}% ; of H and define
the (projective) extreme rank-1 POVM A € O([d],H) as A(i) := |¢i){pi]
for all i € [d]. Since there is a continuum of bases of H and since the
previously defined extreme rank-1 POVMs related to two different bases of
‘H are never post-processing equivalent (see Prop. 11), we see that there
exists a continuum of simulation irreducible POVMs on SJ.

By characterizing the extreme rays of the positive dual cone Vi C V*
of the positive cone V; C V of which a state space S C V; is a base of,
one is able to characterize the cone V¥ and the effect space £(S) (under
the no-restriction hypothesis) given by Eq. (1.2) as £(S) = Vi N (u— V7).
Because indecomposable effects correspond to the extreme rays of V*, the
characterization of the indecomposable and in particular the simulation
irreducible observables provides valuable information about the geometric
structure of the effect and state spaces. On the other hand, in some simple
state spaces the geometric structure of the effect space is simple as well
and the characterization of the simulation irreducible observables becomes
easy.
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Example 11 (Polygon state spaces). In the polygon state spaces S,, we can
show the following: If n = 2m for some m € N, i.e., n is even, then there
are exactly m dichotomic and m(m —1)(m — 2)/3 trichotomic extreme sim-
ulation irreducible observables on &,,. Thus, in particular, every observable
on an even polygon can be simulated with observables with three outcomes,
and in the case of the square state space Sy there are exactly two dichotomic
simulation irreducible observables that can simulate every other observable
on &4. On the other hand, if n = 2m + 1 for some m € N, i.e., n is odd,
then there are exactly m(m+ 1)(2m +1)/6 trichotomic extreme simulation
irreducible observables on &§,,. In odd polygon state spaces there are no di-
chotomic simulation irreducible observables. Details about the simulation
irreducible observables on polygons can be found in Publication II.

As a demonstration of the usefulness of finding the simulation irre-
ducible observables in order to characterize the structure of the theory, we
can show the following important result.

Proposition 23. A state space is non-classical if and only if there exists
at least two post-processing inequivalent simulation irreducible observables.

Geometrically we can reformulate the previous result as follows: a state
space S is a simplex if and only if there exists only one observable on &
with linearly independent indecomposable effects. Given Prop. 21, we see
that in classical state spaces every observable can be simulated, i.e., in
the case of one observable, post-processed, from a single observable. This
property, commonly called the joint measurability (or compatibility) of all
observables, is a unique feature of classical theories [28]. In all other theories
there exist (at least) two observables which are not jointly measurable (i.e.,
they are incompatible,) so that they cannot be post-processed from any
single observable. We consider the connections between compatibility and
simulability more closely in the last Chapter of this thesis.

4.3 Simulation closed restrictions of observables

When we introduced the set of effects in Section 1.2.2 we assumed the no-
restriction hypothesis according to which all mathematically valid effects
(affine functionals e : & — [0, 1] that give probabilities on states) are also
physical effects in every theory. Usually the no-restriction hypothesis is as-
sumed for mathematical convenience and is loosely justified by the fact that
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it holds in classical and quantum theory. However, there are no universal
operational principles that would justify the validity of the no-restriction
hypothesis in every theory.

By placing restrictions on the effects one is able to define new inter-
esting models and show that it can affect the way composite systems may
be formed [112]. Furthermore, recently it has been shown that the no-
restriction hypothesis may play a crucial role in singling out the quantum
correlations from other non-signalling theories [113]. Other works beyond
the no-restriction hypothesis include [18, 114, 115].

However, the common theme in previous works is that the restrictions
have been focused solely on effects. In our work in Publication IV we extend
the restrictions to the set of observables and see that there are restrictions
that are not induced solely by some restricted set of effects. Furthermore,
we argue that every such restriction on observables, represented by some
subset of observables, must be simulation closed in order to be operationally
valid. Namely, if we determine our set of physical observables, by the pro-
cess of simulation we are able to produce other observables that by the
operational nature of simulation must also be physically feasible. We clas-
sify the operational restrictions in three disjoint classes based on whether
the restriction takes place in the level of effects, observables or both.

4.3.1 Three types of operational restrictions

An operational restriction on observables is represented by a simulation
closed subset @ C O(S) of observables so that O = sim(©). We note that
every such (nonempty) restriction O contains the set of trivial observables
T(S) since any trivial observable can be post-processed from any other
observable.

By considering an operational restriction given by a simulation closed
subset O, we can consider which are the physically feasible effects given by
the restriction. We use the following notation: for a subset @ C O(S) we
denote by £z C E(S) the set of all effects e € £(S) such that e € ran(A)?
for some A € O. Physically this means that £5 consists of those effects
that can be obtained as relabelings from the effects of the observables.

On the other hand, we can consider this as we are given a set of phys-
ically feasible effects £ and the operational restriction is given by the set

!We recall that for an observable A € O(f, S) we have ran(A) = {ZIEQ A, 1QC Q}
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of observables that can be constructed using those effects. Formally, for
a subset £ C £(S) we denote by Og C O(S) the set of all observables
A € O(S) such that ran(A) C £. Naturally, if we are to consider Og as an
operational restriction, we require it to be simulation closed. Furthermore,
we require the following consistency conditions to hold:

(E1) u € £ as the unit effect is an integral part of the definition of an
observable, and

(E2) for every e € & there exists A € Og such that e € ran(A), i.e., for
every physical effect there exists a physical observable that we can
implement it as a part of.

We are ready to classify the operational restrictions described by a
simulation closed set O C O(S) into three disjoint cases. First, we can
have that

(R1) O = O; for some & C £(S).

The restrictions in class (R1) thus consist of those that are completely in-
duced by restrictions on effects. We note that it is not guaranteed that
any effect restriction € induces a simulation closed restriction Oz on ob-
servables. We characterize all suitable effect restrictions (that satisfy the
consistency conditions (E1) and (E2)) in the next section. However, it is
easy to see that the effect restriction inducing a restriction of type (R1) is
always unique as is shown by the following result:

Proposition 24. Let £ C E(S) be an effect restriction satisfying the con-
sistency conditions (E1) and (E2). Then o, = E.

Second, in addition to effect restrictions we can have
(R2) 5 = E(S) but O # O(S).

Restrictions of type (R2) thus do not restrict the set of effects in any way
but rather how those effects can be formed into observables. We note that if
O is a restriction of type (R2) it cannot be of type (R1): namely, otherwise
by Prop. 24 we would have that the effect restriction £ inducing @ = Og
would have to be £ = £(S) so that O = O(S).

Third, we can finally have that the restriction is not of type (R1) or
(R2) so that
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(R3) €5 C E(S) and O # O for any € C £(S).

Hence, for restrictions in class (R3) there are restrictions already on the
level of effects but also some restrictions that only manifest in the level of
observables. We continue to consider all three distinct types of restrictions
separately.

