84l TURUN
%t YLIOPISTO

CUSTOMTOOLS as general integration platform for
SOLIDWORKS - ERP data exchange

Software Engineering

Information and Communications Technology
Department of Computing

Master’s Thesis in Technology

Author:

Simo Erkinheimo
Supervisors:

Professor Ville Leppanen (University of Turku)

Assistant Professor Tuomas Mikild (University of Turku)

June 2021

The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin Originality Check service.

Master’s Thesis in Technology
Department of Computing, Faculty of Technology
University of Turku

Major subject: Software Engineering

Degree Programme: Information and Communications Technology

Author: Simo Erkinheimo

Title: CUSTOMTOOLS as general integration platform for SOLIDWORKS - ERP data exchange
Pages: 95 pages, 0 appendix

Date: June 2021

This thesis introduces the extreme complexity behind CAD — ERP integrations in real world scenarios
as a reasoning why a general-purpose integration for all system variations simply does not exist.
Delivered integrations are mostly fully customized projects, solving the same issues repeatedly with
varying success and promise of usability.

To attempt at least some level of generalization, the CAD system is chosen to be SOLIDWORKS, and
CUSTOMTOOQOLS for SOLIDWORKS is chosen to provide partial solution by itself as well as an
integration platform for any target ERP system.

Subject matter expertise is first heavily relied on determining the most common requirements of
SOLIDWORKS — ERP integrations and design science methodology is used to generalize a solution.
CUSTOMTOOLS Profile is configured to meet some of the requirements and CUSTOMTOOLS API
is thoroughly examined for meeting the rest, eventually resulting in generalized solution in the form of
data model configuration rules and integration base implementation, embedded in the
CUSTOMTOOQOLS core product. The true complexity of the common requirements can be easily seen
in the generalized solution architecture, and benefits of the provided solution are recognized by
consulted SOLIDWORKS - EPR integration project experts. The provided solution will be taken in
use for future integration projects.

Keywords: ERP, CAD, integrations, SOLIDWORKS, CUSTOMTOOLS

Table of contents

1 Introduction

1.1

1.2

1.3

14

Role of an ERP in manufacturing industry
Problem statement
Motivation of this thesis

Content

2 SOLIDWORKS

2.1

2.2

2.3

24

2.5
2.51
252
253
254

2.6

Design methodology

Simplified design process

Model files and file reference handling
Model specific arbitrary design data

Bill of Materials
BOM Types
Configuration grouping
Design time BOM modifiers
SOLIDWORKS BOM as automatic data source for ERP

Common requirements for SOLIDWORKS - ERP integrations

3 CUSTOMTOOLS for SOLIDWORKS

3.1
3.11
3.1.2
3.1.3
3.14

3.2

3.3

3.4
3.41
3.4.2

3.5
3.5.1
3.5.2

Properties
Attribute inheritance model and Initial Configuration -setting
Settings for Properties used to identify ERP Items
Property types
Property functions

Lookup Lists
Search Group linking

Export
Export Profile and its types
Export Profile Fields

Script Add-ins
Architecture
Deploying extensions to CUSTOMTOOLS Environment

4 ERP Integration with CUSTOMTOOLS

10
11
13
13
15
17
18

20
20
22
25
26

27
30

31
31
33
37
38

39
42

44
45
47

48
48
49

51

4.1 Architecture from the requirements

4.2 Generalization

4.21
422
4.2.3

Export Settings

Base Extension with complete settings generalization

Event Extensions

4.3 Data model configuration

431
432
433
434
4.3.5
4.3.6

Target system requirements
User-friendly values in Lookup Lists
Design to Item -mapping

Item identification by target system
Design time ERP item mapping
Configuring the CT Profile

5 Applying the provided solution

5.1 User implementation example

5.11
5.1.2
5.1.3
514
5.1.5
5.1.6
5.1.7
5.1.8

Field-to-field mapping

Export profile mapping to Company selection
Web Service endpoint in Profile Options

User specific login credentials

Simple Event Extension using the stored data
The Main Extension

“My Integration” showcase

When the case is not the worst

5.2 Comparison & Analysis

5.3 In-house feedback

6 Discussions & Closing Words

6.1 Conclusions

6.2 Limitations & future improvements

6.3 Extending the work for other CAD — ERP integrations

References

51

55
57
58
59

60
60
62
63
64
68
68

75

75
75
77
78
80
81
83
84
87

88
91
92
92
92
93

94

1 Introduction

1.1 Role of an ERP in manufacturing industry

Generally, in all industries, it is required to be efficient to reduce operational and manufacturing costs.
Many Enterprise Resource Planning (ERP) solutions aim to help with this goal by collecting business
data under the same system, thus making it possible for different departments or sites to interact
seamlessly for greater value. A simple example would be having warehousing, manufacturing and
sales all under the same system. For salespeople to sell, there must be items to sell in the warehouse or
at least in the manufacturing pipeline for later delivery. Having it all available in the same system
should bring obvious advantages over separate systems. (Singh & Khamba, 2017, pp. 42-44) (Hwang
& Min, 2013)

In the manufacturing industry a single design company may easily create thousands of CAD models in
a month. So large amounts of design data and documents are produced that, for design time efficiency,
must all be accessible and available for reuse by other designers of the company. (Eustache, et al.,
2002) This problem is handled with Product Data Management (PDM) solutions that are usually
tightly integrated with single or small selection of CAD software to provide real efficiency for
continuous design processes. However, while essential and usually the first system to invest in the
CAD design business, a PDM alone is generally not meeting the requirements that arise from a

resource planning point of view. (Hou, et al., 2008)

As much as there is product data for a PDM system to handle, there can be the same amount or even
more corresponding items- and bills of materials data that are required to be managed in the ERP
system. While a single CAD document in PDM may describe a piston of an engine and how to
manufacture it, in the ERP the piston is just one of the items that are required to fulfill a purchase
order of an engine. Items that are manufactured usually require many types of resources and time, and
as such it might sometimes make better sense to order that piston from elsewhere than to manufacture
it from the resource planning point of view. This is exactly what an ERP system is designed for and

thus also justifies its place in the manufacturing industry. (Muni Prasad, et al., 2013)

1.2 Problem statement

As the design and manufacturing industry dwells on large amounts of relational design data (Figure
1.2.1), it is basically unreasonable to expect that anyone would manually handle the data exchange
from the design environment to the ERP. Manual work has sometimes seen to be done on a very
abstract level of design itemization but resource planning efficiency with that can only go so far, not

even to mention the human resource cost for the manual work itself.

[nctuge beoken reterences. (@1 nestea view (Orit e

o compunt | [Copy P e Hew

Figure 1.2.1: YE\il‘enhajsimpIe ;ténk can have hundreds of components.

Thus, to get real benefits out of an ERP system in the design and manufacturing industry, the data
exchange between the design and ERP environments must be automated. Because many different and
even fully customizable ERP systems as well as PDM systems exist that can sometimes support single
or a selection of CAD software, in practice the reality of an integration is always a CAD specific
customized solution at least to some extent. Some ERP specific integration products of course do
exist, but if they require a very specific design data model to work, they just will not with existing
designs without migration; unless they are configurable by the full data complexity that the CAD
system allows. Impossibility to migrate data from a legacy system to a new system (Muni Prasad, et
al., 2013, p. 47) is one of the key issues what it comes to integration projects. (Fawzy Soliman, 2001)

(Hwang & Grant, 2011)

Also, as batch exporting design data to ERP is the top requirement of an integration as will be
discussed in Section 2.6, this type of one-way integration alone is not enough even for a task as simple
as creating a new design for an existing ERP item. Already from these requirements it follows that an

integration must be bi-directional and configurable integral part of the CAD designer’s familiar

system, without forgetting the importance of design cost efficiency to successfully serve its purpose.
As the existing design data must be considered as well, configurability of the itemization has a large

role in successful integration (Figure 1.2.2).

L € PLATE_LIFTING LUG_280x150x3_1430 |
B LIFTING LUG_HOR_6mm (Default<<D
,
’
) 3 st(1
i e
s » [E) Equations
85 AS1365 HAS0 Steel Plate i
1 FrontPlne } 55 45136 HA250Stel Plte
“ (1] Front Plane
[Top Plane (] Top Plane
(2] Right Plane ‘:;i‘ v
Origin
L L, origin
» @] Boss-Extrudel
g0 Sheet-Metall
») Base-Flangel
[Fillet1 .
.
» Flat-Pattern
Y —_— [/\.
) SA_LIFTING_LUG_6mm_1450 (Default-
L4 History
Sensors
» Annotations
]
|_;_‘ Front Plane
i
|_;_‘ Top Plane
~
|_;_‘ Right Plane
I_, Crigin

4 % LIFTING LUG_HOR_&mm-<1> (Def
v €8 () PLATE_LIFTING LUG_280x150x
4 @@ Mates

[pLANE!

[

e

Figure 1.2.2: It is non-trivial to conclude directly from a CAD design which assemblies or parts should
be considered as ERP items.

The generalized problem is the overall required complexity of an CAD — ERP integration when
considering the most common requirements that such integrations must meet. This extreme

complexity is likely the reason why such generic solution simply does not exist.

To narrow down the problem, this thesis focuses on a specific CAD system, SOLIDWORKS, that has
a well-documented API sufficient for required data exchange. Its model specific arbitrary design data
is a list of key-value -like Custom Properties (Figure 1.2.3) for the document, and also another set of
them per each configuration of the document. While this data model is quite simple by itself, the data
access in design time is done by other tools that create their own view and access to the design data
(Figure 1.2.4). It is this view that has determined not only the data keys and values for all of the
existing designs but also the expectancy of data inheritance and distribution between configurations
when an entry is modified from that view. Data consistency over the whole company is usually

ensured with some sort of shared profiling or a PDM system. (Hou, et al., 2008)

2
_| S soLipworks

et o e T i win |

e o [e P e |
S BE[E[&[e]>
e

€ 5A_LIFTING_LUG 6mm_1450 (Default
v [History

) semson:
+) Annotations

(1] Front Plane

(1] Top Plane

[might Plane

L. oigin
+ G} LIFTING LUG_HOR Smm<1> (Def
+ @ () PLATE LFTING LUG 281501
b D Mates

(1] pLanEr

Figure 1.2.3: Models specific design data, Custom Properties, can be freely typed and edited.

wizard

IO =T @ - SA_UFTING AUG_bmm_1450
Summry nformation - o x
Summary CUStON Canfiguration Speciic

SOM ausntity:
Delet “Hane - BT
e | Vaue /- Evaluated Value

=] Goa0e1 Goam
Tert =] 6 UFTING LUG ASSEMELY - 7450mm DIA TANE |G LFTING LUG ASSEM
Ton 3]
Gt iz 208
Tot >
Oate EEED /20
Ton 3]
Gate -
Tot E
Ten | SWMar @A UFTING LG 6mn 14S0SLDASM. [1567.55
ot o [FUELTANK
Ten | TsoocssTARK 7S00L S8 TANE
Tot 3]
Ten E
o S]rerercom [RereR poM
Ten] cos0en- [GoAd01-
Ted | Gtsen Design (Gllsan Design
Ten Sl ooy
Test ~|wore [ouare

e | =

ox Cancel Help

+- OO

N

Figure 1.2.4: SOLIDWORKS Tab Builder (right) is one way of accessing Custom Properties in a

asm group

asm group 2

asm prop

asm list

asm1

asm2

asm3

preprofiled manner to guide designers for consistent data filling.

SOLIDWORKS is also capable of providing a dynamic Bill of Materials (BOM) (Figure 1.2.5) for
models that, when correctly configured, one could expect to work as a perfect data source for item and

BOM export to ERP. (Zhu & Yan, 2018, p. 59) This option will be thoroughly examined and shown in

Section 2.5 why it is not a feasible data source in real world applications.

MEMNO. | PART NUMBER DESCRIPTION Qry.
BSP THREADED PIPE C/W
1 PAEPEDIPSTICK.S0NS | ANTIFLASHING GAUZE & CAP - 1
- CALIBRATED AL RHS
1 FLASH SONB 1450
12 | WASHER_ANTIFLASH 1
13 1
14 | PLATE_STRIKER_50NB 1
1.5 | CAP_sONB CAP 50NB |
2 BSP SOCKET C/W DROPPER & PLUG| 1
21 PIPE_INTERSTIAL_SONB_ 1
1450 -
22 | SOCKET_SONB SOCKET SONB 1
23 | PLUG_SONB SQUARE PLUG S0NB 1
s _SBUND_S| BSP SOCKET C/W RISER AND ,
3.1 PIPE VENT_SONB_SBUND 1
32 [SOCKET_SONB SOCKET 50NB 1
SR Reglizaes WEATHERPROOF CAP 50NB 1
2 - - BUNDVENT !
41 PIPE ELBOW_BUNDVENT| SONB PIPE ELBOW FOR BUNDVENT | |
42 | SOCKET_SONB SOCKET SONB 1
WEATHERPROOF
43 (AR WEATHERPROOF CAP SONB 1
| ASSEAARIY _ ENNAAAL MAAMRNATAY 1

Figure 1.2.5: Part of SOLIDWORKS generated bill of materials

To wrap up the targeted problem of this thesis, it is an extremely complex task to achieve a
SOLIDWORKS - ERP integration of true value and therefore such integrations tend to be either
expensive or poor quality, or simply ignore some of the common requirements and fail to deliver the

advertised value for the integrated environment.

10

1.3 Motivation of this thesis

The author of this thesis is currently employed in a software development team whose main product is
CUSTOMTOOQLS for SOLIDWORKS, a SOLIDWORKS add-in that among other things has
extremely configurable Custom Property access. It can respect most cases of logical data inheritance
models that have been used in legacy designs to provide as familiar a user experience and data model
as possible. Its view and data access for the Custom Properties is simply called Properties (Figure
1.3.1) and it can support a variety of per-property data sources as well as value automations and

configuration targeting, and they are extendable for ERP item mapping too as will be shown.

®
Properties @

v X

Action: ~

% | cr-001-a001 @CT-001-2001

£ peraurt -
ls

Property Specific v

k Default -

File information ~

Description | TANK MAIN DRAWING
" [rreeten z

B vsedon [|

Designer -

DrawnBy [sgR ~]
DrawnDate ‘ 3/16/2020 D'l :>.

Figure 1.3.1. CUSTOMTOOLS Properties

CUSTOMTOOLS also provides its own BOM -like view which can be configured to collect any data
from the models into the same view, Export (Figure 1.3.2). This is originally designed especially for
customized report generations and simple integrations, but the API has since extended way beyond the
original intentions due to different kinds of requests and requirements. The author recently had an
opportunity to solve more specific extensibility requirements which led to the birth of a new
extensibility framework, CUSTOMTOOLS Extensions API. It complements the original event based
CTInterface API with class abstractions that can be extended and are treated as they were specific core
features (CUSTOMTOOLS API Help, 2021). It is already known that the common ERP integration
requirements can be met with what is now available. However, due to overall complexity, the same
problems have been solved and resolved already countless times by different developers with varying

success. As the common requirements are always similar and the platform underneath is the same,

11

there is a clear motivation to provide a generalized solution, which will hopefully lead to more robust

implementations and faster integration development cycle as well as growing user base.

. L e
iketch | Markup | Evaluate \‘ SOLIDWORKS Add-Ins | CUSTOMTOOLS | PHLPP §-v -0 ‘ «
O Export (CUSTOMTOOLS) o x
i@ Prnt/Convert | Where Used | [B) Fie Operations | |3 Ust
It<Default Disg| Structre view: Profie |
] o ey o=
Item Name Drawing No Item No Qty Description Material Designer Design Date Finish Preview ~ Selection E
B CT-001-A001 SLDASM 0 1 7500L 1450mm DIA SB TANK REFER BOM

L SBUND TANK REFER BOM
0 SHE... REFER BOM
REFER BOM

1
1
-1
1 MBLY SPILL BOX
- 1 LADDER & PLATFORM - 5000. —
ng Lugs ~ @154 _PIPE_DIPSTICK_SONE... B5P THREADED PIPE C/W ANTIFLASH... REFER BOM
@ PIPE_ANTI FLASH_SO.
G WASHER_ANTIFLASH...
@4 MESH_ANTIFLASH S...
@ PLATE_STRIKER_SONB
N @ CAP_SONB.SLDPRT
~ @sa_PIPE_INTERSTITIAL 5...
@ PIPE_INTERSTITIAL S...
@SOCKET}DNB SLDPRT

Filename:
C:\Users\serkinhe\Documents\GD-000 Tank ——

BOM
CAP 30NB

BSP SOCKET C/W DROPPER & PLUG REFER BOM e R
Exduded from BOM

SOCKET S0NE BLACK STE. = - atior
SQUARE PLUG 50NB aitloL
NPTSOCKET C/W SQUARE PLUG - SP... -
SQUARE PLUG 50NB —
SOCKET 50NE BLACK STE...
B5P SOCKET C/W RISER AND WEATHE... REFER BOM

& PLUG_SONB.SLDPRT
~ €@5A_SOCKET_50NB_SPAR...
@ PLUG_S0NB.SLDPRT
€ SOCKET_50NB.SLDPRT
~ @sa_PIPE_VENT_SBUND_S.
€ PIPE_VENT_50NB._SE...
@@ SOCKET_50MB.SLDPRT
& WEATHERPROOF CA...

SOCKET 50NB BLACK STE.
WEATHERPROOF CAP 50MB v

WD RN oW RN SN MR W oo

Search string:| search

{search aitera s not specifed) < >

\ I
Figure 1.3.2. CUSTOMTOOLS Export

1.4 Content

Chapter 2 describes very basic usage of SOLIDWORKS covering its terminology, design
methodology and how a multicomponent design with its property data results in a bill of material
(BOM). Bills of materials are the starting point of structural itemization of SOLIDWORKS models,
and it is important to understand how they are built and what is the designer’s role in their formation
to understand why the BOM is not sufficient data source as it is for ERP integrations. Finally, the most
common requirements of SOLIDWORKS - ERP integrations are introduced, sourced by subject
matter expert consultation, and for which this thesis will aim to provide a generalized solution in

Chapter 4.

Chapter 3 introduces CUSTOMTOOLS for SOLIDWORKS, a SOLIDWORKS add-in that can handle
profiling of properties and their data content as an extremely configurable integrated solution. Also, it
provides its own SOLIDWORKS BOM like structural data representation, CUSTOMTOOLS Export,
that together with the open CT API, can tackle the common real-world issues that the SOLIDWORKS
BOM has as a data source (Section 2.5.4). Other ERP integration related CUSTOMTOOQOLS features
are briefly overviewed, like the Lookup Lists and Search Groups as well as CUSTOMTOOLS’ own
script deployment system that bring the same extended features for all users in the same environment.

CUSTOMTOOLS will be used as an integration platform for the generalized SOLIDWORKS - ERP

12

integration. This chapter lacks citations since the author of this thesis is CUSTOMTOOLS Product

Manager (2021) and therefore subject matter expert of its content and claims.

Chapter 4 uses design science methodology in generalized solution architecturalization. It goes more
in depth with CUSTOMTOOLS’ profiled behavior and its API by utilizing subject matter expert
knowledge to introduce rules for data model configuration and generalized base implementation for all
integrations targeting the same common requirements. C# generics is heavily utilized to provide strong
typing and compile time type safety, having the aim at implementation ease-of-use and solution

quality when utilizing the provided base.

The given solution is put to test at Chapter 5 with an example implementation and then evaluating the
difference in required complexity when implementing the same requirements from scratch versus
using the provided base implementation. In-house feedback from subject matter experts that have
many years of experience implementing said common requirements for integrations is also presented,

highlighting the significance of this work for them.

Chapter 6 discusses this thesis not only in the presented scope but also in more generalized manner
whether the conclusions could be extended beyond its context. Also, future improvements are

suggested to generalize the provided architecture even further to extend the archived benefits.

13

2 SOLIDWORKS

SOLIDWORKS is a computer-aided design (CAD) software used mostly in mechanical designing. Its
first release was in 1995 and in 2016 it had grown to 2.3 million active users globally. (Schmitz, 2016)
It is a solid modeler that utilizes parametric feature-based approach for creating parts and assemblies

that can be mated together to form more complex assemblies.

Figure 2.1: A tank design created with SOLIDWORKS.

2.1 Design methodology

In SOLIDWORKS design methodology, important concepts to fully understand are parts, assemblies,
configurations, components and drawings. Parts and assemblies are 3D designs and referred to as
models. Drawings are dynamic 2D projections of the models they represent. When a part or an
assembly is used within another assembly, they are referred to as components of the assembly.
(SOLIDWORKS, 2015, pp. 11-13) Due to the dynamic aspect of the drawings, a valid drawing cannot
exist if the model it refers to is lost. The same non-validity applies for assemblies that depend on other
assemblies or parts too. Thus, for instance a drawing is critically dependent on the existence of every

single model that is included in the design.

