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The neural network-based solutions are becoming more and more popular because of
their ability to solve problems, which could not be solved before. This has also led
people to utilize neural networks to solve problem, where more classical methods could
be utilized. This work tries to solve if the usage of neural networks in track-by-detection
paradigm gives the system an advance over system with classical methods when tracking
pedestrians. Track-by-detection is a two-module system, where the first module extracts
detections from an input image. Detections are fed to the second module, which
associates detections with unique identifier and tries to track identified objects through a
sequence of concurrent images.

The hypothesis of this work is that both modules in track-by-detection can be replaced
with solutions without a neural network. Research was performed for both modules
separately, be because the object detection can be evaluated without the second module,
which can be evaluated with precalculated detections. Research about object detection
was done as a literature review. Different tracking algorithms were evaluated using
MOTChallenge’s data set. According to the results from the literature review, object
detection cannot be replaced with classical methods. The results about tracking shows
that tracking can be done well without neural networks.

Results of this work shows that neural network-based solutions are justified to be used in
the first module of track-by-detection. The second module can be neural network-based,
but this required more resources to get working well. Many of the more classical methods
can be swapped easily in the track-by-detection to find which methods works best in the
current use-case. According to the results, neural network-based trackers do not bring
enough benefits for real-time tracking to be used over classical methods.

Keywords: Object detection, Tracking-by-detection, Tracking, Pedestrians, Deep Learn-

ing, Convolutional neural network, YOLO, HOG, SORT, MOTChallenge,

Deep SORT, Kalman filter, Real-time tracking
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Pro Gradu, 69 sivua
Tietojenkäsittelytiede
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Neuroverkkopohjaisten ratkaisujen suosio on jatkuvassa kasvussa, koska niiden avulla
kyetään ratkaisemaan ongelmia, joita ei ole ennen voinut ratkaista. Tämä on kuitenkin
johtanut siihen, että neuroverkkoja käytetään ratkaisemaan ongelmia, joihin perinteiset
menetelmät toimisivat hyvin. Tässä työssä pyritään selvittämään, onko neuroverkkojen
hyödyntäminen jalankulkijoiden havaintopohjaisessa seurannassa tarpeen. Havain-
topohjainen seuranta (Tracking-by-Detection) on paradigma, joka muodostuu kahdesta
moduulista. Ensimmäinen moduuli hoitaa kohteen tunnistuksen annetusta kuvasta ja
lähettää havainnot seuraavalle moduulille. Toisen moduulin työ on luoda uniikkeja
tunnisteita havainnoille ja yhdistää peräkkäisten kuvien havainnot toisiinsa.

Tämän työn hypoteesi on, että havaintopohjaisen seurannan molemmat moduulit voidaan
korvata klassisilla menetelmillä, jotka eivät hyödynnä neuroverkkoja. Molempia mo-
duuleja tutkittiin erikseen, koska molempia moduuleja voidaan arvioida ilman toista.
Ensimmäinen moduuli arvioitiin kirjallisuuskatsauksena ja toinen moduuli arvioitiin
hyödyntäen MOTChallengen arviointikriteerejä. Kirjallisuuskatsauksen tuloksien
perusteella kohteen tunnistusta ei voida korvata järkevästi klassisilla menetelmillä.
Havaintojen seurantaan käytettävä moduuli voidaan korvata menetelmillä, jotka eivät
käytä neuroverkkoja.

Työn tuloksien mukaan neuroverkkopohjaiset ratkaisut ovat oikeutettuja käytettäväksi
havaintopohjaisen paradigman ensimmäisessä moduulissa. Toisessa moduulissa neu-
roverkkopohjaisia ratkaisuja voidaan hyödyntää, mutta tällöin ratkaisun luominen
vaatii enemmän resursseja kehitysvaiheessa. Klassisilla menetelmillä voidaan hel-
posti ja nopeasti kokeilla eri menetelmiä löytääksemme parhaimman mahdollisimman
menetelmän ratkaistavalle käyttötapaukselle. Tuloksien mukaan neuroverkkopohjaiset
seurantamenetelmät eivät tuo tarpeeksi hyötyä reaaliaikaisessa seurannassa, jotta niiden
käyttäminen klassisten menetelmien sijaan olisi oikeutettua.

Avainsanat: Kohteen tunnistus, Havaintopohjainen seuranta, Seuranta, Jalankulkijat,

Syväoppiminen, Konvoluutioverkko, YOLO, HOG, SORT, MOTChallenge,

Deep SORT, Kalman suodatin, Reaaliaikainen seuranta
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Chapter 1

Introduction

Solutions utilizing neural networks are becoming increasingly popular. Many start-ups fo-

cus on purely neural network-based solutions, namely deep learning for solving problems.

Gathering data and processing it for training and testing different deep learning methods

is very time and resource consuming. Many of these provided solutions are focusing on

analysing images or sequences of images. The goal is usually to extract different objects

from them and perform post-processing fitting for the specific problem at hand.

In this work, I will focus on associating detections between concurrent frames. This

associating process will be inspected from the point of a paradigm called Tracking-by-

Detection. Tracking-by-Detection is commonly used paradigm when creating any kind

of tracking application which utilizes images. This work will be focusing on paradigm

capability for Multiple Object Tracking and I will exclude its other tracking category

Single Object Tracking.

Research question for this work is, that is it possible to change parts from Tracking-

by-Detection to be not related to neural networks? More specifically if it is possible to

replace any of the parts when detecting and tracking pedestrians. Most of the de facto

neural network-based solutions are utilizing massive networks and using highly paral-

lel calculations by using a Graphics Processing Unit (GPU). I think, that using neural

network-based solutions for everything is not efficient, and simpler solutions could do as



CHAPTER 1. INTRODUCTION 2

well or almost as well as solutions utilizing neural networks. This is significant also be-

cause of the combination of virtual currency mining becoming increasingly popular and

the COVID-19, there is right now shortage of GPUs. This shortage has made GPUs much

pricier and harder to get. Because of this situation, I think it is important to try to discover

use-cases where using neural network is unnecessary.