4.3.2 (R1) Restrictions purely on effects

The restrictions in class (R1) are purely induced by restrictions on effects.
However, in order for an effect restriction € to induce a simulation closed
restriction @ on observables, we must choose € suitably. This is the content
of the following Proposition:

Proposition 25. Let £ C E(S) be an effect restriction satisfying the con-
sistency conditions (E1) and (E2). Then Og is simulation closed if and
only if € is convex.

The intuition behind this result is the following: from the definition of
Og it follows that if A € Og, then A, +A, € £ for all outcomes & # y so that
in particular Op is already closed with respect to relabelings, which are the
extreme elements in the set of post-processing matrices. Since simulation
is just a combination of mixing and post-processing, it can be shown that
the convexity of € is both a necessary and sufficient condition to make Og
closed with respect to mixing and general post-processings.

Convex effect subalgebras

When we consider the effect space £(S) of a state space S in the GPT
framework, the effects are defined through their action on the states. If
we want to abstractly define and consider effects as an elementary concept
without relying on the concept of a state, the effect algebra [116] (see also
[117-120]) is a natural notion for this. In this section we will consider
abstract effect algebras only conceptually without going into the mathe-
matical details. The formal mathematical definitions and treatment can be
found in Publication IV.

Conceptually, an effect algebra £ is a non-empty set consisting of a
collection of events e € £ and it includes a partial operation @ that describes
the joining of such events so that e @ f is a new event corresponding to the
joining of events e, f € £ whenever it is defined. Furthermore, we require
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that there are two special events of which one, 0, corresponds to the event
that never happens and the other, 1, to the event that always happens.

In the case of effect algebras we are still considering the operational
notion of events and the joining of events. Thus, one of the most important
operational notions behind the present GPT framework, namely mixing, is
a valid and reasonable concept to study in the case of effect algebras as
well. For an effect algebra £, and for each o € [0,1] and e € £ we define
a process of forming a new element ae which is interpreted as a splitting
of the event e into two events, ae and (1 — a)e. An effect algebra with
this property (along with some natural consistency conditions) is called a
convez effect algebra [117]. In particular, if we have the splittings ae and
(1 —«)f for some a € [0,1] and e, f € £ in a convex effect algebra &, then
ae® (1 —a)f € € also holds such that we can indeed implement mixtures
of events.

In order to consider restrictions on an effect algebra £ we need to con-
sider subsets of £ that would correspond to physically feasible effects. As
with any algebraic structure, the natural subsets to consider are the ones
which inherit the structure of the original set. Thus, for an (convex) effect
algebra & we focus on the subsets of £ that are themselves (convex) effect
algebras, namely the (convex) effect subalgebras of £ [120)].

Coming back to the GPT framework, it can be confirmed that the effect
space £(S) = Vi N (u — Vi) of a state space S C V4 C V always forms
a convex effect algebra. On the other hand it can be shown [117] that for
every convex effect algebra € there exists a real vector space W, a proper
generating cone Wy and a nonzero element u € W, such that € is affinely
isomorphic to Wi N (u—Wy).

In this linear representation we can show the following characterization:

Proposition 26. Let E(S) be an effect space of a state space S C V4 C V.
A subset £ C E(S) is a convex effect subalgebra of E(S) if and only if
E=UNE(S) for some linear subspace U C V* such that u € U.

Using this characterization, it is easy to confirm that every convex effect
subalgebra € of an effect space £(S) induces a simulation-closed restriction
Oz C O(S). Namely, it is straightforward to see that & is a convex subset
of £(S) satisfying the consistency conditions (E1) and (E2) so that, from
Prop. 25, it follows that Oz is simulation closed.

However, we point out that not every convex subset & C &£(S) is a
convex effect subalgebra of £(S). This is demonstrated in the following
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Figure 4.2: Noise restriction a) with random noise and b) with depolarizing

noise on a three-dimensional cross section of the qubit effect space (also the
same as the rebit effect space).

section along with providing concrete examples of restrictions of type (R1).

Noise restrictions on effects

Let S C V. CV be a state space. For each t € [0,1] let us define
E={te+(1—t)pulec&(S), pe(0,1]}. (4.2)

The interpretation of & is that it describes the set of noisy effects, where the
amount of noise mixed with an effect is described by the noise parameter
t. We note that in this case we are mixing effects with random noise given
by the parameter p € [0,1]. For t = 1 we clearly have & = £(S), and for
t = 0 we have that & = {pu|p € [0,1]} which consists of completely noisy
trivial effects. We note that £ and 8~0 are both trivial effect subalgebras of
£(S). On the other hand, clearly & is convex for all ¢ € [0, 1] and it satisfies
the consistency conditions (E1) and (E2) so that by Prop. 25 the induced
restriction Og, is simulation closed. The noise restriction is depicted in Fig.
4.2 a).

Let t # 0. Clearly & includes all elements of the form te for all e € £(S).
If we choose e to be an extreme ray of the dual cone V] so that te spans
the same ray, it follows that because £(S) spans Vi and because V} is a
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generating cone we must have that also & spans the whole dual space V*.
Suppose that & is a convex subalgebra of £(S). Then by Prop. 26 we
must have that & = U, N E (8) for some linear subspace U; C V* such that
u € U;. It then follows that also U; must span V* so that in fact Uy = V*
and & = £(S). Hence, & is a convex subalgebra of £(S) if and only if t = 0
ort=1.

Example 12 (Point-symmetric state spaces). Next we will construct an-
other noise restriction on the set of effects on point-symmetric state spaces.
The restriction is analogous to the action of depolarization in quantum the-
ory (see, e.g., [63]) in the sense that it constricts the effect space, and it
can thus be interpreted as adding specific noise to the effects and measure-
ments. This restriction also generalizes the noisy boxworld restriction that
was studied in [112].
Let us take ¢ € [0, 1] and consider the restricted set of effects

& = {te+ (1 —t)e(so)u|e € £(S)} (4.3)

on a d-dimensional point-symmetric state space S C R%T! with an inversion
point so. Similar to before, & C &(S) for all ¢ € (0,1] and the equality
holds only if t = 1, and & = {pu|p € [0,1]}. We note that, contrary to
&, as defined in Eq. (4.2), here we are mixing noise that is dependent on
each effect. Tt follows that & C & for all ¢ € [0,1]. Again we see that & is
convex for all ¢t € [0,1] and it satisfies the consistency conditions (E1) and
(E2) so that by Prop. 25 the induced restriction O, is simulation closed.
If we define the depolarising map ®; : R — R4 as &y (2) = to+ (1 -
t)z(s0)u, we see that & = ®(E(S)) for each t € [0,1]. For t € (0,1], it is
straigthforward to verify that &, is a positive-linear isomorphism between
£(S) and & that preserves the unit effect u. From this isomorphism it
follows that & spans the same space as & (S) which is the whole R4*1.
Suppose that t # 0 and &, is a convex subalgebra of £(S). Since A spans
the whole R4t the only subspace U from Prop. 26 such that & = UNE (S)
is U = R, Thus, again & is a convex subalgebra of £(S) if and only if
t =0 or t =1. We depict the depolarizing noise restriction in Fig. 4.2 b).

