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This thesis introduces the extreme complexity behind CAD – ERP integrations in real world scenarios 

as a reasoning why a general-purpose integration for all system variations simply does not exist. 

Delivered integrations are mostly fully customized projects, solving the same issues repeatedly with 

varying success and promise of usability.  

To attempt at least some level of generalization, the CAD system is chosen to be SOLIDWORKS, and 

CUSTOMTOOLS for SOLIDWORKS is chosen to provide partial solution by itself as well as an 

integration platform for any target ERP system.  

Subject matter expertise is first heavily relied on determining the most common requirements of 

SOLIDWORKS – ERP integrations and design science methodology is used to generalize a solution. 

CUSTOMTOOLS Profile is configured to meet some of the requirements and CUSTOMTOOLS API 

is thoroughly examined for meeting the rest, eventually resulting in generalized solution in the form of 

data model configuration rules and integration base implementation, embedded in the 

CUSTOMTOOLS core product. The true complexity of the common requirements can be easily seen 

in the generalized solution architecture, and benefits of the provided solution are recognized by 

consulted SOLIDWORKS - EPR integration project experts. The provided solution will be taken in 

use for future integration projects. 
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1 Introduction 

1.1 Role of an ERP in manufacturing industry 

Generally, in all industries, it is required to be efficient to reduce operational and manufacturing costs. 

Many Enterprise Resource Planning (ERP) solutions aim to help with this goal by collecting business 

data under the same system, thus making it possible for different departments or sites to interact 

seamlessly for greater value. A simple example would be having warehousing, manufacturing and 

sales all under the same system. For salespeople to sell, there must be items to sell in the warehouse or 

at least in the manufacturing pipeline for later delivery. Having it all available in the same system 

should bring obvious advantages over separate systems. (Singh & Khamba, 2017, pp. 42-44) (Hwang 

& Min, 2013) 

 

In the manufacturing industry a single design company may easily create thousands of CAD models in 

a month. So large amounts of design data and documents are produced that, for design time efficiency, 

must all be accessible and available for reuse by other designers of the company. (Eustache, et al., 

2002) This problem is handled with Product Data Management (PDM) solutions that are usually 

tightly integrated with single or small selection of CAD software to provide real efficiency for 

continuous design processes. However, while essential and usually the first system to invest in the 

CAD design business, a PDM alone is generally not meeting the requirements that arise from a 

resource planning point of view. (Hou, et al., 2008) 

 

As much as there is product data for a PDM system to handle, there can be the same amount or even 

more corresponding items- and bills of materials data that are required to be managed in the ERP 

system. While a single CAD document in PDM may describe a piston of an engine and how to 

manufacture it, in the ERP the piston is just one of the items that are required to fulfill a purchase 

order of an engine. Items that are manufactured usually require many types of resources and time, and 

as such it might sometimes make better sense to order that piston from elsewhere than to manufacture 

it from the resource planning point of view. This is exactly what an ERP system is designed for and 

thus also justifies its place in the manufacturing industry. (Muni Prasad, et al., 2013) 
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1.2 Problem statement 

As the design and manufacturing industry dwells on large amounts of relational design data (Figure 

1.2.1), it is basically unreasonable to expect that anyone would manually handle the data exchange 

from the design environment to the ERP. Manual work has sometimes seen to be done on a very 

abstract level of design itemization but resource planning efficiency with that can only go so far, not 

even to mention the human resource cost for the manual work itself. 

 

 
Figure 1.2.1: Even a simple tank can have hundreds of components. 

 

 

Thus, to get real benefits out of an ERP system in the design and manufacturing industry, the data 

exchange between the design and ERP environments must be automated. Because many different and 

even fully customizable ERP systems as well as PDM systems exist that can sometimes support single 

or a selection of CAD software, in practice the reality of an integration is always a CAD specific 

customized solution at least to some extent. Some ERP specific integration products of course do 

exist, but if they require a very specific design data model to work, they just will not with existing 

designs without migration; unless they are configurable by the full data complexity that the CAD 

system allows. Impossibility to migrate data from a legacy system to a new system (Muni Prasad, et 

al., 2013, p. 47) is one of the key issues what it comes to integration projects. (Fawzy Soliman, 2001) 

(Hwang & Grant, 2011) 

 

Also, as batch exporting design data to ERP is the top requirement of an integration as will be 

discussed in Section 2.6, this type of one-way integration alone is not enough even for a task as simple 

as creating a new design for an existing ERP item. Already from these requirements it follows that an 

integration must be bi-directional and configurable integral part of the CAD designer’s familiar 
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system, without forgetting the importance of design cost efficiency to successfully serve its purpose. 

As the existing design data must be considered as well, configurability of the itemization has a large 

role in successful integration (Figure 1.2.2).  

 

 

 
Figure 1.2.2: It is non-trivial to conclude directly from a CAD design which assemblies or parts should 

be considered as ERP items. 

 

The generalized problem is the overall required complexity of an CAD – ERP integration when 

considering the most common requirements that such integrations must meet. This extreme 

complexity is likely the reason why such generic solution simply does not exist. 

 

To narrow down the problem, this thesis focuses on a specific CAD system, SOLIDWORKS, that has 

a well-documented API sufficient for required data exchange. Its model specific arbitrary design data 

is a list of key-value -like Custom Properties (Figure 1.2.3) for the document, and also another set of 

them per each configuration of the document. While this data model is quite simple by itself, the data 

access in design time is done by other tools that create their own view and access to the design data 

(Figure 1.2.4). It is this view that has determined not only the data keys and values for all of the 

existing designs but also the expectancy of data inheritance and distribution between configurations 

when an entry is modified from that view. Data consistency over the whole company is usually 

ensured with some sort of shared profiling or a PDM system. (Hou, et al., 2008) 

 



8 
 

 
Figure 1.2.3: Models specific design data, Custom Properties, can be freely typed and edited. 

 

 
Figure 1.2.4: SOLIDWORKS Tab Builder (right) is one way of accessing Custom Properties in a 

preprofiled manner to guide designers for consistent data filling. 

 

SOLIDWORKS is also capable of providing a dynamic Bill of Materials (BOM) (Figure 1.2.5) for 

models that, when correctly configured, one could expect to work as a perfect data source for item and 

BOM export to ERP. (Zhu & Yan, 2018, p. 59) This option will be thoroughly examined and shown in 

Section 2.5 why it is not a feasible data source in real world applications. 
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Figure 1.2.5: Part of SOLIDWORKS generated bill of materials 

 

To wrap up the targeted problem of this thesis, it is an extremely complex task to achieve a 

SOLIDWORKS - ERP integration of true value and therefore such integrations tend to be either 

expensive or poor quality, or simply ignore some of the common requirements and fail to deliver the 

advertised value for the integrated environment. 
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1.3 Motivation of this thesis 

The author of this thesis is currently employed in a software development team whose main product is 

CUSTOMTOOLS for SOLIDWORKS, a SOLIDWORKS add-in that among other things has 

extremely configurable Custom Property access. It can respect most cases of logical data inheritance 

models that have been used in legacy designs to provide as familiar a user experience and data model 

as possible. Its view and data access for the Custom Properties is simply called Properties (Figure 

1.3.1) and it can support a variety of per-property data sources as well as value automations and 

configuration targeting, and they are extendable for ERP item mapping too as will be shown. 

 

 
Figure 1.3.1. CUSTOMTOOLS Properties 

 

CUSTOMTOOLS also provides its own BOM -like view which can be configured to collect any data 

from the models into the same view, Export (Figure 1.3.2). This is originally designed especially for 

customized report generations and simple integrations, but the API has since extended way beyond the 

original intentions due to different kinds of requests and requirements. The author recently had an 

opportunity to solve more specific extensibility requirements which led to the birth of a new 

extensibility framework, CUSTOMTOOLS Extensions API. It complements the original event based 

CTInterface API with class abstractions that can be extended and are treated as they were specific core 

features (CUSTOMTOOLS API Help, 2021). It is already known that the common ERP integration 

requirements can be met with what is now available. However, due to overall complexity, the same 

problems have been solved and resolved already countless times by different developers with varying 

success. As the common requirements are always similar and the platform underneath is the same, 
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there is a clear motivation to provide a generalized solution, which will hopefully lead to more robust 

implementations and faster integration development cycle as well as growing user base.    

 

 
Figure 1.3.2. CUSTOMTOOLS Export 

 

1.4 Content 

Chapter 2 describes very basic usage of SOLIDWORKS covering its terminology, design 

methodology and how a multicomponent design with its property data results in a bill of material 

(BOM). Bills of materials are the starting point of structural itemization of SOLIDWORKS models, 

and it is important to understand how they are built and what is the designer’s role in their formation 

to understand why the BOM is not sufficient data source as it is for ERP integrations. Finally, the most 

common requirements of SOLIDWORKS - ERP integrations are introduced, sourced by subject 

matter expert consultation, and for which this thesis will aim to provide a generalized solution in 

Chapter 4. 

 

Chapter 3 introduces CUSTOMTOOLS for SOLIDWORKS, a SOLIDWORKS add-in that can handle 

profiling of properties and their data content as an extremely configurable integrated solution. Also, it 

provides its own SOLIDWORKS BOM like structural data representation, CUSTOMTOOLS Export, 

that together with the open CT API, can tackle the common real-world issues that the SOLIDWORKS 

BOM has as a data source (Section 2.5.4). Other ERP integration related CUSTOMTOOLS features 

are briefly overviewed, like the Lookup Lists and Search Groups as well as CUSTOMTOOLS’ own 

script deployment system that bring the same extended features for all users in the same environment. 

CUSTOMTOOLS will be used as an integration platform for the generalized SOLIDWORKS - ERP 
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integration. This chapter lacks citations since the author of this thesis is CUSTOMTOOLS Product 

Manager (2021) and therefore subject matter expert of its content and claims. 

 

Chapter 4 uses design science methodology in generalized solution architecturalization. It goes more 

in depth with CUSTOMTOOLS’ profiled behavior and its API by utilizing subject matter expert 

knowledge to introduce rules for data model configuration and generalized base implementation for all 

integrations targeting the same common requirements. C# generics is heavily utilized to provide strong 

typing and compile time type safety, having the aim at implementation ease-of-use and solution 

quality when utilizing the provided base. 

 

The given solution is put to test at Chapter 5 with an example implementation and then evaluating the 

difference in required complexity when implementing the same requirements from scratch versus 

using the provided base implementation. In-house feedback from subject matter experts that have 

many years of experience implementing said common requirements for integrations is also presented, 

highlighting the significance of this work for them. 

 

Chapter 6 discusses this thesis not only in the presented scope but also in more generalized manner 

whether the conclusions could be extended beyond its context. Also, future improvements are 

suggested to generalize the provided architecture even further to extend the archived benefits. 
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2 SOLIDWORKS 

SOLIDWORKS is a computer-aided design (CAD) software used mostly in mechanical designing. Its 

first release was in 1995 and in 2016 it had grown to 2.3 million active users globally. (Schmitz, 2016) 

It is a solid modeler that utilizes parametric feature-based approach for creating parts and assemblies 

that can be mated together to form more complex assemblies. 

 

 
Figure 2.1: A tank design created with SOLIDWORKS. 

 

2.1 Design methodology 

In SOLIDWORKS design methodology, important concepts to fully understand are parts, assemblies, 

configurations, components and drawings. Parts and assemblies are 3D designs and referred to as 

models. Drawings are dynamic 2D projections of the models they represent. When a part or an 

assembly is used within another assembly, they are referred to as components of the assembly. 

(SOLIDWORKS, 2015, pp. 11-13) Due to the dynamic aspect of the drawings, a valid drawing cannot 

exist if the model it refers to is lost. The same non-validity applies for assemblies that depend on other 

assemblies or parts too. Thus, for instance a drawing is critically dependent on the existence of every 

single model that is included in the design. 
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Figure 2.1.1: SOLIDWORKS Assembly, Part and Drawing 

 

To be more accurate, a model or a drawing never just refers to a complete model, but always to a 

configuration of a model. A configuration defines the enabled features and their parameters in a model 

and there is always at least one configuration in each model. (Iancu, 2016) This means that it is 

possible to create a single design and refer to for instance different configured sizes of it within 

assemblies and drawings (Figure 2.1.2).  

 

 
Figure 2.1.2: Assembly with 2 different configurations of the same heavy hex bolt_ai -part model 
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Target of the design process is usually to create something that can be manufactured. For 

manufacturing processes that involve humans, a 2D -drawing is usually required but lately also Model 

Base Definition (MBD) has been a growing trend. In MBD a capable device is used to display the 

whole 3D design so the required measurements can be taken directly from it. (Mäkinen, 2018) 

 

For machine-based manufacturing like CNC machining, parts of the design are usually converted into 

more suitable formats like DXF or DWG, or for instance into STEP-files for 3D printing. 

 

Drawings are not bringing much real value to the scope of this thesis, so they are only briefly 

mentioned. 