14

S SOLIDWORKS | e ot vew met Toos weaow wer 4| O -F-@-8- [eB®- 000001
o m . @ m w4
8% @ @ = @ B E:g 3 o

) a - I
Propetties Copy Comment Open Print/Convert Explore Where
Drswing Used Bounding

sor

Assembly | Layout | Sketch | Markup | Evaluate | SOLIDWORKS Addins | CusTOMTODLS P T H Y

e[B[E[¢[@] >

-

@ 000001 (DefouteDefau_Disply Stste- 15 -
astory

») Arwotations
[] Front
{1 Top
i1 Right
L. origin
C satayoue
[saaviienh

1 itk
1 pinkH

2 1

Figure 2.1.1: SOLIDWORKS Assembly, Part and Drawing

To be more accurate, a model or a drawing never just refers to a complete model, but always to a
configuration of a model. A configuration defines the enabled features and their parameters in a model
and there is always at least one configuration in each model. (Iancu, 2016) This means that it is
possible to create a single design and refer to for instance different configured sizes of it within

assemblies and drawings (Figure 2.1.2).

@ Bl & & >
-
@) Assem1 (Default<Default_Display State-1>)
i History
Sensors
¥ Annntatmns
|1| Front
[l Top
|1| Right
I_. Origin
» B (f) heavy hex bolt_ai< 1> (HHBOLT 1.0000-8x1x1-N<Display State-4>)
+ @ () heavy hex bolt_ai<2> (HHBOLT 1.0000-8x1x1-N<Display State-4>)
Lx ? (-) heavy hex bolt_ai<4> (HHBOLT 1.0000-12:2%2-N<Display State-6x)

@@ Mates

Figure 2.1.2: Assembly with 2 different configurations of the same heavy hex bolt_ai -part model

15

Target of the design process is usually to create something that can be manufactured. For
manufacturing processes that involve humans, a 2D -drawing is usually required but lately also Model
Base Definition (MBD) has been a growing trend. In MBD a capable device is used to display the

whole 3D design so the required measurements can be taken directly from it. (Mékinen, 2018)

For machine-based manufacturing like CNC machining, parts of the design are usually converted into

more suitable formats like DXF or DWG, or for instance into STEP-files for 3D printing.

Drawings are not bringing much real value to the scope of this thesis, so they are only briefly

mentioned.

2.2 Simplified design process

To create a design, one would start by creating a single solid object, a part, using parametric sketching

and then applying features on it to form a volumetric object (Figure 2.2.1). (Jankowski & Doyle, 2011)

g,
o 5
£
Yo

Figure 2.2.1: From parameters to volumetric object using sketch extrude

Already when a new empty part was created, it had a default configuration. It is possible to add a new

configuration and then for instance configure dimensions (Figures 2.2.2 and 2.2.3). (Iancu, 2016)

16

¢ BlRele

Configurations

~ @ Part1 Configuration(s) (Default)
e « Defautt [part1)
[Fe My Configuration [Part1]

-

Display States
(Q <Default> Display State 1 I

*lsometric

" Picture 2.2.2: Part1 having ‘Default’ -configuration active

DIER L

Configurations

~ @ Part1 Configuration(s) (My Cenfiguration)
e « pefautt [Part1]
[Fe « My Configuration [Part1]

Display States
() <Default> Display State 1 7

*lsometric

Figure 2.2.3: Part1 having "“My Configuration’ -configuration active

To join multiple parts together, an assembly must be created. It may contain any amount of
configuration instances of any parts and even other assemblies, except that the model must not result
in circular references. Also, all model files must have a unique name within the assembly.
(SOLIDWORKS, 2015) An example of a circular reference would be a car -assembly that contains a
car-body -assembly that again contains the car -assembly that contains the car-body -assembly ...it

quickly becomes obvious why circular references are not possible even in real life.

17

S[E[B[o[S] >
V-

@ Assem! (Default<Display State-1>)

» [&) History

[Top Plane
(] Right Plane

1., origin
» € () Part1<1> (My Configuration< <Defauit>_Display State 1>)
» €@ Part1<11> (Defoult<<Default> Display State 1)

» 0 et

Figure 2.2.4: Assembly Assem1 with two instances of Part1; one in My Configuration and other in
Default.

2.3 Model files and file reference handling

In the most basic case, every part and assembly would be their own file in the file system. However, it
is possible to design models virtually inside assemblies which, from the file system point of view,
would result in a single assembly file. This is particularly useful when the design is small, and its
components do not have to be reusable. All references of a file, that are not virtual, are referred to as

external references.

Every time an assembly is saved in SOLIDWORKS, all the paths to its first level external references
are stored into it. Then when an assembly is opened, SOLIDWORKS tries to find those external
references from the file system and include them to the model opening process. If the newly added
components have external references, the same operation is done for them too and so on the whole

transitive closure of components is traversed. (DASI Solutions, 2014)

As a single model may easily consist of hundreds of components, it becomes obvious that keeping
track of and even creating design related files on the file system is something that cannot just be left as
a wild west. File naming automation and design search are among the most basic needs even of a
small sized design company. SOLIDWORKS PDM provides a great solution for this but can be out of
the price range for small companies. Other SOLIDWORKS integrated systems trying to answer for the
same needs are for instance CUSTOMTOOLS and SolidPDM.

18

2.4 Model specific arbitrary design data

To store arbitrary design information, SOLIDWORKS has Custom Properties that are key - value like
attribute information for models and drawings. The Custom Property data is stored in the file in

question.

For a single model, there are always at least two separate sets of Custom Properties, one for the
document and one for every configuration of it. This is because a model always has at least one
configuration. When a model is used as a component, it is referenced in the parent assembly with its
configuration, so a configuration specific value for some Custom Property key is more significant than
a possible document level Custom Property value with the same key. However, if there is no value
found from referenced configuration, the search can fall back to the document level. This makes it
possible to define document level properties (e.g., Designer, Design date, Customer, Project, ...) that
are common for all configurations as well as configuration specific properties that are only valid when
referenced on that configuration (Length, Material, Weight, ...). This data can then be automatically
mapped to various tables like Bills of Materials or to annotation at drawings. (CAD2M, 2018)

% & @
Instant3D Summary Information - [m] X
- - Summary Custom Configuration Specific
ns | SOLIDWORKS CAM | SOLIDWORKS CAM TBM | CUSTOMTOOLS | BOM quantity: I
PERIE © @ 0o-3-
Property Name Type Value / Text Expression Evaluated Value

1 [rnisn Text [sereFinisH- SPREFINISH"
2 |owe Text || SPRP:"SW-File Name™ MANWAY_COVER_500NB
3 [matt Text ||"SW-Material @MANWAY_COVER S00NE:SLDPRT | AS1365 HA2S0 Steel Plate
4 |suee Text =
5 [LEnGTH Text -
6 |wiDTH Text -
7 |mvos cope Text M-
8 |reF Text |- -
9 |wEIGHT Text]| SW_Mass@MANWAY_COVER_S00NE SLDFRT- 16014.12
10 |VOLUME Text +||"SW-Volume@MANWAY_COVER_SOONBSLDPRT" 2037938.59 E
1 |area Text ||"sW-SurfaceArea@MANWAY_COVER SOONBSLDPR | 695975.87 bi
12 |Parthumber Text || sPRP-"SW.File Name™ MANWAY COVER_500NB p
3 |Job No. Text || GD-A001 GD-A0D1
14 [client Text ~|eo GD
15 |Designedty Text =S DG L
6 |Project Text || FuELTANK FUEL TANK r
17 |Description Text | soon8 ManwaY cover SO0NE MANWAY COVER '
18 |Revision Text =
19 |RevisionDate Date ~| 117202019 11/20/2019
20 |DesignDate Date 11202019 117202019 1
21 |approvedty Text ~
22 |approvedDate Date -
23 | Material Text 2] MID ST PLATE AS1354 HAZS0 6.0 MILD ST PLATE AS1594 HA|
24 | MaterialProperties Text ||"SW-Material @MANWAY_COVER S00NESLDPRT' | AS1365 HA2SD Steel Plate
25 |Density Text | "SW-Density@MANWAY_COVER_S00NE. SLDPRT 0.01
26 |Mass Text || "SW-Mass @ MANWAY_COVER_500HB. SLDPRT" 16014.12
27 |sub-Project Text ~||7500L sB TANK 7500L SBTANK
28 |projectin Text =
29 |Classification Text =
30 |process Text ~
31 |clientin Text || Gitson Design Gilson Design
32 |PartFilename Text || GD-A001 GD-AOD1
33 |Projectumber Text | Aco1 A001
34 |status Text [v] auore quoTe
35 |<Type a new property ! |

R EEERE | = == e

Figure 2.4.1: Document level Custom Properties of a model

Y & &

Instant3p

19

Summary Information

SOLIDWORKS CAM | SOLIDWORKS CAM TBM | CUSTOMTOOLS |

Apply to:

R R 1R =

Delete

Summary Custom Configuration Specific

Default v

BOM quantity: [

-None - ~

Property Name

Type

Value / Text Expression

[Evaluated value |
\

| Fmomumy | E

s
Figure 2.4.2: Configuration specific Custom Properties of a model. In this case the designer has
decided to put all data on document level properties, so they automatically apply for all configurations.

Without any tools, SOLIDWORKS users would have to type in manually each required Custom
Property key and value for the design documents, and this is very prone to human errors. There are a
variety of SOLIDWORKS integrated tools that aid in consistent filing of the data and they are usually
all based on some sort of profiling. For the very least the profile will pre-define the keys that should or
can be filled but many solutions have taken this much further with limited selections, automated
combinations or serials and even pulling predefined item data from 3rd party systems. Again, for
instance SOLIDWORKS PDM, CUSTOMTOOLS and SolidPDM are designed to answer these needs
as well as relatively very simple SOLIDWORKS Tab Builder. (Lombard, 2013, pp. 769, 387)

Default

Huawei Variant
<CONFIGURATION=>

<CONFIGURATIOMN=>

| | Huawel Case.slddrw
<DRAWING=

Desciption = Casing
Iltem Nro = 001234

Phone Case.sldprt
<MODEL=

y

'Huawel Variant]

Custmer = Huawei

'Default'l

Document Propertieg

Customer = MNokia
Description = Casing
Item Nro = 001234

Figure 2.4.3: In this fictional case a phone case is initially designed for customer “Nokia”. The same
design was later re-configured for customer “Huawei" but the designer typed Custmer instead of
Customer to configuration specific Custom Properties. This caused Huawei to receive manufacturing
documents with competitor’s name in them. An embarrassing mistake that would have been avoided
using Custom Property profiling tools.

20

2.5 Bill of Materials

A dynamic bill of materials -table can be created for a design in SOLIDWORKS and at least selected
BOM type, configuration grouping and some design time modifiers have direct effect on the outcome.
The BOM generally tells what and how much, but for different purposes a different type of BOMs is
usually used. For example, having only parts and their quantities would be a very usable BOM as a

packing list while a structural BOM would usually be preferred at assembly lines.

It is important to understand how SOLIDWORKS BOMs are formed as they are the designers’ tool for
overviewing item-BOM relations on design time. It would be reasonable from the designer point of
view to expect possible ERP -integrations to follow the same BOM forming principles in reflecting the

design to the target system as what SOLIDWORKS displays.

A SOLIDWORKS BOM does not only collect the components, quantities and possible structures, but
it’s also possible to pull any model specific arbitrary design data (Section 2.4.) for each component to
the table (CAD2M, 2018). From this it follows that the SOLIDWORKS BOM table could potentially
be used directly as a data source for ERP integrations. However, this is not the case as will be shown

in Section 2.5.4.

2.5.1 BOM Types

When inserting a BOM -table to drawing or model, the first selection to make is to select its type: Top-
level only, Parts only or Indented. To better understand their difference, first consider the reference
design structure in Figure 2.5.1.1 which introduces an assembly that references three different
subassemblies and a part. The subassemblies then have their own component references, and the

overall design also reuses some models in multiple different parent assembly contexts.

21

Asseml.sldasm
<MODEL=>

Default
<CONFIGURATION=

Assem2.sldasm
<MODEL=>

Default
<CONFIGURATION=

Partl.sldprt
<MODEL=

Default
<CONFIGURATION=

Part2.sldprt
<MODEL=

®2 Default
<CONFIGURATION=

Assem3.sldasm
<MODEL=>

x1 r Default
<CONFIGURATION=>

x1

Assemd.sldasm
<MODEL=>

Default
<CONFIGURATION=

Part3.sldprt
<MODEL=

Default
<CONFIGURATION=

Part3.sldprt
<MODEL=

fal Default
<CONFIGURATION=

Figure 2.5.1.1: The reference design has components in multiple levels, and some are reused in
different contexts.

An indented BOM -type would include the structural aspect of the design and report reference
quantities as “quantity in parent” (Figure 2.5.1.2). This BOM -type simply follows the reference

designs’ component structure and their quantities in the context of their immediate parent.

ITEM NO. PART NUMBER QTY.
1 Assem2 2
1.1 Part1 1
1.2 Port2 2
2 Assem3 1
2.1 Part2 1
3 Assom4 2
3.1 Part3 5
4 Part3 1

Figure 2.5.1.2: Indented BOM of the reference design

22

A top-level only BOM includes only the first level components and their reference quantities to the
table (Figure 2.5.1.3) and parts only BOM has only part -type models in the table with the total
quantity of the part in that overall design (Figure 2.5.1.4).

ITEM NO. PART NUMBER QY.

1 Asseom2 2

2 ASSem3 1

3 Assemd 2

4 Partd 1

Figure 2.5.1.3: Top-level only BOM of the reference design

ITEM NO., PART NUMBER QrY.

1 Fartl 2

2 Part2 S5

3 Part3 1

Figure 2.5.1.4: Parts only BOM of the reference design

2.5.2 Configuration grouping

Another important BOM -table setting is the part configuration grouping. Despite its name, it also

affects assemblies. The setting is a choice between three possibilities:

e (1) Display configurations of the same part as separate items
e (2) Display all configurations of the same part as one item

e (3) Display configurations with the same name as one item

Choice (1) is the default and should make good sense without further explanations. Choice (2) groups
components of the same model but different configuration to the same row under common parent. This
is useful when configurations are not used to define the component, like having minimum and
maximum angle positions of a joint as different configurations in an assembly. But since the option
also groups different assembly configurations together and it is possible to have varying amounts of
components in assemblies using configurations, it is trivial to make a design for which
SOLIDWORKS fails to calculate any meaningful quantities for its BOM using this setting. The

previous reference design is revised with following changes to prove a point (Figure 2.5.2.1):

23

e Part3 has two configurations, Default and C2

¢ Assem4 has two configurations, Default and Stripped

e Assem4 in Default references to 2 instances of Part3 in Default

e Assem4 in Stripped references to 3 instances of Part3 in Default plus 2 instances in C2

¢ The main assembly references once to Assem4 in Default and once in Stripped, and once
directly to Part3 in C2.

The indented BOM with configuration option (1) follows the reference structure and the result is as
one would expect (Figure 2.5.2.2). However, when using the configuration option (2) to group
different configurations together, the resulting BOM has quantity and configuration notes that do not
make any sense (Figure 2.5.2.3). While the grouped amount of Assem? is 2 (1 Default + 1 Stripped),
one could expect the quantity of Part3 in grouped Assem?2 to be sum of Part3 instances in both of
those parent assemblies (1*¥2 + 1*3 + 1*2 = 7) instead of the given 2. It seems that the structural
quantities are actually retrieved from the first occurring instance in the BOM and as in this case the
first occurring instance is in Stripped -configuration, the given quantity is 2. To pour some more salt

on this, the configuration column also incorrectly shows the configuration to be Default.

According to SOLIDWORKS Helps (SOLIDWORKS Online Help, 2020, p. Bill of Materials
PropertyManager), the third configuration option should group together parts with the same
configuration name under the same parent. However, in SOLIDWORKS 2018 SP3 this option does
not seem to have any effect on BOM with the revised reference design which seems to be a software
bug. One could expect at least Part]l and Part2 to be grouped together under Assem?2 as they are both
parts under the same parent referenced in configuration named Default. If the option would work and
only for parts as advertised, it should not have similar structural issues as with the previous option as
only assembly grouping may have structural differences. However, the previous option was also
described to have effect on parts only but proved to work differently. So, it is reasonable to assume

that even if this option would work, it could still result in invalid BOMs in trivial design cases.

Intention of this demonstration was to prove that while many cases seem trivial to create BOM based
solely on the SOLIDWORKS component structure, it can still be non-trivial when all supported BOM
types are considered even with a simple design. Using other than the default configuration grouping
option is something that cannot be done without fully understanding its effects. The author, despite
about a decade of experience how different companies use SOLIDWORKS, cannot come up with a

single case to which it would be recommended. Still, it is not uncommon to see designers using them.

Asseml.sldasm
<MODEL=

Default
<CONFIGURATION=

Assem?.sldasm
<MODEL=

Default
<CONFIGURATION>

Partl.sldprt
<MODEL=>

Default
CONFIGURATION=

Partz.sldprt
<MODEL=>

Default
<CONFIGURATION =

Assem3.sldasm
<MODEL=

Default
<CONFIGURATION=>

*x1

Assemd.sldasm
<MODEL=>

Stripped
<CONFIGURATION=

Part3.sldprt
<MODEL=

Default
<CONFIGURATION=

Assemd.sldasm
<MODEL=

%1 Default
<CONFIGURATION=

Part3.sldprt
<MODEL=>

—
%3 Default
<COMFIGURATION>

c2
<CONFIGURATION>

%2

Part3.sldprt
<MODEL=

cz
<CONFIGURATION=

Figure 2.5.2.1: Revised reference design with configured component references

25

MEMNO. | PARTNUMBER Namsrcmm, Q.
1 |Assem2 Default 2
1.1 | Parti Default 1
12 | Pai2 Default 2
2 Assem3 Default 1
21 Part2 Default 1
3 Assemd Stipped 1
31 | Port3 Default 2
4 |Assemd Default 1
4.1 Pari3 Default 3
42 Port3 C2 2
5 |Pare C2 1

Figure 2.5.2.2: Indented BOM with separated configurations of the revised reference design produces

expected results.

MEMNO. | PARTNUMBER Numsrmm] GY.
1 |Assem2 Default 2
11| Potl Default 1
12 | Pat2 Default 2
2 |Asems Default 1
21 | Pot2 Default 1
3 |Asems Default 2
3l | Pot3 Default 2
4 [pom3 c2 1

Figure 2.5.2.3: Indented BOM with grouped configurations of the revised reference design. Part3 in

2.5.3 Design time BOM modifiers

Assem4 doesn’t seem to reflect any kind of reality from any perspective.

Assuming that some assembly is designed as assembly just because of some technical reasons or

maybe it is a purchased component which child components are simply irrelevant in BOM. For this

case, the designer may set “Child component display when used as subassembly” -option from the

assembly’s Configuration Properties to Hide. This will have an effect in BOM that when the

assembly is referenced in that configuration in some other assembly, it will be treated as a part in the

other assembly’s BOM. (SOLIDWORKS Online Help, 2020, p. Configuration Properties

PropertyManager)

26

Another case is when some parts are designed inside an assembly just to have them nicely grouped
under the same parent. In this case the assembly that groups the parts has no meaning from the BOM
point of view and should be omitted. The same setting as in the previous case has an option to
Promote child components and in the BOM it will then appear as the components of that assembly
would be directly referenced by the parent assembly. (SOLIDWORKS Online Help, 2020, p.
Configuration Properties PropertyManager)

A trivial design time BOM modifier is flagging components to be excluded from BOM. This is useful
for example when having a reference model in the current design just to provide some design context,
but it obviously does not belong to the BOM of the current model. (SOLIDWORKS Online Help,
2020, p. Excluding Assembly Components from a Bill of Materials)

2.5.4 SOLIDWORKS BOM as automatic data source for ERP

As demonstrated in Sections 2.5.1. and 2.5.2, only an Intented type SOLIDWORKS BOM with
configuration grouping set to Display configurations of the same part as separate items can be used as
a starting point for dynamic itemization of the design as only that structure type is always correctly
representing the model. With component specific Exclude from BOM -setting it is easily possible to
leave out specific components that were required during the design process but really do not belong to
the actual designed product at all and therefore also to its bill of materials. Ignoring an assembly as an
item while still correctly having its child components listed in BOM and ignoring child components of
an assembly in BOM are both also very achievable using the Hide or Promote option in assembly’s

configuration setting Child component display when used as subassembly.