4.3.3 (R2) Restrictions purely on observables

Let us now consider restrictions of type (R2), i.e., simulation closed restric-
tions O C O(S) such that £5 = £(S). Hence, in this class the effects are
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not restricted in any way but the process of obtaining physical observables
from effects is.

Effectively dichotomic observables

As an example of the simulation process, and as a restriction of type (R2),
we consider a scenario where we restrict the number of outcomes of our
simulators. This type of restriction may happen for example in experimen-
tal set-ups where one may only be able to directly implement measurement
devices with a specific number of outcomes (for example measurements on
superconducting qubits and polarized photons). However, given these de-
vices, one can still consider simulating other devices with possibly more
outcomes.

If an observable A can be simulated with observables that have at most
n, we call A effectively n-tomic. Formally we define the set of n-tomic ob-
servables O,,_.f¢(S) by setting O,,_cf¢(S) := sim(O([n],S)), where we con-
sider the inclusion O([n],S) C O([n+1],S) by adding zero effects to the ob-
servables in O([n], S). It is then also clear that Op,_cff(S) C Opy1)—ers(S)-
In the simplest case we are restricting ourselves to using only observables
with two outcomes which results in the set of effectively dichotomic observ-
ables Oy_.f¢(S). Foundational and experimental motivation for studying
n-tomicity can be found in [108, 121, 122].

If we now have any restriction © C O(S) of type (R2), then by definition

5 = E(S). The definition of £ therefore implies that for each effect

e € £(S) = &4 there exists an observable A € O such that e € ran(A).
In particular this means that for each effect e € £(S), the dichotomic
observable with effects e and u — e must be in O. Thus, O([2],S) C O such
that from the simulation closedness of O it follows that also Oy_ s 4(S) C O.
We have shown the following:

Proposition 27. If O C O(S) is of type (R2), then Oa_cpf(S) C 0.

In some theories it can happen that Oy_.f¢(S) = O(S) (for example the
square state space). Hence, we cannot characterize the restriction class (R2)
any further in general, and the specific nature of these types of restrictions
is different in different theories.

However, what we will do is explore a few necessary and sufficient condi-
tions for an observable to be effectively dichotomic. For an effect e € £(S)
let us denote Amax(€) = sup,cs €(s), where the supremum is always attained
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due to the compactness of S. We also remember from Section 2.3 that
Amax(A) for an observable A € O(£,S) is then Apnax(A) = > cq Amax(Az)-
Now we can show the following.

Proposition 28. Let A € O(1,S).

a) If there exists y € Q such that Amax(A) — Amax(Ay) < 1, then A is
effectively dichotomic.

b) If Amax(A) > 2, then A is not effectively dichotomic.

c) If {Ay}yeﬂ consists of indecomposable effects for some Q C Q such

that tAy # A, and tAy + A, # u for all y,z € Q and t,r > 0, and
furthermore 3 & Amax(Az) > 1, then A is not effectively dichotomic.

The first result a) is a direct generalization of a result in [107]. As an
application of effectively dichotomic observables, let us apply them to an
operational task similar to those considered in Chapter 2.

Unambiguous discrimination of two pure qubit states

Let us consider the task of the unambiguous discrimination of states (see,
e.g., [123] for details in the quantum case). The task consists of identifying
an unkown state s out of some set of possible states {s;}~; € S without an
error. This means that we are looking for an observable A € O(S) such that
Aj(sj) > 0and Aj(s;) = 0foralli # j, 7,75 € [n]. In this way if we measure s
with observable A and detect the outcome j, we know that s = s;. Further-
more, if Aj(s;) = 1 so that A € O([n],S), the states {s;}}; can be perfectly
discriminated. On the other hand, if the states {s;}/_; can only be unam-
biguously dicriminated but not perfectly, then we can have an inconclusive
outcome ? such that A € O([n]U{?},S) and A7 = u—3"7 1 A;. Given that
the states {s;}I'; are assigned with prior probabilities (p;);-,, the average
success probability for the unambiguous discrimination of the states {s; }1-;
using an observable A € O([n] U {7}, S) is then psucc(A) = 2271 piA;(s;)-
The optimal success probability for the states is thus obtained by optimiz-
ing over all the observables, psucc = SUPaco(s) Dsuce(A).

In quantum theory S(#) it is known that two pure states o1 = |p1) (1|
and g2 = |p2)(p2| for some unit vectors 1,2 € H, ¢1 # p2, can be dis-
criminated perfectly if and only if the states are orthogonal, i.e., (¢1]p2) =0
(see, e.g., [63]). Let us now focus on the case when g1, 02 € S(C?) are two
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non-orthogonal pure qubit states. Thus, the task is to a find 3-outcome
POVM A € O({1,2,7},C?) such that tr [A(1)gs] = tr[A(2)01] = 0. These
conditions imply that

A1) = qi(La — |p2){p2]),  A(2) = g2(L2 — [p1) (1) (4.4)

for some q1,g2 > 0 such that A(?) =15 — A(1) — A(2) > O.

Let us suppose now that the discriminating POVM A is effectively di-
chotomic. We note that both A(1) and A(2) are rank-1, i.e., indecom-
posable, and that ¢1 = Apax(A(1)) and g2 = Amax(A(2)). Clearly, since
©1 # @2, we have that A(1) # tA(2) for any ¢ > 0. Suppose that
t1A(1) 4+ t2A(2) = 14 for some ¢;,t2 > 0. Since A(1) and A(2) are rank-1,
the previous expression holds if and only if o1 and g9 are orthogonal and
t1 = 1/q1 and t2 = 1/go2. Since this is not the case, we conclude that the
conditions of Prop. 28 ¢) are satisfied so that by the effective dichotomicity
of A we have that

1+ 2 = Amax(A(1)) + Amax(A(2)) < 1. (4.5)

If we use equal a priori probabilities p; = pa = 1/2 for the states o; and
02, we see that the average success probability then reads

Prucel ) = St A1) + 1t [A@)er] = BTE (1 (pules) ) (46)

<3 (1= Herlea) P) (4.7)

for any effectively dichotomic POVM A € Oy_¢£({1,2,?},C?).