 

2.2 Simplified design process 

To create a design, one would start by creating a single solid object, a part, using parametric sketching 

and then applying features on it to form a volumetric object (Figure 2.2.1). (Jankowski & Doyle, 2011) 

 
Figure 2.2.1: From parameters to volumetric object using sketch extrude 

 

Already when a new empty part was created, it had a default configuration. It is possible to add a new 

configuration and then for instance configure dimensions (Figures 2.2.2 and 2.2.3). (Iancu, 2016) 
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Picture 2.2.2: Part1 having ‘Default’ -configuration active 

 

 
Figure 2.2.3: Part1 having '‘My Configuration’ -configuration active 

 

To join multiple parts together, an assembly must be created. It may contain any amount of 

configuration instances of any parts and even other assemblies, except that the model must not result 

in circular references. Also, all model files must have a unique name within the assembly. 

(SOLIDWORKS, 2015) An example of a circular reference would be a car -assembly that contains a 

car-body -assembly that again contains the car -assembly that contains the car-body -assembly ...it 

quickly becomes obvious why circular references are not possible even in real life. 
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Figure 2.2.4: Assembly Assem1 with two instances of Part1; one in My Configuration and other in 

Default. 

 

2.3 Model files and file reference handling 

In the most basic case, every part and assembly would be their own file in the file system. However, it 

is possible to design models virtually inside assemblies which, from the file system point of view, 

would result in a single assembly file. This is particularly useful when the design is small, and its 

components do not have to be reusable. All references of a file, that are not virtual, are referred to as 

external references. 

 

Every time an assembly is saved in SOLIDWORKS, all the paths to its first level external references 

are stored into it. Then when an assembly is opened, SOLIDWORKS tries to find those external 

references from the file system and include them to the model opening process. If the newly added 

components have external references, the same operation is done for them too and so on the whole 

transitive closure of components is traversed. (DASI Solutions, 2014) 

 

As a single model may easily consist of hundreds of components, it becomes obvious that keeping 

track of and even creating design related files on the file system is something that cannot just be left as 

a wild west. File naming automation and design search are among the most basic needs even of a 

small sized design company. SOLIDWORKS PDM provides a great solution for this but can be out of 

the price range for small companies. Other SOLIDWORKS integrated systems trying to answer for the 

same needs are for instance CUSTOMTOOLS and SolidPDM. 
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2.4 Model specific arbitrary design data 

To store arbitrary design information, SOLIDWORKS has Custom Properties that are key - value like 

attribute information for models and drawings. The Custom Property data is stored in the file in 

question.  

 

For a single model, there are always at least two separate sets of Custom Properties, one for the 

document and one for every configuration of it. This is because a model always has at least one 

configuration. When a model is used as a component, it is referenced in the parent assembly with its 

configuration, so a configuration specific value for some Custom Property key is more significant than 

a possible document level Custom Property value with the same key. However, if there is no value 

found from referenced configuration, the search can fall back to the document level. This makes it 

possible to define document level properties (e.g., Designer, Design date, Customer, Project, …) that 

are common for all configurations as well as configuration specific properties that are only valid when 

referenced on that configuration (Length, Material, Weight, ...). This data can then be automatically 

mapped to various tables like Bills of Materials or to annotation at drawings. (CAD2M, 2018)  

 

 
Figure 2.4.1: Document level Custom Properties of a model 
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Figure 2.4.2: Configuration specific Custom Properties of a model. In this case the designer has 

decided to put all data on document level properties, so they automatically apply for all configurations. 

 

Without any tools, SOLIDWORKS users would have to type in manually each required Custom 

Property key and value for the design documents, and this is very prone to human errors. There are a 

variety of SOLIDWORKS integrated tools that aid in consistent filing of the data and they are usually 

all based on some sort of profiling. For the very least the profile will pre-define the keys that should or 

can be filled but many solutions have taken this much further with limited selections, automated 

combinations or serials and even pulling predefined item data from 3rd party systems. Again, for 

instance SOLIDWORKS PDM, CUSTOMTOOLS and SolidPDM are designed to answer these needs 

as well as relatively very simple SOLIDWORKS Tab Builder. (Lombard, 2013, pp. 769, 387) 

 

 
Figure 2.4.3: In this fictional case a phone case is initially designed for customer “Nokia”. The same 

design was later re-configured for customer “Huawei'' but the designer typed Custmer instead of 
Customer to configuration specific Custom Properties. This caused Huawei to receive manufacturing 
documents with competitor’s name in them. An embarrassing mistake that would have been avoided 

using Custom Property profiling tools. 
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2.5 Bill of Materials 

A dynamic bill of materials -table can be created for a design in SOLIDWORKS and at least selected 

BOM type, configuration grouping and some design time modifiers have direct effect on the outcome. 

The BOM generally tells what and how much, but for different purposes a different type of BOMs is 

usually used. For example, having only parts and their quantities would be a very usable BOM as a 

packing list while a structural BOM would usually be preferred at assembly lines.  

 

It is important to understand how SOLIDWORKS BOMs are formed as they are the designers’ tool for 

overviewing item-BOM relations on design time. It would be reasonable from the designer point of 

view to expect possible ERP -integrations to follow the same BOM forming principles in reflecting the 

design to the target system as what SOLIDWORKS displays. 

 

A SOLIDWORKS BOM does not only collect the components, quantities and possible structures, but 

it’s also possible to pull any model specific arbitrary design data (Section 2.4.) for each component to 

the table (CAD2M, 2018). From this it follows that the SOLIDWORKS BOM table could potentially 

be used directly as a data source for ERP integrations. However, this is not the case as will be shown 

in Section 2.5.4.  

 

2.5.1 BOM Types 

When inserting a BOM -table to drawing or model, the first selection to make is to select its type: Top-

level only, Parts only or Indented. To better understand their difference, first consider the reference 

design structure in Figure 2.5.1.1 which introduces an assembly that references three different 

subassemblies and a part. The subassemblies then have their own component references, and the 

overall design also reuses some models in multiple different parent assembly contexts. 
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Figure 2.5.1.1: The reference design has components in multiple levels, and some are reused in 

different contexts. 

 

An indented BOM -type would include the structural aspect of the design and report reference 

quantities as “quantity in parent” (Figure 2.5.1.2). This BOM -type simply follows the reference 

designs’ component structure and their quantities in the context of their immediate parent. 

 
Figure 2.5.1.2: Indented BOM of the reference design 
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A top-level only BOM includes only the first level components and their reference quantities to the 

table (Figure 2.5.1.3) and parts only BOM has only part -type models in the table with the total 

quantity of the part in that overall design (Figure 2.5.1.4). 

 

 
Figure 2.5.1.3: Top-level only BOM of the reference design 

 

 
Figure 2.5.1.4: Parts only BOM of the reference design 

 

 

2.5.2 Configuration grouping 

Another important BOM -table setting is the part configuration grouping. Despite its name, it also 

affects assemblies. The setting is a choice between three possibilities: 

• (1) Display configurations of the same part as separate items 

• (2) Display all configurations of the same part as one item 

• (3) Display configurations with the same name as one item 

 

Choice (1) is the default and should make good sense without further explanations. Choice (2) groups 

components of the same model but different configuration to the same row under common parent. This 

is useful when configurations are not used to define the component, like having minimum and 

maximum angle positions of a joint as different configurations in an assembly. But since the option 

also groups different assembly configurations together and it is possible to have varying amounts of 

components in assemblies using configurations, it is trivial to make a design for which 

SOLIDWORKS fails to calculate any meaningful quantities for its BOM using this setting. The 

previous reference design is revised with following changes to prove a point (Figure 2.5.2.1): 
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• Part3 has two configurations, Default and C2 

• Assem4 has two configurations, Default and Stripped 

• Assem4 in Default references to 2 instances of Part3 in Default 

• Assem4 in Stripped references to 3 instances of Part3 in Default plus 2 instances in C2 

• The main assembly references once to Assem4 in Default and once in Stripped, and once 

directly to Part3 in C2. 

 

The indented BOM with configuration option (1) follows the reference structure and the result is as 

one would expect (Figure 2.5.2.2). However, when using the configuration option (2) to group 

different configurations together, the resulting BOM has quantity and configuration notes that do not 

make any sense (Figure 2.5.2.3). While the grouped amount of Assem2 is 2 (1 Default + 1 Stripped), 

one could expect the quantity of Part3 in grouped Assem2 to be sum of Part3 instances in both of 

those parent assemblies (1*2  + 1*3 + 1*2 = 7) instead of the given 2. It seems that the structural 

quantities are actually retrieved from the first occurring instance in the BOM and as in this case the 

first occurring instance is in Stripped -configuration, the given quantity is 2. To pour some more salt 

on this, the configuration column also incorrectly shows the configuration to be Default.  

 

According to SOLIDWORKS Helps (SOLIDWORKS Online Help, 2020, p. Bill of Materials 

PropertyManager), the third configuration option should group together parts with the same 

configuration name under the same parent. However, in SOLIDWORKS 2018 SP3 this option does 

not seem to have any effect on BOM with the revised reference design which seems to be a software 

bug. One could expect at least Part1 and Part2 to be grouped together under Assem2 as they are both 

parts under the same parent referenced in configuration named Default. If the option would work and 

only for parts as advertised, it should not have similar structural issues as with the previous option as 

only assembly grouping may have structural differences. However, the previous option was also 

described to have effect on parts only but proved to work differently. So, it is reasonable to assume 

that even if this option would work, it could still result in invalid BOMs in trivial design cases. 

 

Intention of this demonstration was to prove that while many cases seem trivial to create BOM based 

solely on the SOLIDWORKS component structure, it can still be non-trivial when all supported BOM 

types are considered even with a simple design. Using other than the default configuration grouping 

option is something that cannot be done without fully understanding its effects. The author, despite 

about a decade of experience how different companies use SOLIDWORKS, cannot come up with a 

single case to which it would be recommended. Still, it is not uncommon to see designers using them. 
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Figure 2.5.2.1: Revised reference design with configured component references 
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Figure 2.5.2.2: Indented BOM with separated configurations of the revised reference design produces 

expected results. 

 

 
Figure 2.5.2.3: Indented BOM with grouped configurations of the revised reference design. Part3 in 

Assem4 doesn’t seem to reflect any kind of reality from any perspective. 

 

2.5.3 Design time BOM modifiers 

Assuming that some assembly is designed as assembly just because of some technical reasons or 

maybe it is a purchased component which child components are simply irrelevant in BOM. For this 

case, the designer may set “Child component display when used as subassembly” -option from the 

assembly’s Configuration Properties to Hide. This will have an effect in BOM that when the 

assembly is referenced in that configuration in some other assembly, it will be treated as a part in the 

other assembly’s BOM. (SOLIDWORKS Online Help, 2020, p. Configuration Properties 

PropertyManager) 
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Another case is when some parts are designed inside an assembly just to have them nicely grouped 

under the same parent. In this case the assembly that groups the parts has no meaning from the BOM 

point of view and should be omitted. The same setting as in the previous case has an option to 

Promote child components and in the BOM it will then appear as the components of that assembly 

would be directly referenced by the parent assembly. (SOLIDWORKS Online Help, 2020, p. 

Configuration Properties PropertyManager) 

 

A trivial design time BOM modifier is flagging components to be excluded from BOM. This is useful 

for example when having a reference model in the current design just to provide some design context, 

but it obviously does not belong to the BOM of the current model. (SOLIDWORKS Online Help, 

2020, p. Excluding Assembly Components from a Bill of Materials) 

2.5.4 SOLIDWORKS BOM as automatic data source for ERP 

As demonstrated in Sections 2.5.1. and 2.5.2, only an Intented type SOLIDWORKS BOM with 

configuration grouping set to Display configurations of the same part as separate items can be used as 

a starting point for dynamic itemization of the design as only that structure type is always correctly 

representing the model. With component specific Exclude from BOM -setting it is easily possible to 

leave out specific components that were required during the design process but really do not belong to 

the actual designed product at all and therefore also to its bill of materials. Ignoring an assembly as an 

item while still correctly having its child components listed in BOM and ignoring child components of 

an assembly in BOM are both also very achievable using the Hide or Promote option in assembly’s 

configuration setting Child component display when used as subassembly.   

 

While all the pieces should be there to create a fully automated ERP itemization from the design using 

the SOLIDWORKS BOM, this does not come without issues. First, the settings are ridiculously 

complicated to find and to understand what they represent when used for this purpose. So, it is not 

reasonable to expect they would be used as we would now expect or at all during the design process 

for existing models unless there had been another reason to need this type of BOM already from the 

start. Secondly, as the settings are component specific, they will not just affect that one BOM we 

would care about but all BOMs of that product design and its sub designs. For instance, all assemblies 

would likely be preferred in BOM at manufacturing and assembly line but if a setting promotes one’s 

child components because it is not an item, the assembly line will have a difficult time figuring out the 

design with their incomplete BOM. Because of these reasons the SOLIDWORKS BOM cannot be 

used as a data source for generic ERP integration. In other words, SOLIDWORKS’ Engineering BOM 

is not configurable enough to be able to produce Manufacturing BOM on its own. (Xu, et al., 2007) 
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2.6 Common requirements for SOLIDWORKS - ERP integrations 

The list of common requirements is based on subject matter experts’ experience in SOLIDWORKS – 

ERP integration sales and projects. The thesis author has composed the list by consulting the experts 

in related sales cases as well as project implementation and delivery. All interviewed parties have 15 

to 20 years of professional experience on this exact area; having been involved directly or indirectly in 

up to hundred cases.  