Comparison of different object detections will be performed as a review of different re-

search papers. This can be done, because there are massive amounts of already published

papers about how different object detectors compare for each other. Object detectors that

will be inspected in this work are two neural network-based solutions: You Only Look

Once (YOLO) v3 and Region Based Convolutional Neural Network (R-CNN). To repre-

sent implementation that is not based on neural network, I chose Histogram of Oriented

Gradients (HOG) with Support Vector Machine (SVM), because HOG was designed for

pedestrian detection.

For testing different data association methods to connect detections between frames, I

will use data set provided by The Multiple Object Tracking Benchmark as MOTChallenge

[1]. These data association methods are called as tracking algorithms. In this work, four

tracking algorithms are compared to each other. Two of them are very simple and the

other two were state-of-the-art algorithms. First two are trackers utilizing just simple

mathematical concepts: Euclidean distance and Kalman filter. Two other algorithms are

called Simple Online and Realtime Tracking (SORT) and Sort with Deep Association

Metric (Deep SORT). Only Deep SORT uses neural network from selected trackers.

In this work, we will first address what is a neural network and how does it work in

chapter 2. After that we will discuss about Convolutional neural network in chapter 3,

which is a deep learning method and a type of neural network. In its sub-chapters, we

familiarize ourselves how does the CNN differ from other neural networks. In chapter

4, we talk about object recognition, one of the main tasks for CNN. In that chapter we

discuss what is object recognition, what kind of tasks it contains and how to post-process
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the outputs from object recognition. Main data set used in this work will be introduced in

chapter 5. Different object detectors and their main ideas are discussed in chapter’s 6 sub-

chapters and the paradigm Tracking-by-Detection is introduced and described in chapter

6.1. Algorithms used for data associations will be discussed in chapter’s 7 sub-chapters.

Finally, this work’s results are shown in chapter 8, where we will go through results from

literature and tracking evaluation results. After examining results, we will discuss about

the results in chapter 9, where we will make the conclusion.



Chapter 2

Artificial neural network

2.1 Introduction

When talking about object detection, first we need to understand what Artificial Neural

Network (ANN) is. Neural networks are collections of different layers created by neu-

rons. Layers are combined by different methods to define how the information flow from

layer to layer. Before going to the technical details, let’s try to grasp the general idea of

neural networks. Artificial Neural Network represents an artificial (also called as Neural

Network) version of a biological neural network. In a biological neural network, neurons

communicate with short electrical signals and one neuron can have thousands of connec-

tions to other neurons. Artificial neural network is a collection of artificial neurons which

are capable for sending signals and receiving and processing received signals. [2]

2.2 Artificial neuron

Artificial neuron can be visualised as a processor that performs simple mathematical op-

eration. We are not interested in how the biological neurons works, so instead of that we

are going to focus on a mathematical model for neuron. In 1943 McCulloch and Pitts

introduced simple mathematical model for neuron. [3]
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Figure 2.1: Mathematical model for neuron by McCulloch & Pitts [3]

In Figure 2.1 we have a model of the mathematical neuron designed by McCulloch and

Pitts. The shown model can be split into three parts: inputs, adder and activation function.

Inputs are labelled as xi and for each input there exists a weight wi. These variables are

shown in Figure 2.1 on the left side. The adder represents real cells membrane, so it

stores given signals, but in this model, it works as a simple sum-up function (Σ). In

Equation 2.1 [3] we can see how the adder works. It sums up the products of xi and

wi. The last part of this model is the activation function (also known as Transfer function)

which purpose is to decide the final output of the artificial neuron. We will cover activation

function in Section 2.3.

h =
n∑

i=1

xiwi (2.1)

2.3 Artificial neuron activation

We could determine a neuron’s output with just a sum of bias and the product of input

and weight. A problem with this approach is that it is a linear function. For example,

this allows our decision boundary to be only a straight line in a two-dimensional space.

Decision boundary is a boundary that divides decision space for the algorithm [4]. For
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Figure 2.2: Visualization of data where decision boundary with linear solution is enough

input of two features, decision boundary is easy to plot. In Figure 2.2, we can see how

linear function divides to two categories easily, but if the data is even a little bit more

complicated, we cannot solve it with a linear function as we can see in Figure 2.3.

To solve non-linear problems, we need to add non-linearity to our function. This is

where activation functions are coming to play. The simplest activation function is the one

used in McCulloch’s and Pitts artificial neuron model. This activation function is called

a Heaviside step function [5]. Heaviside step-function is a discontinuous, function and

it can be used to produce an output of zero (0) or one (1). Let’s indicate the neuron’s

threshold with θ. If the h is larger than θ, output will be one. If it is not, the output will

be zero.

o = g(h) =

 1, h > θ

0, h ≤ θ
(2.2)

Even if Heaviside step-function is used in the original model as an activation function, it

is not usually used as an activation function.

One used activation function is called Sigmoid function[2]. On the contrary to the

Heaviside step-function, sigmoid function’s output is a value between zero (0) and (1),

where in the Heaviside step-function, the output is either zero (0) or one (1). With Sigmoid
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Figure 2.3: Visualization of data where linear decision boundary does not work

function, we can map any value between zero (0) and one (1) and the value of 0.5 will

given if the x is 0 for the equation 2.3[2].

S(x) =
1

1 + e−x
(2.3)

Earlier in chapter 2.2, we discussed little about weights. When we add weights to the

sigmoid function, we get the equation 2.4. With the weight parameter, we can modify the

sigmoid function in different ways. We know that if weight w is one (1), it does not affect

the function’s output in any way. If we set the weight to be negative one (-1), we inverse

the values as we can see in a Figure 2.4. As mentioned before in this chapter, if the power

of e’s is zero (0) we always get the same result of 0.5 as shown in figure 2.4 and 2.5.