While all the pieces should be there to create a fully automated ERP itemization from the design using
the SOLIDWORKS BOM, this does not come without issues. First, the settings are ridiculously
complicated to find and to understand what they represent when used for this purpose. So, it is not
reasonable to expect they would be used as we would now expect or at all during the design process
for existing models unless there had been another reason to need this type of BOM already from the
start. Secondly, as the settings are component specific, they will not just affect that one BOM we
would care about but all BOMs of that product design and its sub designs. For instance, all assemblies
would likely be preferred in BOM at manufacturing and assembly line but if a setting promotes one’s
child components because it is not an item, the assembly line will have a difficult time figuring out the
design with their incomplete BOM. Because of these reasons the SOLIDWORKS BOM cannot be
used as a data source for generic ERP integration. In other words, SOLIDWORKS’ Engineering BOM
is not configurable enough to be able to produce Manufacturing BOM on its own. (Xu, et al., 2007)

27

2.6 Common requirements for SOLIDWORKS - ERP integrations

The list of common requirements is based on subject matter experts’ experience in SOLIDWORKS —
ERP integration sales and projects. The thesis author has composed the list by consulting the experts
in related sales cases as well as project implementation and delivery. All interviewed parties have 15
to 20 years of professional experience on this exact area; having been involved directly or indirectly in

up to hundred cases.

Subject matter experts (Salonen, et al., 2020):

e Tero Salonen, Product Director, ATR Soft Oy

e Francois Simon, Sales Manager, ATR Soft Oy

e Eric Franc, Project Manager, ATR Soft Oy

e Tim Rosendahl-Halvrosen, Certified SOLIDWORKS Expert, CADWorks.dk

The first requirement is to be able to export all or specific components of the current model to the
target system in batch. This includes that the target system usually has expectations and requirements
regarding the model specific data and how it is represented during the operation:

R1 - Must be able to create items to target system in batch by analyzing the current design and model
specific Custom Properties.

— “Export the design as items to ERP respecting property requirements of the ERP”

Because individual models can be included in multiple structures that should be able to be exported to
ERP as in Requirement R1, therefore:

R2 - Must be able to export the design or its sub-designs multiple times to target system without
issues.

— Must be able to map model and corresponding ERP item to correctly handle multiple exports.

— “Unique identification of models and target system’s items” is required.

A secondary use case is to create a new model (or map legacy model) for an already existing EPR
item. The model can still be part of multiple designs and get exported with them multiple times, so:
R3 - Must be possible to create a new design for an already existing item in ERP so that the item will
be mapped as in Requirement R2.

— “Design time ERP item mapping”

In many cases only certain fields at the ERP should be updated based on the values filled by the

model’s designer and sometimes some values can be conditionally updated, therefore:

28

R4 - Must be possible to define data update/ownership model per Custom Property, e.g., Update
“Description” to ERP item only if item is new or description at ERP is empty.

— “Item data update rules and ownership”

It is almost never a requirement that only items should be exported, but usually the models’ structures
should also be interpreted for the target system as some sorts of Bills of Materials consisting of those
items. In many systems, BOMs are separated from items as individual identifiable entities so the same
identification rules apply for them as for items. Target system BOMs can also vary and if it does not
support BOMs within BOMs, then usually a flat representation of model structure is needed. However,
a structured one is a much more common case.

RS5 - Solution for Requirement R1 must also create BOM(s) based on design structure and

map/identify them similarly as items in Requirement R2.

a. Flat BOM. Only created for the ERP Item corresponding to the topmost model.
b. Structured BOM. All (or specified) items will also have their own BOM at ERP.

Expectations for structured representation may vary. Some have practiced strict discipline with BOM
modifiers and expect their item/BOM representation to follow SOLIDWORKS’ BOM as an exact
match. Others may expect the BOM structure to be configurable based on property value rules and be
more forgiving regarding those BOM modifiers. Everyone expects the BOM to be at least based on
current design structure. Therefore:

R6 - Structured BOM(s) (Requirement R5b) must be

e dynamically based on the design structure.

e configurable to consider if assembly BOM modifiers Hide and Promote, and component BOM
modifier Exclude from BOM are applied to structure or not.

e overridable based on predefined Custom Property value (e.g., “Ignore BOM if Purchased =
Yes”).

After the first export, or even before it in legacy data cases, the BOM exists at the target system. As it
might get supplemented in ERP with items that are not part of the design or even get completely
modified, there is a very common non-trivial problem with BOM ownership. The model might change
between exports so from that point-of-view it has the correct BOM. On the other hand, if the BOM is
supplemented at the ERP, there is no generic way to differentiate that case from a model item that was
dropped out of the design in later export; and that was only one trivial but problematic example of
many. This requirement generally is entirely custom handled as all possible solutions have a

drawback. But it is also almost always required to be handled based on some set of rules, so:

29

R7 - Must consider that BOM(s) to which mapping should be done might already exist in ERP before
first export. Also, BOM(s) can be changed and supplemented in ERP which is usually not allowed to
be overridden.

— “BOM update rules and ownership”

Design companies are usually looking to invest in ERP integrations after they have noticed they
cannot work efficiently without one anymore. At this point, the amount of existing data can be huge,
and it cannot be thrown away just because a new system does not like to work with it. For these types
of systems, a data migration step is usually required (Muni Prasad, et al., 2013). However, being able
to use existing models with a new system has obvious benefits; including being able to test the new
system side-by-side with the old one before deploying it for the whole environment.

R8 - Must work for existing models with preferably no migration steps.

While not unheard of, it is not usually a preference to let the integration to execute on background
based on just a set of given rules. Majority would not likely go with that type of solution at all even if
everything else could be precisely handled. Therefore, as a common requirement:

R9 - Must be able to see a clear visual representation of what the integration is about to do.

Many ERP systems also like to have item preview pictures, link items to their actual up-to-date
manufacturing documents or to even host them. It is a very common requirement to be able to provide
these pictures, documents, or links to them while exporting to ERP.

R10 - Must be able to provide up-to-date preview, manufacturing documents and/or links for the ERP

while creating/updating the items.

The model to item mapping discussed in Requirement R2 can many times be based on a value
generated during the design process. However, many times it is the ERP system that provides the
unique identification of its items. For this to be possible, the identifier must be stored to models during
the batch export process, which can be a big problem if a PDM is used underneath. Therefore, it
makes sense to separate this requirement from Requirement R2:

R11 - Must be able to let target system to provide unique identification of its items.

30

3 CUSTOMTOOLS for SOLIDWORKS

CUSTOMTOOLS is a set of applications including CUSTOMTOOLS Viewer, CUSTOMTOOLS
Administration, CUSTOMTOOLS Task Add-In and CUSTOMTOOLS for SOLIDWORKS which all
work in the same ecosystem. The last mentioned one is the actual SOLIDWORKS add-in that does
most of the heavy lifting and so is often called CUSTOMTOOLS or CT for short. Its first version was

released in 2000 and since has gained user space of somewhat under 10,000.

CUSTOMTOOQLS environment consists of Microsoft SQL Server, single or multiple
CUSTOMTOQLS clients and a common windows file share location. The database holds profiling

settings, last known design file locations, last saved property values and reference data which are all

available for all environment users.

— 2 2

Designer View-only User Admin

Extends

\ i CUSTOMTOOLS for SOLIDWORKS i CUSTOMTOOLS Viewer i CUSTOMTOOLS Administration

.
\ | Uses ‘Uses //C/onfigures
)

CT Profiles I

Common Windows share %__ _KE_EES_trgck

location eg. "W:\Designs\" r_/’ File Server "~ | cT Database

Figure 3.1: CUSTOMTOOLS Environment

Most important features of CUSTOMTOOQOLS in the scope of this thesis are its ability to provide
consistency in design data via shared environment profiling, ability to build several different types of
BOM structures following and overriding the design time modifiers, to include the consistent model

data to the BOM and possibility deploy target system specific integration scripts to export the items
and BOM(s) to various ERP -systems.

When CUSTOMTOOLS is taken into use for an already existing design environment, it is important
to configure its Properties to match the existing environment as closely as possible. SOLIDWORKS’

way of storing data to the models and drawings is document and configuration specific slots, Custom

31

Properties, that are addressed by string keys and can point to data of a few different base types like
string, integer and boolean. CUSTOMTOOLS refers to these string keys as attributes and with its
profiled Properties it provides a new access layer for the Custom Property data with much more

specialized data typing and filtering possibilities.

3.1 Properties

CUSTOMTOOQOLS Properties is the profiled data access model for SOLIDWORKS model’s
configuration specific Custom Properties. Each CUSTOMTOOLS Property (CT Property from now
on) is labelled and the label can differ from the actual target Custom Property. CUSTOMTOOLS calls
SOLIDWORKS’ Custom Properties Attributes and so each CT Property is bound to a single Attribute.

The document level Custom Properties (Attributes) are generally referred to as Document Properties.

Features | Skeich | Surfaces | Sheet Metal | Weldments | Markup | Evaluate | MBD Dimensions | SOLIDWORKS Add-Ins | SOLIDWORKS CAM | SOLIDWORKS CAM TBM | CUSTOMTOOLS |

2 > PRE&HB-T-¥- &1-
SER[e[S[H[ERT]
Properties ® Summary Information
v X . Summary Custom | Configuration Specific
" EO!
Action: ~
Delete @
U0y | BARREL 1450_L1515-BUND 2nd@BARREL 1450 L15°
' Property Name Type Value / Text
Default v
CED 1 [Description Text ~||sunp 1450014
s Property Specific ~ 2 |Parthumber Text || sPRP:"SW-File Name™
3 |Job No. Text ||| D-A001
e (ETEL v 4 |Client Text M=
[linclude only active/referenced configuration 5 [Revision Text ~
6 |RevisionDate Date [>|[11/2022019
& |<Nn projects "| 7 |Designedty Text =
8 [DesignDate Date 1172002018
Model Properties ~ —
oot M 9 | approvedsy Text v
] Pt 3
B BARREL_1450_L1515-BUND 2nd 10 | ApprovedDate Dt =
B] Prosect FUEL TANK 11 |Finish Text L]
12 | Material Text || miLD 5T pLATE AS1592 HA2S0 3.0
=] :’ﬂ:ﬁr 13 | MaterialProperties Text ||5W-Material @BARREL_1450_L1515-BUND 2nd.5LD
- 14 [Density Text |"sw-Density@BARREL_1450_11515-BUND 2nd.5LD
8 15 |Mass Text || sW-Mass @BARREL 1450_L1515-BUND 2nd.SLDPR
E subPraject [75000 SETANK 16 |Length Text v
17 |Project Text ||| FUEL TANK
B “e!® Gitson Design i 18 [sub-Project Text ~|/7soot sBTANK
8] clent o o T <
20 |Classification Text]
B Status QUOTE w 21 |Process Text ~
3 22 |Sheet Metal Thicknes | Text ~|3
[§)| Description [sUND 1450014 =
23 | ClientiD Text | Gitson Design
B PesienDate [1012009 B+ 24 |PartFilename Text || ep-a001
25 |ProjectNumber Text ||| o0t
[B] Revision Date (7] 11212019 o~ 26 [status Text “llouote
B Mass 140937.72 oK
Part Properties ~ t

. 1
Figure 3.1.1: lllustration of CT Property mapping with SOLIDWORKS Custom Properties

3.1.1 Attribute inheritance model and Initial Configuration -setting

CT Properties can behave exceptionally well also from a new user with existing models -point-of-view
due to its attribute inheritance model. In it, each CT Property first tries to map to the attribute of the

active configuration. If not found and so defined in the profile, parent configurations are tried up to the
top level and then the document level. This causes CT Property to map to whichever configuration the

attribute was originally filled and allows modifying its value from the same view. Thus,

32

CUSTOMTOOQOLS Properties does not provide a view to just one set of Custom Properties but
something that could be called a dynamic mixture of Custom Property views built to represent earlier
usage. While it may sound complex, from the user point of view the inheritance model stays

completely hidden.

CT Property (Description) Q Q Q .
DefaultFlatPattern Default Document Properties

| Get('description') o

]
]
| | |
i =null= i i

]

if profile allows configuration inheritance ./
I GetParent()

|
|

|

o |

| | |
|

|

|

|

| "Default" |
o (==

| Get('description') I

i =null=

GetParent() |

=null=

Get('description')

"BUND 1450D(A"
o

Description
(description@Document Properties):
BUND 1450DIA

CT Property (Description) DefaultFlatPattern Default Document Properties

Q Q Q

Figure 3.1.1.1: Assuming model with Default -configuration and its derived configuration (aka. child-
configuration) DefaultFlatPattern, which is also the currently active configuration. CT Property tries to
bind to the attribute from the most accurate configuration down to Document Properties until an
existing attribute is found. This operation is invisible to the user.

If the data inheritance does not yield results, the CT Property chooses target configuration to bind
based on its profiled Initial Configuration -setting. The setting may even target the property to
multiple configurations at once but best practise is to use Active Configuration for all properties that
may have different values between configurations (eg. Dimensions, Mass, Material) and Document
Properties for values that are always document specific like Designer and thus can be dynamically

inherited for all configurations.

33

User Options

Properties: O CustomProperty Wizard (CUSTOMTOOLS (1)) ? ¥
Attribute Name)] B
Basic Information
Model Properties ‘ i
PartMumber
Project
Projecthumben Attribute name: Label:
Jab Mo. description v| | Description |
Sub-Project
ClientlD Type: Initial configuration:
Client Editbox e Document Properties
15 Status
description Scope Active Configuration
DesignDate Opart Sgiﬂggﬁf;g;gfﬁes And Active Configuration
RevisionDate (C) Assembly Document Properties And All Configurations
mass @MDdEl ST Gy T oroper oy,
Part Properties) | <Always show = -
A Drawing
PartFilename
MaterialPropet Cut-List Ttem |)
density Custom
Sheet Metal Th
length Options
Finish [Read-only
WIDTH []value required if visible
MATL
UNIT_OF_ MEA! roq/sin:
DESC |
MYOE CODE
REF
weight
VOLUME
AREA < Back Finish Cancel
£

Figure 3.1.1.2: CUSTOMTOOLS Property Wizard, Initial configuration -setting of Description -CT
Property.

3.1.2 Settings for Properties used to identify ERP ltems

From ERP point of view the importance of the CUSTOMTOOLS Properties’ inheritance model and
the Initial Configuration -setting comes from a simple common integration requirement: Unique
identification of models and target system’s items (Section 2.6, R2). As the attribute data is used to
identify an ERP item, having that identifying attribute data in Document Properties effectively causes
every configuration of that design to be mapped to the same ERP item. However, setting Initial
Configuration to Active Configuration is often not enough because existing models tend to already
have some sort of ERP Item identifying data in their Document Properties which also should be used.
In this case when using CT Properties, the inheritance model accesses the attribute from Document

Properties and just keeps editing it causing gray hair for the user (Figure 3.1.2.1).

34

However, using Document Properties and Active Configuration saves the value for both
configurations regardless of from which it was loaded. First time the properties are accessed and
saved, the value comes from Document Properties and ends up as a more specific attribute for the
active configuration and also to Document Properties. Then when the same is done for any other
configuration, it will also get the value from Document Properties and store it to both. While this
operation modifies the value in Document Properties, change in it has no effect as both configurations

already have more specific attributes in their own contexts.

Therefore, as a general recommendation, CT Properties that link to ERP Items should be configured to
use Document Properties And Active Configuration as Initial Configuration. This will cause
identifying attribute data to be correctly retrieved for existing models but also to convert them to
configuration specific items with just by normal usage of CUSTOMTOOLS Properties (Figure
3.1.2.2).

35

CT Property (ERP Item No) |

User Screw 8mm Screw 16mm Document Properties

OpenProperties()

—
2

Screw 8mm is ACTIVE |

Get('ERP_nro')

=null=

Get('ERP_nro')

"ITEM-000123"

ERP Itermn Mo
(ERP_no@Document Properties):
ITEM-000123

Save()

L.
>

On Save [(Document Properties / Active Configuration) /

ERP_no = ITEM-00012F -
T

OpenProperties()

Y

Screw 16mm is ACTIVE

Get('ERP_no')

Get('ERP_no')

"ITEM-000123"

ERP Item Mo
(ERP_no@Document Propertias):
ITEM-000123

Hmmm.. This should be different item

1

Sets to ITEM-000222

-
2

On Save (Document Properties / Active Configuration) ./

ERP_no = ITEM-000224 -

Why 8mm Screw is now ITEM-000222 too ?!

w 8mm Screw lémm Document Properties

Q Q Q

Figure 3.1.2.1: Using Document Properties or Active Configuration as Initial Configuration for existing
models may result in undesired and unexpected situations.

User CT Property (ERP Item No) | scre

User

CT Property (ERP Item No) |

OpenProperties()

L
>

Screw 8Bmm Screw 16mm Document Properties

{ Screw 8Bmm is ACTIVE |-

Get('ERP_no')

<null>

Get('ERP_no')

YTEM-000123"

ERP ltem Mo
(ERP_no@Document Properties):
ITEM-000123

Save()

L
>

On Save (Document Properties and Active Configuration) /

ERP_no = ITEM-000123 |

.
>

&Aoo = TE0eTE

ERP_no = ITEM-000123

OpenProperties()

Y

-
>
U

 Screw 16mm is ACTIVE

Hmmm.. This should be different item

Sets to ITEM-000222

User

1§
Get('ERP_no') -
:
sl
Get('ERP_nc') -
"ITEM-000123"
ERP ltem No
(ERP_no@Document Properties):
ITEM-000123
>
On Save (Document Properties and Active Configuration) /
ERP_no = ITEM-000222 N
e e = wooozzz
ERP_no = ITEM-000222 -

{ ERP_no = ITEM-000222)

CT Property (ERP Item No) |

Q

Q

Screw Bmm Screw 16mm Document Properties

Q

prepares the existing models as configuration specific items.

36

Figure 3.1.2.2:Using Document Properties And Active Configuration as Initial Configuration intuitively

37

3.1.3 Property types

CUSTOMTOOQLS Property types are Checkbox, Combobox, Date, Dimension, Editable Combobox,
Editbox, Hierarchical Combo and Info. Type of a property is selected based on the characterics of the
actual information that is going to be stored with the property. For example a combobox would be
good for selecting a manufacturing method from a predefined list while a checkbox would be good to
determine if the component is purchased or not. It is also possible to hide controls based on values of
others; for example Manufacturing Method -combobox could be set to be hidden when Purchased -

checkbox is checked.

The Custom Property string value of a checked/unchecked checkbox can be freely formatted, thus it
can be easily configured to work for legacy designs too. A checkbox could also be replaced with a
combobox, for example with two values like Yes and No. This is actually fairly common as it has the
benefit that it is easy to see if a user has actually made a selection or not, which is not trivial with an

unchecked checkbox.

LS P
Properties:
Attribute Name Label Tvpe Scope nE Bl
Format string:

Model Properties
purchased Purchased Checkbox Model | fes |
PartMumber Part Mumber Editbox Model
Project Project Editbox Maodel Format string for unchedked:
ProjectMumber Project Mumber Editbox Model | Nope |
Job No. lob Mo Editbox MModel
Sub-Project Sub Project Editbox Maodel Maximum length: L =
ClientiD Client ID Combobox Model

Figure 3.1.3.1: Settings for Checkbox values

Comboboxes get their content from various sources but the retrieval system is designed to temporarily
append the current Custom Property value to the combo in case it doesn’t exist there. This allows
combobox -properties to preserve stored legacy data even if that data selection would not be valid for
newly created models anymore. Combobox is a dropdown list that only allows selecting a value from
the provided list and Editable Combobox allows also typing any arbitrary value as a value.

Date -properties allow fully defining the date format which again is perfect also for legacy Custom
Property -data. It is also later possible to change the date representation format but in order to preserve
the existing date data, it must have been saved for the model using CUSTOMTOOLS Properties at

least once. The user interface for this property is a calendar.

The dimension -type is a CUSTOMTOOLS speciality that allows linking dimensions from the model
to the properties. This type stores the actual SOLIDWORKS dimension’s identification path which
can be evaluated into a value in defined metrics. Values of these properties change dynamically as the

model changes.

38

Piupsiucs W

v X H

Action: AN

0y | BARREL_1450_L1515-BUND 2nd@BARREL_1450_L15

F [oeraunt v

& [Property specific -

o |pefautt ~

[Jinclude only active/referenced configuration
[& [<Noproject~ -] [>
Model Properties ~ . & \ ’
‘ Length {3 . ‘ p ‘
: 4 S
s '

Part Number [BARREL_1450_L1515-BUND 2nd

|
Project [FUEL TaNK |
Romber (2001 |
|
|

Job No [GD-a001
Sub Project [7500L 58 TANK

D1@Boss-Extrudel
\ =S
B| Ctenti0 Gilson Design ~ -

Figure 3.1.3.2: On click of a dimension -property, all models dimensions appear for picking. Value of
the property is then linked to the picked dimension and thus also updates dynamically.