 

Subject matter experts (Salonen, et al., 2020): 

• Tero Salonen, Product Director, ATR Soft Oy 

• Francois Simon, Sales Manager, ATR Soft Oy 

• Eric Franc, Project Manager, ATR Soft Oy 

• Tim Rosendahl-Halvrosen, Certified SOLIDWORKS Expert, CADWorks.dk 

 

 

The first requirement is to be able to export all or specific components of the current model to the 

target system in batch. This includes that the target system usually has expectations and requirements 

regarding the model specific data and how it is represented during the operation: 

R1 -  Must be able to create items to target system in batch by analyzing the current design and model 

specific Custom Properties. 

→ “Export the design as items to ERP respecting property requirements of the ERP” 

 

Because individual models can be included in multiple structures that should be able to be exported to 

ERP as in Requirement R1, therefore: 

R2 - Must be able to export the design or its sub-designs multiple times to target system without 

issues. 

→ Must be able to map model and corresponding ERP item to correctly handle multiple exports. 

→ “Unique identification of models and target system’s items” is required. 

  

A secondary use case is to create a new model (or map legacy model) for an already existing EPR 

item. The model can still be part of multiple designs and get exported with them multiple times, so: 

R3 - Must be possible to create a new design for an already existing item in ERP so that the item will 

be mapped as in Requirement R2. 

→ “Design time ERP item mapping” 

  

In many cases only certain fields at the ERP should be updated based on the values filled by the 

model’s designer and sometimes some values can be conditionally updated, therefore: 
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R4 - Must be possible to define data update/ownership model per Custom Property, e.g., Update 

“Description” to ERP item only if item is new or description at ERP is empty. 

→ “Item data update rules and ownership” 

 

It is almost never a requirement that only items should be exported, but usually the models’ structures 

should also be interpreted for the target system as some sorts of Bills of Materials consisting of those 

items. In many systems, BOMs are separated from items as individual identifiable entities so the same 

identification rules apply for them as for items. Target system BOMs can also vary and if it does not 

support BOMs within BOMs, then usually a flat representation of model structure is needed. However, 

a structured one is a much more common case. 

R5 - Solution for Requirement R1 must also create BOM(s) based on design structure and 

map/identify them similarly as items in Requirement R2. 

a. Flat BOM. Only created for the ERP Item corresponding to the topmost model. 

b. Structured BOM. All (or specified) items will also have their own BOM at ERP. 

 

Expectations for structured representation may vary. Some have practiced strict discipline with BOM 

modifiers and expect their item/BOM representation to follow SOLIDWORKS’ BOM as an exact 

match. Others may expect the BOM structure to be configurable based on property value rules and be 

more forgiving regarding those BOM modifiers. Everyone expects the BOM to be at least based on 

current design structure. Therefore: 

R6 - Structured BOM(s) (Requirement R5b) must be 

• dynamically based on the design structure. 

• configurable to consider if assembly BOM modifiers Hide and Promote, and component BOM 

modifier Exclude from BOM are applied to structure or not. 

• overridable based on predefined Custom Property value (e.g., “Ignore BOM if Purchased = 

Yes”). 

  

After the first export, or even before it in legacy data cases, the BOM exists at the target system. As it 

might get supplemented in ERP with items that are not part of the design or even get completely 

modified, there is a very common non-trivial problem with BOM ownership. The model might change 

between exports so from that point-of-view it has the correct BOM. On the other hand, if the BOM is 

supplemented at the ERP, there is no generic way to differentiate that case from a model item that was 

dropped out of the design in later export; and that was only one trivial but problematic example of 

many. This requirement generally is entirely custom handled as all possible solutions have a 

drawback. But it is also almost always required to be handled based on some set of rules, so: 
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R7 - Must consider that BOM(s) to which mapping should be done might already exist in ERP before 

first export. Also, BOM(s) can be changed and supplemented in ERP which is usually not allowed to 

be overridden. 

→  “BOM update rules and ownership” 

 

Design companies are usually looking to invest in ERP integrations after they have noticed they 

cannot work efficiently without one anymore. At this point, the amount of existing data can be huge, 

and it cannot be thrown away just because a new system does not like to work with it. For these types 

of systems, a data migration step is usually required (Muni Prasad, et al., 2013). However, being able 

to use existing models with a new system has obvious benefits; including being able to test the new 

system side-by-side with the old one before deploying it for the whole environment. 

R8 - Must work for existing models with preferably no migration steps. 

 

While not unheard of, it is not usually a preference to let the integration to execute on background 

based on just a set of given rules. Majority would not likely go with that type of solution at all even if 

everything else could be precisely handled. Therefore, as a common requirement: 

R9 - Must be able to see a clear visual representation of what the integration is about to do.    

 

Many ERP systems also like to have item preview pictures, link items to their actual up-to-date 

manufacturing documents or to even host them. It is a very common requirement to be able to provide 

these pictures, documents, or links to them while exporting to ERP. 

R10 - Must be able to provide up-to-date preview, manufacturing documents and/or links for the ERP 

while creating/updating the items. 

 

The model to item mapping discussed in Requirement R2 can many times be based on a value 

generated during the design process. However, many times it is the ERP system that provides the 

unique identification of its items. For this to be possible, the identifier must be stored to models during 

the batch export process, which can be a big problem if a PDM is used underneath. Therefore, it 

makes sense to separate this requirement from Requirement R2: 

R11 - Must be able to let target system to provide unique identification of its items. 
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3 CUSTOMTOOLS for SOLIDWORKS 

CUSTOMTOOLS is a set of applications including CUSTOMTOOLS Viewer, CUSTOMTOOLS 

Administration, CUSTOMTOOLS Task Add-In and CUSTOMTOOLS for SOLIDWORKS which all 

work in the same ecosystem. The last mentioned one is the actual SOLIDWORKS add-in that does 

most of the heavy lifting and so is often called CUSTOMTOOLS or CT for short. Its first version was 

released in 2000 and since has gained user space of somewhat under 10,000. 

 

CUSTOMTOOLS environment consists of Microsoft SQL Server, single or multiple 

CUSTOMTOOLS clients and a common windows file share location. The database holds profiling 

settings, last known design file locations, last saved property values and reference data which are all 

available for all environment users. 

 

 
Figure 3.1: CUSTOMTOOLS Environment 

 

Most important features of CUSTOMTOOLS in the scope of this thesis are its ability to provide 

consistency in design data via shared environment profiling, ability to build several different types of 

BOM structures following and overriding the design time modifiers, to include the consistent model 

data to the BOM and possibility deploy target system specific integration scripts to export the items 

and BOM(s) to various ERP -systems.  

 

When CUSTOMTOOLS is taken into use for an already existing design environment, it is important 

to configure its Properties to match the existing environment as closely as possible. SOLIDWORKS’ 

way of storing data to the models and drawings is document and configuration specific slots, Custom 
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Properties, that are addressed by string keys and can point to data of a few different base types like 

string, integer and boolean. CUSTOMTOOLS refers to these string keys as attributes and with its 

profiled Properties it provides a new access layer for the Custom Property data with much more 

specialized data typing and filtering possibilities. 

 

3.1 Properties 

CUSTOMTOOLS Properties is the profiled data access model for SOLIDWORKS model’s 

configuration specific Custom Properties. Each CUSTOMTOOLS Property (CT Property from now 

on) is labelled and the label can differ from the actual target Custom Property. CUSTOMTOOLS calls 

SOLIDWORKS’ Custom Properties Attributes and so each CT Property is bound to a single Attribute. 

The document level Custom Properties (Attributes) are generally referred to as Document Properties. 

 

 
Figure 3.1.1: Illustration of CT Property mapping with SOLIDWORKS Custom Properties 

 

3.1.1 Attribute inheritance model and Initial Configuration -setting 

CT Properties can behave exceptionally well also from a new user with existing models -point-of-view 

due to its attribute inheritance model. In it, each CT Property first tries to map to the attribute of the 

active configuration. If not found and so defined in the profile, parent configurations are tried up to the 

top level and then the document level. This causes CT Property to map to whichever configuration the 

attribute was originally filled and allows modifying its value from the same view. Thus, 
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CUSTOMTOOLS Properties does not provide a view to just one set of Custom Properties but 

something that could be called a dynamic mixture of Custom Property views built to represent earlier 

usage. While it may sound complex, from the user point of view the inheritance model stays 

completely hidden. 

 

 

 
Figure 3.1.1.1: Assuming model with Default -configuration and its derived configuration (aka. child-

configuration) DefaultFlatPattern, which is also the currently active configuration. CT Property tries to 
bind to the attribute from the most accurate configuration down to Document Properties until an 

existing attribute is found. This operation is invisible to the user. 

 

If the data inheritance does not yield results, the CT Property chooses target configuration to bind 

based on its profiled Initial Configuration -setting. The setting may even target the property to 

multiple configurations at once but best practise is to use Active Configuration for all properties that 

may have different values between configurations (eg. Dimensions, Mass, Material) and Document 

Properties for values that are always document specific like Designer and thus can be dynamically 

inherited for all configurations. 
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Figure 3.1.1.2: CUSTOMTOOLS Property Wizard, Initial configuration -setting of Description -CT 

Property. 

 

3.1.2 Settings for Properties used to identify ERP Items 

From ERP point of view the importance of the CUSTOMTOOLS Properties’ inheritance model and 

the Initial Configuration -setting comes from a simple common integration requirement: Unique 

identification of models and target system’s items (Section 2.6, R2). As the attribute data is used to 

identify an ERP item, having that identifying attribute data in Document Properties effectively causes 

every configuration of that design to be mapped to the same ERP item. However, setting Initial 

Configuration to Active Configuration is often not enough because existing models tend to already 

have some sort of ERP Item identifying data in their Document Properties which also should be used. 

In this case when using CT Properties, the inheritance model accesses the attribute from Document 

Properties and just keeps editing it causing gray hair for the user (Figure 3.1.2.1).  
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However, using Document Properties and Active Configuration saves the value for both 

configurations regardless of from which it was loaded. First time the properties are accessed and 

saved, the value comes from Document Properties and ends up as a more specific attribute for the 

active configuration and also to Document Properties. Then when the same is done for any other 

configuration, it will also get the value from Document Properties and store it to both. While this 

operation modifies the value in Document Properties, change in it has no effect as both configurations 

already have more specific attributes in their own contexts. 

 

Therefore, as a general recommendation, CT Properties that link to ERP Items should be configured to 

use Document Properties And Active Configuration as Initial Configuration. This will cause 

identifying attribute data to be correctly retrieved for existing models but also to convert them to 

configuration specific items with just by normal usage of CUSTOMTOOLS Properties (Figure 

3.1.2.2). 
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Figure 3.1.2.1: Using Document Properties or Active Configuration as Initial Configuration for existing 

models may result in undesired and unexpected situations. 
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Figure 3.1.2.2:Using Document Properties And Active Configuration as Initial Configuration intuitively 

prepares the existing models as configuration specific items. 
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3.1.3 Property types 

CUSTOMTOOLS Property types are Checkbox, Combobox, Date, Dimension, Editable Combobox, 

Editbox, Hierarchical Combo and Info. Type of a property is selected based on the characterics of the 

actual information that is going to be stored with the property. For example a combobox would be 

good for selecting a manufacturing method from a predefined list while a checkbox would be good to 

determine if the component is purchased or not. It is also possible to hide controls based on values of 

others; for example Manufacturing Method -combobox could be set to be hidden when Purchased -

checkbox is checked. 

The Custom Property string value of a checked/unchecked checkbox can be freely formatted, thus it 

can be easily configured to work for legacy designs too. A checkbox could also be replaced with a 

combobox, for example with two values like Yes and No. This is actually fairly common as it has the 

benefit that it is easy to see if a user has actually made a selection or not, which is not trivial with an 

unchecked checkbox. 

 
Figure 3.1.3.1: Settings for Checkbox values 

 

Comboboxes get their content from various sources but the retrieval system is designed to temporarily 

append the current Custom Property value to the combo in case it doesn’t exist there. This allows 

combobox -properties to preserve stored legacy data even if that data selection would not be valid for 

newly created models anymore. Combobox is a dropdown list that only allows selecting a value from 

the provided list and Editable Combobox allows also typing any arbitrary value as a value. 

Date -properties allow fully defining the date format which again is perfect also for legacy Custom 

Property -data. It is also later possible to change the date representation format but in order to preserve 

the existing date data, it must have been saved for the model using CUSTOMTOOLS Properties at 

least once. The user interface for this property is a calendar. 

The dimension -type is a CUSTOMTOOLS speciality that allows linking dimensions from the model 

to the properties. This type stores the actual SOLIDWORKS dimension’s identification path which 

can be evaluated into a value in defined metrics. Values of these properties change dynamically as the 

model changes. 
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Figure 3.1.3.2: On click of a dimension -property, all models dimensions appear for picking. Value of 

the property is then linked to the picked dimension and thus also updates dynamically. 

 

Hierarchical Combo represents predefined values that have dependencies to other values as a treeview 

dropdown. The user selected value is then stored to Custom Properties as a path from the root parent 

down to the selected item using pipe character (|) as an item separator. This is a very useful type when 

the list of possible values is large but categorizable. 

Editbox is simply a text field and Info is a multiline field. Editbox is usually preferred as it supports 

more advanced scenarios. 