S(x) =
1

1 + e−x∗w (2.4)

To shift the activation function to the left or right, we add bias to the activation func-

tion [2]. The new function will be 2.4, and as we can see from the e’s exponent, bias does

not affect the activation function if b = 0. As shown in Figure 2.5, if bias is a negative
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value, the whole graph is shifted to left.

S(x) =
1

1 + e−x∗w+b
(2.5)
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Figure 2.5: Sigmoid function with bias changing

One commonly used activation function is called Rectified Linear Unit (ReLU) [6].

ReLU is not computationally expensive, because as we can see in equation 2.6, given

input will be returned if it is larger than zero, otherwise the output will be zero. ReLU’s
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ability to return zero value allows neuron to be in inactivate state, unlike with the sigmoid

activation function. [6]

f(x) = max(0, x) (2.6)

2.4 Neural network layers

Neural networks are collections of different types of layers. These layers are commonly

divided into three (3) distinctive types: input, hidden and output layers. First of the three,

input layer, is the starting point for the neural network. This layer takes the raw input

and feeds it to the subsequent layer in the neural network which is usually a hidden layer.

Second type of layers in the neural network is the output layer. Output layer’s job is to

accept the input from the earlier layer and represent the network’s result for the original

input. Between input and output layers are hidden layers. Hidden layers are the ones

doing the mathematical calculations for the input. [7]

Neural networks’ ability to learn complicated solutions is thanks to hidden layers. The

output layer is also capable for learning just like hidden layers. Hidden layers can learn to

find how to for example split data points into different categories when linear solution is

not enough. In figure 2.3 we see a scenario, where hidden layers could assist us to divide

data points into classes. Hidden layers can additionally be used for example to extract

different features from an image. Convolutional layer is hidden layer type that is used to

extract different . How convolutional layers work will be discussed in chapter 3. [7]

To move values or features from layer to layer, different connection types can be used.

The simplest connection type is called Dense layer (Also known as Fully-connected layer)

[8]. Layer is called dense layer if every neuron has a connection to every neuron in the

previous layer [8]. So, if layer Ln has five (5) neurons and the next layer Ln+1 has four

neurons and is dense layer, then there are total of 5 ∗ 4 connections into layer Ln+1.
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Another commonly used connection type is called as Residual connection developed

by He et al. in 2016 [9]. Residual connections are sometimes referred as skip-connections.

This type of connection allows neural networks to take a copy of layer’s output and pass

it to a layer which is deeper in the network. Passing these values allows them to skip a

part of the network. [9]

Values in the network can become quite large. Large values in the neural network

can cause problem when training it. One way to prevent these large values is to add

normalization to the network. Normalization usually scales values to be between zero

and one. In 2015 Ioffe and Szegedy introduces Batch Normalization to normalize layers

output [10]. Batch normalization takes activations of a layer and applies a normalization

for these activations. From equation 2.7 we can see how the normalization is done. In the

equation x indicates the activation given as an input. µ is the mean value of the batch and

σ is a standard deviation. Standard deviation σ is calculated by first calculating the mean

value from the given values. The mean value is then subtracted from each value. After

subtraction, results are squared. Standard deviation is now calculated as a mean of these

squared values. Values γ and β are arbitrary values and are used to scale and swift the

input. Values used for γ and β are learned during the training. [10]

(
x− µ
σ
∗ γ) + β (2.7)



Chapter 3

Convolutional neural network

3.1 Introduction

One of the goals of the computer science has been to teach computer to see. Many dif-

ferent methods have been researched, but in 1989 LeCun et al. [11] introduced new type

of neural network that is able to extract features from a given image. This network utilize

convolutions to find unique features from the image. LeCun et al. used this network to

solve basic character recognition, which in this case was to classify handwritten digits.

This network is called Convolutional neural network (CNN) which is a type of neural

network. [11]

Using convolutions in a neural network did not became popular approach in over 20

years after the original release. In 2012 Krizhecsky et al. [12] released a paper about

a model using deep learning with convolution. This model showed great success with

ImageNet data set [12]. After this paper, the amount of research papers regarding the

Convolutional neural network has increased, as we can see from Figure 3.1. CNN is ca-

pable for learning spatial hierarchies of different features from grid-like data, for example

images. Key element of CNN is called a convolution layer, which is a combination of

mathematical operations. In this chapter we will go through the basic building blocks for

a convolutional layer and how they work. In chapter 3.2 we go through how the convolu-
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tion work and after that in chapter 3.3 we discuss how the convolutional network modify

outputs. [7]
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Figure 3.1: Amount of publication according to the search word Convolutional neural

network in Google Scholar. Patents and citations were excluded from the search.

3.2 Convolution

Before we start to inspect convolutional neural networks, we must understand the main

building block in this neural network. Convolutional neural networks contain layers which

do convolutional operations. These layers are called convolutional layers. Operations

done in convolutional layers’ neurons are called convolutional between image and a ker-

nel.

Kernel a small matrix which can be used to manipulate the target image. These manip-

ulations can be for example, image sharpening, blurring and edge detection. The kernel

will be slid across the image matrix, where multiplication operations will be done. Con-

volution can be used for feature extraction. For example, we can extract edges from the

given image by using Sobel operator created by Sobel and Feldman in 1968 [13]. So-
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Gx =


+1 0 −1

+2 0 −2

+1 0 −1

 , Gy =


+1 +2 +1

0 0 0

−1 −2 −1

 (3.1)

Figure 3.2: Sobel kernels for X and Y [13]

bel operator has two 3x3 matrices, one for vertical edges (Gx in Figure 3.2) and one for

horizontal (Gy in Figure 3.2) edges.