Hierarchical Combo represents predefined values that have dependencies to other values as a treeview
dropdown. The user selected value is then stored to Custom Properties as a path from the root parent
down to the selected item using pipe character (|) as an item separator. This is a very useful type when

the list of possible values is large but categorizable.

Editbox is simply a text field and Info is a multiline field. Editbox is usually preferred as it supports

more advanced scenarios.

All of the property types also have miscellaneous features like forcing value in uppercase and limiting
its length; which both are surprisingly often needed when integrating with an ERP. Almost all types
also support a variety of Functions that may for instance generate a specific value for the Custom

Property or get some model specific dynamic data like mass.

3.1.4 Property functions

CUSTOMTOOLS Property Functions are Before Function, After Function, Button Function and Data

Function. At the scope of this thesis it is not necessary to explain all of them in depth.

Before functions provide some content or value for the property and are executed when the Properties
are visited. Valid before functions are GetCurrentDate (Date -property), GetCombinations
(Combobox), GetMaterials (Combobox), GetMass (Editbox) and GetUserinitials (Combobox,
Editable Combobox, Editbox).

After functions are executed after the property value has been changed. Valid functions are SetColor

and SetDensity. For instance, SetColor applies the selected color in property value for the model.

39

Button functions create a small button next to the property in Properties and its valid functions are
GetCode, GetColor, GetDatabaseltem, GetRALColor, OpenDictionary, Revisions and SetEntityData.
GetDatabaseltem allows mapping a group of properties with an item in an external datasource which
is one of the key features required in ERP integrations. GetCode is also important as it is often used in
generating unique id-sequences for models. Its functionality can also be extended to retrieve a serial

from a 3rd party system like an ERP.

Data functions retrieve values based on other properties. Valid functions are GetCombinationValue,

GetListKeyValue, GetParentltem and GetTranslation.

3.2 Lookup Lists

Lookup Lists provide content for (Editable/Hierarchical) Combobox -properties and they support three
different data sources: User specified, Database and Custom. User specified is simply a list that is

manually filled in CUSTOMTOOLS Options.

Database -source option allows defining a query that is executed in the CUSTOMTOOLS Server and
the returning resultset is interpreted as lookup list content (Figure 3.2.1). Since CUSTOMTOOLS is
using Microsoft SQL Server, it is possible to define any third party system as linked server as long as a
data provider exists for that system. This allows for example (but not limited to) all MS SQL Server,
Oracle, Access, MySQL and even Excel based systems to be directly linked as combobox data sources
in CUSTOMTOOLS Properties. This is very useful for eg. providing a list of allowed values for
properties that would be used in sync with the ERP. One of the most common cases is retrieving

allowed values for the property that is used as a unit of measure.

Unit
CT User Initials
Surface finish

Simple User-defined
Simple S0L query
T Lookup List Wizard O X

List Values G

SQL query to retrieve values:

SELECT TOP 100 PERCENT initials AS value FROM ct.v_users WHERE initials <= "
AND is_enabled = 1 ORDER BY initials|

TestSQL

walue
Ja
1]
SER

40

< Back Mext = Cancel

)

Figure 3.2.1: A lookup list may get its value also using an SQL query. This example pulls user initials
of CT users into a list. It is fairly common to add the designer’s initials to the document properties.

Custom -source option expects a CUSTOMTOOLS extension script to provide the content for the list.

This is particularly useful if the list content must be queried some other means like using a web

service. While this option can be bent to almost any possible use case, utilizing it requires C# or

VB.NET programmer skills.

In addition to configurable data sources, three different lookup list types are supported: Simple, Key-

Value List and Hierarchical. Simple -list is just a list of allowed values that can be attached to

combobox’s content without any further functionalities.

A Key-Value List allows defining a value list having a maximum of 15 arbitrary keys attached to each

value. Those can be pulled up to 15 secondary properties with Property Data Function

GetListKeyValue on a change of the combobox value selection. This is sometimes used to show “user

friendly” values in visible combos (eg. customer names) while actually having all other logic and

possible integrations to rely on the more identifier-like key value written to some hidden property.

Also pre-defined decision making is a fairly common use case (Figure 3.2.2).

41

Properties:
Attribute Name Label Hidden Data Function Source Pro... Lookup List 2
Filename
Project Project v GetCombinationValue
Description3 Project info + GetCombinationValue
drw_no Drawing ...
conf_specific_drw Configur...
Drawing name Drawing .. « GetCombinationValue
TypelD Type TypelD
unit Unit Unit
- £ " . Fio s
Dxf selection
Cutting Cutting Laser cut
Do file Do file v Getlistkeyvalue Cutting
"
= 4
item - S—— — “
item_descl Mame Type
item_desc2 T Users v, TR
item_group1 TypelD & Lookup List Wizard '
item_group2 Hardness iry
item_group3 [List Values iy
item_unit Item Category
revision Unit
File information CT User Initials Yalue kewt keuz
description Surface finish Laser cut [fes
Descriptionl Lvati'_ cut :es
achining es
desc_type
=l Other Mo

Figure 3.2.2: In these properties it is defined that the user has Laser cut, Water cut, Machining and
Other as possible Cutting -property selections that come from a User Defined Key-Value list. Whether
or not that selection requires a dxf -file to be generated at some later point, is retrieved to a hidden Dxf

file -property from that list’s key.

Hierarchical lists can be used as multilevel selections in which the content of a combobox depends on
a selection of another (Figure 3.2.3). Some ERP systems may have similar, arbitrary deep selection

models for specific types and categories.

42

O Lookup List Wizard O *

List Values G

Value Keyl Key2 o
Item Category
~.CONTROL SYSTEMS
~COMPONENT/ADAPTER
.CPU/MEMORY/I0 MODULE
--FESTO
-OMRON
[]THER
-SAIA
- SIEMENS
-FASTENER
~FLASH/LIGHT/SIREN
-INVERTER
~LIMIT SWITCH
-PHOTOCELL
-PNEUMATICS
-SCREEN
-SENSOR
-SERVO COMPOMENT

-SIGMAL BOX e
< >

&

Bl

Figure 3.2.3: To select “OTHER”, the user must first select “CONTROL SYSTEMS” of a combobox.
Then the user must select “CPU/MEMORY/IO MODULE” from a second combobox that uses the first
combobox as a content source. Only then the user is able to select “OTHER” from yet a third
combobox that uses the second one as a content source.

3.3 Search Group linking

CUSTOMTOOQOLS allows defining Search Groups that are essentially SQL table queries that return a
resultset of rows containing queried sets of values. To successfully define a Search Group (Figure
3.3.1), the target server must first be added as a linked server using CUSTOMTOOLS Administrator.
As in the Lookup List -case, also this can use all possible sources to which a data provider exists. In
case the target system does not have a provider or possibility to be linked with same server (e.g., web
service-based systems), it is also possible to create a Search Group that uses custom C#VB.NET -

handler script as result set provider.

43

& Database Search Group (CUSTOMTOOLS BETA) ? *

Name:

| Excel Material Itemns |

[Juse custom handler External data source
= Server:
hd —l Select database item table: | Material Toems |
_TL' otherserver
v —L Material Iltems Catalog:
vE | |
 Sheet1s
"7 Sheet2s
-4 Schema:
7 Sheet3s | g |
Table:
[sheet1s |
Apply

Advanced settings

Quoting identifier:

0 v]
Additional search condition:

[Use unicode character set

Service settings

Mote that CUSTOMTOOLS Server service must be
properly installed before these settings take effect.

Enable updating of linked custom properties when

Select key columns: O value in the linked database has changed
[Jpesct Add column to the list: O Enable automatic linking of custom properties
[JpESC2 - | | against corresponding database items

[~ rTEM

[Junrr

o oK 0 Cancel

Figure 3.3.1: When the target server is linked with CT’s SQL Server, a Search Group can be defined
to link to its table. Here an Excel Material ltem -search group is defined to pull possible material sets
from an excel file that has been added as a linked server.

A Search Group always requires one or more source fields to be treated as keys. Keys combined
should result in a unique identifier within the result set of the queried system. This is important to have
well-defined mapping of values between systems, which is also the key insight for solving
Requirements R2 and R3 (Section 2.6, R2-R3). Not surprisingly, the most common use case for
Search Groups is to be able to map the model with an existing ERP item. Another use case is to get
material information e.g., from which kind of square bar the model should be manufactured (Figure
3.3.2). Note that an ERP integration might require mapping with multiple Search Group datasets (e.g.,
item and material) for a single model to have a meaningful itemization dataset from the ERP point-of-

view.

44

~ ~
(& ®
o -
Filename ~ 0 0
B omwingtor [] G Database ftem Search (CUSTOMTOOLS BETA) 7 X
B sortguration - :| Search conditions: Search results: 1234 matches found.
di
raning | o o I Close I Item Description1 Description2 Unit A
T
B e b . MAT1201 HOLLOW SQU... 25X25X2 EN 10.. KG
g it . - . MAT1202 HOLLOWSQU... 25X25X25EN... KG
MAT1203 HOLLOWSQU... 30X30X2 EN10.. KG
o " (m MAT1204 HOLLOW SQU... 30X30X25EN.. KG
o \ | Copy MAT1205 HOLLOW SQU... 30X30X3 EN 10... KG
Descriptiont MAT1206 HOLLOWSQU... 40X40X2 ENT0... KG
g osaetont [|@ ‘ ‘ MA11207 HOLLOW SQU... 40XA0K25EN... KG
- — MAT1208 HOLLOW SQU... 40X40K3 EN 10.. KG
B| pescription2 [wESEpi MAT1209 HOLLOW SQU... 4DX0X4EN10.. KG
\ | MAT1210 HOLLOW SQU... S0X50X2 EN 10.. KG
[B)| tem Group -
= unit MAT1211 HOLLOW SQU... SOXS0X25EN .. KG
| temGroup 2 - > MaT1212 HOLLOWSQU... SOXS0X3 EN 10.. KG
MA11213 HOLLOW SQU... SOXS0X4EN 10.. KG
B tem Group 3 % MAT1214 HOLLOW 5QU... S0XS0X5 EN 10.. KG
it MAT1215 HOLLOWSQU... GOXG0X2SEN... KG
B U < MAT1216 HOLLOW SQU... GOX60X3 EN 10.. KG
g revson [] MAT1217 HOLLOW SQU... GOX60X4 EN 10.. KG
= MAT1218 HOLLOWSQU... GOXG0XS EN 10... KG
kN pantanen P R v
File information ~

Figure 3.3.2: Database ltem Search is invoked from a property that has GetDatabaseltem -button
function. The Search Group bound to that property is queried for a result set covering values for all of
its predefined properties and the user is able to select any row to be pulled as a value set into them.

3.4 Export

CUSTOMTOQOLS’ Export is the marketing attraction of CT integrations as it is used for exporting
entire models at once to ERP which is the number one of all ERP integration requirements (Section
2.6, R1). It supports predefining multiple bills of material views, Export Profiles, that can be used to
generate a well-defined BOM from the current model. It also supports the same BOM modifiers as
SOLIDWORKS’ native BOM (Section 2.5.3) but it also allows manipulating them.

Supported BOM types that come “out-of-the-box” are Top level only, Parts only and Intented
Assemblies, which correspond to the exact same available SOLIDWORKS’ native BOM types
described in Section 2.5.1. Also, the configuration grouping (Section 2.5.2) is supported even though
there are no known use cases when the grouping would make foolproof sense (Section 2.5.4) at least

from itemization to ERP point-of-view.

Export supports all types of cut list items too, but they are intentionally left out from the scope of this
thesis for clarity. In case cut list items are needed to be included in the integration, they are handled
the exact same way as parts, and their parent parts are then considered to have a BOM just like an
assembly with parts would have. CUSTOMTOOLS also supports properties of cut list items with

minor restrictions.

45

3.4.1 Export Profile and its types

An export profile is part of the CUSTOMTOOLS profile and there can be multiple of them. To create
one, the user has to define a name, BOM type and configuration grouping to use, and if additional

BOM inclusions like referenced drawings and cut list items are needed (Figure 3.4.1.1).

The export also supports up to 4 user defined data matrices called CustomScopes. CustomScopes are

table-like data (set of CT Properties) that can be bound to a single CT Property in ordered fashion and
be used for example to determine manufacturing steps and step specific attributes of a model. In some
cases the ERP might expect to get model specific manufacturing steps or work phase -information for

which this feature is usually utilized.

Export profile has also a Profile type which by default is an XSL -transform using the predefined style
sheet to create an XML BOM to the predefined output path. However, the main usage of Export is
with Script Add-ins that may take control of the whole export process, utilizing the data in the defined
BOM view and pushing it to whatever target system the script is built to work with. Legacy style
scripts can just subscribe to CTInterface Events API and handle all or self-filtered export profiles in
event-driven manner. However, to unlock more core features, execute in more strict context and to
provide a configurable interface, it is recommended to implement CT Extension -style scripts that

expose their dedicated export profile type.

CUSTOMTOOLS 2020 SP1 includes 5 built-in configurable Export Profile Extension types:

e Cloud Connected to export items, structures and manufacturing document types to ROIMA
Product Information Cloud

e Excel Report to export the BOM view to a templated excel file including design previews

e Odoo ERP Integration, a separately licensed export type capable of creating items and
BOMs to on-premise Odoo ERP -system, including export of manufacturing documents and
design previews.

¢ Dynamics NAV Integration, another separately licenced export type, capable of creating
items and BOMs to Microsoft Dynamics NAV, link items to manufacturing documents and to
use its item numbering system to generate identifiers for the models on-the-fly (Section
2.6, R11).

e Oscar ERP Integration, also separately licensed export type which has similar capabilities as
the Odoo integration

e Vertex Flow Export, which is sold as both separately licenced integration and as a special
feature stripped productization of CUSTOMTOOLS called CUSTOMFLOW. Its capabilities are
similar to Odoo and Oscar and target ERP is obviously Vertex FLOW.

46

Even though these Export Types are provided as built-in solutions in the the product, they are purely
using the same CT Extensions and CTInterface Events API as is publicly available for third party
developers, with only 2 exceptions: they can use ATR Licensing to verify their availability for user

and they can invoke CUSTOMTOOLS Help system.

As can be seen from the built-in extension types, another common requirement when exporting items
to ERP is also to be able to provide up-to-date manufacturing documents and/or document previews
(Section 2.6, R10). CUSTOMTOOLS has its Batch Operation tool for executing predefined
conversion rules (eg. “Convert drawing sheets that have DXF in name to DXF files to this path”) that
can also be set to be executed during the export. This allows the export handler to be able to retrieve
those freshly converted documents and to include them in the export process in any way they are

needed.

9 O Export Profile (CUSTOMTOOLS BETA) ? X

Profile name: Profile type:

| | | <xs1 f script> v

[Allow using in SOLIDWORKS PDM
- Output path:

a| XSLstyle sheet:

Browse...
- Configurations to export: Language:
i Active/Referenced Configuration ~ w
BOM type
(® Top level anly O indude drawings
O Parts only |:| Indude weldment cut list items
(Z) Indented assemblies Detailed cut list
Accumulate quantities [indude sheet metal cut list items

[indude solid body cut list items

Grouping
(®) Display configurations of parts as separate items
(O Display configurations of parts as one item

O Always show components of subassemblies, ignoring the "Child component
digplay when used as a subassembly” setting

[Juse parts preview image for cutdist items

. Run conversion rules: Custom property scopes to export:
[C]Pdf Build A | [[JCustomScope1 Py
[C]Pdf Merge []CustomScope2
[Cloxf part []customScope3
[C]oxf Merge v | |CJcustomScope4 v

[Jopen output file(s) once completed

(] QK Q Cancel

Figure 3.4.1.1: Setup page for an Export Profile.

47

3.4.2 Export Profile Fields

An export profile also includes a set of fields that collect the model specific data to the export view
(Figure 3.4.2.1). The source for the data can be a special SOLIDWORKS property, like quantity or
filename, or value of a Custom Property field profiled using a CUSTOMTOOLS attribute. Also just a

value field without any source can be used for arbitrary purposes.

In addition, a field can have a maximum length to which the retrieved value is cut. This is useful in
case the target system has restricted length for the field. However, it is recommended to have
maximum length defined also for the source property so users will have feedback when filling the

values. In the export the value is just cut without any user notifications.

A field can also be compulsory, which prevents users from executing the export in case the value of

the field is empty.
Export profiles
Mame Output Path
CustomTools Raw structure {Source Pathi{Source Filename}_{Datelxml
Excel report {Source PathiSource Filename}.xlsx

. || oeet

Profile fields
T Export Profile Field (CUSTOMTOOLS BE... ? LA
Label Field Type Field Data
Drawing Mo CUSTOMTOOLS attribute drw_no Source
Item Ma SOLIDWORKS property Item Number Field type:
Cty SOLIDWORKS property Quantity b
Description CUSTOMTOOLS attribute description ELETEITHEERITLE >
Material CUSTOMTOOLS attribute material Field data:
Designer CUSTOMTOOLS attribute DrrawnBy surface ~
Design Date CUSTOMTOOLS attribute DrawnDate Label
Finish CUSTOMTOOLS attribute surface Finish
Preview Value
Value
Options
[IMaximum length: 0 =
[Jcompulsory field
MNew... Edit... Delete (v] oK @ cancel

Figure 3.4.2.1: “Finish” -field of the Excel report -export profile has attribute ‘surface’ as its data
source. Attribute is a CUSTOMTOOLS term for a SOLIDWORKS’ Custom Property.

48

3.5 Script Add-ins

CUSTOMTOOLS functionalities can be extended with script add-ins that utilize the public
CTlInterface Events API and CTExtension Interfaces API. A non-extension type script is considered
legacy as they can potentially interfere with other scripts and extensions; however they are still

supported to maintain backwards compatibility.
3.5.1 Architecture

An extension script has always at least 2 reference assemblies: CTInterface.dl! and
interop.CTEngineLib.dll. The latter one, CT Engine library, defines the native core object model of
CUSTOMTOOQOLS to which CTInterface provides managed abstract base implementations for each of
the supported extension types. A user extension is an implementation of the abstract CTExtension -
class and it must implement Hook and UnHook -methods that subscribe and unsubscribe to events at
CTInterface Events API. User extensions are not allowed to subscribe or unsubscribe events anywhere
else and must also do so when the functions are called. The user extension is not allowed to call these
functions itself. A user extension can return a specific class in response to GetInterface -call
(overridable virtual function) and the returned class must be an implementation of corresponding
CTExtensions.Interfaces. XXX -class. These classes are extensions of different CUSTOMTOOLS
elements or core functionalities, like the Export, Options, some specific core objects etc. At the core
level, everything is handled using the native CT Engine model but it is also all encapsulated and
default implemented in managed code for user extension convenience and backwards compatibility of
future additions. Architecture of an extension that can be used as an export type is described in Figure

3.5.1.1.

Compared to Extensions, the legacy style scripts are architecturally simpler but completely lack all
discipline and sandboxing which are important when multiple scripts or extensions are introduced to
the same system. Also, they are obviously not as capable as Extensions. A legacy script is as simple as
a public class with a single public constructor having ATR.CT.CTInteface. CTInterface as an only
argument. The script can then subscribe to CTInterface events in its constructor, but the obvious
disadvantage is that the script must somehow be able to determine whether it should handle those
events. It is basically never the case that an event handler should handle all possible invocations, so

some sort of context testing is always required, and that is hard to make 100% correct.

49

ATR.CT.CTInterface \
«CTinterface.dli»
MyExtensions \
«lser script» @ Snerace
@MyExtenswon Hook/UnHook| Events
I © OnCloseCustomStructureDlg
© OnStrExportPre
o OnStrExport
o OnStrExportVerifyField
and about a hundred more
~
1'\.
instantiates T—_EXTENDS
““\1
CTExtensions T
"“ili_h«CTJnterface‘dH»
Te—
K‘*--‘_‘¥ «abstract»
) CTExtension
@ MyExpor‘tHand\er @ Getinterface(ctExtensioninterface)
Abstracts.
@ bool Hook(CTinterface)
® void UnHook(CTinterface)
EXTENDS \Eetlnterfacl
Interfaces \ "\
I‘I
wabstract» wabstract» wabstracts {Extension Interface base impli
ExportTypeExtension ProfileOptionsExtension AndMore XTENDS
|
U ¥ U] ’J
| | |
‘ 7 /
| | i |
: : : /
I] \ f
— — I | i /
CTEngineLib \ |] I
: «interop.CTEngineLib.dil» T
P 1 I I
ctExtensionmter‘Face I | /
v Y Jf/
|[ExportType
ProfileSettings @ IExportTypeExtension @ IExtensionProfileSettings @ AndMore @ ICTExtension
Sequence
FileHandler
UserSettings
ObjectEditGuard

Figure 3.5.1.1: Overview of the class relations for Extension -type script add-in called MyExtension.
“AndMore” -class and interface are just to indicate there are more similar interfaces and classes
available in the system.