All of the property types also have miscellaneous features like forcing value in uppercase and limiting 

its length; which both are surprisingly often needed when integrating with an ERP.  Almost all types 

also support a variety of Functions that may for instance generate a specific value for the Custom 

Property or get some model specific dynamic data like mass. 

 

3.1.4 Property functions 

CUSTOMTOOLS Property Functions are Before Function, After Function, Button Function and Data 

Function. At the scope of this thesis it is not necessary to explain all of them in depth. 

Before functions provide some content or value for the property and are executed when the Properties 

are visited. Valid before functions are GetCurrentDate (Date -property), GetCombinations 

(Combobox), GetMaterials (Combobox), GetMass (Editbox) and GetUserInitials (Combobox, 

Editable Combobox, Editbox). 

After functions are executed after the property value has been changed. Valid functions are SetColor 

and SetDensity. For instance, SetColor applies the selected color in property value for the model. 
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Button functions create a small button next to the property in Properties and its valid functions are 

GetCode, GetColor, GetDatabaseItem, GetRALColor, OpenDictionary, Revisions and SetEntityData. 

GetDatabaseItem allows mapping a group of properties with an item in an external datasource which 

is one of the key features required in ERP integrations. GetCode is also important as it is often used in 

generating unique id-sequences for models. Its functionality can also be extended to retrieve a serial 

from a 3rd party system like an ERP. 

Data functions retrieve values based on other properties. Valid functions are GetCombinationValue, 

GetListKeyValue, GetParentItem and GetTranslation. 

 

3.2 Lookup Lists 

Lookup Lists provide content for (Editable/Hierarchical) Combobox -properties and they support three 

different data sources: User specified, Database and Custom. User specified is simply a list that is 

manually filled in CUSTOMTOOLS Options. 

 

Database -source option allows defining a query that is executed in the CUSTOMTOOLS Server and 

the returning resultset is interpreted as lookup list content (Figure 3.2.1). Since CUSTOMTOOLS is 

using Microsoft SQL Server, it is possible to define any third party system as linked server as long as a 

data provider exists for that system. This allows for example (but not limited to) all MS SQL Server, 

Oracle, Access, MySQL and even Excel based systems to be directly linked as combobox data sources 

in CUSTOMTOOLS Properties. This is very useful for eg. providing a list of allowed values for 

properties that would be used in sync with the ERP. One of the most common cases is retrieving 

allowed values for the property that is used as a unit of measure. 
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Figure 3.2.1: A lookup list may get its value also using an SQL query. This example pulls user initials 

of CT users into a list. It is fairly common to add the designer’s initials to the document properties. 

 

Custom -source option expects a CUSTOMTOOLS extension script to provide the content for the list. 

This is particularly useful if the list content must be queried some other means like using a web 

service. While this option can be bent to almost any possible use case, utilizing it requires C# or 

VB.NET programmer skills. 

 

In addition to configurable data sources, three different lookup list types are supported: Simple, Key-

Value List and Hierarchical. Simple -list is just a list of allowed values that can be attached to 

combobox’s content without any further functionalities.  

A Key-Value List allows defining a value list having a maximum of 15 arbitrary keys attached to each 

value. Those can be pulled up to 15 secondary properties with Property Data Function 

GetListKeyValue on a change of the combobox value selection. This is sometimes used to show “user 

friendly” values in visible combos (eg. customer names) while actually having all other logic and 

possible integrations to rely on the more identifier-like key value written to some hidden property. 

Also pre-defined decision making is a fairly common use case (Figure 3.2.2). 
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Figure 3.2.2: In these properties it is defined that the user has Laser cut, Water cut, Machining and 

Other as possible Cutting -property selections that come from a User Defined Key-Value list. Whether 
or not that selection requires a dxf -file to be generated at some later point, is retrieved to a hidden Dxf 

file -property from that list’s key. 

 

Hierarchical lists can be used as multilevel selections in which the content of a combobox depends on 

a selection of another (Figure 3.2.3). Some ERP systems may have similar, arbitrary deep selection 

models for specific types and categories.  
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Figure 3.2.3: To select “OTHER”, the user must first select “CONTROL SYSTEMS” of a combobox. 

Then the user must select “CPU/MEMORY/IO MODULE” from a second combobox that uses the first 
combobox as a content source. Only then the user is able to select “OTHER” from yet a third 

combobox that uses the second one as a content source. 

 

3.3 Search Group linking 

CUSTOMTOOLS allows defining Search Groups that are essentially SQL table queries that return a 

resultset of rows containing queried sets of values. To successfully define a Search Group (Figure 

3.3.1), the target server must first be added as a linked server using CUSTOMTOOLS Administrator. 

As in the Lookup List -case, also this can use all possible sources to which a data provider exists. In 

case the target system does not have a provider or possibility to be linked with same server (e.g., web 

service-based systems), it is also possible to create a Search Group that uses custom C#/VB.NET -

handler script as result set provider.  
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Figure 3.3.1: When the target server is linked with CT’s SQL Server, a Search Group can be defined 
to link to its table. Here an Excel Material Item -search group is defined to pull possible material sets 

from an excel file that has been added as a linked server. 

 

A Search Group always requires one or more source fields to be treated as keys. Keys combined 

should result in a unique identifier within the result set of the queried system. This is important to have 

well-defined mapping of values between systems, which is also the key insight for solving 

Requirements R2 and R3 (Section 2.6, R2-R3). Not surprisingly, the most common use case for 

Search Groups is to be able to map the model with an existing ERP item. Another use case is to get 

material information e.g., from which kind of square bar the model should be manufactured (Figure 

3.3.2). Note that an ERP integration might require mapping with multiple Search Group datasets (e.g., 

item and material) for a single model to have a meaningful itemization dataset from the ERP point-of-

view. 
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Figure 3.3.2: Database Item Search is invoked from a property that has GetDatabaseItem -button 
function. The Search Group bound to that property is queried for a result set covering values for all of 
its predefined properties and the user is able to select any row to be pulled as a value set into them. 

 

3.4 Export 

CUSTOMTOOLS’ Export is the marketing attraction of CT integrations as it is used for exporting 

entire models at once to ERP which is the number one of all ERP integration requirements (Section 

2.6, R1). It supports predefining multiple bills of material views, Export Profiles, that can be used to 

generate a well-defined BOM from the current model. It also supports the same BOM modifiers as 

SOLIDWORKS’ native BOM (Section 2.5.3) but it also allows manipulating them. 

Supported BOM types that come “out-of-the-box” are Top level only, Parts only and Intented 

Assemblies, which correspond to the exact same available SOLIDWORKS’ native BOM types 

described in Section 2.5.1. Also, the configuration grouping (Section 2.5.2) is supported even though 

there are no known use cases when the grouping would make foolproof sense (Section 2.5.4) at least 

from itemization to ERP point-of-view. 

Export supports all types of cut list items too, but they are intentionally left out from the scope of this 

thesis for clarity. In case cut list items are needed to be included in the integration, they are handled 

the exact same way as parts, and their parent parts are then considered to have a BOM just like an 

assembly with parts would have. CUSTOMTOOLS also supports properties of cut list items with 

minor restrictions. 



45 
 

3.4.1 Export Profile and its types 

An export profile is part of the CUSTOMTOOLS profile and there can be multiple of them. To create 

one, the user has to define a name, BOM type and configuration grouping to use, and if additional 

BOM inclusions like referenced drawings and cut list items are needed (Figure 3.4.1.1). 

 

The export also supports up to 4 user defined data matrices called CustomScopes. CustomScopes are 

table-like data (set of CT Properties) that can be bound to a single CT Property in ordered fashion and 

be used for example to determine manufacturing steps and step specific attributes of a model. In some 

cases the ERP might expect to get model specific manufacturing steps or work phase -information for 

which this feature is usually utilized. 

 

Export profile has also a Profile type which by default is an XSL -transform using the predefined style 

sheet to create an XML BOM to the predefined output path. However, the main usage of Export is 

with Script Add-ins that may take control of the whole export process, utilizing the data in the defined 

BOM view and pushing it to whatever target system the script is built to work with. Legacy style 

scripts can just subscribe to CTInterface Events API and handle all or self-filtered export profiles in 

event-driven manner. However, to unlock more core features, execute in more strict context and to 

provide a configurable interface, it is recommended to implement CT Extension -style scripts that 

expose their dedicated export profile type. 

 

CUSTOMTOOLS 2020 SP1 includes 5 built-in configurable Export Profile Extension types:  

• Cloud Connected to export items, structures and manufacturing document types to ROIMA 

Product Information Cloud 

• Excel Report to export the BOM view to a templated excel file including design previews 

• Odoo ERP Integration, a separately licensed export type capable of creating items and 

BOMs to on-premise Odoo ERP -system, including export of manufacturing documents and 

design previews. 

• Dynamics NAV Integration, another separately licenced export type, capable of creating 

items and BOMs to Microsoft Dynamics NAV, link items to manufacturing documents and to 

use its item numbering system to generate identifiers for the models on-the-fly (Section 

2.6, R11).  

• Oscar ERP Integration, also separately licensed export type which has similar capabilities as 

the Odoo integration 

• Vertex Flow Export, which is sold as both separately licenced integration and as a special 

feature stripped productization of CUSTOMTOOLS called CUSTOMFLOW. Its capabilities are 

similar to Odoo and Oscar and target ERP is obviously Vertex FLOW. 
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Even though these Export Types are provided as built-in solutions in the the product, they are purely 

using the same CT Extensions and CTInterface Events API as is publicly available for third party 

developers, with only 2 exceptions: they can use ATR Licensing to verify their availability for user 

and they can invoke CUSTOMTOOLS Help system. 

 

As can be seen from the built-in extension types, another common requirement when exporting items 

to ERP is also to be able to provide up-to-date manufacturing documents and/or document previews 

(Section 2.6, R10). CUSTOMTOOLS has its Batch Operation tool for executing predefined 

conversion rules (eg. “Convert drawing sheets that have DXF in name to DXF files to this path”) that 

can also be set to be executed during the export. This allows the export handler to be able to retrieve 

those freshly converted documents and to include them in the export process in any way they are 

needed. 

 

 
Figure 3.4.1.1: Setup page for an Export Profile. 
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3.4.2 Export Profile Fields 

An export profile also includes a set of fields that collect the model specific data to the export view 

(Figure 3.4.2.1). The source for the data can be a special SOLIDWORKS property, like quantity or 

filename, or value of a Custom Property field profiled using a CUSTOMTOOLS attribute. Also just a 

value field without any source can be used for arbitrary purposes. 

 

In addition, a field can have a maximum length to which the retrieved value is cut. This is useful in 

case the target system has restricted length for the field. However, it is recommended to have 

maximum length defined also for the source property so users will have feedback when filling the 

values. In the export the value is just cut without any user notifications. 

 

A field can also be compulsory, which prevents users from executing the export in case the value of 

the field is empty. 

 

 
Figure 3.4.2.1: “Finish” -field of the Excel report -export profile has attribute ‘surface’ as its data 

source. Attribute is a CUSTOMTOOLS term for a SOLIDWORKS’ Custom Property. 
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3.5 Script Add-ins 

CUSTOMTOOLS functionalities can be extended with script add-ins that utilize the public 

CTInterface Events API and CTExtension Interfaces API. A non-extension type script is considered 

legacy as they can potentially interfere with other scripts and extensions; however they are still 

supported to maintain backwards compatibility. 

3.5.1 Architecture 

An extension script has always at least 2 reference assemblies: CTInterface.dll and 

interop.CTEngineLib.dll. The latter one, CT Engine library, defines the native core object model of 

CUSTOMTOOLS to which CTInterface provides managed abstract base implementations for each of 

the supported extension types. A user extension is an implementation of the abstract CTExtension -

class and it must implement Hook and UnHook -methods that subscribe and unsubscribe to events at 

CTInterface Events API. User extensions are not allowed to subscribe or unsubscribe events anywhere 

else and must also do so when the functions are called. The user extension is not allowed to call these 

functions itself. A user extension can return a specific class in response to GetInterface -call 

(overridable virtual function) and the returned class must be an implementation of corresponding 

CTExtensions.Interfaces.XXX -class. These classes are extensions of different CUSTOMTOOLS 

elements or core functionalities, like the Export, Options, some specific core objects etc. At the core 

level, everything is handled using the native CT Engine model but it is also all encapsulated and 

default implemented in managed code for user extension convenience and backwards compatibility of 

future additions. Architecture of an extension that can be used as an export type is described in Figure 

3.5.1.1. 

 

Compared to Extensions, the legacy style scripts are architecturally simpler but completely lack all 

discipline and sandboxing which are important when multiple scripts or extensions are introduced to 

the same system. Also, they are obviously not as capable as Extensions. A legacy script is as simple as 

a public class with a single public constructor having ATR.CT.CTInteface.CTInterface as an only 

argument. The script can then subscribe to CTInterface events in its constructor, but the obvious 

disadvantage is that the script must somehow be able to determine whether it should handle those 

events. It is basically never the case that an event handler should handle all possible invocations, so 

some sort of context testing is always required, and that is hard to make 100% correct. 
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Figure 3.5.1.1: Overview of the class relations for Extension -type script add-in called MyExtension. 
“AndMore” -class and interface are just to indicate there are more similar interfaces and classes 

available in the system. 