However, it is well-known that when optimized over all POVMs in
O({1,2,7},C?), the optimal success probability is found to be psucc =
Dsucc(A) = 1= {p1]|p2) | with the optimal POVM A defined as in Eq. (4.4)
with g1 = g2 = 1+ | (p1lg2) | (see, e.g., [63]). Since 5 (1—[{p1lp2) [*) <
1 — | {p1|p2) | where the equality holds if and only if o; = g2, we conclude
that the restriction to use only effectively dichotomic POV Ms results in a
decrease in the success probability of the unambiguous discrimination of two
non-orthogonal pure qubit states.
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4.3.4 (R3) Restrictions on both effects and observables

Lastly we focus on the restrictions in the class (R3) for which the restriction
is not induced by any restriction on effects but which still restricts the set
of physical effects. Because (R3) is defined as restrictions that are not (R1)
or (R2), and since the restrictions in (R2) are dependent of the theory, we
cannot give a convenient characterization for (R3) either in all different
theories. Thus, we will focus only on providing an example of a restriction
of type (R3). We see that we can provide such an example by generalizing
one of the noisy effect restrictions that were considered earlier.

Noise restrictions on observables

In Section 4.3.2 we introduced noise restriction on effects resulting in re-
strictions of type (R1). Let us generalize these restrictions to observables.
Let T = T(S) be the set of trivial observables on a state space S. Following
Eq. (4.2), let us define

Or={tA+(1-T|A€O(S), TET(S)}). (4.8)

The physical interpretation of an observable tA+(1—t)T € O, is that it is a
noisy version of the observable A € O(£,S), where the magnitude and the
distribution of the noise are given by the noise parameter ¢t and probability
distribution (p;).ecq respectively, where p, = T,(s) forall s € S and x € Q.
Clearly, for t = 0 and t = 1 we have Oy = T(S) and O; = O(S). Tt is
straightforward to see that O; is simulation closed for all t € [0,1] so that
it is a valid operational restriction. We will show that O, belongs to the
class (R3) for all ¢ € (0,1).

If we consider the set of physically feasible effects £5, given by the
restriction Oy, we see that Eo, = &, where & is given by Eq. (4.2). Thus,
ift € (0,1), s, # E(S) and so O; cannot be a restriction of type (R2). On
the other hand, if we assume that it is of type (R1), then from Prop. 24
it follows that the effect restriction £ inducing O; must be £ = Eo, = .
Thus, if we can show that there exists an observable A € Og such that
A ¢ Oy, then we see that the restriction Oy cannot be of type (R1), which
would imply that it must be (R3).

By using the noise content w(-;7), we see that O; consists exactly of
those observables B € O(S) with w(B;7) > 1 —¢t. On the other hand
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Og, consists of observables A € O(2,S) of the form A, = ta, + (1 —t)ryu
for some a, € £(S) and r, € [0,1] for all z € . The construction of an
observable A € O, such that A ¢ Oy presented in Publication IV is rather
cumbersome, but the main point is that we do not have to necessarily have
that >, a, = v and ) ,r, = 1 as we would have if A € O;. Tt turns
out that we can actually choose the effects a, and the positive numbers 7,
such that Y, infsesay(s) = 0 and Y, a; = au for some a > 1 as well as
r:= Y .7, < 1. From the properties of the noise content it follows that
w(A;T) = (1—t)r <1—tsothat A ¢ Oy;. This shows the following:

Proposition 29. Let t € (0,1). Then O; # Og for any £ C £(S).

Thus, we have demonstrated that the noise restriction given by Eq. (4.8)
is not induced by any effect restriction but on the other hand it does restrict
the set of physically feasible effects. In other words, there are restrictions
on the level of effects as well as on the level of observables. One can easily
confirm that if one is to have a similar generalization, denoted by Oy, of
the noise condition & given by Eq. (4.3) to observables on point-symmetric
state spaces, then O, does not have this feature so that it is in fact induced
by the effect restriction & and is thus of type (R1).



Chapter 5

Simulability and
compatibility

In an operational theory a set of devices are called incompatible if they
cannot be implemented with a joint device that would have all of them as
its components. The study of incompatible observables in quantum theory
has a long history and is based on Heisenberg’s uncertainty principle [49]
and Born’s notion of complementarity [124], which in particular show that
there are quantum observables that cannot be measured jointly. Although
incompatibility seems like a restrictive property of quantum measurements,
at the same time it has been found at the core of many of the theory’s dis-
tinguishing features, such as Bell inequality violations [125, 126] and the
no-broadcasting theorem [127]. For incompatibility (mostly) in quantum
theory we refer the reader to [48]. In GPTs incompatibility has been con-
sidered, e.g., in [27-35].

As we will see below and as was originally proven in [28], not only in
quantum theory but in all non-classical theories one can find incompatible
observables. In this Chapter we study the incompatibility of observables,
show how it is linked to the simulation of observables and see how the
previously introduced simulation structure can be used in topics related to
incompatibilty. The results of this Chapter are largely based on Publica-
tions I and III but we also present some new results about incompatible
observables on point-symmetric state spaces.

81
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Figure 5.1: A joint measurement of observables A and B means that there
exists an observable C from which both A and B can be post-processed. The
outcomes x and y for observables A and B can be obtained simultaneously
by copying the outcome z of the observable C and by then applying the
respective post-processings VA and VB,

5.1 Compatibility of observables

Let us start with a formal definition of compatibility, i.e., joint measura-
bility, of observables, and proceed to consider some of the resulting basic
properties.

5.1.1 Definition and properties

Definition 16. A collection of observables A C O(S) is compatible (or
jointly measurable) if there exists a single observable C € O(S) such that
every observable A € A is a post-processing of C, i.e., A C sim(C). If a
collection of observables is not compatible, then it is called incompatible.

We emphasize that the above definition captures the idea that an out-
come is produced for each of the observables in A when we perform exactly
one measurement of the observable C on a single system. This is in contrast
to just measuring an informationally complete observable whose whole mea-
surement statistics (collected by performing the same measurement many
times) specifies the measured state uniquely from which one can calculate
the measurement statistics of any other observable [48]. We illustrate the
compatibility of two observables with Fig. 5.1.

Another equivalent condition for compatibility of A € O(Q2,S) and B €



Simulability and compatibility 83

O(A,S) is the existence of a joint observable G € O(2 x A,S) such that
A and B can be obtained as marginals of G so that > c\ Gzy = Ay for
all z € Q and ), cqGyy = By for all y € A. To see this, let us first note
that clearly taking marginals is a post-processing so that both A and B
can be obtained from the joint observable G by post-processing. On the
other hand if A and B can be obtained from an observable C € O(T",S) by
post-processing matrices v and B respectively, we see that an observable
G defined by Ggy = > .cr uﬁxVEyCz for all z € Q and y € A is a joint
observable for A and B. The equivalence between compatibility and the
existence of a joint observable can be readily generalized to any (finite)
number of observables.