3.5.2 Deploying extensions to CUSTOMTOOLS Environment

As described in the beginning of this chapter, the CUSTOMTOOLS Environment is a shared
environment for all of its users by the means of common database connection. Also the extensions are
distributed for all clients of the environment. The extension scripts are managed code stored in plain
text to the database and whenever a client application connects, it will check that the source code
present in the local environment is up-to-date. If not, the latest source code is compiled on-the-fly
against the user’s local environment and the resulting assembly stored in the local application data
folder. From there it works as an integral part of the locally installed CUSTOMTOOLS applications as

it gets loaded to the application domain.

Extensions are added to the database using CUSTOMTOOLS Administration that has its own section
for script management. When a new script is selected, a minimal example script is automatically

added (Figure 3.5.2.1). Scripts are single text files but they may contain multiple classes and

50

namespaces. C# is usually preferred but it is also possible to use VB.NET. Language version of C# is

4.0 in CUSTOMTOOLS 2020 but it will be upgraded to C# 6.0 in CUSTOMTOOLS 2021.

As compiling managed code always requires some satellite assemblies, the following common ones
are added automatically and does not have to be separately referenced: mscorlib.dll, system.dll,
system.core.dll and microsoft.csharp.dll in case the selected language is C#. In addition to these, a
script extension also requires at least references to CTInterface.dll and Interop. CTEnginelLib.dll as can
be seen from the Figure 3.5.1.1 in the previous section. These assemblies are located in the local
environment at the CUSTOMTOOLS install location and can be dynamically addressed with
[CT_INSTALL_PATH] -tag. It is also possible to deploy satellite assemblies with the script by
adding them to additional files of the script and then reference them with [ASM_PATH] as path. In
case of an integration to a third-party system, the referencing works exactly the same: in case the
system to integrate is local, a common-for-all path must be known in order to reference its DLLs; and
another option is to deploy the satellites with the script. CUSTOMTOOLS’ install path provides a few

commonly needed satellites like Microsoft Excel and M-Files public api.

Because the scripts are single file documents, they are easy to deploy as such from developer to
customer environment and the only manual thing to do is to browse and add the references for the
script. However, this is not needed if the script uses @AUTO-REFERENCE -syntax in comments in
the beginning of the file. These are automatically parsed on compile and added as reference. Also, as
the class name and language are automatically detected, the script deployment to the whole

environment is basically a two-click operation.

| CUSTOMTOOLS Administration 2019 - a x
'/__ General Database N
Properties... Login... Unregister Add Features... Create Profile... Copy As New... Rename Profile...
Register Database... Logout Delete Import Profile... Export Profile... Permissions...
SetAs
Create Database.., Active Database Options... Upgrade. .. Delete Profile Profile Options...
Server Database Settings Profile Settings
Database View — Add-in scripts ~
_ {/ @AUTO-REFERENCE { [CT_INSTALL_PATH]\CTInterface.dll }
~ [[] ATR218 A || |/f @AUTO-REFERENCE { [CT_INSTALL_PATH]\Interop. CTEngineLib.dll } Selected seript:
v [] CUSTOMTOOLS
O 1. Extemsl Dateb using ATR.CT.CTInterface; <New Script> hi B
Ly Extemal Databases using CTExtensions;
v [% Profiles using CTEngineLib; Remave Script
[3) CUSTOMTOOLS
v A User Groups public dass MyAddin : CTExtension Name:
" i :
£B Admins MyAddin
.Q Designers public override boal Hook(CTInterface oCTInterface)
v B Users { Language:
£ (Admin) bool bHooked = false; c# ~
Gl 5imo Erkineimo (ATRSOFT\serkinhe) {FlocTinterface 1=l e —
£, John Ametrong (John) [/ Hook to CTInterface events and set bHooked = true. MyAddin -
| £}, Mark Koepler (Mark) }
[Manage Scripts }TE"»U"" bHooked; [“]Load at start-up

f [pebug add-n
| public override void UnHook(CTInterface oCTInterface) Referenced assemblies:

if (oCTInterface | = null)

{{ Un+Hook all handlers from CTInterface

¥

i Add... Edit... Remove

Additional Files. ..

Check In
Ln: 30 Ch: 1 Compile &
<

v >

Figure 3.5.2.1: Script management and a minimal example script in CUSTOMTOOLS Administration.

51

4 ERP Integration with CUSTOMTOOLS

This chapter starts by examining the 11 common requirements (Section 2.6.) and how they affect the
integration architecture. The integration base will then be generalized to cover as much of the common
logic as possible as well as to make utilizing it for integrations very simple and efficient. The result of
this chapter will be an abstract CUSTOMTOOLS Script Add-in (Section 3.5.) focusing on easy-of-
implementation and compile time safety. The ultimate goal is to have that abstract base
implementation included in source code of future CUSTOMTOOLS releases. The script -add-in is
initialized in the beginning of this chapter, and its architecture gets extended while the requirements
are examined as the chapter advances. Class name for the main extension is initially chosen to be
GenericSolution in namespace ERPIntegration (Figure 4.1). The solution references classes and
namespaces from CTExtensions -namespace as well as events from ATR.CT.CTlInterface.CTlInterface -

class but full namespace declarations are dropped out to save space.

ERPIntegration \|
«user script»

)) inherits
@GenencSqutmn CTExtension'

@ bool Hook(CTInterface)
@ void UnHeok(CTInterface)

Figure 4.1:Initial extension. Hook and UnHook must be implemented as they are abstract in
CTExtension base class.

4.1 Architecture from the requirements

Creating items (Requirement R1) and BOMs (Requirement RS) in batch to target system while
modifying the dynamic BOM structure on-the-fly (Requirement R6), and showing a visualized
representation (Requirement R9) of the task can be all done with CT Export (Section 3.4.) combined
with an Export Type Extension -script. Also, CT Batch File Conversion Rules can be attached to CT
Export -profiles which allows generating manufacturing documents to target systems at the same time
(Requirement R10). Therefore, these five requirements (R1, R5, R6, R9, and R10) can be grouped into
a single partial solution: CUSTOMTOOLS Export with Type Extension -script. For architectural
clarity, it is recommended to separate the actual export script handler from the Type Extension as

shown in Figure 4.1.1.

ERPIntegration

«luser script»

@ GenericSolution

inherits

CTExtension|

@ bool Hoek{CTInterface)
@ void UnHook(CTInterface)

@ object Getinterface(ctExtensioninterface)

Hook/UnHook @ ERPExportHandler

void Hook{CTInterface)
void UnHoeok(CTIinterface)
T
I

Getinterface(.. ExportType) !

@ ERPExportType

inherits

!

Interfaces.ExportTypeExtension 'Check attached ext]
)

@ ICTExtension GetParent() "return instance of GenericSolution"

!

handling any

~
b

52

ension before
events

a3

~ Attaches to II

"

!

CTEngineL!h \

~ «CORE=»
“d ¥

@ CTExportProfile

Figure 4.1.1: Architecture of a script add-in with Export Type Extension capability. All extension
capabilities must implement GetParent() that returns the instance of the main extension.

A data exchange value field (Requirement R4), and BOM (Requirement R7) ownership and update

rules could in theory be hardcoded into Export Type Extension -script. However, both of them should

also be configurable as they are usually a matter of preference or highly dependent on the target

system. Both requirements (R4 and R7) can be grouped under partial solution of configurability

consisting of serializable settings objects as well as ObjectEditGuard type of extension capabilities.

For the instances of these classes to behave in an expected way, their internal linkage must be well

understood. Figure 4.1.2 describes four more classes needed for Export configurability as well as the

core objects linking them together. Figure 4.1.3 adds possibility for CT Profile level settings page and

Figure 4.1.4 shows added user specific login settings but with some other architectural entities

removed for clarification.

CTEngineLib\

«CORE»

@ CTExportProfileField

@ CTExportProfile ParentProfile()
' ~ "

[handling any events ! T

~
\ 1

\ ! N
A
ERPIntegration \ N !

53

\ «user script»
\

I
\
|
GenericSolution !
@ Hook/UnHook @ ERPExportHandler |)] {‘
o bool HookiCTinterface) void Hook(CTintarrace) 1 Check field is owned by attached extension , Attaches to
@ void UnHook(CTInterface) void UnHook{CTinterface) 7 r
© object GetInterface|ctExtensioninterface) [/ 7
—_— .
— , ,)
f
Getinterface(...ObjectEditGuard) Getinterface(...ExportType) ’ !
“ ’
- . .

H inherits i
iinterfaces.ObjectEditGuard;

@ ExportFieldGuard

@ ICTExtension GetParent() "return instance of GenericSolution"

@ virtual bool EnterEdit{CTExportProfileField...) "On edit of specific guarded object"

@ virtual bool ApplyEdit{CTExportProfileField...) "On apply of changes to specific guarded object"

@ virtual bool GetExtControliCTExportProfileField...) "On edit of specific guarded object, provide custom GUI"
T

(©) erpexportType

@ |ICTExtension GetParent()
ExportSettings GetSettingsi()

/

eturn instance of GenericSoiution"

GetExtControl

© ExportFieldSettingGUI ¢

owns

@Expor‘tSemngs

Figure 4.1.2: Export Settings, including field specific settings, are owned by the ERPExportType

extension, but the same setting instances must be accessible also via ExportFieldGuard extension for

editing as well as in various events at ERPExportHandler where the settings affect the export
procedure.

CTEngineLib\

«CORE»

(@C.(E)(memﬂE @ CTExportProfileField
—_

, . 0

- - \ N
,"Check attached extension before | ! N
| handling any events \ ! N
' '
' | i N
- \ \
ERPIntegration \ \ v J’ \
5 «user script» i |
N 1 ’ \
@ o= inherts | | K \
enericSolution e i \ \
HookiUnHook | (€) ERPExpertHandier ! , \
@ bool Hook(CTinterface) oid Hookl CTnimrface) Attachesto + Check field is owned by attached extension | Attaches to
© void UnHook{CTinterface] L) ! ‘ |
© object GetInterface(ctExtensioninterface) — ’

let\ntsrfa(s(ExportType) Getinterface(...ObjectEditGuard) B —<____ Getinterface(. ProfileSettings) !

Getinte |
B . -
\ - . — !

: inherits
inherits @ Pr inte: . Profil i
7 Tnherits (© Exportrielduard p
@ ERPExportType Interfaces. ExportT @ ICTExtension G “return instance of GenericSolution”
rrrrrrr o ICTExtension GetParent() ‘return instance of Genericsolution” & Control CreateControl
© ICTExtension Parent() turn instance of GenericSolution" © virtual bool EnterEditiCTExportProfileField.) "On edit of specific guarded object" ® void LoadData(byte[] storedData)
ExportSettings GetSettings()

@ virtual bool ApplyEdit| CTExpartProfileField...) "On apply of changes to specific quarded abject © byte[] GetsaveData()
© virtual bool GetExtControl(CTExportProfileField) "On edit of specific guarded object, provide custom GUI" © bool Validate(y

© bool Refresh()

, GetExtControl

Y .
portFieldSettingGUI

ProfileSetting:

Figure 4.1.3: ProfileOptions extension is useful when the integration has some general settings that
are not bound to a single export profile or a single user. Current CT Profile and its stored
ProfileSettings data is accessible via CTInterface during the events.

54

CTEngineLib \
«CORE»
|©CTUSET |©CTFmﬁIe
[) []
L L
1 |
1 ll
' 1
ERPIntegration \ I. .
ATRControls2\ «user script» 1 1
I 1
«CORE» inherits | | '
107 Coritrok (© cenericsoluton crExtension| ! |
. . -~ I]
@ GenericLoginCtrl 1 bool Hook(CTInterface) jAttaches o Attaches to
L] @ void UnHook(CTInterface) 1 f
'\ ® object GetInterface(ctExtensioninterface)

’ \
/ !
! 1
Createdontrol() /Getinterface(.. UserSettings)

— Getlnterf,a’ce(ProfileSettings) !

1
& \,\ |
T — :
H inherits i H inherits

@ UserOptions iInterfaces. UserOptionsEx i @ ProfileOptions iinterfaces.ProfileOptionsEx
@ ICTExtension GetParent() "return instance of GenericSolution" @ |ICTExtension GetParent() "return instance of GenericSolution"
@ Control CreateControl() @ Control CreateCaontroli)
® void LoadData(byte[] storedData) @ void LoadData(byte[] storedData)
@ byte[] GetSaveData() @ byte[] GetSaveData()
@ bool Validate() @ bool Validate()
® bool Refresh() @ bool Refresh()

T

Figure 4.1.4: UserOptions are very often just user specific login credentials. For that, GenericLoginCtrl
from the core assembly ATRControls2.dll can be configured to show various fields. Benefit for using
this generic control is in its localizations and common look & feel.

Very often the target ERP system is not something directly usable as MS SQL Linked Server and
therefore not possible to configure as CT Search Group (Section 3.3) to satisfy Requirement R3
“Possibility to map an existing ERP item with a model”. However, CT Search Groups support custom
handlers i.e., an extension can provide a result set for given search terms by impersonating a linked
server connection. This is done by handling CTInteface. OnExecuteSearchGroupSearch -event and by
investigating that the search group is indeed “owned” by the integration. In addition, handling
CTInteface.OnCustomListGetColumns to provide available target system fields will make CT Property
mapping to target fields much more user friendly. From an architectural point-of-view, these events

should be handled by a separate class of the extension, SearchGroupHandler. Figure 4.1.5 has the
complete architecture.

55

OnExpertProfileSelected
OnStrExportFillListPre
OnStrExportFillColumns
OnStrExportAddRow
OnstExportFillListPost
OnStrExport
OnQueryCancelExportConversions
OnPostFileConversion |
OnCloseCustomstructureDlg |

OnExecuteSearchGroupSearch

OnCustomListGetColumns

«user script»

[ERPintegration\ \\\ t
{ [

@ ERPExportHandler @ERPSsarcthupHand\er

wvoid Hook(CTinterface) void Hook(CTinterface)
wvoid UnHook(CTinterface) void UnHook(CTinterface)

Hook/UnHook Hook/UnHook

,,,,,,,,,,,,,,,,,,,,,,,, T — (@) Genericsolution
inherits . i Getinterface(. ExportType)
ExportT) H ® bool Hook(CTInterface)

1 Getinterface(.. Usersettings) @
UserOptions i
1 ® void UnHook(CTInterface] !

)
© object GetInterface|(ctExtensioninterface)

—

*Getlnlerfa:e(...Pruﬁ\ESemng}‘\Eeinlerfa:e(...Obje:tEdllGuard)

inherits

iDialog f
\
\
£ g T) r—
@ExpurlFleldSemngs @ ProfileOptionsGUI 1 @ ExportFieldSettingGUl

Figure 4.1.5: The complete high level ERP Integration architecture

4.2 Generalization

As the target is to provide a simple, reusable base implementation, the generalization must be simple
yet highly configurable. All storable settings, whether they are Export Profile Field, Export Profile,
Profile or User level settings, must be serializable and have a graphical control counterpart. Let us

have abstract types SettingsObject, ControlAdapter and ControlAdapter<T> (Figure 4.2.1).

ControlAdapter is a derivation of System. Windows.Forms.Control, and the base class for the GUI
counterpart of the user implemented settings object. It is constructed with /CTExtension which is the
parent extension type capable of providing all possible data of the extension for the control. The
constructor has protected level visibility just to make it slightly harder for users to accidentally derive
from this type as that should not be done. This class utilizes generics in its LoadFrom and SaveTo

procedures to provide SettingsObject type agnosticism for its direct callers on the core level.

ControlAdapter<T> derives from ControlAdapter and its main purpose is to provide strong typing
between the user implemented setting object and its GUI counterpart using generics. It does it by
routing the base class LoadFrom and SaveTo calls in its implementation to their strongly typed
abstraction counterparts. Internally this means type casting the agnostic type to the templated one,
which can be a major issue if the architecture is misused. Later the core architecture will evolve to a

phase where a common base class will share the same strong types among all entities.

SettingsObject is the abstract base class for all user defined settings. It too holds an instance of the

main extensions for possible broader data retrieval cases, and is /nitialized always immediately after

56

instantiation. As required by the extension data storage methods, it serializes to and from byte array,

but it also forces its derived class to serialize/deserialize its content directly to/from System.lO.Stream.
Coupled with StreamExtensions (Figure 4.2.2) to push/pop common types to/from stream, serialization

in derived classes becomes a very developer friendly operation.

Core '01

@«5 ystem.Windows.Forms»
@ Control

@ «Abstract»
@ ControlAdapter

O ICTExtension ParentExtension

© ICTExtension get ParentExtension()
B |CTExtension set ParentExtensioni)

<» ControlAdapterlCTExtension) // Hide constructor

@ void LoadFrom=80={50 where 80 : SettingsCbject;
@ void SaveTo=50=(8S0 settings) where 80 : SettingsCbject;
L)

]
]
I
1

@ «Abstract»
o SettingsObject «Abstract»
@ «Templates
@ ControlAdapter T

-
i
)

O ICTExtension ParentExtension

@ ICTExtension get_ParentExtension()

B ICTExtension set ParentExtension() @ ControlAdapterICTExtension)
@ void LoadFrom=50=(50) // Adapt to LoadFrom(T)

@ virtual void Init{ICTExtension)
@ void SaveTo<50=(50) [/ Adapt to SaveTo(T)

@ byte[] Serialize()

@ void Deserialize(byte[] data)
. - @ void LoadFrom(T settings)

< void Serialize(Stream s) @ void SaveTo(T settings)

< void Deserialize(Stream s)
@ ControlAdapter CreateAdapter(ICTExtension parent) IB
|

Al

|

User ‘
" «User Implementation» \

@ SomeSettingsObject !
X X SomeSettingsObjectControl
o 5tring Some5tring CreateAdapter @ 9)
@ bool SomeBosl B e e e e = >
- — base=T> | @ void LoadFrom{SomeSettingsObject)
< void Serialize(Stream s) < - @ void SaveTo(SomeSettingsObject)

< void Deserialize(Stream s)
@ ControlAdapter CreateAdapter{ICTExtension parent)

Figure 4.2.1: Architecture for user implemented settings and its GUI counterpart

57

Core '\

@ @ StreamExtensions

void Pushint32ithis Stream, int i)

int Popint32(this Stream)

void PushBool(this Stream, bool b)
bool PopBoolithis Stream)

void PushStringithis Stream, string str)
string Poptring(this Stream)

Figure 4.2.2: StreamExtensions provide syntactic sugar for serialization.

4.2.1 Export Settings

Minimal export settings for all ERP integrations are the field mappings, and a single export field
setting object is bound to a field by its name. Export Field Settings are not separately serialized but
they must be part of the Export Settings object and serialize with it. On the other hand, Export Profile
Settings is not always required to provide GUI with extra options, so the minimal Export Settings
object is simply a SettingsObject derivation with generic field type hosted in Dictionary from field
name to instance of that templated field type. Let us call it ExportSettingsBase<FT> (Figure 4.2.1.1).

Core\

@ «Abstracts
o SettingsObject

Serizalize O ICTExtension ParentExtension
var data; @ |ICTExtension get_ParentExtension()
data += Serialized(Count of FieldSettings) W |CTExtension set_ParentExtensioni)
forearch pair in FieldSettings , o .
data 4= Serialized(pair Key} @ virtual void Init{ICTExtension)
dat _ ol S s lize() @ byte[] Serialize()
ata += pair.Value Serialize ® void Deserialize(byte[] data)
- void 5erialize(5tream s)
- void Deserialize{Stream s)
™. @ ControlAdapter CreateAdapter(ICTExtension parent)
-
- Il
~ . L‘j
-------------- D]
<Abstracts IFT - SettingsObject|
@ «Template»

@ ExportSettingsBase_FT
@ Dictionary=string, FT= FieldSettings

void Serialize(Stream s)
void Deserialize(Stream s)
@ ControlAdapter CreateAdapter{lCTExtension parent) { retumn null; }

Figure 4.2.1.1: ExportSettingsBase<FT> return null for its own Control but hosts SettingsObject for all
of its fields.

58

4.2.2 Base Extension with complete settings generalization

The base extension is an abstract class derived from CTBuiltInExtension, and has generic typing for
all supported settings types: Export Field Settings, Export Profile Settings, Profile Settings and User
Settings. To have all these capabilities interacting with CT core, implementations for

Interfaces. ExportTypeExtension, Interfaces.ObjectEditGuard, Interfaces.ProfileOptionsExtension and
Interfaces.UserOptionsExtension are also done and attached to the base extension. The corresponding

implementations are ExportTypeExt, ExportFieldGuard, ProfileOptions and UserOptions.