 

3.5.2 Deploying extensions to CUSTOMTOOLS Environment 

As described in the beginning of this chapter, the CUSTOMTOOLS Environment is a shared 

environment for all of its users by the means of common database connection. Also the extensions are 

distributed for all clients of the environment. The extension scripts are managed code stored in plain 

text to the database and whenever a client application connects, it will check that the source code 

present in the local environment is up-to-date. If not, the latest source code is compiled on-the-fly 

against the user’s local environment and the resulting assembly stored in the local application data 

folder. From there it works as an integral part of the locally installed CUSTOMTOOLS applications as 

it gets loaded to the application domain. 

 

Extensions are added to the database using CUSTOMTOOLS Administration that has its own section 

for script management. When a new script is selected, a minimal example script is automatically 

added (Figure 3.5.2.1). Scripts are single text files but they may contain multiple classes and 
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namespaces. C# is usually preferred but it is also possible to use VB.NET. Language version of C# is 

4.0 in CUSTOMTOOLS 2020 but it will be upgraded to C# 6.0 in CUSTOMTOOLS 2021.  

 

As compiling managed code always requires some satellite assemblies, the following common ones 

are added automatically and does not have to be separately referenced: mscorlib.dll, system.dll, 

system.core.dll and microsoft.csharp.dll in case the selected language is C#. In addition to these, a 

script extension also requires at least references to CTInterface.dll and Interop.CTEngineLib.dll as can 

be seen from the Figure 3.5.1.1 in the previous section. These assemblies are located in the local 

environment at the CUSTOMTOOLS install location and can be dynamically addressed with 

[CT_INSTALL_PATH] -tag. It is also possible to deploy satellite assemblies with the script by 

adding them to additional files of the script and then reference them with [ASM_PATH] as path. In 

case of an integration to a third-party system, the referencing works exactly the same: in case the 

system to integrate is local, a common-for-all path must be known in order to reference its DLLs; and 

another option is to deploy the satellites with the script. CUSTOMTOOLS’ install path provides a few 

commonly needed satellites like Microsoft Excel and M-Files public api. 

 

Because the scripts are single file documents, they are easy to deploy as such from developer to 

customer environment and the only manual thing to do is to browse and add the references for the 

script. However, this is not needed if the script uses @AUTO-REFERENCE -syntax in comments in 

the beginning of the file. These are automatically parsed on compile and added as reference. Also, as 

the class name and language are automatically detected, the script deployment to the whole 

environment is basically a two-click operation. 

 

 
Figure 3.5.2.1: Script management and a minimal example script in CUSTOMTOOLS Administration. 
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4 ERP Integration with CUSTOMTOOLS 

This chapter starts by examining the 11 common requirements (Section 2.6.) and how they affect the 

integration architecture. The integration base will then be generalized to cover as much of the common 

logic as possible as well as to make utilizing it for integrations very simple and efficient. The result of 

this chapter will be an abstract CUSTOMTOOLS Script Add-in (Section 3.5.) focusing on easy-of-

implementation and compile time safety. The ultimate goal is to have that abstract base 

implementation included in source code of future CUSTOMTOOLS releases. The script -add-in is 

initialized in the beginning of this chapter, and its architecture gets extended while the requirements 

are examined as the chapter advances. Class name for the main extension is initially chosen to be 

GenericSolution in namespace ERPIntegration (Figure 4.1). The solution references classes and 

namespaces from CTExtensions -namespace as well as events from ATR.CT.CTInterface.CTInterface -

class but full namespace declarations are dropped out to save space. 

 

 
Figure 4.1:Initial extension. Hook and UnHook must be implemented as they are abstract in 

CTExtension base class. 

 

 

4.1 Architecture from the requirements 

Creating items (Requirement R1) and BOMs (Requirement R5) in batch to target system while 

modifying the dynamic BOM structure on-the-fly (Requirement R6), and showing a visualized 

representation (Requirement R9) of the task can be all done with CT Export (Section 3.4.) combined 

with an Export Type Extension -script. Also, CT Batch File Conversion Rules can be attached to CT 

Export -profiles which allows generating manufacturing documents to target systems at the same time 

(Requirement R10). Therefore, these five requirements (R1, R5, R6, R9, and R10) can be grouped into 

a single partial solution: CUSTOMTOOLS Export with Type Extension -script. For architectural 

clarity, it is recommended to separate the actual export script handler from the Type Extension as 

shown in Figure 4.1.1.  
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Figure 4.1.1: Architecture of a script add-in with Export Type Extension capability. All extension 

capabilities must implement GetParent() that returns the instance of the main extension. 

 

A data exchange value field (Requirement R4), and BOM (Requirement R7) ownership and update 

rules could in theory be hardcoded into Export Type Extension -script. However, both of them should 

also be configurable as they are usually a matter of preference or highly dependent on the target 

system. Both requirements (R4 and R7) can be grouped under partial solution of configurability 

consisting of serializable settings objects as well as ObjectEditGuard type of extension capabilities. 

For the instances of these classes to behave in an expected way, their internal linkage must be well 

understood. Figure 4.1.2 describes four more classes needed for Export configurability as well as the 

core objects linking them together. Figure 4.1.3 adds possibility for CT Profile level settings page and 

Figure 4.1.4 shows added user specific login settings but with some other architectural entities 

removed for clarification. 
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Figure 4.1.2: Export Settings, including field specific settings, are owned by the ERPExportType 

extension, but the same setting instances must be accessible also via ExportFieldGuard extension for 
editing as well as in various events at ERPExportHandler where the settings affect the export 

procedure. 

 

 
Figure 4.1.3: ProfileOptions extension is useful when the integration has some general settings that 

are not bound to a single export profile or a single user. Current CT Profile and its stored 
ProfileSettings data is accessible via CTInterface during the events. 
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Figure 4.1.4: UserOptions are very often just user specific login credentials. For that, GenericLoginCtrl 
from the core assembly ATRControls2.dll can be configured to show various fields. Benefit for using 

this generic control is in its localizations and common look & feel. 

 

Very often the target ERP system is not something directly usable as MS SQL Linked Server and 

therefore not possible to configure as CT Search Group (Section 3.3) to satisfy Requirement R3 

“Possibility to map an existing ERP item with a model”. However, CT Search Groups support custom 

handlers i.e., an extension can provide a result set for given search terms by impersonating a linked 

server connection. This is done by handling CTInteface.OnExecuteSearchGroupSearch -event and by 

investigating that the search group is indeed “owned” by the integration. In addition, handling 

CTInteface.OnCustomListGetColumns to provide available target system fields will make CT Property 

mapping to target fields much more user friendly. From an architectural point-of-view, these events 

should be handled by a separate class of the extension, SearchGroupHandler. Figure 4.1.5 has the 

complete architecture. 
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Figure 4.1.5: The complete high level ERP Integration architecture 

 

4.2 Generalization 

As the target is to provide a simple, reusable base implementation, the generalization must be simple 

yet highly configurable. All storable settings, whether they are Export Profile Field, Export Profile, 

Profile or User level settings, must be serializable and have a graphical control counterpart. Let us 

have abstract types SettingsObject, ControlAdapter and ControlAdapter<T> (Figure 4.2.1).  

 

ControlAdapter is a derivation of System.Windows.Forms.Control, and the base class for the GUI 

counterpart of the user implemented settings object. It is constructed with ICTExtension which is the 

parent extension type capable of providing all possible data of the extension for the control. The 

constructor has protected level visibility just to make it slightly harder for users to accidentally derive 

from this type as that should not be done. This class utilizes generics in its LoadFrom and SaveTo 

procedures to provide SettingsObject type agnosticism for its direct callers on the core level. 

 

ControlAdapter<T> derives from ControlAdapter and its main purpose is to provide strong typing 

between the user implemented setting object and its GUI counterpart using generics. It does it by 

routing the base class LoadFrom and SaveTo calls in its implementation to their strongly typed 

abstraction counterparts. Internally this means type casting the agnostic type to the templated one, 

which can be a major issue if the architecture is misused. Later the core architecture will evolve to a 

phase where a common base class will share the same strong types among all entities. 

 

SettingsObject is the abstract base class for all user defined settings. It too holds an instance of the 

main extensions for possible broader data retrieval cases, and is Initialized always immediately after 
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instantiation. As required by the extension data storage methods, it serializes to and from byte array, 

but it also forces its derived class to serialize/deserialize its content directly to/from System.IO.Stream. 

Coupled with StreamExtensions (Figure 4.2.2) to push/pop common types to/from stream, serialization 

in derived classes becomes a very developer friendly operation. 

 

 
Figure 4.2.1: Architecture for user implemented settings and its GUI counterpart 
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Figure 4.2.2: StreamExtensions provide syntactic sugar for serialization. 

 

4.2.1 Export Settings 

Minimal export settings for all ERP integrations are the field mappings, and a single export field 

setting object is bound to a field by its name. Export Field Settings are not separately serialized but 

they must be part of the Export Settings object and serialize with it. On the other hand, Export Profile 

Settings is not always required to provide GUI with extra options, so the minimal Export Settings 

object is simply a SettingsObject derivation with generic field type hosted in Dictionary from field 

name to instance of that templated field type. Let us call it ExportSettingsBase<FT> (Figure 4.2.1.1). 

 

 
Figure 4.2.1.1: ExportSettingsBase<FT> return null for its own Control but hosts SettingsObject for all 

of its fields. 
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4.2.2 Base Extension with complete settings generalization 

The base extension is an abstract class derived from CTBuiltInExtension, and has generic typing for 

all supported settings types: Export Field Settings, Export Profile Settings, Profile Settings and User 

Settings. To have all these capabilities interacting with CT core, implementations for 

Interfaces.ExportTypeExtension, Interfaces.ObjectEditGuard, Interfaces.ProfileOptionsExtension and 

Interfaces.UserOptionsExtension are also done and attached to the base extension. The corresponding 

implementations are ExportTypeExt, ExportFieldGuard, ProfileOptions and UserOptions. 

 

Some refactoring is now applied and the whole new core addition is decided to be located under 

CTExtension.ExportCore -namespace and the base extension is renamed to ExportBase. 

CTExtensions is a core product namespace, meaning the introduced generalization will now be 

available in CUSTOMTOOLS’ later releases. Bringing it all together we now have all possible 

integration specific Export Profile, Export Profile Field, Profile and User settings fully implemented 

yet all the object types and GUI controls fully configurable; i.e. the base implementation now fulfills 

all the configurability requirements to the furthest possible extent. Complete architecture so far is 

described in Figure 4.2.2.1. 

 

 
Figure 4.2.2.1: The complete architecture so far fulfils all the configurability requirements to the 

furthest possible extent 
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4.2.3 Event Extensions 

The base implementation should also have some framehanding for custom sourced Lookup Lists 

(Section 3.2), custom sourced Search Groups (Section 3.3.) and most importantly, for item/bom 

Export (Section 3.4). While the more visual and core integrated CTExtension Interfaces API is used 

for configurability and user interaction, the CTInterface Events API provides simple event-based data 

manipulation and handling capabilities. 

 

As ExportBase derives from CTExtension, it has to implement Hook(CTInterface) and 

UnHook(CTInterface) that are used for initializing the event based handling. Therefore, it makes sense 

to create a common base class for event extensions of ExportBase so that different, even more 

extended types can then be implemented and used as is with the base class. Generics and routing 

implementation can again be used to provide strong typing for the user implementation. ExportBase 

will then have a new abstract GetEventExtensions() method in which the user implementation should 

return all the event handlers it needs. EventExtension base class and connectivity with ExportBase is 

shown in Figure 4.2.3.1. 

 

 
Figure 4.2.3.1: EventExtension architecture 
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4.3 Data model configuration 

Being able to export the same items multiple times (Requirement R2), as well as getting it all to work 

with existing models (Requirement R8) are all about configuring the CT Properties (Section 3.1.) to 

support the existing Custom Property data model and the requirements of the target ERP system. 

Having the data available is the key requirement for everything else. This is also in direct relation with 

being able to map an existing ERP item with a model (Requirement 3) as Search Groups (Section 3.3.) 

can be configured to pull the data from a 3rd party system into the models’ Custom Properties. Very 

closely related requirement is also the possibility to provide identification by the target ERP system 

(Requirement R11) but as this data model related requirement does not come without issues, it has to 

be discussed in its own sub section (Section 4.3.4.). Still, these four requirements (R2, R3, R8, R11) 

can be grouped under the same partial solution of data model configuration. 

 

4.3.1 Target system requirements 

Data model configuration should be started with the requirements of the target ERP system; mainly 

understanding what the valid values from ERP point-of-view in design-to-item field value mapping 

are. Let us consider for instance Unit. Since the target system likely has its own unit-based 

calculations on resource planning, it obviously expects the units provided to its items by the 

integration to be known ones. Therefore, the Unit in design components must be based on a list 

provided by the target system. In CUSTOMTOOLS this and all similar choose-from-list -type 

requirements would be a Property with a Lookup List (Section 3.2.) which content is either manually 

defined at CT Profile Options, dynamically retrieved with an SQL Query, or dynamically provided by 

a script add-in.  