G =
√
Gx

2 +Gy
2 (3.2)

In convolutional neural networks, convolutions are used with a sliding window algo-

rithm. The kernel will be moved from left to right by the step size defined as a stride.

Matrix multiplication is done, and the product matrix is summed up. The value of a con-

volution will be stored into output’s matrix in corresponding space. Kernels’ values used

in Convolutional neural network are learned during the network’s training.

Owidth = Iwidth −Gwidth + 1 (3.3)

Oheight = Iheight −Gheight + 1 (3.4)

By default, the output matrix’s dimensions are smaller than the original after the convo-

lution. This is because there will be sections which are smaller than the given kernel. In

equations 3.3 and 3.4 we can see how output matrix’s dimensions can be calculated.

If we want to preserve the original dimensions, we must add padding to the image.

In Figure 3.3, we can see how zero padding can be added to the input matrix to preserve

original dimensions.
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M =


1 1 1

1 1 1

1 1 1

 =>



0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0



Figure 3.3: Adding padding to the matrix M

(a) (b) (c) (d)

Figure 3.4: Sobel edge detection. Picture a is an original grey-scale image. In picture b

we can see vertical edges extracted with Sobel kernel Gx from Figure 3.2. In picture c

we can see horizontal edges extracted with Sobel kernel Gy from Figure 3.2. In the last

picture (d) we can see extracted edges after combining Sobel kernels with equation 3.2.

3.3 Pooling

Typically, after convolutions and non-linear activation comes a pooling layer. This layer’s

task is usually to summarize the given inputs, usually previous layers activations. Pooling

helps us to add some position invariant, so if the input changes a little, it should not

affect the pooling layers output. [7] Pooling layer will almost always downscale the input

because of its nature. This is caused by the attempt to summarize the given inputs. Just

like in convolutional layer explained earlier (chapter 3.2), many of the pooling methods

are using sliding window algorithm and filters. [7]

One of the most used pooling methods is called max pooling. Max pooling selects the
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largest value in a given space. From figure 3.5 we can see an example about how max

pooling works and how it down scales the input. One of the strengths of max pooling is

that it is not sensible to values exact location, assumed that the value is in the pooling

region. [7]
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Figure 3.5: Max pooling with a kernel of 2x2 and stride of 2.



Chapter 4

Object Recognition

4.1 Introduction

Object detection is a challenging task in computer vision. The main goal of object detec-

tion is to detect instances of different objects from the given digital image. These detected

objects are from predefined classes such as different vehicles. The purpose of object de-

tection is to provide information on what the given image has and where on the image

objects are, to different computer applications. [14]

When inspecting object detection from the perspective of computer applications, ob-

ject detection can be divided into two (2) different topics: general object detection and de-

tection applications. General object detection tries to create an unified framework, which

is capable to simulate the human vision. Detection applications are used for specified

areas, for example to detect vehicles from images. Object detection is used in multiple

real-world applications thanks to the breakthrough in deep learning. [14][15]

4.2 Why is the object recognition important?

Object recognition has been integrated into our everyday life. Almost everything related

to images and videos contains some form of object recognition. Usually, it is used to
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detect different features from the images.

For example, self-driving cars are using object recognition [16]. Self-driving cars are

using object recognition to figure out the surrounding environment. Detecting different

vehicles and pedestrians is critical for having a working self-driving car. Additionally,

object recognition is used to detect driving lines and traffic signs to help the car to navigate

in the road. Of course, self-driving cars have multiple different sensors to work with object

recognition systems.

Object recognition can be used to analyse images and videos. These analyses can be

detections of objects of interests, for example vehicles or pedestrians. Detections provided

by object recognition can be post-processed to get desired information. This information

can be something like people count in a shopping mall.

4.3 Image classification

A task where the target is to recognise what is in the given image input is called im-

age classification. Tries to answer following question: ”What is this picture of?” This

task is often the underlying problem in many different object recognition tasks. Image

classification is, for example, a subtask in object detection (Chapter 4.4).

Image classification is widely used and it is seamlessly integrated into our lives. For

example, face recognition in our phones and computers use image classification to figure

out if we are in the picture. Images in large image galleries are categorised automatically

into different collections. Our phones’ camera applications use image classification to

determine what is in the captured view to select correct filter to enhance our food pictures.

4.4 Object detection

Object detection is a task which answers to a following question: ”What objects are

where?” [14]. This task is a critical one in multiple different implementations used nowa-
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Figure 4.1: Face detection done with Haar Cascades

days. Object detection combines the image classification we discussed earlier in chapter

4.3 with object localization. Object detectors usually returns us a bounding box and a

class for found objects. Bounding box is a rectangle, which tries to border the detected

object as well as possible. In this work, object detection will be covered more extensively

in later chapters (6) because this object recognition type is one of this works main focuses.

Object detection is used everywhere just like image classification we discussed in

previous chapter. This task can be used as a pre-processing for some computationally

expensive operations. For example, for facial recognition systems, we could use light and

fast object detection an algorithm to extract faces from an image. Then these extracted

faces would be fed to algorithm, which handles the recognition task. In earlier chapter

4.3, I mentioned image classification in our mobile phones to determine what filter to

use. Some applications draw a rectangle around faces in the picture. It is very likely

that behind the scenes, the application use Viola–Jones object detection framework or

something similar to quickly find every face [17]. This algorithm specializes for detecting

faces from an image, so it is an excellent example about real world application for object

detection. Because this work does not focus on face detection, we will not go through

Viola–Jones object detection framework. To find more information about this algorithm,

I recommend reading the original paper Rapid object detection using a boosted cascade

of simple features by Paul Viola and Michael Jones.
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4.5 Semantic Segmentation

Figure 4.2: Semantic segmentation done to a picture. Every pixel is labelled as a person

or as a background. [18]

Semantic segmentation is an image segmentation task. The goal is to label each and ev-

ery pixel in the input image. Unlike object detection, semantic segmentation is unable to

differentiate instances of a same class. For example, if we do semantic segmentation for

an image of a forest, we are unable to tell how many trees are in the image. If we are in-

terested in these instances, then we are talking about the other task in image segmentation

called instance segmentation.