Some refactoring is now applied and the whole new core addition is decided to be located under
CTExtension.ExportCore -namespace and the base extension is renamed to ExportBase.
CTExtensions is a core product namespace, meaning the introduced generalization will now be
available in CUSTOMTOOLS’ later releases. Bringing it all together we now have all possible
integration specific Export Profile, Export Profile Field, Profile and User settings fully implemented
yet all the object types and GUI controls fully configurable; i.e. the base implementation now fulfills
all the configurability requirements to the furthest possible extent. Complete architecture so far is

described in Figure 4.2.2.1.

CTI i \
«CTinterface.dil»
Interfaces
))
—
(@ coreriecrerin] - [@ e ovecaror] - [@ oo | [@eo !
vl N
y,
ExportCore /

#NEW CORE ADDITION>

‘©0Prumeoptmns

[@ euseropmons

[raiy
:

[y
‘

[raiy
£

\

\

ject;
]
12 | &
— \ / -
—
\\\

FT SettingsObject
ExportsettingsBase<FT>;

«hbstracts |

® «Abstract»
©ExportsettingsBase_FT

© ExportBase PT : SettingsObject
tting:

EXpOrtTypeExt<ET, FT> _exportTypeExt

© Dictionary <string, FT> FieldSettings

Void Senalize(Stream 5]
oid Deserialize(Stream s)

© ControlAdapter CreateAdapter(|CTExtensi

< B ™
_ | orfeldcuari<ET FT> exporrelacuard o ———
Useroptions<UT> _iserOptions integrations

© ET GetExportSettings(ICTEXportProfile)
© bool HasProfileSettings()

) { return null; 3

«Abstracts
oSettingsObject

0 ICTExtension ParentExtension

® «Abstracts
©ControlAda

o PT
© bool HasUserSettings()
© UT GetUserSettings()
l —
i
3 Syst 3 X

O ICTExten

@© oy

Use as ProfileOptions or
UserOptions when they are
not needed.

rentExtension()
ParentExtension()

© ICTEx

ten ion()
HICTExtension) B ICTExtension set_ParentExtension()

ControlAdapter(ICTExtension) I Hide constructor

© void Deserialize(byte[] data)

© void LoadFrom <S> (S@ where SO - Settingsbject;

e o) © void S3veTo<S0>(SO settings) where SO - SettingsObject;

s)
void Deserialize(Stream s)
© ControlAdapter CreateAdapter(ICTExtension parent)

«Abstract>
© ControlAdapter_T

© ControlAdapter(ICTExtension)

(©) e CTauitinExtension
—

© void LoadFrom<§0>(S0) /f Adapt te LoadFram(T)
© void SaveTo<50>(SO) // Adapt to SaveTo(T)

© void LoadFrom(T settings)
© void SaveTo(T settings)

© ecrexension

Figure 4.2.2.1: The complete architecture so far fulfils all the configurability requirements to the
furthest possible extent

59

4.2.3 Event Extensions

The base implementation should also have some framehanding for custom sourced Lookup Lists
(Section 3.2), custom sourced Search Groups (Section 3.3.) and most importantly, for item/bom
Export (Section 3.4). While the more visual and core integrated CTExtension Interfaces API is used
for configurability and user interaction, the CTInterface Events API provides simple event-based data

manipulation and handling capabilities.

As ExportBase derives from CTExtension, it has to implement Hook(CTInterface) and
UnHook(CTInterface) that are used for initializing the event based handling. Therefore, it makes sense
to create a common base class for event extensions of ExportBase so that different, even more
extended types can then be implemented and used as is with the base class. Generics and routing
implementation can again be used to provide strong typing for the user implementation. ExportBase
will then have a new abstract GetEventExtensions() method in which the user implementation should

return all the event handlers it needs. EventExtension base class and connectivity with ExportBase is

shown in Figure 4.2.3.1.

CTExtensions \
ExportCore \

«CTInterface.dll»

«NEW CORE ADDITION »

FT : SettingsObject
«Abstracts ET : ExportSettingsBase<FT>

@ ©ExportBase PT : SettingsObject

UT : SettingsObject

ExportTypeExt<ET, FT> _exportTypeExt
ExportFieldGuard<ET, FT= _exportFieldGuard

ProfileOptions<PT= _profileOptions @ . :
UserQptions=UT= _userOptions SIS

List<EventExtension= _eventExts | @ void Init<XT=>(XT parent) where XT : ICTExtension
: N @ void Hook(CTInterface oCTinterface)
® ET GetExportSettings{ICTExportProfile) @ void UnHook{CTInterface oCTinterface)
@ bool HasProfileSettings()
@ PT GetProfileSettings() 4

@ bool HasUserSettings()

© UT GetlserSettings() |
@ List=FEventExtension= GetEventExtensions() |
@ Hook(CTInterface) { Forall _eventExts Init{this), Hook } |
@ UnHook(CTInterface) { Forall _eventExts UnHook } |

@ @ EventExtension_XT

@ override void Init=XT=(XT parent) { Initiparent as XT) }
@ void Init{XT parent)

Figure 4.2.3.1: EventExtension architecture

60

4.3 Data model configuration

Being able to export the same items multiple times (Requirement R2), as well as getting it all to work
with existing models (Requirement R8) are all about configuring the CT Properties (Section 3.1.) to
support the existing Custom Property data model and the requirements of the target ERP system.
Having the data available is the key requirement for everything else. This is also in direct relation with
being able to map an existing ERP item with a model (Requirement 3) as Search Groups (Section 3.3.)
can be configured to pull the data from a 3rd party system into the models’ Custom Properties. Very
closely related requirement is also the possibility to provide identification by the target ERP system
(Requirement R11) but as this data model related requirement does not come without issues, it has to
be discussed in its own sub section (Section 4.3.4.). Still, these four requirements (R2, R3, R8, R11)

can be grouped under the same partial solution of data model configuration.

4.3.1 Target system requirements

Data model configuration should be started with the requirements of the target ERP system; mainly
understanding what the valid values from ERP point-of-view in design-to-item field value mapping
are. Let us consider for instance Unit. Since the target system likely has its own unit-based
calculations on resource planning, it obviously expects the units provided to its items by the
integration to be known ones. Therefore, the Unit in design components must be based on a list
provided by the target system. In CUSTOMTOOLS this and all similar choose-from-list -type
requirements would be a Property with a Lookup List (Section 3.2.) which content is either manually
defined at CT Profile Options, dynamically retrieved with an SQL Query, or dynamically provided by

a script add-in.

Another common ERP side data restriction is field value length. In many systems for instance
Description is limited to a specific number of characters. Therefore, this should already be accounted
for in design time Property filling. In CT Profile Options this is a trivial setting in Property Wizard’s
Additional Options -page (Figure 4.3.1.1).

61

=1

O CustomProperty Wizard 7 >

Additional Options G

Walue format

ur
[] Maxirnum length: 1 =

L ISSSUSIY S |

Figure 4.3.1.1: Maximum length -setting at Property Wizard

For some extra protection against values not written to models by CT Properties, the same maximum
length can be defined for Export Profiles Fields as well, along with simple but efficient Compulsory
field -selection. The latter one prevents the integration from executing if the field has no value at all,
tackling the simple target system requirement to provide a non-empty value for a specific field (Figure

43.1.2).

O Export Profile Field (CUSTOMTOOLS) ? x

Source

Field tvpe:

CUSTOMTOOLS attribute w
Field data:

Description v

Label
Description

Value

Options
[~] Maximum length: 20 S

] Compulsory field

v} OK 0 Cancel

Figure 4.3.1.2: Export Profile Field settings

As a recurring example, let us define some set of fields in Table 4.3.1.3 that an imaginary ERP system

could expect.

62

Table 4.3.1.3: Requirements of an imaginary ERP system

Field Name Value requirements / Explanation

Item No Freely definable, unique identifier of an ltem
Description String of maximum 20 characters describing the item
Unit One of the following unit-values,

user-friendly value in parenthesis:
* KG (Kilograms)

* M (Metres)

* PCS (Pieces)

* L (Litres)

Type One of the following item type indicators defining its behavior in ERP system,
user-friendly value in parenthesis:

* 1 (Manufactured)

* 2 (Purchased)

* 3 (Assembled)

* 4 (Product)

Weight Decimal value, weight of the item

BOM Array of strings containing valid /tem Nos already present in the ERP system or
within the current transaction. Null or empty for Items that don’t have BOMs.

BOMQtys Array of integers containing Quantities of Items defined in BOM -field’s array. Size
of this array must match with BOM -field’s array size.

4.3.2 User-friendly values in Lookup Lists

If the target ERP system expects non-user-friendly values for a field, expecting the designer to select
those values in design time at Properties is not a good idea. Instead, a Hierarchical -type Lookup List
can be used with a Hierarchical Combo -Property, and a script add-in that displays user-friendly values
for each combo item while still writing the ERP-required data to the model. The event that needs to be
handled to achieve this is OnLookupListFill and it is only supported for Hierarchical Combo -

properties. It is however trivial to convert also Simple and Key-Value -lists to Hierarchical ones.

For example, let us examine the example target ERP system’s requirements (Table 4.3.1.3) regarding
the Type -field that determines the item behavior in the ERP system. ERP required values for that field
are 1, 2, 3 and 4 and corresponding meanings are 1=Manufactured, 2=Purchased, 3=Assembled and
4=Product. The numerical values are the real data that needs to be stored to the model at design time
so that it can then be exported in batch to the target ERP system. But the CAD designer is interested in
choosing the meaning over some meaningless numerical data value. This type of list can be

represented as in Table 4.3.2.1 with Hierarchical Lookup List -type, but no actual hierarchy is needed.

63

Table 4.3.2.1: Lookup List with values and descriptions

Value Key1

1 Manufactured
2 Purchased

3 Assembled

4 Product

Then while handling OnLookupListFill -event for a Hierarchical Combo -Property, the DisplayKey -
property in event arguments can be set from 0 to 1 to populate the drop list with Key1 -values.
Keeping the MainKey as 0 uses the value field as the actual data to store. This method can also be used

for user specific translations of LookupList values.

4.3.3 Design to Item -mapping

A valid 1-to-1 mapping must be determined between a Custom Property (or set of Custom Properties)
and target ERP field (or set of fields). This is the basis for being able to export complex
SOLIDWORKS structures as the same components easily are referenced in multiple different
contexts. Therefore, in the SOLIDWORKS context, Requirement R2 to be able to export structures in
batches multiple times is as important as just being able to create items to the target system once
(Requirement R1). Being able to export something twice means that the corresponding item for the
CAD design must be pre-mapped already before any export procedure is executed and some sort of
value comparison logic applied. This also strengthens the Export -dialog solution for Requirement 9
that is about seeing a clear visualization of what kind of operation the integration is going to perform
(Figure 4.3.3.1). This pre-export phase is also crucial for being able to have field/BOM specific update
rules (Requirements R4 and R7).

The mapping is usually handled so that at the CAD -site some sort of unique identifier per itemized
component is generated and this ID is then exported to some specific field to target the ERP system.
This yields a requirement to the ERP system: the field used for mapping must stay unique. Unique
number generation using CUSTOMTOOLS is however very simple and versatile using CT Sequences
with CT Properties. It is also possible to form a complex combination of Properties to use as item
identifier in design to item -mapping. Whenever possible, the item identification should be provided
by CUSTOMTOOLS for simplicity. It is fairly common to use an item ID that does not resemble
anything that would otherwise be created in ERP, just to have clear separation between integration -
handled items and other items. However, some systems require that the item identification is generated

by the target ERP system. This is possible but not trivial as will be discussed in Section 4.3.4.

64

CAD Document " Export ERP

User
: Open Export
—_——

PRE-Export([id])

be performed per

component

Requirement 9:
\t’ Visualization)

< and actions that will

Examine the Visualization

I
/Shnw data differences E

Export : >

: loop / [All components] |

: | Create/Update |

] | }l

I I I

Ok ! [[

L{ L e e et e I

User [
CAD Document " Export ERP

Figure 4.3.3.1: Pre-export -phase retrieves existing values from the ERP so that the value comparison
can be performed and visualized.

4.3.4 Item identification by target system

Usually, EPR items have an ID that can be used for unique mapping but on some occasions the ID
must be generated by the ERP system itself. This is problematic from CAD point-of-view as it would
require write privileges to design files at ERP Export -phase, while this is usually the point that the
design is already locked from all modifications by some sort of PDM system (Figure 4.3.4.1).

One solution for this is to instruct CAD designers to use the Export in a point that still allows write

access to design documents, or to have a separate integration module that handles file write within the

65

used PDM system. As far as the author knows, these are the only possible ways to solve the case if it

is expected that the design documents do not generally have the item identifier at Export.

On the other hand, the ID retrieval can be thought of as a design time task (Figure 4.3.4.2). This is the

most natural use case for new designs but has an obvious downside that legacy designs will not have

the value written. So, the overall export must anyway be equipped to handle the already described

issues with them. For this, the Compulsory Field at Export Profile Field -settings (Figure 4.3.1.2) is a

great addition for the ID -field. This will prevent execution of Export for as long as even one of the

components is missing value from the field. This guides the user to go back to Properties to retrieve a

new ID from the target system, and as this is an obvious change to the document, it is clear for the

designer that the document must be reserved from the PDM system for this task (Figure 4.3.4.3).

{ ...
' Write [id] to ID Property

Export CAD Documents l‘ ERP
User
| I I I
My design is finally ready | |
and approved in PDM, and | i
locked from any further | |
modifications. Time to i i
export it to ERP! :) \ \
: > : | |
loop / [all CAD Documents] |
alt [if Has No ID] | |
| | | Ensure write permission |
alt ./ [Has No Write Permission] |
. Exception .
' : |
| Getldentifier (and export) _

User

Figure 4.3.4.1: Ensuring write permissions is crucial but many times the process is executed on a

CAD Documents l‘

ERP

phase where no modifications are expected anymore.

CAD Document "

PDM
User |
: Mew Document :
: : Crea
i 0Ok, Editable [

i Access Properties |

te
r

Mew document,
no ERP 1D,
can be edited

| Properties: Get new ERP ID

Lock modifications

.

Lock

GetNewlID()

MNew docurnent,
Has [id].
can be edited

Locked
CAD Document
with [id]

Export

CAD Document "

Figure 4.3.4.2: Design time ERP Item ID mapping with Properties

66

PDM CAD Document " Export

User
i I I I
| Open Document __: | |
| :Open | |
! ! Old document, !
| | no ERP 1D, |
! ! locked in PDM !
i i U i
i Ok, read-only i i i
I Export | ! i

| Export(NO ID) _

"ERROR: Compulsery Field ID is m:issfng”

-
-

Edit Document

Access Properties

T
i
k- !
Pl i
i
i

Y

| Edit
Ok, editable |

Properties: Get nejv ERP ID

Y

Lock modifications

Y

GetNewlD()

ERP

Old document,

can be edited

Has [id], E

| Lock
| Locked
| CAD Document
Export : ,_:
| | Export([id])
| | [id] & other fields _
Allgood . e Y RO

PDM | | cAD Document " Export

Figure 4.3.4.3: ID retrieval process for legacy CAD Documents

67

68

4.3.5 Design time ERP item mapping

One very normal use case that is surprisingly often forgotten from ERP integrations is the possibility
to create a CAD design for an existing ERP item. For example, purchased components are very often
already existing in the ERP system but if the integration is only able to create new items with new
identifiers, then there is no possibility to take those already existing ERP Items into use for new or

existing designs.

This is solved with CUSTOMTOOLS Search Groups (Section 3.3.) that are able to query anything
that can be added as a linked server to MS SQL Server and map the result set directly to CT Properties
already at design time. The Search Groups must then contain all the same properties that are also in
the Export Profile, because otherwise the Export would lack field information of those existing ERP

items and possibly even resulting in data loss at ERP site.

4.3.6 Configuring the CT Profile

Looking back at the example ERP requirements (Table 4.3.1.3), we determine that following

Properties are needed:

e ERP Item Number, a text field -Property that has CT Sequence attached to it to provide
unique identifiers across the design environment. In the Export Profile this property needs
to be linked via its Custom Property attribute to a Export Profile Field (Section 3.4.2)
named Item No, which should also be set as a Compulsory Field. The Property itself needs
to be linked to the defined ERP Search Groups’ Item No. To support legacy models as much
as possible and configuration specific items, the Initial Configuration -setting of this

property must be set to Document Properties and Active Configuration.

o This arrangement is also suitable to support Item identification by target system
(Section 4.3.4) as the CT Sequence provider can be overridden with a

SequenceExtension to provide identification from the ERP.

e ERP Description, an Editbox -Property with length limitation of 20 characters. Liked via its
Custom Property attribute to an Export Profile Field named Description, which should also
have the length limitation of 20 characters. Search Group linking to Description -field as
well. Initial Configuration -setting depends on if the designers are and/or have been using
configurations to produce different kinds of items. Good rule of thumb is that if the

description always contains measurement information or anything else configurable, then it

69

should be configuration specific i.e., Active Configuration or Document Properties and
Active Configuration. The latter one is generally faster in design time property filling as the
document property value is inherited for configurations that do not have their own value.
But as such this may also result in retrieving non-examined descriptions of new
configurations at item export. Some prefer these fields to be empty unless specifically
defined by the designer, to which case the first option suits better. If the designs are never
configured so that different configurations would have different descriptions, then
Document Properties is the correct option to select. In addition, to query items of the
Search Group, one of the properties must have a Button Function GetDatabaseltem. This
property is a good choice for it as the ERP Item Number -Property already has a Button

Function defined.

ERP Unit. Depending on if the unit values of the target system are user-friendly, this could
simply be a ComboBox with a Simple -type Lookup List. If they are not, then this should be a
Hierarchical Combo -property with a Hierarchical -type Lookup List to allow displaying user-
friendly values in Properties. Its Custom Property attribute should be linked to an Export
Profile Field named Unit. It is very common that the unit-like field is required by the target
system so in most cases this field should also be set as a Compulsory Field. The Search
Group should be linked to the corresponding Unit -field and from this case it becomes
obvious why the “EPR required unit value” must be resolved dynamically at runtime
(Section 4.3.2.) instead of for example at Export: It would not otherwise be possible to
query the value from existing items and store them to properties as returned by the ERP
system. Initial Configuration of Unit is generally Document Properties as configuring designs
should not affect what the design actually is and therefore also in which unit its quantity

should be represented.

o Content of the list would be provided by the script extension, or by any other means

discussed at Section 3.2.

ERP Item Type. This is technically exactly the same case as the ERP Unit with Hierarchical
Combo. Export Profile Field is Type and it is also compulsory. The Search Group field is also
Type. Initial Configuration is Document Properties in this example case. It is however
possible in some cases that some configurations of a design are purchased while others are
manufactured. In these cases, Document Properties and Active Configuration is the best

choice.

Mass. This is a property that goes one way only, from design to ERP. Mass is calculated by
SOLIDWORKS based on active/referenced configurations but the actual property holding the
mass does not have to be configuration specific. It is a special value that is evaluated on

request so when the document is open, the mass is usually retrieved correctly. However, to

70

also support cases when the documents are not open, it is recommended to use
configuration specific property to have last known configuration specific mass stored to the
design’s properties. So as a middle ground to support also old documents Document
Properties and Active Configuration is a good choice for Initial Configuration. Otherwise,
the CT Property type is an Editbox with Before Function GetMass (Section 3.1.4) and its
Export Profile Field is Weight. As the weight is always provided by the design, this property

is not included to the Search Group.

o The mass value in Export is displayed per component using its document’s defined
unit system. This can be a problem if the units are not consistent, e.g., some
component reports weight in kilos as others in grams or pounds. Usually design
companies are using consistent units but if this becomes an issue, it can be solved
with the ExportExtension using SW API to retrieve used document units and adjust
the weight value accordingly. This is however a rare situation so it will not be

included in the general solution.

The BOM -field required by the target system is handled by the ExportExtension. The BOM type -
setting in the Export Profile however is either Parts Only for target systems that only allow single
level BOMs or Intended Assemblies for multilevel. Configurations must be displayed as separate items
as was discussed in Section 3.4.1. If the current design environment has been strictly using Design
time BOM modifiers (Section 2.5.3.) then the options to Always show components of subassemblies,
ignoring the “Child component display when used as a subassembly” setting can be left unchecked.
However, it is the author’s opinion that this is almost never the case and therefore the BOM/Item
filtering should be completely handled by the ExportExtension to which the whole unmodified BOMs
should be provided by checking this option.