 

Another common ERP side data restriction is field value length. In many systems for instance 

Description is limited to a specific number of characters. Therefore, this should already be accounted 

for in design time Property filling. In CT Profile Options this is a trivial setting in Property Wizard’s 

Additional Options -page (Figure 4.3.1.1). 
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Figure 4.3.1.1: Maximum length -setting at Property Wizard 

 

For some extra protection against values not written to models by CT Properties, the same maximum 

length can be defined for Export Profiles Fields as well, along with simple but efficient Compulsory 

field -selection. The latter one prevents the integration from executing if the field has no value at all, 

tackling the simple target system requirement to provide a non-empty value for a specific field (Figure 

4.3.1.2). 

 

 
Figure 4.3.1.2: Export Profile Field settings 

 

As a recurring example, let us define some set of fields in Table 4.3.1.3 that an imaginary ERP system 

could expect. 
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Table 4.3.1.3: Requirements of an imaginary ERP system 

Field Name Value requirements / Explanation 

Item No Freely definable, unique identifier of an Item 

Description String of maximum 20 characters describing the item 

Unit One of the following unit-values,  
user-friendly value in parenthesis: 
* KG (Kilograms) 
* M (Metres) 
* PCS (Pieces) 
* L (Litres) 

Type One of the following item type indicators defining its behavior in ERP system,  
user-friendly value in parenthesis: 
* 1 (Manufactured) 
* 2 (Purchased) 
* 3 (Assembled) 
* 4 (Product) 

Weight Decimal value, weight of the item 

BOM Array of strings containing valid Item Nos already present in the ERP system or 
within the current transaction. Null or empty for Items that don’t have BOMs. 

BOMQtys Array of integers containing Quantities of Items defined in BOM -field’s array. Size 
of this array must match with BOM -field’s array size. 

 

4.3.2 User-friendly values in Lookup Lists 

If the target ERP system expects non-user-friendly values for a field, expecting the designer to select 

those values in design time at Properties is not a good idea. Instead, a Hierarchical -type Lookup List 

can be used with a Hierarchical Combo -Property, and a script add-in that displays user-friendly values 

for each combo item while still writing the ERP-required data to the model. The event that needs to be 

handled to achieve this is OnLookupListFill and it is only supported for Hierarchical Combo -

properties. It is however trivial to convert also Simple and Key-Value -lists to Hierarchical ones. 

 

For example, let us examine the example target ERP system’s requirements (Table 4.3.1.3) regarding 

the Type -field that determines the item behavior in the ERP system. ERP required values for that field 

are 1, 2, 3 and 4 and corresponding meanings are 1=Manufactured, 2=Purchased, 3=Assembled and 

4=Product. The numerical values are the real data that needs to be stored to the model at design time 

so that it can then be exported in batch to the target ERP system. But the CAD designer is interested in 

choosing the meaning over some meaningless numerical data value. This type of list can be 

represented as in Table 4.3.2.1 with Hierarchical Lookup List -type, but no actual hierarchy is needed. 
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Table 4.3.2.1: Lookup List with values and descriptions 

Value Key1 

1 Manufactured 

2 Purchased 

3 Assembled 

4 Product 

 

Then while handling OnLookupListFill -event for a Hierarchical Combo -Property, the DisplayKey -

property in event arguments can be set from 0 to 1 to populate the drop list with Key1 -values. 

Keeping the MainKey as 0 uses the value field as the actual data to store. This method can also be used 

for user specific translations of LookupList values. 

 

4.3.3 Design to Item -mapping 

A valid 1-to-1 mapping must be determined between a Custom Property (or set of Custom Properties) 

and target ERP field (or set of fields). This is the basis for being able to export complex 

SOLIDWORKS structures as the same components easily are referenced in multiple different 

contexts. Therefore, in the SOLIDWORKS context, Requirement R2 to be able to export structures in 

batches multiple times is as important as just being able to create items to the target system once 

(Requirement R1). Being able to export something twice means that the corresponding item for the 

CAD design must be pre-mapped already before any export procedure is executed and some sort of 

value comparison logic applied. This also strengthens the Export -dialog solution for Requirement 9 

that is about seeing a clear visualization of what kind of operation the integration is going to perform 

(Figure 4.3.3.1). This pre-export phase is also crucial for being able to have field/BOM specific update 

rules (Requirements R4 and R7). 

 

The mapping is usually handled so that at the CAD -site some sort of unique identifier per itemized 

component is generated and this ID is then exported to some specific field to target the ERP system. 

This yields a requirement to the ERP system: the field used for mapping must stay unique. Unique 

number generation using CUSTOMTOOLS is however very simple and versatile using CT Sequences 

with CT Properties. It is also possible to form a complex combination of Properties to use as item 

identifier in design to item -mapping. Whenever possible, the item identification should be provided 

by CUSTOMTOOLS for simplicity. It is fairly common to use an item ID that does not resemble 

anything that would otherwise be created in ERP, just to have clear separation between integration -

handled items and other items. However, some systems require that the item identification is generated 

by the target ERP system. This is possible but not trivial as will be discussed in Section 4.3.4. 
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Figure 4.3.3.1: Pre-export -phase retrieves existing values from the ERP so that the value comparison 

can be performed and visualized. 

 

4.3.4 Item identification by target system 

Usually, EPR items have an ID that can be used for unique mapping but on some occasions the ID 

must be generated by the ERP system itself. This is problematic from CAD point-of-view as it would 

require write privileges to design files at ERP Export -phase, while this is usually the point that the 

design is already locked from all modifications by some sort of PDM system (Figure 4.3.4.1). 

 

One solution for this is to instruct CAD designers to use the Export in a point that still allows write 

access to design documents, or to have a separate integration module that handles file write within the 
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used PDM system. As far as the author knows, these are the only possible ways to solve the case if it 

is expected that the design documents do not generally have the item identifier at Export. 

 

On the other hand, the ID retrieval can be thought of as a design time task (Figure 4.3.4.2). This is the 

most natural use case for new designs but has an obvious downside that legacy designs will not have 

the value written. So, the overall export must anyway be equipped to handle the already described 

issues with them. For this, the Compulsory Field at Export Profile Field -settings (Figure 4.3.1.2) is a 

great addition for the ID -field. This will prevent execution of Export for as long as even one of the 

components is missing value from the field. This guides the user to go back to Properties to retrieve a 

new ID from the target system, and as this is an obvious change to the document, it is clear for the 

designer that the document must be reserved from the PDM system for this task (Figure 4.3.4.3). 

 

 
Figure 4.3.4.1: Ensuring write permissions is crucial but many times the process is executed on a 

phase where no modifications are expected anymore. 
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Figure 4.3.4.2: Design time ERP Item ID mapping with Properties 
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Figure 4.3.4.3: ID retrieval process for legacy CAD Documents 
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4.3.5 Design time ERP item mapping 

One very normal use case that is surprisingly often forgotten from ERP integrations is the possibility 

to create a CAD design for an existing ERP item. For example, purchased components are very often 

already existing in the ERP system but if the integration is only able to create new items with new 

identifiers, then there is no possibility to take those already existing ERP Items into use for new or 

existing designs. 

 

This is solved with CUSTOMTOOLS Search Groups (Section 3.3.) that are able to query anything 

that can be added as a linked server to MS SQL Server and map the result set directly to CT Properties 

already at design time. The Search Groups must then contain all the same properties that are also in 

the Export Profile, because otherwise the Export would lack field information of those existing ERP 

items and possibly even resulting in data loss at ERP site. 

 

4.3.6 Configuring the CT Profile 

Looking back at the example ERP requirements (Table 4.3.1.3), we determine that following 

Properties are needed: 

 

• ERP Item Number, a text field -Property that has CT Sequence attached to it to provide 

unique identifiers across the design environment. In the Export Profile this property needs 

to be linked via its Custom Property attribute to a Export Profile Field (Section 3.4.2) 

named Item No, which should also be set as a Compulsory Field. The Property itself needs 

to be linked to the defined ERP Search Groups’ Item No. To support legacy models as much 

as possible and configuration specific items, the Initial Configuration -setting of this 

property must be set to Document Properties and Active Configuration. 

 

o This arrangement is also suitable to support Item identification by target system 

(Section 4.3.4) as the CT Sequence provider can be overridden with a 

SequenceExtension to provide identification from the ERP. 

 

• ERP Description, an Editbox -Property with length limitation of 20 characters. Liked via its 

Custom Property attribute to an Export Profile Field named Description, which should also 

have the length limitation of 20 characters. Search Group linking to Description -field as 

well. Initial Configuration -setting depends on if the designers are and/or have been using 

configurations to produce different kinds of items. Good rule of thumb is that if the 

description always contains measurement information or anything else configurable, then it 
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should be configuration specific i.e., Active Configuration or Document Properties and 

Active Configuration. The latter one is generally faster in design time property filling as the 

document property value is inherited for configurations that do not have their own value. 

But as such this may also result in retrieving non-examined descriptions of new 

configurations at item export. Some prefer these fields to be empty unless specifically 

defined by the designer, to which case the first option suits better. If the designs are never 

configured so that different configurations would have different descriptions, then 

Document Properties is the correct option to select. In addition, to query items of the 

Search Group, one of the properties must have a Button Function GetDatabaseItem. This 

property is a good choice for it as the ERP Item Number -Property already has a Button 

Function defined.  

 

• ERP Unit. Depending on if the unit values of the target system are user-friendly, this could 

simply be a ComboBox with a Simple -type Lookup List. If they are not, then this should be a 

Hierarchical Combo -property with a Hierarchical -type Lookup List to allow displaying user-

friendly values in Properties. Its Custom Property attribute should be linked to an Export 

Profile Field named Unit. It is very common that the unit-like field is required by the target 

system so in most cases this field should also be set as a Compulsory Field. The Search 

Group should be linked to the corresponding Unit -field and from this case it becomes 

obvious why the “EPR required unit value” must be resolved dynamically at runtime 

(Section 4.3.2.) instead of for example at Export: It would not otherwise be possible to 

query the value from existing items and store them to properties as returned by the ERP 

system. Initial Configuration of Unit is generally Document Properties as configuring designs 

should not affect what the design actually is and therefore also in which unit its quantity 

should be represented. 

 

o Content of the list would be provided by the script extension, or by any other means 

discussed at Section 3.2. 

 

• ERP Item Type. This is technically exactly the same case as the ERP Unit with Hierarchical 

Combo. Export Profile Field is Type and it is also compulsory. The Search Group field is also 

Type. Initial Configuration is Document Properties in this example case. It is however 

possible in some cases that some configurations of a design are purchased while others are 

manufactured. In these cases, Document Properties and Active Configuration is the best 

choice. 

 

• Mass. This is a property that goes one way only, from design to ERP. Mass is calculated by 

SOLIDWORKS based on active/referenced configurations but the actual property holding the 

mass does not have to be configuration specific. It is a special value that is evaluated on 

request so when the document is open, the mass is usually retrieved correctly. However, to 
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also support cases when the documents are not open, it is recommended to use 

configuration specific property to have last known configuration specific mass stored to the 

design’s properties. So as a middle ground to support also old documents Document 

Properties and Active Configuration is a good choice for Initial Configuration. Otherwise, 

the CT Property type is an Editbox with Before Function GetMass (Section 3.1.4) and its 

Export Profile Field is Weight. As the weight is always provided by the design, this property 

is not included to the Search Group. 

 

o The mass value in Export is displayed per component using its document’s defined 

unit system. This can be a problem if the units are not consistent, e.g., some 

component reports weight in kilos as others in grams or pounds. Usually design 

companies are using consistent units but if this becomes an issue, it can be solved 

with the ExportExtension using SW API to retrieve used document units and adjust 

the weight value accordingly. This is however a rare situation so it will not be 

included in the general solution. 

 

The BOM -field required by the target system is handled by the ExportExtension. The BOM type -

setting in the Export Profile however is either Parts Only for target systems that only allow single 

level BOMs or Intended Assemblies for multilevel. Configurations must be displayed as separate items 

as was discussed in Section 3.4.1. If the current design environment has been strictly using Design 

time BOM modifiers (Section 2.5.3.) then the options to Always show components of subassemblies, 

ignoring the “Child component display when used as a subassembly” setting can be left unchecked. 

However, it is the author’s opinion that this is almost never the case and therefore the BOM/Item 

filtering should be completely handled by the ExportExtension to which the whole unmodified BOMs 

should be provided by checking this option. 

 

To have Quantities for the BOMQtys -field, a new special Export Profile Field must be added with 

Type SOLIDWORKS Property and Quantity or Material Quantity as data selection. Material Quantity 

is a new option in CUSTOMTOOLS 2020 SP1 that allows defining the real need of some material 

instead of the instance count of it in design. The real need is usually the one that ERPs want but it is 

also usually paired with some raw material information. For example, if a design is a metal tube cut to 

length of 1m from a 2m bar, then the design’s BOM Quantity should be set to 0.5 and raw material to 

2m bar as every instance of it consumes only half of that bar. Then, if a design has 10 of these 1m 

bars, the actual need i.e., Material Quantity in the full design is 5 times 2m bar, which is usually also 

the purchased raw material. On the other hand, some ERPs have their own raw material calculations 

and in those cases the Quantity is the correct choice for data selection. Name of the field has no real 

role from the integration point-of-view, but Quantity is generally good for visualization. 
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Figures 4.3.6.1 - 4.3.6.4 show the related CT Profile settings defined so far, Figures 4.3.6.5 and 4.3.6.6 

show the CT Properties and attached Search Group as they are available for the designer. Figure 

4.3.6.7 shows how the data is stored to a model using current profile settings and Figure 4.3.6.8 how 

the data is collected to Export -dialog. 