To continue our theme regarding the real-world application examples, semantic seg-

mentation can be used to modify an image. For example, semantic segmentation can be

used to find background from the image and use this information to blur the background.

4.6 Instance segmentation

Instance segmentation is almost like semantic segmentation (chapter 4.5) which is com-

bined with object detection (chapter 4.4) When we are doing instance segmentation for a

given image, we do not try to label every pixel in the image. Only the pixels in the image
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Figure 4.3: Instance segmentation where only pedestrians are detected. [18]

belonging to classes which we are interested in. Instance segmentation also differentiates

different objects with the same labels. This allows us to find different trees from the forest

picture.

There exists a third task for instance segmentation called Panoptic Segmentation which

tries to label every pixel in the given image just like the semantic segmentation, but also

differentiates different instances in the same class. So panoptic segmentation is a combi-

nation of semantic segmentation and instance segmentation [19].

4.7 Cleaning detections

Some of the object detection methods provide bounding boxes that cover the target object

multiple times. We do not want to detect the same object from the given image multiple

times. Instead, we want to get the best possible bounding box for the detected object in

the image. Another thing we want to get rid of is detections with very low confidence

score. In another word, post-processing needs to be done to the detections to get desired

results from the detector.

One of the commonly used post-procession algorithm for cleaning up detections is
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Non-Maximum Suppression (NMS) [20]. NMS is a simple algorithm, which requires

following information about the detections: information of a boundary box and the con-

fidence score about the predicted class. Both of these values are provided as object de-

tector’s output. Confidence score indicates how sure is object detection model that in the

given bounding box exists an object. Additionally, there are two hyper-parameters which

can be used to fine-tune the NMS. First one is the threshold value for the minimum con-

fidence score Tc and the second one is the threshold for minimum Intersection over union

Tiou.

When bounding boxes are fed to the NMS, it first removes the detections with a con-

fidence score lower than the defined threshold Tc. After the initial cleaning, NMS selects

the bounding box with the highest confidence score. NMS compares every other bound-

ing box to the selected one and calculates the IoU. If the IoU is larger than the defined

threshold Tiou, the compared bounding box is removed. The bounding box is defined to

contain a separate detection from the selected one. When every bounding box has been

checked, NMS selects a new bounding box from the remaining ones as earlier. This cycle

is repeated until no bounding boxes remains. If there are multiple confidence scores for

multiple different classes, the defined cycle is done for every class.

(a) Original ground-truth detections (b) Detections after applying NMS

Figure 4.4: With Tiou of 0.5, 10 true positive detections were lost after NMS

Rothe et al. calls this kind of NMS as Greedy Non-Maximum Suppression [20]. Ac-

cording to their paper, greedy NMS has three major problems. First problem they describe
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is, that the top scoring bounding box may not be the best fit for the object. As described

earlier, NMS selects the bounding box with the highest confidence score. It is possible

that the bounding box is not fitting the object as well as other candidates with lower con-

fidence score. Second problem is NMS may suppress nearby object with the same class.

This is because the NMS removes other detections overlapping the selected bounding

box. In figure 4.4a, we can see 51 ground-truth detections, but after the NMS we only

have 41 detections left in figure 4.4b when the Tiou is 0.5. Third and the last problem is

that NMS does not suppress false positive detections. Rothe et al. propose an alternative

approach for the NMS to prevent those problems [20], but that implementation is out of

the scope of this work.

4.8 Evaluation of object detectors

To compare different object detectors, we need a have a common way to do the com-

parison. Object detection covers two distinct goals, so evaluation is nontrivial. We must

evaluate how well does the object detector classify objects from the given image and how

well it can localize those objects.

Before we start discussing about different evaluation methods, we must familiarize

ourselves about a few basic things. True positive (TP) shows us the number of detections

done by object detector with a match in the ground-truth. False positive (FP) indicates

the number of missed detections in the ground-truth and the false negative (FN) tells

the number of detected objects not in the ground-truth. Precision and recall are two

different measurements which indicates different evaluation target. Precision (equation

4.1) measures the object detectors ability to detect objects correctly from the image [21].

Recall (equation 4.2) evaluates how well does the object detector detect every object from

the image [21]. For different use-cases we may want to focus one of these two metrics.

For example, object detector used for self-driving car should have high recall to detect
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any pedestrian from the image.

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

Intersection over union (IoU) is an evaluation metric, which is used to evaluate object

localization done by object detector. To calculate IoU, we need to have the ground-truth

for the bounding box and the predicted bounding box for an object. IoU can be calculated

by dividing the union of these two bounding boxes by their intersection. In equation 4.3

we can see how IoU can be calculated, when bounding box for ground-truth is Bt and Bp

is for predicted bounding box. Usually, prediction done by object detector is labelled as

correct if the IoU is larger or equal to 0.5. This threshold can be changed and the higher

it is, the more accurate the predictions need to be. [22]

IoU =
Bt ∩Bp

Bt ∪Bp

(4.3)

Mean Average Precision (mAP) is a measurement that tells us how well our model

performs for object detection. mAP is very commonly used and for many commonly data

sets, many models have their mAPs already calculated. This allows us to easily compare

our models with others. mAP should not be confused with precision (Equation 4.1), even

if the name mean Average Precision suggests otherwise. To calculate mean Average Pre-

cision, we first need to calculate precision and recall, with slight modifications for TP, FP.