To have Quantities for the BOMQtys -field, a new special Export Profile Field must be added with
Type SOLIDWORKS Property and Quantity or Material Quantity as data selection. Material Quantity
is a new option in CUSTOMTOOLS 2020 SP1 that allows defining the real need of some material
instead of the instance count of it in design. The real need is usually the one that ERPs want but it is
also usually paired with some raw material information. For example, if a design is a metal tube cut to
length of 1m from a 2m bar, then the design’s BOM Quantity should be set to 0.5 and raw material to
2m bar as every instance of it consumes only half of that bar. Then, if a design has 10 of these 1m
bars, the actual need i.e., Material Quantity in the full design is 5 times 2m bar, which is usually also
the purchased raw material. On the other hand, some ERPs have their own raw material calculations
and in those cases the Quantity is the correct choice for data selection. Name of the field has no real

role from the integration point-of-view, but Quantity is generally good for visualization.

71

Figures 4.3.6.1 - 4.3.6.4 show the related CT Profile settings defined so far, Figures 4.3.6.5 and 4.3.6.6

show the CT Properties and attached Search Group as they are available for the designer. Figure

4.3.6.7 shows how the data is stored to a model using current profile settings and Figure 4.3.6.8 how

the data is collected to Export -dialog.

Properties:

Attribute Name Label Type Required Before Function Button Function Database Search Group Database Column Max Length Lookup List

Properties
erp_item_no ERP ltem Mumber Editbox v GetCode Target ERP ltem Mo
erp_descr ERP Description Edithox GetDatabaseltern Target ERP Description 20
erp_unit ERP Unit Combobox b Target ERP Unit ERP Units
erp_type ERP [tem Type Hierarchical Combo + Target ERP Type ERP ltem Types
mass Mass Editbox GetMass

Figure 4.3.6.1: Model Properties defined having the example target ERP -system in mind. Attribute
names are set so that existing design data can be used as efficiently as possible.

Profile Options

L'

Projects
Sequences
Properties
Maodel Properties
Drawing Properties
w Cut List Properties
Sheet Metal Settings
Weldrment Settings
Revision Properties
Custom Scope Properties
w Custom Entity Properties
Custom Entity Setting

Lookup Lists
Combination Properties

Mame Type Data source
ERP Units Simple User-defined
ERP ltermn Types Hierarchical User-defined

Figure 4.3.6.2: Lookup Lists defined having the example target ERP -system in mind

Profile Options

Lookup Lists
Combination Properties
RAL Celor

Color

Batch Job

File Conversion
Database Search Groups
Materials

Projects Database Search Groups:
sequences MNarme Server Catalog Schema Table
P rti

roperties Target ERP

Figure 4.3.6.3: Target ERP defined as queryable Search Group.

72

& Export Profile (THESIS) ? x
Profile name: Profile type:

Export profiles | Export to ERP | <XSL/ Script> ~ r
MName Qutput Path] Allow using in SOLIDWORKS PDP
Export to ERP Output path:

| >
X5L style sheet:
Browse...

Profile fields
Label Field Type Field Data Configurations to export: Language:
ltern Mo CUSTOMTOOLS attribute erp_item_no Active/Referenced Configuration e h
Description CUSTOMTOOLS attribute erp_descr
Uni CUSTOMTOOLS attrib i BOM type

nit attr! ute erp_unit O Top level only O Include drawings
Type CUSTOMTOOLS attribute srp_type () Parts only [Include weldment cut list items
Weight CUSTOMTOOLS attribute mass B

Material Quantity SOLIDWORKS property

Material Cuantity

New... Edit... Delete

(® Indented assemblies

[] Accumulate guantities

Grouping

(®) Display configurations of parts as separate items

() Display configurations of parts as one item

Always show components of subassemblies, ignoring the "Child component displa
! P g g P play
when used as a subassembly” setting

[] Use part's preview image for cut-list items

Run conversion rules:

Detailed cut list
[Include sheet metal cut list items
[JInclude selid body cut list items

Custom property scopes to export:

[JCustomScopel ~
[CustomScope2
[CustomScope3
["1CustomScoped &

O Open output file(s) once completed

(v] QK 0 Cancel

Figure 4.3.6.4: The Export Profile “Export to ERP” and its fields with recommended settings for target

ERPs supporting multi level BOMs.

73

‘D?SSOLFDWORKS‘ File Edit View Insert Tools Window Help x‘ =

Features | Sketch | Surfaces | Sheet Metal | Weldments | Evaluate | MBD Dimensions | SOLIDWORKS Add-Ins | CUSTOMTOOLS |

G E RIS

&

pL

&

v @ Partl (Default<<Default>..

Properties @
v X ™
Action:
@ [ram
£ [petaurt

fa
lo

Property Specific
Default

|:| Include only active/referenced configuration

& [EE3

Properties

ERP Item |

Mumber*
ERP |
Description
ERP Unit*
ERP Item
Type*

Mass

5.67

&8 -

-

I -
-B.

ur

x

NIERY

ED

log@Mme

T Model | Metion Study1 |

: TN BRAB ALY AGBAEAHAARKEI[IGES TR v
SOLIDWORKS Premium 2019 5P1.0 Editing Part AMGS «]
Figure 4.3.6.5: CT Properties as defined in the Profile Options.
e s | mreRoL | st tnctur | Trmenerees """"“‘;"‘ | fmeerrr twne 2] o] 1 = B X
@ & Database ltem Search (THESIS) ? * -
Search conditions: Search results: %
7 | 0 o Close | | ERP itern Number ERP Description ERP Unit ERP Item Type [E
3 Link
Action Properties ~
Delete link e
@ ERP Item Number =T
(<)
E ERP Description 6
| | °
|'C| ERP Unit §
(g

ERP ltem Type

ERP

Description
ERF Unit*

a=| FOD tam

e

Figure 4.3.6.6: Access the Search Group that allows linking an existing item with this design.

74

Summary Information - O *

Summary Custom Configuration Specific

EOM guantity:
Delete Edit List
Property Name Type Value / Text Expression Evaluated Value (L)
1 |erp_descr Text Company Tag Company Tag
2 |erp_item_no Text 12345 12345
3 |erp_type Text 1 1
4 |erp_unit Text PCS PCS
5 |mass Text “SW-Mass@Part1.5LDPRT" 5.67
6 | <Type a new property
Summary Infarmation - O X
Summary Custom Configuration Specific
Apply to: BOM quantity:
Property Name Type Value f Text Expression Evaluated Value (]

1 |erp_descr Text Company Tag Company Tag

2 |erp_item_no Text 12345 12345

3 |mass Text “SW-Mass @ @Default@Part1,SLDPRT” 5.67

4 |<Type a new property

Figure 4.3.6.7: Attribute data stored to design document’s Custom Properties with current settings of
CT Properties. Item number, type and unit values are of course faked at this point as the integration is
not yet implemented.

JD}SSOLIDWORKS| File Edit View Insert Tools Window Help ‘ A0 F-E-52- ' 8 E & - 2. |B search Commands P-ag2-_FEOXx

% E = D D@
Properties Copy Comment Open Print/Convert Explore Where |Export| 3D options
d Bounding
- Box
Assembly | Layout | Sketch | Evaluate | SOLIDWORKS Add-lns | CUSTOMTOOLS | am .= x B sou Resources &=
B . I
s [EIE[ele]> 7S s o
7- & Pint/Comvert | £ Where Used | [B] Fie Operatons | 3] Lt |
@ 222222 (Default<Display State-1>) —— Profle
3 History P Export profile:
iz @ Defaut Export to ERP v
Sensors
+ [i) Annotations Item Name ftemNo Description Ut Tpe Weight Material Quantity Selection
1] Front Plane @ 22222251085, 22222 DoubleTag Design ~ PCS 1 134 1
(] Top Plane Q1235500 12345 Company Tag pcs 1 567 2
i
o]
1 Right 1
[Right Plane No preview
L, origin
> Gy (1) 1234541> (Defauits<Default>__|
» €8 12345<2> (Default< <Default> D
> [Mates
Filename:
C\Users\serkinhe\Documents\CUSTOM
BOM
Exclude Invalid Rows
Excluded from BOM
Apply to Files
.
Search string Search
_
(Search criteria is not specified) < >
.
< > | *Isamefric [T

- Ifigijre 4.3.6.8: The stored attribute data collected from models to Export -dialog

75

5 Applying the provided solution

The 11 common SOLIDWORKS - EPR integration requirements (Section 2.6) were all addressed in
Chapter 4: Requirements R1, R5, R6, R9, and R10 can be met with Export Type Extension script
(Section 4.2.3), Requirements R4 and R7 with generalized architecture for configurability (Section
4.2) and Requirements R2, R3, R8 and R11 by configuring CUSTOMTOOLS Profile to support the

existing data model (Sections 4.3).

The generalized steps for SOLIDWORKS — ERP integrations are:

Install CUSTOMTOOLS for SOLIDWORKS
Configure CUSTOMTOOLS Profile to match with existing design environment (Section 4.3)
Implement CTExtensions.ExportCore.ExportBase as required (Section 4.2)

Implement necessary Export Type Extensions for the ExportBase as required (Section 4.2.3)

g N w N =

Deploy the script (Section 3.5.2)

5.1 User implementation example

To demonstrate the power of the base architecture and implementation, the worst-case scenario
implementation for data storing requirements is given. In this scenario, the ERP integration requires

following abilities to store and configure information:

e Export Profile Field: Field-to-field mapping
e Export Profile: Export profile mapping to Company selection
e Profile: Web Service endpoint in Profile Options

e User: User specific login credentials

Assume using CTExtensions.ExportCore; for all the described scopes and classes.

5.1.1 Field-to-field mapping

The main requirement of being able to export items to the target system, even in its most basic form,
requires at least mapping of source export field data to target system field. While the implementation
example is broad in its overall data storing requirements, providing more complex data objects is

unnecessary. Extending the provided object is very trivial.

Data object implementation, TargetFieldSettings, must only derive from
SettingsObject, implement serialization (using conveniently provided System.IO.Stream

extensions) and return the corresponding ControlAdapter for the GUI interaction.

public class TargetFieldSettings : SettingsObject {

// The data to store/load per field
public string TargetField {get; set;}

protected override void Deserialize(Stream s) {
TargetField = s.PopString();
}

protected override void Serialize (Stream s) {
s.PushString (TargetField) ;
}

public override ControlAdapter CreateAdapter (ICTExtension parent)

return new TargetFieldSettingsGUI (parent) ;
}

TargetFieldSettingsGUT initializes a textbox to map with the actual
TargetFieldSettings data object. Notice the simplicity and how strong typing provides
compile time safety and ease of implementation regardless of using completely custom data objects

with the base implementation.

public class TargetFieldSettingsGUI
ControlAdapter<TargetFieldSettings> {

System.Windows.Forms.TextBox tb;
System.Windows.Forms.Label 1bl;

public TargetFieldSettingsGUI (ICTExtension ext) : base (ext) {
1bl = new System.Windows.Forms.Label ()
{
Text = "Target Field:",

Dock = System.Windows.Forms.DockStyle.Top
}i
tb = new System.Windows.Forms.TextBox () ;
tb.Dock = System.Windows.Forms.DockStyle.Top;
Controls.Add (tb) ;
Controls.Add (1bl);

76

7

public override void LoadFrom (TargetFieldSettings settings) {
tb.Text = settings.TargetField;
}

public override void SaveTo (TargetFieldSettings settings) {
settings.TargetField = tb.Text;
}

5.1.2 Export profile mapping to Company selection

It’s quite common that the target ERP system has tenants, company selections or similar for
distinguishing different sub-areas to interact with. For example, testing and production environments
may be at the same ERP instance but under different company names. In that case it makes sense that

different Export Profiles are then mapped to different companies.

ExportProfileSettings holds the TargetFieldSettings but also stores Company
information per Export Profile. Notice how similar this data object implementation is to the
SettingsObject implementations even though it packs a complete second serialization level for

the Export Field Settings by deriving from ExportSettingsBase.

public class ExportProfileSettings
ExportSettingsBase<TargetFieldSettings> {

// The data to store/load per Export Profile
public string Company {get; set;}

protected override void Deserialize (Stream s) {
Company = s.PopString();
}

protected override void Serialize(Stream s) {
s.PushString (Company) ;
}

public override ControlAdapter CreateAdapter (ICTExtension parent)

return new ExportProfileSettingsGUI (parent);
}

78

For the GUI interaction, ExportProfileSettingsGUT initializes a textbox to map with the
actual ExportProfileSettings data object’s Company information. Strong typing is the result

of cleverly used generics.

public class ExportProfileSettingsGUI
ControlAdapter<ExportProfileSettings> {

System.Windows.Forms.Label 1bl;
System.Windows.Forms.TextBox tb;

public ExportProfileSettingsGUI (ICTExtension ext) : base(ext) {
1bl = new System.Windows.Forms.Label ()
{
Text = "Company:",
Dock System.Windows.Forms.DockStyle.Top

}s

tb = new System.Windows.Forms.TextBox () ;
tb.Dock = System.Windows.Forms.DockStyle.Top;
Controls.Add (tb) ;

Controls.Add (1bl);

public override void LoadFrom (ExportProfileSettings settings) {
tb.Text = settings.Company;
}

public override void SaveTo (ExportProfileSettings settings) {
settings.Company = tb.Text;
}

5.1.3 Web Service endpoint in Profile Options

Even though the target ERP may have multiple sub-environments like Companies that are better to
map on Export Profile level (Section 5.1.2), for instance the target system endpoint is usually the same

for all Export Profiles and therefore better to store on the Profile level.

Again, the SettingsObject is derived into a very simple ProfileSettings data object, and

otherwise at this point the implementation should already be very familiar.

public class ProfileSettings : SettingsObject ({

// The data to store/load per Profile
public string Endpoint {get; set;}

79

protected override void Deserialize(Stream s) {
Endpoint = s.PopString();
}

protected override void Serialize(Stream s) {
s.PushString (Endpoint) ;
}

public override ControlAdapter CreateAdapter (ICTExtension parent)

return new ProfileSettingsGUI (parent);

}

ProfileSettingsGUI initializes a textbox to map with the web service endpoint. While the ease

of implementation and repetitiveness makes the code listing dull, it is given for the sake of

completeness to later compare with implementation that does not use the provided base.

public class ProfileSettingsGUI : ControlAdapter<ProfileSettings> {

System.Windows.Forms.Label 1bl;
System.Windows.Forms.TextBox tb;

public ProfileSettingsGUI (ICTExtension ext) : base (ext) {
1bl = new System.Windows.Forms.Label ()
{
Text = "Endpoint:",

Dock = System.Windows.Forms.DockStyle.Top
i

tb = new System.Windows.Forms.TextBox () ;
tb.Dock = System.Windows.Forms.DockStyle.Top;
Controls.Add (tb) ;

Controls.Add (1bl);

public override void LoadFrom (ProfileSettings settings) {
tb.Text = settings.Endpoint;
}

public override void SaveTo (ProfileSettings settings) {
settings.Endpoint = tb.Text;
}

80

5.1.4 User specific login credentials

For each user it should be possible to configure a username and password used with the web services.

public class UserSettings : SettingsObject {

public string UserName{get; set;}
public string Password {get; set;}

protected override void Deserialize(Stream s) {
UserName = s.PopString();
Password s.PopString () ;

protected override void Serialize(Stream s) {
s.PushString (UserName) ;
s.PushString (Password) ;

}

public override ControlAdapter CreateAdapter (ICTExtension parent)

return new UserSettingsGUI (parent) ;

Refreshingly differently, there exists a better option than creating a user specific credential control
from scratch as was briefly mentioned in Section 4.1. and visualized in Figure 4.1.4. The assembly
ATRControls2.dll packs ATRControls2.WinFrom.GenericLoginCtrl that derives from
UserControl and can be set up to show different user credential fields, like Username and
Password. Main benefit of using this control is that it is localized (which is especially good as user
specific settings interact directly with end users of the environment) as well as it provides a common

look and feel out-of-the box.

public class UserSettingsGUI : ControlAdapter<UserSettings> {
ATRControls2.WinForm.GenericLoginCtrl loginCtrl;

public UserSettingsGUI (ICTExtension ext) : base(ext) {
loginCtrl = new ATRControls2.WinForm.GenericLoginCtrl () ;
loginCtrl.ShowUsernameField (true) ;
loginCtrl.ShowPasswordField (true) ;
loginCtrl.ShowEnableCheck (false);
loginCtrl.ShowCommunicationPointField(false);
Controls.Add (loginCtrl);

81

public override void LoadFrom (UserSettings settings) {
loginCtrl.Username = settings.UserName;
loginCtrl.Password = settings.Password;

}

public override void SaveTo (UserSettings settings) {
settings.UserName = loginCtrl.Username;
settings.Password = loginCtrl.Password;

}

5.1.5 Simple Event Extension using the stored data

Of course, data is not only stored and configured, but also consumed. For that, let us create a very
simple extension that subscribes to few commonly used export events and pulls all the stored data on
demand in the scope of the current user. EventExtension must be derived using the main
extension’s type in its generics. The main extension will be introduced in the next section but let us

now establish its name to MyIntegration.

// Handles export when the Export Profile is bound to MyIntegration
public class ExportEvents : EventExtension<MyIntegration> {

// Hold reference to main integration for data access
public MyIntegration ParentExtension { get; private set; }

// Many events come in specific order so some

// entry event is usually used to identify whether
// or not this particular extension should or

// would want to handle specific events after it.
public bool HandleEvents { get; private set; }

// Initialize this class

public override void Init (MyIntegration parent) ({
ParentExtension = parent;
HandleEvents = false;

// Subscribe to what is needed

public override void Hook (CTInterface iface) {
iface.OnExportProfileSelected += OnExportProfileSelected;
iface.OnStrExport += OnStrExport;

// Unsubscribe what was previously subscribed.

public override void UnHook (CTInterface iface) {
iface.OnExportProfileSelected —-= OnExportProfileSelected;
iface.OnStrExport —-= OnStrExport;

82

// When export profile is selected, it's binding information
// will be at its Typename property corresponding to extension
// identifying name. If it matches to our extension’s, then we
// know we want to handle the upcoming Export events too.
private void OnExportProfileSelected(object sender,
CTInterface.ExportProfileSelectedArgs e) {
HandleEvents = e.ExportProfile.Typename
== ParentExtension.IdentifyingName () ;

// If the export profile was bound to us, handle the actual event.
private void OnStrExport (object sender,
CTInterface.StrExportArgs e) {

if (!HandleEvents) return;

// Finally here we need all the stored data.

// Export Profile specific settings
ExportProfileSettings exportSettings =
ParentExtension.GetExportSettings (e.ExpProfile);

// Export Profile Field settings from the Export Profile
settings.
Dictionary<string, TargetFieldSettings> fieldSettings =
exportSettings.FieldSettings;

// Profile Specific settings
ProfileSettings profileSettings =
ParentExtension.GetProfileSettings () ;

// Logged in user’s settings
UserSettings userSettings =
ParentExtension.GetUserSettings () ;

// To wrap it all up

string endPoint = profileSettings.Endpoint;

string targetCompany = exportSettings.Company;

string userName = userSettings.UserName;

string password = userSettings.Password;

foreach (var mapping in fieldSettings) {
TargetFieldSettings targetSettings = mapping.Value;

string sourceField = mapping.Key;
string targetField = targetSettings.TargetField;

System.Windows.Forms.MessageBox.Show (
"Exporting to Company ‘" + targetCompany + "‘\n"

83

+ "at endpoint ‘" + endPoint + "‘\n"
+ "using credentials: " + userName + ":" + password +

" "),.