 

 
Figure 4.3.6.1: Model Properties defined having the example target ERP -system in mind. Attribute 

names are set so that existing design data can be used as efficiently as possible. 

 

 
Figure 4.3.6.2: Lookup Lists defined having the example target ERP -system in mind 

 

 
Figure 4.3.6.3: Target ERP defined as queryable Search Group. 
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Figure 4.3.6.4: The Export Profile “Export to ERP” and its fields with recommended settings for target 

ERPs supporting multi level BOMs. 
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Figure 4.3.6.5: CT Properties as defined in the Profile Options. 

 

 
Figure 4.3.6.6: Access the Search Group that allows linking an existing item with this design. 
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Figure 4.3.6.7: Attribute data stored to design document’s Custom Properties with current settings of 

CT Properties. Item number, type and unit values are of course faked at this point as the integration is 
not yet implemented. 

 

 
Figure 4.3.6.8: The stored attribute data collected from models to Export -dialog 
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5 Applying the provided solution 

The 11 common SOLIDWORKS - EPR integration requirements (Section 2.6) were all addressed in 

Chapter 4: Requirements R1, R5, R6, R9, and R10 can be met with Export Type Extension script 

(Section 4.2.3), Requirements R4 and R7 with generalized architecture for configurability (Section 

4.2) and Requirements R2, R3, R8 and R11 by configuring CUSTOMTOOLS Profile to support the 

existing data model (Sections 4.3). 

 

The generalized steps for SOLIDWORKS – ERP integrations are: 

1. Install CUSTOMTOOLS for SOLIDWORKS 

2. Configure CUSTOMTOOLS Profile to match with existing design environment (Section 4.3) 

3. Implement CTExtensions.ExportCore.ExportBase as required (Section 4.2) 

4. Implement necessary Export Type Extensions for the ExportBase as required (Section 4.2.3) 

5. Deploy the script (Section 3.5.2) 

 

5.1 User implementation example 

To demonstrate the power of the base architecture and implementation, the worst-case scenario 

implementation for data storing requirements is given. In this scenario, the ERP integration requires 

following abilities to store and configure information: 

• Export Profile Field: Field-to-field mapping 

• Export Profile: Export profile mapping to Company selection 

• Profile: Web Service endpoint in Profile Options 

• User: User specific login credentials 

 

Assume using CTExtensions.ExportCore; for all the described scopes and classes. 

 

5.1.1 Field-to-field mapping 

The main requirement of being able to export items to the target system, even in its most basic form, 

requires at least mapping of source export field data to target system field. While the implementation 

example is broad in its overall data storing requirements, providing more complex data objects is 

unnecessary. Extending the provided object is very trivial. 

 



76 
 

Data object implementation, TargetFieldSettings, must only derive from 

SettingsObject, implement serialization (using conveniently provided System.IO.Stream 

extensions) and return the corresponding ControlAdapter for the GUI interaction. 

 

public class TargetFieldSettings : SettingsObject { 
   

  // The data to store/load per field 

  public string TargetField {get; set;} 

 

 
  protected override void Deserialize(Stream s) {  

    TargetField = s.PopString();  
  } 

 

 
  protected override void Serialize(Stream s) { 

    s.PushString(TargetField); 

  } 
   
  public override ControlAdapter CreateAdapter(ICTExtension parent) 

{  
    return new TargetFieldSettingsGUI(parent);  
  } 
} 

 

TargetFieldSettingsGUI initializes a textbox to map with the actual 

TargetFieldSettings data object. Notice the simplicity and how strong typing provides 

compile time safety and ease of implementation regardless of using completely custom data objects 

with the base implementation. 

 

public class TargetFieldSettingsGUI : 

                ControlAdapter<TargetFieldSettings> { 
   

  System.Windows.Forms.TextBox tb; 
  System.Windows.Forms.Label lbl; 

 

  public TargetFieldSettingsGUI(ICTExtension ext) : base(ext) { 
    lbl = new System.Windows.Forms.Label()  

        {  
 Text = "Target Field:",  

     Dock = System.Windows.Forms.DockStyle.Top 
}; 

    tb = new System.Windows.Forms.TextBox(); 
    tb.Dock = System.Windows.Forms.DockStyle.Top; 
    Controls.Add(tb); 

    Controls.Add(lbl);     
  } 
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  public override void LoadFrom(TargetFieldSettings settings) {  

    tb.Text = settings.TargetField;  
  } 

 

 
  public override void SaveTo(TargetFieldSettings settings) {  

    settings.TargetField = tb.Text;  
  } 
} 

 

5.1.2 Export profile mapping to Company selection 

It’s quite common that the target ERP system has tenants, company selections or similar for 

distinguishing different sub-areas to interact with. For example, testing and production environments 

may be at the same ERP instance but under different company names. In that case it makes sense that 

different Export Profiles are then mapped to different companies. 

 

ExportProfileSettings holds the TargetFieldSettings but also stores Company 

information per Export Profile. Notice how similar this data object implementation is to the 

SettingsObject implementations even though it packs a complete second serialization level for 

the Export Field Settings by deriving from ExportSettingsBase. 

 

public class ExportProfileSettings : 
ExportSettingsBase<TargetFieldSettings> { 

   

  // The data to store/load per Export Profile 
  public string Company {get; set;} 

 

 
  protected override void Deserialize(Stream s) {  

    Company = s.PopString();  

  } 

 

 
  protected override void Serialize(Stream s) { 

    s.PushString(Company);  

  } 

 

 
  public override ControlAdapter CreateAdapter(ICTExtension parent)   

{ 

    return new ExportProfileSettingsGUI(parent);  

  } 
} 
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For the GUI interaction, ExportProfileSettingsGUI initializes a textbox to map with the 

actual ExportProfileSettings data object’s Company information. Strong typing is the result 

of cleverly used generics. 

 

public class ExportProfileSettingsGUI : 

                ControlAdapter<ExportProfileSettings> { 
   

  System.Windows.Forms.Label lbl; 

  System.Windows.Forms.TextBox tb; 
   

  public ExportProfileSettingsGUI(ICTExtension ext) : base(ext) { 
    lbl = new System.Windows.Forms.Label()  

        {  
     Text = "Company:",  

     Dock = System.Windows.Forms.DockStyle.Top 
        }; 

 
    tb = new System.Windows.Forms.TextBox(); 
    tb.Dock = System.Windows.Forms.DockStyle.Top; 
    Controls.Add(tb); 

    Controls.Add(lbl); 
  } 

 

 
  public override void LoadFrom(ExportProfileSettings settings) { 

    tb.Text = settings.Company; 

  } 

 

 
  public override void SaveTo(ExportProfileSettings settings) { 

    settings.Company = tb.Text;  
  } 
} 

 

5.1.3 Web Service endpoint in Profile Options 

Even though the target ERP may have multiple sub-environments like Companies that are better to 

map on Export Profile level (Section 5.1.2), for instance the target system endpoint is usually the same 

for all Export Profiles and therefore better to store on the Profile level. 

 

Again, the SettingsObject is derived into a very simple ProfileSettings data object, and 

otherwise at this point the implementation should already be very familiar. 

 

public class ProfileSettings : SettingsObject { 
 

  // The data to store/load per Profile 

  public string Endpoint {get; set;} 
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  protected override void Deserialize(Stream s) {  
    Endpoint = s.PopString();  

  } 

 

 
  protected override void Serialize(Stream s) { 

    s.PushString(Endpoint);  

  } 
   
  public override ControlAdapter CreateAdapter(ICTExtension parent) 

{  
    return new ProfileSettingsGUI(parent);  
  } 
} 

 

ProfileSettingsGUI initializes a textbox to map with the web service endpoint. While the ease 

of implementation and repetitiveness makes the code listing dull, it is given for the sake of 

completeness to later compare with implementation that does not use the provided base. 

 

public class ProfileSettingsGUI : ControlAdapter<ProfileSettings> { 
   

  System.Windows.Forms.Label lbl; 

  System.Windows.Forms.TextBox tb; 
   

  public ProfileSettingsGUI(ICTExtension ext) : base(ext) { 
    lbl = new System.Windows.Forms.Label()  

        {  
     Text = "Endpoint:",  

     Dock = System.Windows.Forms.DockStyle.Top 
        }; 

 
    tb = new System.Windows.Forms.TextBox(); 
    tb.Dock = System.Windows.Forms.DockStyle.Top; 
    Controls.Add(tb); 

    Controls.Add(lbl); 
  } 

 

 
  public override void LoadFrom(ProfileSettings settings) {  
    tb.Text = settings.Endpoint;  
  } 

 

 
  public override void SaveTo(ProfileSettings settings) {  
    settings.Endpoint = tb.Text;  

  } 
} 

 



80 
 

5.1.4 User specific login credentials 

For each user it should be possible to configure a username and password used with the web services. 

 

public class UserSettings : SettingsObject { 
 

  public string UserName{get; set;} 

  public string Password {get; set;} 

 
  protected override void Deserialize(Stream s) {  

    UserName = s.PopString(); 

    Password = s.PopString(); 

  } 

 

 
  protected override void Serialize(Stream s) { 

    s.PushString(UserName);  

    s.PushString(Password);  

  } 
   
  public override ControlAdapter CreateAdapter(ICTExtension parent) 

{  
    return new UserSettingsGUI(parent); 
  } 
} 

 

Refreshingly differently, there exists a better option than creating a user specific credential control 

from scratch as was briefly mentioned in Section 4.1. and visualized in Figure 4.1.4. The assembly 

ATRControls2.dll packs ATRControls2.WinFrom.GenericLoginCtrl that derives from 

UserControl and can be set up to show different user credential fields, like Username and 

Password. Main benefit of using this control is that it is localized (which is especially good as user 

specific settings interact directly with end users of the environment) as well as it provides a common 

look and feel out-of-the box. 

 

public class UserSettingsGUI : ControlAdapter<UserSettings> { 
   

  ATRControls2.WinForm.GenericLoginCtrl loginCtrl; 
   

  public UserSettingsGUI(ICTExtension ext) : base(ext) { 
    loginCtrl = new ATRControls2.WinForm.GenericLoginCtrl(); 

    loginCtrl.ShowUsernameField(true);       
    loginCtrl.ShowPasswordField(true); 
    loginCtrl.ShowEnableCheck(false); 
    loginCtrl.ShowCommunicationPointField(false); 
    Controls.Add(loginCtrl); 
  } 
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  public override void LoadFrom(UserSettings settings){  

    loginCtrl.Username = settings.UserName;  

    loginCtrl.Password = settings.Password; 

  } 
   

  public override void SaveTo(UserSettings settings) { 

    settings.UserName = loginCtrl.Username;  

    settings.Password = loginCtrl.Password; 
  } 
} 

 

5.1.5 Simple Event Extension using the stored data 

Of course, data is not only stored and configured, but also consumed. For that, let us create a very 

simple extension that subscribes to few commonly used export events and pulls all the stored data on 

demand in the scope of the current user. EventExtension must be derived using the main 

extension’s type in its generics. The main extension will be introduced in the next section but let us 

now establish its name to MyIntegration. 

 

// Handles export when the Export Profile is bound to MyIntegration  
public class ExportEvents : EventExtension<MyIntegration> { 
   

  // Hold reference to main integration for data access 

  public MyIntegration ParentExtension { get; private set; } 

   

  // Many events come in specific order so some 

  // entry event is usually used to identify whether 

  // or not this particular extension should or  

  // would want to handle specific events after it. 

  public bool HandleEvents { get; private set; } 

 
  // Initialize this class 
  public override void Init(MyIntegration parent) { 
    ParentExtension = parent; 
    HandleEvents = false; 
  } 

 
  // Subscribe to what is needed 
  public override void Hook(CTInterface iface) { 
    iface.OnExportProfileSelected += OnExportProfileSelected; 

    iface.OnStrExport += OnStrExport; 
  } 

 

 
  // Unsubscribe what was previously subscribed. 
  public override void UnHook(CTInterface iface) { 
    iface.OnExportProfileSelected -= OnExportProfileSelected; 

    iface.OnStrExport -= OnStrExport; 
  } 
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  // When export profile is selected, it's binding information  
  // will be at its Typename property corresponding to extension 

  // identifying name. If it matches to our extension’s, then we  

  // know we want to handle the upcoming Export events too. 
  private void OnExportProfileSelected(object sender, 

                    CTInterface.ExportProfileSelectedArgs e) { 
      HandleEvents = e.ExportProfile.Typename  

                == ParentExtension.IdentifyingName(); 
  } 

 

 
  // If the export profile was bound to us, handle the actual event. 

  private void OnStrExport(object sender, 

                    CTInterface.StrExportArgs e) { 

 
    if (!HandleEvents) return; 

 
    // Finally here we need all the stored data. 