Prediction is True Positive if the predicted bounding box and the ground-truth bounding

box has Intersection over union over a threshold t. Otherwise, the prediction is classified

as a False Positive. Threshold value for the IoU t is usually 0.5. For calculating the mAP,

we need to calculate average precision for each class in the data set. Average precision is

calculated by going through each detection for a class and calculating the precision and

recall values as shown in equation 4.4. After that we calculate the average of precision

for true positive detections. In equation 4.4 n indicates the number of true positives and
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Precision(i) is the precision for nth true positive. Finally, when we have calculated the

average precision for every class, we take the mean of the average precisions to get the

mean Average Precision score. In equation 4.5 we can see how the mAP is calculated. N

is the number of classes and AP (i) is the average precision for the class. [23]

AP =
1

n

n∑
i=1

Precision(i) (4.4)

mAP =
1

n

n∑
i=1

AP (i) (4.5)



Chapter 5

The Multiple Object Tracking

Benchmark

5.1 Introduction

When evaluating and comparing object detection algorithms, we can use large data sets

of images with given ground-truths. This makes the task of comparing different methods

quite trivial. Unlike object detection, evaluation and comparing of different Multiple

Object Tracking (MOT) methods is non-trivial [24]. According to Leal-Taixe et al., this

task is non-trivial because of many reasons. For MOT, the first one being that it is hard

to define distinctly what represent the perfect solution. Second one is that there were

no widely used evaluation metrics to give quantitative results for comparing different

methods across different publications. The third problem is that there were no pre-defined

tests and training data to be used for comparing different methods. [24]

In 2014 Leal-Taixe et al. introduced MOTChallenge benchmark [1] to solve the prob-

lems mentioned earlier. MOTChallenge provides publicly available data set with total

of 22 sequences containing 11286 frames. Data set has precomputed detections and an-

notations for each of the data set’s frame. After releasing the initial data set in 2015,



CHAPTER 5. THE MULTIPLE OBJECT TRACKING BENCHMARK 26

team behind MOTChallenge has released many new data sets [25][18] to be used in MOT

evaluations.

5.2 MOTChallenge data format

MOTChallenge provides testing and training data with ground-truth annotations. In MOT-

Challenge 2015 data set, every image in the data set is in JPEG format and are named after

6-digit file name format sequentially (e.g., 000001.jpg, 000002.jpg). Detections and an-

notations are provided as CSV files. Every line in these CSV files are representing one

instance of an object and are given as ten (10) values. [24]

The first value in a row represents the frame where the instance appears. [24] Usually,

entries in the CSV files are sorted by this first value. This means that the first frames

detections are at the start of the file and vice versa for the last frame of a sequence. Second

value is the unique ID assigned to a trajectory. This ID is set to −1 in detections CSV

file for every instance. Values three (3) to six (6) are indicating instance’s bounding box.

Values in positions three and four are indicating the bounding box’s top-left corner in the

2D space and the values in positions five and six are telling the bounding box’s width

and height. The seventh value indicates the confidence score of the detection. Unlike in

the detections CSV, in ground-truth and results file, the seventh value is used as a flag.

If this flag’s value is zero (0), it means that the instance from this row is ignored in the

evaluation. On contrary, if the value is one (1), it means that the instance is active, and it

will be used in the evaluation. The last three values in the row are representing instance’s

legs’ location in the 3D space. These values are set to −1 for 2D tracking and are meant

to be ignored. [24]

14, 9, 451, 171, 31.03, 75.17, 1, -5.6701, -6.8765, 0

14, 15, 337, 201, 30.467, 85.209, 1, -9.4426, -6.2248, 0

14, 19, 511, 237, 36.491, 84.883, 1, -9.9105, -10.482, 0
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Figure 5.1: Visualization of values for PETS09-S2L1 frame 14

The data format was changed in MOTChallenge 16 and MOTChallenge 17 data sets.

File format and the naming convention did not change, but the values in rows were

changed. Instead of ten values like in MOTChallenge 15, the number of values was

reduced to nine (9) values. The order of values did not changing, but two last values

meaning were changed, because rows do not contain anymore information about the 3D

space. The eight (8) value indicates the object’s type. Type is given as an integer, and it is

following the conventional given in the data set. Ninth (9) value shows how much of the

bounding box is visible. This value can be lower than 1 if e.g., another object covers the

instance. For detections file, two last values are ignored, so they are set to -1. [1]

When inspecting MOT20 dataset, there were problems with the data. Data set’s pro-

vided detections did not match the description given in its official paper MOT20: A bench-

mark for multi object tracking in crowded scenes[18]. Detection files should contain ac-

cording to the paper nine (9) values per line which is the same protocol as used in MOT16

data set. Detections provided in MOT20 data set are following the same format as used in

MOT15, so one line contains ten (10) values. Following detection lines are from MOT20

data set’s public detections.

1,−1, 950, 520, 58, 142, 0,−1,−1,−1

2,−1, 667, 684, 99, 223, 1,−1,−1,−1
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As we can see from those two lines, data set does not follow the protocol proclaimed in

MOT20: A benchmark for multi object tracking in crowded scenes[18]. This means that

detections do not have a confidence score.

5.3 Evaluation

MOTChallenge’s purpose is to be a fair platform for comparing different tracking meth-

ods. This is achieved by providing equal conditions for each method starting from ground-

truth data to evaluation metrics. [1] Laura Leal-Taixe et al. chose three sets of mea-

surements for comparing different methods tracking performance to give more ways to

compare different methods. For measuring frame-to-frame performance, team selected

CLEAR-MOT proposed by Stiefelhagen et al. in 2006. Second selected measurement

proposed by Wu and Nevatia in 2006 focuses on tracking quality of the tracking method.

The third and the last measurement is IDF1 proposed by Ristani et al. in 2016 is trajectory-

based measurement. Combination of these three methods gives a good view on different

tracking methods’ performance. [1]

Evaluation of frame-to-frame matching between predictions and ground-truth is done

with Multi-Object Tracking Accuracy (MOTA) which represents the CLEAR-MOT. MOTA

is used to evaluate the tracking performance locally, so it penalizes for example identity

switches between frames. MOTA tells us a summarized version of three sources of error

as we can see in the equation 5.1 [1].