By considering classical theories, from Prop. 23 and 21 we see that all
the observables on a classical state space Sgl are compatible as they can
all be simulated from the single extreme simulation irreducible observable
on Sgl. On the other hand, if S is not a simplex, i.e., it is non-classical,
then there exists (at least) two inequivalent simulation irreducible observ-
ables A,B € O;,(S). Suppose that A and B are compatible so that there
exists C € O(S) such that A,B € sim(C). By the definition of simula-
tion irreducibility it follows that then A <+ C <> B which contradicts the
inequivalence of A and B. Thus, A and B must be incompatible so that
in every non-classical state space there exists (at least) two incompatible
observables. This was originally proven in [28] whilst also showing that
the two incompatible observables can actually be chosen to be dichotomic
(although in this case they might not be simulation irreducible).

Already from the definition of compatibility we see the connection to
simulability. For a compatible set, such as the set of observables in a clas-
sical theory, the minimal number of observables needed to simulate is just
one so we call it 1-simulable. By generalization, following [30], considering
sets that are 2-, 3-, 4-, ..., and n-simulable, we can create a hierarchy that
generalizes the notion of compatibility. For example, in classical state space
Sgl the set of all observables (’)(Sgl) is 1-simulable, while in the square state
space Sy we have that O(Sy) is 2-simulable. As only one step away from
being compatible in this generalized compatibility hierarchy, in this sense
the square state space can thus be considered as being closest to a classical
state space that a non-classical state space can be. Before making more
connections to simulability, let us demonstrate compatibility in the case of
two dichotomic obsevables.
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5.1.2 Two dichotomic observables

For two dichotomic observables A,B € O({+,—},S) we can characterize
compatibility in the following way [25, 28]: First let A and B be compatible
so that there exists a joint observable G € O({+, —} x {4, —}, S) such that
A+ = G+++G+7, A, = G7++G77, B+ = G+++G7+ and B, = G+7+G77.
Let us denote a := A4, b := By and ¢g := G44. Then from the previous
equations it follows that

g>o, a>g, b>g, u>a+b-—yg. (5.1)

On the other hand, if there exists a function g € V* such that the conditions
in Eq. (5.1) are satisfied for two dichotomic observables A and B with
a = A; and b = By, then we can define a joint observable G € O({+, —} x
{+,-},8) for A and B by setting G,y =¢9,G;_=a—g,G_y =b—gand
G__ =u—a— b+ g so that the positivity of the effects is guaranteed.

Thus, we can conclude the following: on a state space S C V, two
dichotomic observables A,B € O({+,—},S) with a = Ay and b = B4 are
compatible if and only if there exists a linear functional g € V* such that
the conditions in Eq. (5.1) are satisfied.

Example 13 (Qubit). In the case of S = C2, it is known (see [128, 129])
that if two dichotomic qubit POVMs A, B € O({+,—},C?) with a :=
A(+) = Y(als+d- &) and b := B(+) = (812 +b- &) are compatible, then

o, + -3, <2 52

Furthermore, if « = g = 1, i.e., the POVMs are unbiased, then they are
compatible if and only if Eq. (5.2) is satisfied.

Incompatiblity in point-symmetric state spaces

Let us generalise the well-known condition for compatibility of dichtomic
qubit POVMs that was considered above. Recently in [35] the authors
proved an even more general result from which this can be obtained as a
special case. On the other hand, our result generalizes the result in [29] for
even polygon state spaces.

*Proposition 30. Let A,B € O({+,—},S) be two dichotomic observables
with effects AL = a = %((i, a) and By =b = %(b,ﬁ) on a point-symmetric
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state space S C R If the observables A and B are compatible, then
”5+5H5+ HJ_EHg =2 (5:3)

Proof. As it was discussed above, A and B are compatible if and only if

there exists a linear functional g € R, parametrized by g = %(g’, ), such

that the conditions in Eq. (5.1) are satisfied. From the *Prop. 1 one can
see that this is the case if and only if

glle <, ld—glle <a—r,
odl, <o oo, <2-acarn

Ha‘+bH - “6+5—§+§“5 < H6+E—§/‘HS+H§H5 <2—a—-f+2y

|a-5,=|la-9-@E-9)|,<la-gle+[p-g|, <a+s-2y.

Thus, the existence of a joint observable for A and B implies the existence
of v € [0, 2] such that

"6+5"£+a+5—2§27§a+5—Hc?—gug,

which leads to Eq. (5.3). O

We recall that an effect a = $(d@, ) € £(S) on a point-symmetric state
space S is unbiased if and only if &« = 1, and that an observable is unbiased
if all of its nonzero effects are unbiased. For two unbiased observables we
can show (as in the qubit case) that the inequality (5.3) is actually also a
sufficient condition for compatibility.

*Proposition 31. Two unbiased dichotomic observables A and B with ef-
fects AL = a = %(d’, 1) and By = b = %(b, 1) on a point-symmetric state
space are compatible if and only if

H5+ EHS + Hd B gHe =2 (5-4)
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€5

Figure 5.2: The compatibility regions (brown), i.e., the possible regions
for the effects b = %(g, 1) in Eq. (5.4), for the unbiased effects on a reg-
ular hexagon state space Sg for some fixed effects a = %(6, 1). The set of
unbiased effects (purple) is determined by the non-trivial extreme effects
e = %(é’k, 1) for all k € {1,2,3,4,5,6} with the point %u = %(ﬁ, 1) in the
middle. We note that our result agrees with [29].

Proof. If A and B are compatible, then the inequality follows from *Prop.
30. Now let Eq. (5.4) hold. The following is a joint observable for A and
B:
1 . 1 1 . 1
Gy = §(t+C+vt+ + 575), G = §(Lcﬂt7 + 575),

1
—t_Cc_,t_+ =t
(-2t + 5t),

N | =

1 1
G- = 5(—t+5+775+ + 507 Gy =

where & = (aiz?)/’]aiz?]
t=1—ty —t_.

v = o2 e = o=

A demonstration of the previous result is depicted in Fig. 5.2.
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5.2 Simulation based condition for (in)compatibility

As we have seen, compatibility captures the idea that the measurement
of multiple observables can be reduced to measuring and simulating just
one observable. Let us consider a situation where one seemingly needs
more than one observable to simulate a given set of observables. Thus,
let A C O(S) be a subset of observables such that A C sim(B) for some
set of simulators B C O(S). By definition A C sim(B) if and only if
A = icinal I8 (VA’(i) o BA’(i)) for some observables {BA’(i)}?:A1 C B with
outcome sets §2;, some probability distribution (pf‘)?:’*l and post-processing
matrices {vAO}A C M for some np € N for all A € A with outcome
set Qa.

Let us consider a case where n := na and (p;)?; = (pf), are in-

dependent of the observable A € A. We define a new post-processing v*
A, (1)

A

by setting 1/(Z 2y = Vay for all z € Q;, y € Qa and i € [n], and a new

observable B by setting B(l z) = PiB BY for all z € QB“) and i € [n]. What
follows is that then one can check that A = v o B for all A € A. Thus,
in this case A is actually compatible as it can be simulated with only one
observable. On the other hand, we see that if A is compatible, then clearly
there exists a set B = {B} such that A C sim(B), where the implemented
(trivial) probability distribution is the same for all A € A. Thus, we have
shown the following result which can be extracted from Publication I and
which was also explicitly shown in [30].