 

 
    // Export Profile specific settings 
    ExportProfileSettings exportSettings =  

            ParentExtension.GetExportSettings(e.ExpProfile); 
     
    // Export Profile Field settings from the Export Profile 

settings. 
    Dictionary<string, TargetFieldSettings> fieldSettings =  

            exportSettings.FieldSettings; 

 
    // Profile Specific settings 
    ProfileSettings profileSettings =      

            ParentExtension.GetProfileSettings(); 

 
    // Logged in user’s settings 

    UserSettings userSettings =  

            ParentExtension.GetUserSettings(); 

 

 
    // To wrap it all up 
    string endPoint = profileSettings.Endpoint; 
    string targetCompany = exportSettings.Company; 

    string userName = userSettings.UserName; 

    string password = userSettings.Password; 

    foreach(var mapping in fieldSettings) { 

      TargetFieldSettings targetSettings = mapping.Value; 

 

 
      string sourceField = mapping.Key; 

      string targetField = targetSettings.TargetField; 
    } 

 

    System.Windows.Forms.MessageBox.Show( 
"Exporting to Company ‘" + targetCompany + "‘\n" 
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+ "at endpoint ‘" + endPoint + "‘\n" 
+ "using credentials: " + userName + ":" + password + 

"."); 
  } 
} 

 

5.1.6 The Main Extension 

The main extension glues all the previously listed abilities together. As was described at Section 5.1.4, 

we can equip all of them simply by providing them as generic types for our extension that derives 

from ExportBase. 

 

public class MyIntegration : ExportBase<TargetFieldSettings, 

                        ExportProfileSettings,  

                        ProfileSettings, UserSettings> { 

 
  // Friendly name is shown for the user in 

  // various places 
  public override string FriendlyName() { 
    return "My Integration"; 
  } 
   

  // IdentifyingName identifies this extension 

  // for example object binding and data storing. 

  public override string IdentifyingName() { 
    return "MY-ERP-INTEGRATION"; 
  } 
   
  // The event extension  
  public override List<EventExtension> GetEventExtensions() { 
    return new List<EventExtension>() { new ExportEvents() }; 
  } 
} 
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5.1.7 “My Integration” showcase 

 
Figure 5.1.7.1: My Integration’s Field mapping (Section 5.1.1) at CUSTOMTOOLS Options. 

 

 
Figure 5.1.7.2: My Integration’s Export Profile binding (Profile type) and Company -mapping (Section 

5.1.2) at CUSTOMTOOLS Options 
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Figure 5.1.7.3: My Integration’s Profile Options (Section 5.1.3) 

 

 

 
Figure 5.1.7.4: My Integration’s User Options (Section 5.1.4) 
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Figure 5.1.7.5: My Integration’s bound Export Profile using the stored data (Section 5.1.5) 
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5.1.8 When the case is not the worst 

Important point is that not every case is the worst i.e., it is not always required to implement data 

storage in any other level than Export Field Settings. For this, the Dummy object was introduced to 

satisfy the generics in ExportBase. ExportEvents is commented out as it uses both User and 

Profile settings objects. The add-in would compile if they were introduced in the code but since they 

are not provided for the ExportBase in the class signature, this integration returns null for them. 

Minimal ERP integration main extension class would then have the following class signature and 

additionally only require FieldSettings (as defined in Section 5.1.1): 

 

class MyMinimalIntegration : ExportBase<FieldSettings, 

                        ExportSettingsBase<FieldSettings>,  

                        Dummy, Dummy> { 

 
  // Friendly name is shown for the user in 

  // various places 
  public override string FriendlyName() { 
    return "My Minimal Integration"; 
  } 
   

  // IdentifyingName identifies this extension 

  // for example object binding and data storing. 

  public override string IdentifyingName() { 
    return "MY-MINIMAL-ERP-INTEGRATION"; 
  } 
   
  // The event extension  
  public override List<EventExtension> GetEventExtensions() { 
    return new List<EventExtension>() { /* new ExportEvents() */ }; 
  } 
} 

 

  



88 
 

5.2 Comparison & Analysis 

Every add-in has its main extension class. For My Integration (Section 5.1.6) the complexity is in class 

signature due to strong use of generics, however, the class implementation itself is extremely simple. 

In addition, it has hidden internals for extension interface handling and their lifetime/re-initialization 

control; all of which would have to be otherwise implemented by user script. As was shown in Figure 

4.1.5 when implementing from scratch, the architecture of all of these capabilities requires at least the 

following implementations: 

• Main Extension 

• ExportTypeExtension 

• ObjectEditGuard 

• ProfileOptionsExtension 

• UserOptionExtension 

• Export Field Settings data object 

• Export Settings data object 

• Profile Options data object 

• User Options data object 

• Export Field Settings control 

• Export Settings control 

• Profile Options control 

• User Options control 

• Serialization of data objects 

 

The above worst-case requirements are set to table (Table 5.2.1) and complexity comparison is 

performed between Implement from scratch and provided ExportBase implementation for each entry 

separately. The total and average complexity are calculated for both cases. The same comparison is 

then done again (Table 5.2.2) using only the Minimal required capabilities of an ERP integration 

(Section 5.1.8). The author himself has populated the complexity numbers for each entry but aimed to 

do it with emphasized objectivity. Since the ExportBase is completely new, there is no one in the team 

yet to give feedback about its complexity. 
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Table 5.2.1: Worst case requirements complexity comparison 

Complexity 1-10 (higher more complex, - not needed) 

Requirement Implement 
from 
scratch 

ExportBase Reasoning / Notes 

Main Extension 8 5 Main Extension has a lot of best practises 
that should be followed to have bug-free 
implementation. ExportBase is simple and 
implements all those best practises under 
the hood, but its class signature might be 
hard to understand due to generics. Also, 
those relatively complex extensions are all 
implemented for ExportBase. 

ExportTypeExtension 6 - 

ObjectEditGuard 6 - 

ProfileOptionsExtension 5 - 

UserOptionsExtension 5 - 

Export Field Settings 
data object 

1 4 Data objects are always very simple by 
nature but ExportBase forces deriving 
from SettingsObject that provides both 
linking with the GUI controls and 
serialization which raises complexity. 
From scratch Export Settings must 
implement some field handling which is 
very error-prone. 

Export Settings data 
object 

4 4 

Profile Options data 
object 

1 4 

User Options data 
object 

1 4 

Export Field Settings 
control 

5 3 All ExportBase controls derive from 
ControlAdapter and provide strong typing 
of the Load/Save for the corresponding 
settings object. Otherwise, it’s like 
WinForms Control, which is the case for 
from scratch implementations that have to 
define their own data load/save scenarios 
each. 

Export Settings control 5 3 

Profile Options control 5 3 

User Options control 5 3 

Data Object 
Serialization 

4 - 
 

TOTAL COMPLEXITY 61 33 46% less work with ExportBase 

AVERAGE 
COMPLEXITY 

61 / 14 = 
4.36 

33 / 9 = 
3.67 

16% less average work complexity with 
ExportBase 
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Table 5.2.2: Minimal required capabilities complexity comparison 

Complexity 1-10 (higher more complex, - not needed) 

Requirement Implement 
from scratch 

ExportBase Reasoning / Notes 

Main Extension 6 5 From scratch complexity drops from 8 to 
6 due to dropping out of Profile- and 
UserOptionsExtension. No change for 
ExportBase. ExportTypeExtension 6 - 

ObjectEditGuard 6 - 

ProfileOptionsExtension - - 

UserOptionsExtension - - 

Export Field Settings 
data object 

1 4 Data Object complexity doesn’t change 
per type. Some implementations are 
simply not needed. 

Export Settings data 
object 

4 4 

Profile Options data 
object 

- - 

User Options data object - - 

Export Field Settings 
control 

5 3 GUI control complexity doesn’t change 
per control. Some implementations are 
simply not needed. 

Export Settings control - - 

Profile Options control - - 

User Options control - - 

Data Object Serialization 2 - 50% less to serialize, so complexity 
drops from 4 to 2. 

TOTAL COMPLEXITY 30 16 47% less work with ExportBase 

AVERAGE 
COMPLEXITY 

30 / 7 = 4.29 16 / 4 = 
4.00 

7% less average work complexity with 
ExportBase 

 

Results of the comparisons clearly state that using the provided ExportBase leads to significantly less 

implementation work, which at the same time seems to be slightly less complex in nature. 

 

Additional benefits of using the ExportBase comes from the fact that it is an integral part of the core 

product. This means that script integrations provided for customers have extended maintenance and 

possibility to even have new features years after project deploy. Using it also unifies the codebase 

which can lead to better predictability and overall tolerance for future software environmental 

changes. 

 

  



91 
 

5.3 In-house feedback 

The suggested ExportBase architecture was presented and demonstrated for the CUSTOMTOOLS 

Customer Project development team 1.5.2021. Participants were Simo Erkinheimo (Thesis author, 

Product Manager), Tero Salonen (Product Director), Ilkka Kananen (Software Engineer) and 

Marko Laamanen (Software Engineer).  

 

The author requested input for the complexity tables (5.2.1, 5.2.2) after the presentation, but attendees 

were not comfortable doing so as they did not have any experience on the new architecture. The 

demonstration was not enough for complexity assessment, but as its benefits were still seen, verbal 

feedback was then requested. 

  

Looks simple to use. Implementing the controls and the mapping has previously taken surprisingly 

long. The common architecture also reflects as a more unified look & feel generally. Common 

serialization is also a good idea. (Kananen, 2021) 

 

Can’t easily compare because I haven't ever implemented the basis before. It has been so complex that 

Simo has done it. However, the new architecture looks simple enough to actually use. Still, the reality 

can only be seen when actually trying to use it. (Laamanen, 2021) 

 

It feels that this standard way of doing things is good. There will be less bugs and when something 

gets fixed, the fix applies for all. Now-a-days there’s a lot of copy-paste and related errors. Common 

base makes project handovers and maintenance also easier. (Salonen, 2021) 
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6 Discussions & Closing Words 

6.1 Conclusions 

Though some individual cases of CAD - ERP integration projects may very well be simple in their 

nature, and even successful when the limitations are well understood by the user, it was also shown 

that simply trying to meet all the most common requirements can very easily result in significant 

complexity (Chapters 3-4). While every integration case is different, the high-level requirements are 

mostly the same (Section 2.6) and having a standardized solution seems to be welcomed by the 

integration project experts directly affected (Section 5.3). 

 

The reduced work and complexity (Section 5.2) the introduced integration base offers as well as 

standardization should lead to better quality code, faster project delivery, significantly easier project 

handovers, support, and further maintenance. Sometime after the initial demonstration of the base 

implementation (Section 5.3), it was decided to be included as core component of CUSTOMTOOLS, 

from CUSTOMTOOLS 2022 SP0 release onwards, and all further ERP integration projects will start 

using it as an integration base. This can be considered a major success what it comes to offerings of 

this work. 

 

Also, having the supported requirements listed, as well as knowing a standardized solution for them 

can be found, has a potential to significantly support sales procedure and even educate the potential 

customer about the overall solution they might need. Therefore, defining the 11 common requirements 

of SOLIDWORKS – ERP integrations (Section 2.6) is also one of the major offerings of this work.  

 

Downsides are hard to find, but technically it is possible that faster project delivery has negative 

financial effect in short-term as the project sizes might reduce. 

 

6.2 Limitations & future improvements 

This work is strongly relying on the common requirements given by subject matter experts (Salonen, 

et al., 2020), which could obviously be argued against. There is no harm in supporting argued down 

requirements, however, the correctness of the overall provided solution could take a hit if a 

requirement of significant impact would have been left out.    

 

Though the solution architecture (Chapter 4) considers all those common requirements (Section 2.6), it 

does not provide any further generalization for Requirements R1, R5, R6, R9, and R10 but simply 

states them doable as Export Type EventExtension (EE). There should be a lot of room for the actual 
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export procedure standardization now that the overall architecture is well-established for the general 

case, e.g., ItemBomExportEEBase. 

 

Some other general purpose EventExtensions could consider e.g., CustomSearchGroupEE and 

CustomLookupListEE, both simplifying the case when target ERP system cannot be queried as linked 

server but with custom connector.  

6.3 Extending the work for other CAD – ERP integrations  

Standardization of complex issues has its obvious benefits. But it is the standardization itself that 

might not be easily achievable; being highly dependent on the CAD in question as well as how it is 

used in real life scenarios. To attempt similar generalized ERP integration solution with any other 

CAD system, it seems that at least the following is required: 

• Mapping of a CAD component with ERP item (and BOM) must be possible. 

 

• Expert knowledge on the CAD itself 

o Component itemization i.e., Item / BOM formation 

o Real world experience on user behavior for understanding the possible pitfalls and 

issues with legacy data. 

o Truly mastering the difference of Engineering BOM and Manufacturing BOM in 

current context 

 

• Expert knowledge/data about past integration requirements with the CAD, so that the 

requirements could possibly be generalized. Generalizable requirements should rather cover 

too much than too little. 

 

• Professional software architect to provide a solution following the given requirements: an 

integrated solution with configurable basis i.e., an integration framework. 

 

• Comprehensive use-case based usability assessment of the solution is a must. General 

usability of the solution must also not be forgotten. 

 

While above list might not be complete, it strongly suggests that a generalized integration cannot be 

done without true expert knowledge on the chosen CAD, its user behavior, and knowledge on the past 

integrations with it. If lacking any of it, it would be the author’s recommendation to continue doing 

fully customized integration projects and attempt the generalization later when the level of experience 

meets the bullet points above. 
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