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
tGTt

(5.1)

In the equation 5.1, FN is the number of false negatives, in another words, the number of

objects not detected from the ground-truth detections. FP is the number of false positives,

which tells us the opposite of FN : The number of detections not included in the ground-

truth. IDSW tells the number of identity switches and the GT is the number of ground-

truth detections. Frame index is indicated as a t, so a following marking GTt can be read



CHAPTER 5. THE MULTIPLE OBJECT TRACKING BENCHMARK 29

as the number of ground-truth detections in frame t. MOTA score for a tracker is reported

as a percentage between (−∞, 100]. [1]

To measure tracking method’s precision, team selected Multiple Object Tracking Pre-

cision (MOTP). MOTP tells us about the average dissimilarity between true positive de-

tections and ground-truth targets. So MOTP measures localisation precision of a tracker

method. To calculate the MOTP for detections with bounding boxes, equation 5.2 is used.

MOTP =

∑
t,i dt,i∑
t ct

(5.2)

In equation 5.2 [26], dt,i tells how well the predicted bounding boxes overlaps the

object i and its ground-truth. ct denotes the number of matches. So, as we can see from

the equation 5.2, MOTP measures the average overlap of detections and corresponding

ground-truths. Because MOTP quantifies the localization precision, it does not tell much

about the tracker if it is Tracking-by-Detection (TBD) tracker. Instead MOTP tells us how

does the detector work.

To contrast CLEAR-MOT, team selected Identification F1 Score (IDF1) act as an

identity-based measure. IDF1 measures how well does the tracking method perverse iden-

tities over the entire sequence. To calculate IDF1, we must first solve bipartite matching

problem to map predictions to ground-truths by connecting pairs with the largest tempo-

ral overlap [1]. Solving bipartite matching problem means that we have two groups, and

we try to find pairs for values from the groups. To goal is to find pairs where each value

only has one pair from another group. Values in the same group cannot be pairs. After

solving the problem, we can compute the number of False Positive ID (IDFP) [27], False

Negative ID (IDFN) [27] and True Positive ID (IDTP) [27]. With those values, we can

calculate the IDF1 with equation 5.3. [27]

IDF1 =
2 ∗ IDTP

2 ∗ IDTP + IDFP + IDFN
(5.3)

Team also added two more measures that utilizes values calculated earlier which are

proposed by Ristani et al. [27]. Identification Precision (IDP) measures the faction of
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computed ground-truth detections which are correctly identified [27] by the tracker. IDP

can be calculated with following equation (5.4) [27].

IDP =
IDTP

IDTP + IDFP
(5.4)

Identification Recall (IDR) can be calculated with equation 5.5 [27].

IDR =
IDTP

IDTP + IDFN
(5.5)

The final type of measures focuses on tracking quality. These values are qualitative

and evaluate the percentage of ground-truth trajectories found by tracking method. For

each ground-truth trajectory, we can calculate one of the following labels: Mostly tracked

(MT), Partially tracked (PT) and Mostly lost (ML). According to Wu and Nevatia [28], a

trajectory is labelled as MT if and only if 80% of its life span is tracked successfully. The

range between (20%, 80%) will give a trajectory a label of PT[28]. If the success rate is

20% or less, the trajectory is labelled as ML[28]. Success rate indicates how well does the

tracking algorithm keep the tracked trajectory to be same as the corresponding trajectory

in the ground-truth [28]. MOTChallenge reports MT and ML as a ratio to a total number

of trajectories in the ground-truth. [1] The desired result is that the number of MT is high

and the number of ML is low. It is also important to remember that this measurement

does not care if the object ID does not remain the same. [1]

MOTChallenge provides a metric how well does the tracking algorithm track long

sequences without any gaps. This measurement is called track fragmentation (FM) and it

tells how many times the ground-truth trajectory was untracked by the tracker. [25]



Chapter 6

Object Detector

6.1 Introduction

When trying to track objects from a video, usually paradigm called Tracking-by-Detection

(TBD) is used. TBD can be used to inspect given video in two (2) different scopes: micro-

scopic and macroscopic. According to Leal-Taixé microscopic scope focuses in detection

of individuals. Individual’s features and motions are under inspection and overall motion

found in the image is not inspected. Macroscopic tracking tries to capture the flow in the

given image and focus is more global, not like in the microscopic tracking. An example

scenario for macroscopic tracker would be a detection of movement’s flow of the crowd.

In this work, we will be focusing on microscopic trackers. [29]

Tracking-by-Detection is created from two (2) different parts: Object detector and

Data Association. We will first discuss about object detectors and how they fulfill their

tasks. Object detectors are the first module in TBD. This module’s job is to extract

different objects bounding boxes and class probabilities from given input image. Class

probabilities are a list of probabilities indicating how sure is object detector that the object

is belonging to the class. For example, if our object detector has been trained to detect

three different classes, then the output would be three values. [29]

The second module in Tracking-by-Detection takes the detections and their informa-
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tion as an input. The second module is tracking algorithm, which job is to create associ-

ations for detections between frames. Tracking algorithms create unique identifiers and

tries to track objects between frames. This task of tracking where object with an id is in

the next frame is called data association. We will discuss more about different tracking

algorithms and data associations later in chapter 7. [29]

Object detector is one of the two key components of Tracking-by-Detection paradigm.

Its job is to localize and identify objects from the given input image. Object detectors can

be implemented by using classical machine learning or with a Deep neural network. His-

togram of Oriented Gradients (HOG) is an object detector which can be viewed as object

detector which is using classical machine learning, when HOG is paired with Support

Vector Machine (SVM). HOG and SVM will be covered in later chapter 6.2.