Proposition 32. A set of observables A C O(S) is compatible if and
only if there exists a set of simulators B C O(S) such that A C sim(B),
where the mixing part of the simulation is achieved with the same probability
distribution for every observable in A.

The joint measurement scheme for two observables given by the above
result is depicted in Fig. 5.3. As a further demonstration of this result, let
us consider a collection of m observables {A(M}7 . where A®) € O(€;,S),
and suppose that

S wAD;T) >m -1, (5.5)
i=1

where 7 = T(S) is the set of trivial observables on §. We will show
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Figure 5.3: Simulation-based joint measurement scheme for two observ-
ables A = p(vC 0 C) 4 (1 — p)(uP o D) and B = (1 — p)(vP o D) + p(u® o C).

that the above noise condition is sufficient to satisfy the premise of Prop.
32. Let us start by defining a probability distribution (p;)7*; by setting
pi =1 —wA®;T) for all i € [m — 1] and p,, = 1 — Z;”:_ll pj. Indeed,
clearly >, p; = 1, and it can be checked that p; > 1 —w(A®;T) for all
i € [m], where the inequality is an equality for i € [m—1] and the inequality
for i = m follows from Eq. (5.5).

From the defining Eq. (2.2) of the noise content of AW with respect
to the set of trivial observables 7 (and since the supremum in that said
definition is always attained for the noise set 7 as shown in Prop. 4) it
follows that for each i € [m] there exists B(®) € O(€;,S) and T € T(Q;,S)
such that

AD = (AD; T)TO 4 (1 — w(A®D; 7))BO.

For i € [m — 1] we see that then A®) = p;BO) 4 (1 — p,)T®. For i = m

it is straightforward to see from p,, > 1 — w(AU™);T) that there exists

B(™) e O(Qy, S) such that A™ = p,,, B + (1 —p,,) T, Let us redefine
B(™) := B(™) 5o that now A = p,BO 4 (1 — p)TO for all i € [m].

Let us set B = {B@W}m,. For each i,j € [m] let us define a post-
processing (7)) € M™% by setting Vg(gi}i) = Ogy for all z,y € €, and
Vg(;Zj) = qéi) for all z,y € Q; and j € [m]\ {i}, where (q?si))yegi is the
probability distribution that defines T®, i.e., Tg(f) = qéi)u for all y € €;.
One can then easily confirm that

f: (09) 0 BOY) = B 4 (1 — p) T = AV
=1
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for all i € [m]. Hence, {A®}" < sim(B), where the used probability
distribution is the same for all A()) so that by Prop. 32 the set {A®}™, is
compatible. Hence, we have proven the following.

Proposition 33. Let {AD}™, c O(S) be a collection of m observables.
IF S w(AD; T > m — 1, then {ADY™, is compatible.

For example in the case of quantum theory, we can express the result as
follows: If the sum of the minimal eigenvalues of all of the effect operators
of a collection of m POVMs is greater than or equal to m — 1, then they
are compatible.

5.3 No-free-information principle

In quantum theory one can prove two powerful theorems: the no-information-
without-disturbance (NIWD) theorem shows that those observables that do
not cause any disturbance to the system when measured must be trivial
[130], and the no-free-information (NFI) theorem says that those observ-
ables that can be measured jointly with any other observable must also be
trivial (see, e.g., [63, Prop. 3.25]) . In other words, in quantum theory all
nontrivial measurements cause disturbance, and there is no free informa-
tion in the sense that a measurement of any nontrivial observable precludes
the measurement of some other observable.

5.3.1 The principles

In Publication ITI we show that both of the claims described above do not
hold in general in all GPTs. Thus, we can consider them as principles rather
than theorems, and see in which theories the NIWD and NFT principles
do and do not hold. To this end, we define the following three sets of
observables on a state space S:

T(S) ={A € O(S)|A.(s) = Ax(s') Vz € Qa, Vs,s € S},
ND(S)={A € O(S)|Aw®id},
FC(S)={A€O(S)|AoB VB e O(S)},

where we have denoted the compatibility of two observables or an observable
and a channel by the symbol @ .
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The first set 7(S) is clearly just the set of trivial observables on S,
i.e., observables that do not provide any information about the measured
state. The second set N'D(S), the set of non-disturbing observables, consist
of those observables that are compatible with the identity channel id on
S. In this context the compatibility of a channel ® and an observable A
means that there exists an instrument Z that can be used to implement
both, ie., 3,7, = ® and AZ = A [48]. Thus, the set of observables
that are compatible with the identity channel can be measured with some
instrument in such way that the measured state is left unchanged and thus
undisturbed. The last set FC(S), the set of fully compatible observables,
is the set of all observables that can be measured jointly with any other
observable on S.

In general we can argue the following: First of all, any trivial observable
T e T(,S), defined as T, = p,u for all x € Q for some probability distri-
bution (ps)zecq, is non-disturbing as it can be implemented with the instru-
ment 7 € Ins(§2, S) defined as Z, = p,id for all v € Q2 so that > o7, = id
and AT = T. Secondly, if an observable A € O(A,S) is non-disturbing so
that it can be implemented with an instrument J € Ins(A,S) such that
> yen Jy = id and A7 = A, we see that for any observable B € O(T,S) we
can define an observable GB € O(A x T', S) by setting Gg’z =B, 0 J, for all
y € A and z € T. Clearly then GB is a joint observable for A and B so that
A @ B for all B € O(S). Thus, we can conclude the following

T(S) CND(S) C FC(S). (5.6)

In this way we get a concise formulation of the two principles: the
NIWD principle means that ND(S) = T(S) and the NFI principle means
that FC(S) = T(S). From Eq. (5.6) and the discussion above we also see
that the NFI principle implies the NIWD principle.

We proceed by looking at the sets of non-disturbing and fully compatible
observables separately, characterize them in a given theory and provide
examples of theories where one, both or none of the principles hold. In
previous works, the NIWD principle has been studied in GPTs in [131], but
the NFI principle does not seem to have been studied before to the best of
our knowledge.
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5.3.2 Non-disturbing observables

Let us start by introducing a structure needed for the characterization of
state spaces where the NIWD principle can be violated.