5.1.6 The Main Extension

The main extension glues all the previously listed abilities together. As was described at Section 5.1.4,
we can equip all of them simply by providing them as generic types for our extension that derives

from ExportBase.

public class MyIntegration : ExportBase<TargetFieldSettings,
ExportProfileSettings,
ProfileSettings, UserSettings> {

// Friendly name is shown for the user in

// various places

public override string FriendlyName () {
return "My Integration";

}

// IdentifyingName identifies this extension

// for example object binding and data storing.

public override string IdentifyingName () {
return "MY-ERP-INTEGRATION";

}

// The event extension
public override List<EventExtension> GetEventExtensions () {
return new List<EventExtension>() { new ExportEvents() };

}

5.1.7 “My Integration” showcase

84

IG?:'—.Z_:”_: Export Profiles (CUSTOMTO

Profile Options

v Properties ~ | Export profiles
I Model Properties Name Qutput Path
H Drawing Properties
v Cut List Properties CustomTools Raw structure {Source Path}{Source Filename}_{Date}xml
1 Sheet Metal Settings Excel report {Source Path}{Seurce Filename}xlsx
Weldment Settings
Revision Properties
!
| Custom Scope Propeties & Export Profile Field (CUSTOMTOOLS) X
« Custom Entity Properties
i Custom Entity Settings o = L eigs -
1 Lookup Lists Source My Integration
1 + Combination Properties Profile fields Target Field:
q Madel Cnmm"_atm_" Label Field Type Field Data ltem|D
] Drawing Combination SW Itern Numb... SOLIDWORKS ... Itern Number
Weldment Combination
RAL Color SW Part Mumber SOLIDWORKS... Part Number
Color SW Configurati.. SOLIDWORKS.. Configuration
« Batch Job Revision CUSTOMTOOL...
[Print Properties Description 1 CUSTOMTOOL...
] Sheet Format Action Approved date CUSTOMTOOL...
Layer Definitions Approved by CUSTOMTOOL...
File Conversion Company Value
Batch Operation Templates Quantity SOLIDWORKS ... Quantity
Database Search Groups
Materials
Export Profiles o oK @ Cancel
~ Cutting Profile Options
Bend Sheet Options
Coord Note Options
SOLIDWORKS PDM Settings
QOdoo ERP Integration
Dynamics NAV Integration
Wy Integration New... Edit... Delete
y Integ v

Figure 5.1.7.1: My Integration’s Field mapping (Section 5.1.1) at CUSTOMTOOLS Options.

T Profile Options - Expart Prof

Profile Options

[v]

QK

Q Cancel

9

Help

7 []Open output file(s) once completed

v} oK Q Cancel

w Properties ~ | Export profiles G Export Profile (C Jisle ?
Model P i
ol Propetics Name
Drawing Properties CustomTools Raw d Profile name: Profile type:
~ CutList Properties CustomTools Raw structure My Integration o =
Sheet Metal Settings Excel repart D
Weldment Settings [] Allow using in SOLIDWORKS PDM
Revision Properties Output path: My Integration n
Custor Scope Properties [€ s 2 g xml
w Custom Entity Properties - £ XSLstyle sheet Company:
Custem Entity Settings 1 ‘M‘, Targel Compary]
Lookup Lists <xskstylesheet xmlnsixs] = "http://www.w3.org/1989/X5L
~ Combinaticn Properties Profile fields <xskoutput
Madel Combination Label | method = "xml"
Drawing Combination SV Item Numb.. ¢ < >
Weldment Combinatien . . Cancel
RAL Color SW Part Number ¢ Configurations to export: Language: 1
Color SW Configurati.. ¢ Active/Referenced Configuration ~ | | English (United States) Al
~ Batch Job Revision { BoMtype
Print Properties Description 1 ¢ () Top level only [Jinclude drawings
Sheet Format Action Approved date ((7 Parts only [include weldment cut list items
Layer Definitions Approvedby § @) |ndented assemblies Detailed cut list
File Conversion Company : WSy e s [include sheet metal cut list items
Batch Operation Templates Quantity .| [Tinclude solid body cut list items
Database Search Groups
Materials Grouping
Export Profiles (®) Display confiqurations of parts as separate items
~ Cutting Profile Options () Display configurations of parts as cne item
Bend Sheet Options
Coord Note Options DAIways show components of subassemblies, ignering the "Child component
SOLIDWORKS PDM Settings display when used as a subassembly” setting
0Odoo E_RP Integration L [Usepart's preview image for cut-list items
Dynamics NAY Integration
My Integration New... q Run conversion rules; Custom property scopes to export:
e [JPdf Build ~ | [C]CustomScapel ~
[]Pdf Merge []CustomScope2
(] Dxf part [] CustomScope3
[1Dxf Merge ¥ | [C1CustomScoped G

0K

@ Cancel

9

Help

Figure 5.1.7.2: My Integration’s Export Profile binding (Profile type) and Company -mapping (Section

5.1.2) at CUSTOMTOOLS Options

85

@ Profile Options - My Integration (CUSTOMTOOLS)

Profile Options

Sheet Metal Settings &

Endpoint
Weldment Settings

Revision Properties www.mytargeterp. customtools.info

Custom Scope Properties
~ Custom Entity Properties
Custom Entity Settings
Lookup Lists
~ Combination Properties
Model Combination
Drawing Combination
Weldment Combination
RAL Color
Color
~ Batch lob
Print Properties
Sheet Format Action
Layer Definitions
File Conversion
Batch Operation Templates
Database Search Groups
Materials
Export Profiles
~ Cutting Profile Options
Bend Sheet Options
Coord Note Options
SOLIDWORKS PDM Settings
Odoo ERP Integration
Dynamics NAV Integration
My Integration

V]

QK

0 Cancel

9

Help

Figure 5.1.7.3: My Integration’s Profile Options (Section 5.1.3)

& User Options - My Integration (Admin)

User Options

~ General

. . Login Informati
Basic Information egin fnrermasien

File Operations Username: |Jusﬁn-BiEbEr
Messages/Errors/Warnings Passward: |,,,,,,,,1
PDM Connectors

Odoo Login

Dynamics MAY Login
My Integration

V]

oK

Q Cancel

9

Help

Figure 5.1.7.4;: My Integration’s User Options (Section 5.1.4)

86

>
DS SOLIDWORKS ~ File Edit View

Insert

Tools Window

A0-F-&-8-

ke E®-

'2000.002.003 [Read-only]

Search

S &

Properties Copy Comment Open

D@

Assembly | Layout | Sketch | Markup | Evaluate | cusTomTooLs |

€@ 2000-002-003 (Standard«< <Standard>_Er

> Historie
[senseren

Beschriftung

[] Ebenevore
[1] Ebene oben

[] Ebene rechts
1., ursprung

v €@y () 2000-001-020<1> (Standard< <St:

v 028678<1> (Default< <Default> Disy

> [l verknupfungen

Search string

Search

(Search criteria is not specified)

Print/Convert Import Explore Where | Export 3D Options
Bounding
Box
- = >
CHE-D-v-SH-0- 00 - x|
ﬁ Welcome to SOLIDWO
SOLIDWORKS Tools
b Build
G Export (CUSTOMTOOLS) o X wlaer
. s R
& PritConvert | < Where Used | [B) Fie Operations ‘ [et |
Benchma
Structure view: Profile
7 Export profile: y Score
(@D standard
CustomTools Raw structure - | -
Item Name SW Item Mumber SW Part Number SW Canfiguration Revision Description 1 Approved date Selection |
@ 2000-002-003 SLDASM 0 2000-002-003 Standard
€ 2000-001-029.SLDPRT 1 2000-001-029 Standard | S
€ 028678 sldprt 2 028678 x E
No preview available)
Exporting to Company My Target Company’ utions
3t endpoint ‘www.mytargeterp. customtaols.info’
using credentials: Justin Bieber:Selena<3
Tvices.
Filename:
Ci\Vault2\SimoSimo\ Test Model\2000-0 9n Services
BOM
Exclude Invalid Rows
Excluded from BOM
Apply to Files
<

Close

L ZEERN I
Figure 5.1.7.5: My Integration’s bound Export Profile using the stored data (Section 5.1.5)

87

5.1.8 When the case is not the worst

Important point is that not every case is the worst i.e., it is not always required to implement data
storage in any other level than Export Field Settings. For this, the Dummy object was introduced to
satisfy the generics in ExportBase. ExportEvents is commented out as it uses both User and
Profile settings objects. The add-in would compile if they were introduced in the code but since they
are not provided for the ExportBase in the class signature, this integration returns null for them.
Minimal ERP integration main extension class would then have the following class signature and

additionally only require FieldSettings (as defined in Section 5.1.1):

class MyMinimalIntegration : ExportBase<FieldSettings,
ExportSettingsBase<FieldSettings>,
Dummy, Dummy> {

// Friendly name is shown for the user in

// various places

public override string FriendlyName () {
return "My Minimal Integration";

}

// IdentifyingName identifies this extension

// for example object binding and data storing.

public override string IdentifyingName () {
return "MY-MINIMAL-ERP-INTEGRATION";

}

// The event extension
public override List<EventExtension> GetEventExtensions () {
return new List<EventExtension>() { /* new ExportEvents () */ };

}

88

5.2 Comparison & Analysis

Every add-in has its main extension class. For My Integration (Section 5.1.6) the complexity is in class
signature due to strong use of generics, however, the class implementation itself is extremely simple.
In addition, it has hidden internals for extension interface handling and their lifetime/re-initialization
control; all of which would have to be otherwise implemented by user script. As was shown in Figure
4.1.5 when implementing from scratch, the architecture of all of these capabilities requires at least the

following implementations:

e Main Extension

e ExportTypeExtension

e ObjectEditGuard

e ProfileOptionsExtension

e UserOptionExtension

e Export Field Settings data object
e Export Settings data object
e Profile Options data object
e User Options data object

e Export Field Settings control
e Export Settings control

e Profile Options control

e User Options control

e Serialization of data objects

The above worst-case requirements are set to table (Table 5.2.1) and complexity comparison is
performed between Implement from scratch and provided ExportBase implementation for each entry
separately. The total and average complexity are calculated for both cases. The same comparison is
then done again (Table 5.2.2) using only the Minimal required capabilities of an ERP integration
(Section 5.1.8). The author himself has populated the complexity numbers for each entry but aimed to
do it with emphasized objectivity. Since the ExportBase is completely new, there is no one in the team

yet to give feedback about its complexity.

89

Table 5.2.1: Worst case requirements complexity comparison

Complexity 1-10 (higher more complex, - not needed)

Requirement Implement | ExportBase | Reasoning / Notes
from
scratch
Main Extension 8 5 Main Extension has a lot of best practises
that should be followed to have bug-free
. implementation. ExportBase is simple and
ExportTypeExtension 6 B implements all those best practises under
. .] the hood, but its class signature might be
ObjectEditGuard 6 hard to understand due to generics. Also,
ProfileOptionsExtension | 5 _ Fhose relatively complex extensions are all
implemented for ExportBase.
UserOptionsExtension 5 -
Export Field Settings 1 4 Data objects are always very simple by
data object nature but ExportBase forces deriving
. from SettingsObject that provides both
E;)(po:t Settings data 4 4 linking with the GUI controls and
objec serialization which raises complexity.
Profile Options data 1 4 From scratch Export Settings must
object implement some field handling which is
X very error-prone.
User Options data 1 4
object
Export Field Settings 5 3 All ExportBase controls derive from
control ControlAdapter and provide strong typing
: of the Load/Save for the corresponding
Export Settings control 5 3 settings object. Otherwise, it’s like
Profile Options control 5 3 WinForms antrol, whlch_ls the case for
from scratch implementations that have to
User Options control 5 3 define their own data load/save scenarios
each.
Data Object 4 -
Serialization
TOTAL COMPLEXITY 61 33 46% less work with ExportBase
AVERAGE 61/14 = 33/9= 16% less average work complexity with
COMPLEXITY 4.36 3.67 ExportBase

90

Table 5.2.2: Minimal required capabilities complexity comparison

Complexity 1-10 (higher more complex, - not needed)

Requirement Implement ExportBase | Reasoning / Notes
from scratch

Main Extension 6 5 From scratch complexity drops from 8 to

6 due to dropping out of Profile- and
. UserOptionsExtension. No change for

ExportTypeExtension 6 - Exportgase. 9

ObjectEditGuard 6 -

ProfileOptionsExtension - -

UserOptionsExtension - -

Export Field Settings 1 4 Data Object complexity doesn’t change

data object per type. Some implementations are

Export Settings data 4 4 simply not needed.

object

Profile Options data - -

object

User Options data object | - -

Export Field Settings 5 3 GUI control complexity doesn’t change

control per control. Some implementations are

Export Settings control - - simply not needed.

Profile Options control - -

User Options control - -

Data Object Serialization | 2 - 50% less to serialize, so complexity
drops from 4 to 2.

TOTAL COMPLEXITY 30 16 47% less work with ExportBase

AVERAGE 30/7=4.29 |16/4= 7% less average work complexity with

COMPLEXITY 4.00 ExportBase

Results of the comparisons clearly state that using the provided ExportBase leads to significantly less

implementation work, which at the same time seems to be slightly less complex in nature.

Additional benefits of using the ExportBase comes from the fact that it is an integral part of the core

product. This means that script integrations provided for customers have extended maintenance and

possibility to even have new features years after project deploy. Using it also unifies the codebase

which can lead to better predictability and overall tolerance for future software environmental

changes.

91

5.3 In-house feedback

The suggested ExportBase architecture was presented and demonstrated for the CUSTOMTOOLS
Customer Project development team 1.5.2021. Participants were Simo Erkinheimo (Thesis author,
Product Manager), Tero Salonen (Product Director), Ilkka Kananen (Software Engineer) and

Marko Laamanen (Software Engineer).

The author requested input for the complexity tables (5.2.1, 5.2.2) after the presentation, but attendees
were not comfortable doing so as they did not have any experience on the new architecture. The
demonstration was not enough for complexity assessment, but as its benefits were still seen, verbal

feedback was then requested.

Looks simple to use. Implementing the controls and the mapping has previously taken surprisingly
long. The common architecture also reflects as a more unified look & feel generally. Common

serialization is also a good idea. (Kananen, 2021)

Can'’t easily compare because I haven't ever implemented the basis before. It has been so complex that
Simo has done it. However, the new architecture looks simple enough to actually use. Still, the reality

can only be seen when actually trying to use it. (Laamanen, 2021)

1t feels that this standard way of doing things is good. There will be less bugs and when something
gets fixed, the fix applies for all. Now-a-days there’s a lot of copy-paste and related errors. Common

base makes project handovers and maintenance also easier. (Salonen, 2021)

92

6 Discussions & Closing Words

6.1 Conclusions

Though some individual cases of CAD - ERP integration projects may very well be simple in their
nature, and even successful when the limitations are well understood by the user, it was also shown
that simply trying to meet all the most common requirements can very easily result in significant
complexity (Chapters 3-4). While every integration case is different, the high-level requirements are
mostly the same (Section 2.6) and having a standardized solution seems to be welcomed by the

integration project experts directly affected (Section 5.3).

The reduced work and complexity (Section 5.2) the introduced integration base offers as well as
standardization should lead to better quality code, faster project delivery, significantly easier project
handovers, support, and further maintenance. Sometime after the initial demonstration of the base
implementation (Section 5.3), it was decided to be included as core component of CUSTOMTOOLS,
from CUSTOMTOOLS 2022 SPO release onwards, and all further ERP integration projects will start
using it as an integration base. This can be considered a major success what it comes to offerings of

this work.

Also, having the supported requirements listed, as well as knowing a standardized solution for them
can be found, has a potential to significantly support sales procedure and even educate the potential
customer about the overall solution they might need. Therefore, defining the 11 common requirements

of SOLIDWORKS — ERP integrations (Section 2.6) is also one of the major offerings of this work.

Downsides are hard to find, but technically it is possible that faster project delivery has negative

financial effect in short-term as the project sizes might reduce.

6.2 Limitations & future improvements

This work is strongly relying on the common requirements given by subject matter experts (Salonen,
et al., 2020), which could obviously be argued against. There is no harm in supporting argued down
requirements, however, the correctness of the overall provided solution could take a hit if a

requirement of significant impact would have been left out.

Though the solution architecture (Chapter 4) considers all those common requirements (Section 2.6), it
does not provide any further generalization for Requirements R1, RS, R6, R9, and R10 but simply
states them doable as Export Type EventExtension (EE). There should be a lot of room for the actual

93

export procedure standardization now that the overall architecture is well-established for the general

case, e.g., [temBomExportEEBase.

Some other general purpose EventExtensions could consider e.g., CustomSearchGroupEE and
CustomLookupListEE, both simplifying the case when target ERP system cannot be queried as linked

server but with custom connector.
6.3 Extending the work for other CAD - ERP integrations

Standardization of complex issues has its obvious benefits. But it is the standardization itself that
might not be easily achievable; being highly dependent on the CAD in question as well as how it is
used in real life scenarios. To attempt similar generalized ERP integration solution with any other

CAD system, it seems that at least the following is required:

Mapping of a CAD component with ERP item (and BOM) must be possible.

Expert knowledge on the CAD itself
o Component itemization i.e., ltem / BOM formation
o Real world experience on user behavior for understanding the possible pitfalls and
issues with legacy data.
o Truly mastering the difference of Engineering BOM and Manufacturing BOM in

current context

e Expert knowledge/data about past integration requirements with the CAD, so that the
requirements could possibly be generalized. Generalizable requirements should rather cover

too much than too little.

e Professional software architect to provide a solution following the given requirements: an

integrated solution with configurable basis i.e., an integration framework.

e Comprehensive use-case based usability assessment of the solution is a must. General

usability of the solution must also not be forgotten.

While above list might not be complete, it strongly suggests that a generalized integration cannot be
done without true expert knowledge on the chosen CAD, its user behavior, and knowledge on the past
integrations with it. If lacking any of it, it would be the author’s recommendation to continue doing
fully customized integration projects and attempt the generalization later when the level of experience

meets the bullet points above.

94

References

CAD2M, 2018. Organize Your Bill of Materials in SOLIDWORKS Like a Pro!. [Online]
Available at: https://blogs.solidworks.com/tech/2018/02/organize-bill-materials-

solidworks-like-pro.html
[Accessed 21 May 2021].

CUSTOMTOOLS API Help, 2021. API Help. [Online]
Available at: https://taskpane.customtools.info/en/2021/APIHelp/html/68e69d43-
b31b-409e-bc6f-c50f845¢eaf22.htm
[Accessed 21 5 2021].

DASI Solutions, 2014. Search path order for opening files in SOLIDWORKS. [Online]
Available at: https://blogs.solidworks.com/tech/2014/06/search-path-order-for-

opening-files-in-solidworks.html
[Accessed 21 May 2021].
Eustache, J., Maranzana, R., Lanuel, Y. & Gardan, Y., 2002. Managing complexity in a CAD

environment, s.l.: s.n.

Fawzy Soliman, S. C. T. T., 2001. Critical success factors for integration of CAD/CAM
systems with ERP systems, s.1.: s.n.

Hou, J., Su, C., Zhu, L. & Wang, W., 2008. Integration of the CAD/PDM/ERP System Based
on Collaborative Design, s.1.: IEEE.

Hwang, W. & Min, H., 2013. Assessing the impact of ERP on supplier performance, s.1.: s.n.

Hwang, Y. & Grant, D., 2011. Understanding the influence of integration on ERP
performance, s.1.: s.n.

Iancu, P. C., 2016. About SolidWorks Modeling advanced features, s.1.: Constantin Brancusi
University of Targu-Jiu.

Jankowski, G. & Doyle, R., 2011. SolidWorks For Dummies 2nd Edition. In: SolidWorks For
Dummies 2nd Edition. s.1.:John Wiley & Sons, p. 384.

Kananen, 1., 2021. Sofware Engineer [Interview] (1 May 2021).

Laamanen, M., 2021. Software Engineer [Interview] (1 May 2021).

Lombard, M., 2013. Solidworks 2013 Bible. s.1.:John Wiley & Sons.

Muni Prasad, G., James, G., Raj, B. & Satya, S., 2013. Requirement analysis in the
implementation of integrated PLM, ERP and CAD systems, s.1.: Cranfield University.

Mikinen, O., 2018. SolidWorks-ohjelmiston MBD-sovelluksen kdytto teknisen tuotemddritte-

lyn kuvaamisessa, Tampere: Tampere University of Technology.

95

Salonen, T., 2021. Product Director [Interview] (1 May 2021).

Salonen, T., Francois, S., Franc, E. & Rosendahl-Halvrosen, T., 2020. Common requirements
for SOLIDWORKS - ERP integrations [Interview] (16 March 2020).

Schmitz, B., 2016. The Growing SOLIDWORKS Nation. [Online]
Available at: https://blogs.solidworks.com/solidworksblog/2016/10/growing-

solidworks-nation.html
[Accessed 21 May 2021].
Singh, C. D. & Khamba, J. S., 2017. Critical appraisal for implementation of ERP in
manufacturing industry, s.1.. LAP LAMBERT Academic Publishing.
SOLIDWORKS Online Help, 2020. SOLIDWORKS Online Help. [Online]
Available at:

https://help.solidworks.com/2020/English/SolidWorks/sldworks/r welcome sw onlin

e_help.htm
[Accessed 21 May 2021].

SOLIDWORKS, 2015. SOLIDWORKS Introduction. [Online]
Available at:
https://my.solidworks.com/solidworks/guide/SOLIDWORKS Introduction_EN.pdf
[Accessed 21 May 2021].

Xu, H., Xu, X. & Ting, H., 2007. Research on Transformation Engineering BOM into
Manufacturing BOM Based on BOP, s.1.: s.n.

Zhu, D. & Yan, D., 2018. Research on the integration of PDM and SOLIDWORKS, s.1.:

Shanghai University of Engineering Science.