Definition 17. The direct sum of state spaces S C Vi,...,S, C Vp,
denoted by @}, S;, is a state space in the vector space Vi X -+ X V,
defined as the set of ordered and weighted pairs of states from Si,...,S,,
i.e.,

@8 = {()\181,...,)%8”)‘ Vi € [n] 18 € Siy)\i € [0, 1], Z}\z = 1}.
=1 =1

Some basic properties of direct sums of state spaces include that if
S =d,Si C Vi x - xV, for some state spaces Si,...,Sy,, then
E(S) = &E(81) x -+ x £(S,). Also, if A = (AW ... AM) € O(S) and
B = (BW,...,B™) € O(S) are two observables on S = @™, S;, then
A ® B if and only if A®) @ B for all i € [n]. Furthermore, the following is
a useful condition for determining when a state space can be expressed as
a direct sum of some other state spaces:

Proposition 34. Let S be a state space. If S1,...,8, C S are closed, con-
vex subsets of S such that conv(U}_,S;) = S and for every s € S there exists
a unique convex decomposition s = Y i~ \is; into elements of Si,...,Sy,
then S = @i, Si-

By using the direct sum structure (similar to [131]) we are able to show
the following characterization of a state space S where the NIWD principle
is violated that also contains a characterization for the set of non-disturbing
observables N'D(S):

Proposition 35. An observable A € O(Q,S) is non-disturbing, i.e., A €
ND(S), if and only if the state space S can be represented as a direct sum
S =@}, Si such that A, is constant on each S; for all x € Q and i € [n].

The intuition behind the previous result is that the non-disturbing ob-
servables can only provide essentially classical information about in which
summand state space S; the state was prepared in, and naturally such ob-
servables only exist if the state space can be represented as a direct sum
to begin with. Clearly every state space S can be represented as a direct
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sum with only one summand, &, but in such a representation only the triv-
ial observables are constant on S by definition. Thus, the violation of the
NIWD principle indeed requires a non-trivial direct sum structure.

As a simple example, let S C V be a 2-dimensional state space so
that dim(aff(S)) = 2 and dim(V) = 3. Suppose S is a direct sum of
state spaces S; and Sp. Then § = S & Sy C Vi X Vs so that dim(Vy) +
dim(V;) = dim(V) = 3. It follows that necessarily one of the state spaces
S1 and S must be a point and the other one a line segment so that S is a
triangle, S = S§l. Thus, the only 2-dimensional state space that admits non-
disturbing observables is just the classical state space shaped as a triangle.
In particular this implies that for the polygon state spaces S,, we have that
ND(S,) =T(S,) for all n > 3.

Intuitively it is known that in the classical case one can perform every
measurement without disturbing the system. To see this in the current
context, let us consider a d-dimensional classical state space Sgl. For Sgl we

see that because Sgl = conv({d1,...,04}), where d1,...,d4 are the extreme
points of Sgl, and because the convex decomposition of every state d € Sgl
into pure states d1,...,04 is unique, it follows from Prop. 34 that SC’;Z =

@<, {6;}. On the other hand, since every effect of every observable on S§ is
obviously constant on each pure state d;, it follows that N'D(S) = O(S¢)
so that every observable on a classical state space is non-disturbing.

Using the direct sum of state spaces one can easily construct other state
spaces where the NIWD principle is violated, i.e., ND(S) # T(S). For
example, this is true in all 3-dimensional state spaces that are a direct sum
of any 2-dimensional convex set and a point so that they have a pyramid
type of shape with any convex base. Moreover, although in single system
quantum theory we know that non-disturbing observables are always trivial,
we can still consider direct sums of quantum state spaces which lead to
different superselection sectors [132]. For a more detailed example of this
see Publication III.

5.4 Fully compatible observables

For the set FC(S) of fully compatible observables it turns out that we
can use the structure that we developed for studying the simulability of
observables. As we have seen, simulation can be considered as a certain
type of generalization to joint measurability, so this type of connection is
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only natural.

5.4.1 Characterization and properties

In particular, we can show that the simulation irreducible observables play a
crucial role in the characterization of the set of fully compatible observables
in a given theory.

Proposition 36. An observable is compatible with every other observable
if and only if it can be post-processed from every simulation irreducible
observable, i.e.,

FCS)= () sim(B).
Beoir'r(s)

Since for each B € Oy (S) there is an extreme simulation irreducible
observable B such that B <+ B (namely the minimally sufficient representa-
tive of the equivalence class of B), it follows that sim(B) = sim(B) so that if
we denote the set of extreme simulation irreducible observables by O¢%(S),
we must have that actually FC(S) = Neeos=t(s) sim(B).

The previous result is analogous to the characterization of the trivial
observables: T(S) = Ngeo(s) 5iM(B) = Ngeco(s)\7(s) 5im(B). We see that
restricting the set O(S)\ 7 (S) to i (S) is enough to make the difference,
if such a difference exists in a given theory, between trivial and fully com-
patible observables. As was stated at the very beginning of this section,
such a difference does not exist in quantum theory where the NFI principle
holds. The following result provides another class of theories where the
NFT principle does hold.

Proposition 37. In every point-symmetric state space S we have that

FC(S) = ND(S) = T(S).

This result is based on the fact that in point-symmetric state spaces one
is able to find two inequivalent dichotomic simulation irreducible observ-
ables A and B and by analysing the structure of the effects in sim(A)Nsim(B)
one can show that only trivial effects can exist in the intersection of the
spans determined by the extreme rays corresponding to the two indecom-
posable effects of each observable.

To see that in general there is a difference between FC(S) and T(S),
i.e., that there are theories where the NFI principle does not hold, we can
show the following:
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Proposition 38. Let S be a d-dimensional state space. If |OS%H(S)| <

rr
oo and all of the extreme simulation irreducible observables have d + 1

outcomes, then FC(S) # T(S).

Although the previous result is quite limited in its effectiveness consid-
ering all of the different theories, we see that we can demonstrate its use
in the case of classical state spaces: on Sfll there is only one extreme sim-
ulation irreducible observable with d + 1 outcomes (the one that perfectly
distinguishes all the d + 1 pure states), and we see that FC(S$) = O(S).
This confirms the result that we have already established before. As has
also been established before, FC(S) = O(S) holds only in classical theories
and in this case ND(S) = O(S) also holds.

So far we have seen that there are theories (such as quantum and point-
symmetric theories) where FC(S) = N'D(S) = T(S) so that the NFI, and
thus also the NIWD, principles hold, and theories (such as the classical the-
ory, superselected quantum theory or any theory with a direct sum state
space) where N'D(S) # T(S) so the NIWD principle is violated. Further-
more, if S is classical, then we have that O(S) = FC(S) = ND(S) # T(S).
To conclude this Section and Chapter, we present the following example
where we find that there are theories where FC(S) # ND(S) = T(S), and
FC(S) #ND(S) #T(S).

5.4.2 (0dd) Polygon state spaces

Let us consider the polygon state spaces S,. As was discussed after Prop.
35, since S, is 2-dimensional for all n € N, we have that ND(S,,) = T(S,,)
for all n > 3 and N'D(S3) = O(Ss3). Also, if n = 2m for some m € N so
that n is even, the state space is point-symmetric so that by Prop. 37 we
have FC(Som) = ND(Sam) = T (Sam)-

Let us focus on the case when n is odd so that n = 2m + 1. As was
explained in Ex. 11 in Sec. 4.2, the extreme simulation observables on
Som+1 are trichotomic and there are a finite number of them so that we can
use Prop. 38 to establish that FC(Sam+1) # T (S2m+1)- In fact, the extreme
simulation irreducible observables are easy to find on Ss;, 11 and by looking
at the structure of the intersections in characterization of FC(S2y,+1) from
Prop. 36, the set of effects of the fully compatible observables, denoted by
EFC(Sams1), can be fully characterized. While we leave the details of the
full characterization to Publication III, we present this set of effects for the
simplest non-classical odd polygon, the pentagon, in Fig. 5.4.
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Figure 5.4: The set of effects Ex¢(s,) of the fully compatible observables
FC(S5) in the effect space £(S5) of the pentagon state space Ss.

From the Fig. 5.4 one can see that the set of effects Er¢s,,,.,) are
heavily centred around the line segment &7 = {pu|p € [0,1]} of the trivial
effects. Indeed, as we increase m in n = 2m+-1, we can show that Exc(s,,,, 1)
shrinks more around &7 so that in the limit m — oo when the polygon
becomes a disc that is isomorphic to the Bloch disc of real qubits S(R?),
we have that Eresrzy) = €7 and FC(S(R?) = T(S(R?)). Some of this
process can be explained by the use of the noise content with which we can
show the following:

Proposition 39. Let A € O(Q, Som+1) be an observable on an odd polygon
state space Sami1 with effects Ay = a(dy, 0om+1) for all x € Q. If A €
FC(Sam+1), then

w(A;T)>1- sin (s ) (5.7)

cos (i)

v

if m=2l+1 for somel € NU{0}, and

sin ( 525~
wAT) > 1 - M (5.8)

)
2
cos (4l+1)

if m = 2l for some | € N.
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n 3| 5 7 9 1| 13 |- | >0
RHS. ofEq. 5.7) [ 0] - |oms3| - |oss2| - |- ] =1
RH.S.of Eq. (5.8) | - | 0.528 | - |0803| - |o0872| | =1

Table 5.1: The lower bounds for the noise contents of the fully compatible
observables on odd polygon state spaces given by Prop. 39.

The values of the right-hand sides of Eq. (5.7) and (5.8) are listed in
Table 5.1. We see that the fully compatible observables are indeed quite
noisy as described above.

Lastly, let us consider a direct sum of two odd polygon state spaces, for
example a pentagon Ss and a heptagon S7. Since S5® Sy is a direct sum one
can construct a dichotomic observable A € O([2], S5 @ S7) defined by the
effects A1 = (u,0) € E(S5) x E(S7) = E(S5 & S7) and Ay = (o,u) € E(S5 &
S7). Since the effects of A are not proportional to u = (u,u) € (S5 & S7),
the observable A is not trivial. However, the effects of A are constant on
the summands S5 and S7 so that A € N'D(S5 & S7). Just as was explained
before, the observable A only detects whether the state was prepared in
S5 or S7 without disturbing the prepared state. On the other hand, we
can define an observable B € FC(S5 & S7) by setting B = (Bs, By), where
Bs € FC(S5) \ T(S5) and By € FC(S7) \ T(S7). Since Bs and B7 are not
trivial observables, neither is B and furthermore the effects of Bs and By
are not constant on S; and S; respectively so that B ¢ N'D(S;®S7). Thus,
FC(S5 ® S7) # ND(S5 © S7) # T (S5 © S7).



Conclusions

In this thesis we have considered measurements and their properties in
general operational theories. As measurements are a defining part of any
empirical physical theory, studying them gives us great detail about the
properties of the theory. By considering various operational tasks involving
measurements one is able to quantify how well they can be implemented in
different theories, allowing one to compare theories to one another. This
helps us to understand what might be the defining properties of quantum
theory and what makes quantum theory so special. In this thesis the main
focus was specifically measurement simulability and concepts related to it.

After having introduced the convex formulation of general probabilistic
theories in Chapter 1, we started Chapter 2 by considering various com-
munication tasks that are characterized by communication matrices which
originated from the experimental prepare-and-measure scenarios. This al-
lowed us to provide context to operational properties that can be considered
in the framework of operational theories. Furthermore, we considered how
the communication tasks could be simulated by other tasks by the means of
ultraweak matrix majorization. This helped us determine that some tasks
might be more difficult to implement than others. By considering various
mathematically and physically motivated monotones on this induced or-
der of difficulty we were able to derive physically meaningful characterizing
dimensions for the theories. We identified (most) of the characterizing di-
mensions for quantum theory and compared it to other theories and saw
differences in tasks such as minimum error state discrimination.

Chapter 3 was our first step towards simulation of measurements. As
one of the two main components of simulability, we considered the classical
manipulation of measurement outcomes known as the post-processing of
observables. Furthermore, we generalized the concept of post-processing
to instruments. We studied how post-processing can be used to obtain
a new measurement from a known one, how this defines a way to com-
pare measurements to each other and characterized the structure of this
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induced order. We saw that in the case of observables every observable
can be post-processed from different indecomposable observables while for
instruments only the identity channel can be used to post-process every
other instrument from. We demonstrated the newly defined instrument
post-processing by considering indecomposable instruments and measure-
and-prepare instruments. For quantum theory we saw that indecomposable
elements are exactly the rank-1 elements both for POVMs and quantum
instruments and that random orthogonal isometric instruments can be used
to post-process every other quantum instrument.

In Chapter 4 we reviewed the simulation scheme of observables, combin-
ing the classical operations of mixing and post-processing of observables.
We found that every observable can be simulated by a class of simulation
irreducible observables, and we characterized these observables in terms of
the structural notions of indecomposability and extremality. We demon-
strated the simulation of observables by considering theories beyond the
no-restriction hypothesis in which we argued that the physical restriction
imposed on the set of observables must be closed with respect to the simula-
tion process. Furthermore, we characterize the restrictions based on which
level of description of a measurement the restriction takes place and give
examples of different types of restrictions. Although in quantum theory
the general set of POVMs is unrestricted, experimental limitations might
force one to use these types of restrictions on experimental set-ups even for
quantum systems.

We close the thesis in Chapter 5 by considering the connections between
compatibility, i.e., joint measurability, and simulability of observables. We
see that simulability can be considered as a generalization of compatibility
and derive a simulation— and noise-based sufficient condition for compat-
ibility. We explore this connection further and see that the set of fully
compatible observables, i.e., observables that can be measured jointly with
any other observable, can be characterized in terms of the simulation ir-
reducible observables. We see that two important principles that hold in
quantum theory, namely the no-information-without-disturbance principle
(according to which observables that do not cause any disturbance in the
measured system must be trivial) and the no-free-information principle (ac-
cording to which fully compatible observables must be trivial), do not hold
in operational theories in general. This way we see that to some extent
these principles hold some of the characteristics of quantum theory and
may even be used as axioms to exclude unphysical theories.
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