Object detector which is implemented by using Deep neural network is covered in

this work, two object detectors will be covered. First one is Region Based Convolutional

Neural Network (R-CNN) which can be considered as a more classical deep neural net-

work model. The main idea of R-CNN will be discussed in chapter 6.3 and its advanced

version Faster R-CNN will be also described in that chapter. The more modern model

is called You Only Look Once, which is faster than R-CNN. YOLO and its advanced

version YOLO V3 will be inspected in chapter 6.4. Differences between these to DNN

methods will be discussed at the end of chapter 6.4.

Object detectors are usually split into two groups: one-stage and two-stage detectors

[30]. Two-stage detectors use different modules to generate detections from the input. In

the first stage, there is usually a module that outputs different region of interest, which are

then given to the second stage. Second stage handles the object classification and fine-

tuning of the bounding boxes, in another words, the second stage is trying to classify what

is in the region of interest. One of the commonly used two-stage detectors is Faster R-

CNN, which we will discuss in chapter 6.3. Two-stage detectors are capable for reaching

high accuracy but are commonly slower than one-stage detectors. Compared to two-
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stage detectors, one-stage detectors usually have lower accuracy, but are faster. One-stage

detectors are solving regression problem instead of the classification problem. They do

not take any region of interest proposals. You Only Look Once (YOLO) is one commonly

used example for single-stage detectors. [30]

6.2 Histogram of Oriented Gradients and Support Vec-

tor Machine

Histogram of Oriented Gradients (HOG) is a feature descriptor, which can be used to

extract gradients and orientations from an input image. Features extracted with HOG

was first introduced by Dalal and Triggs in 2005 [31]. HOG outputs multiple histograms

which are generated from multiple small regions from the original image. Histograms are

created from calculated gradients and orientations from the specified region.

Histogram of Oriented Gradients does not really care about the input image’s size,

but the original paper [31] use an aspect ratio of 1 : 2 and the image dimensions were

64x128. These dimensions allow us to easily split the image in 8x8 regions. Gradients

are calculated for x and y directions by using a convolution, which has been covered in

chapter 3.2. For this convolution HOG use kernel of size 3x1: [−1, 0, 1] and [−1, 0, 1]T

to calculate the gradients for X and Y.

Calculating the magnitude for the gradient can be done with Pythagoras theorem (6.1).

v2 = Gy
2 +Gx

2 => v =
√
Gy

2 +Gx
2 (6.1)

For each pixel we know the change in X and Y axis, so we can calculate the orientation

of a gradient in degrees by using equation 6.2.

θ = arctan
Gy

Gx

(6.2)

Now that we have our two (2) matrices for magnitudes and orientations, we form his-

tograms of nine bins for each non-overlapping 8x8 area. Because we are using unsigned
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(a) Image split into 16x16 regions (b) Histograms visualized

Figure 6.1: Visualization of how the histogram from regions could be visialized

orientations, our value range is 0 to 180. Our bins are split by orientation:

0, 20, 40, 60, 80, 100, 120, 140, 160

Values from the 8x8 region are moved to the created bins directed by gradient direction.

The value itself is selected from gradient magnitude corresponding to the direction. If the

direction is between two bins, the value is divided by the distance. So, for example if

direction is 50 and the corresponding magnitude is 8, the value 8 is split evenly into bins

40 and 60. [31]

With histograms we have a collection of 8.1 vectors. These vectors contain some noise

caused by lighting. Because of these variations, we do not have to normalize the vectors.

For normalizing these vectors, HOG use L2 normalization also known as Euclidean nor-

malization. With equation 6.3 we can calculate value which can be used as a divider to

normalize every value in the vector. [31]

|x| =

√√√√ n∑
k=1

|xk|2 (6.3)

This normalization is not done for 8x8 regions, instead it is done for 16x16 regions con-

taining four 8x8 regions. After normalization is done for the region, the region is moved
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Figure 6.2: Visualization of SVM splitting data points

by 8 pixels and the process is repeated until every vector is normalized. After normaliza-

tions, the Histogram of Oriented Gradients feature vector can be created and fed to the

Support Vector Machine. Each normalized 36x1 vector is concatenated into one vector.

Support Vector Machine (SVM) (sometimes referred as Support Vector Network) is

a supervised learning model used to do binary classification [32]. There also exists Mul-

tilabel Support Vector Machine. According to Noble [33], SVM consists of four basic

concepts: hyperplane, maximum-margin hyperplane, soft margin and kernel function.

Main idea of a SVM is to find a line that separates clusters of objects in a most optimal

way. This splitting line is called a hyperplane, that same as a decision boundary discussed

in chapter 2.3. Finding the most optimal hyperplane, we are trying to find the widest mar-

gin to split the data. To put this goal in another words, SVM tries to find a hyperplane

which distance to data points is as far as possible. This gives as a maximum-margin hy-

perplane. [33]

In figure 6.2 we can see simple linear hyperplane dividing two class. Dotted lines

above and below the hyperplane are in equal distance from the hyperplane. Coloured area

in the figure represents the maximum-margin hyperplane and the data points on the line

are called support vectors. [33]
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Data is typically hard to split into distinct groups. Usually, data contains outliers, and

these outliers will lead to problems with SVM. To handle this problem, we must allow

few outliers. This is called soft-margin and with that, SVM tries to find the hyperplane

while balancing between optimal split and minimising miss classifications. [33]

SVM is capable of using kernel functions [33] (sometimes referred as a Kernel trick)

for creating new features and transforming the given data. Simplest kernel function is

called a linear kernel function. This kernel function tries to find a linear line to separate

the data like in the figure 6.2. As the name suggests, linear kernel function is not suit-

able for finding nonlinear solutions. For finding nonlinear solutions, SVM could use, for

example, the popular kernel trick called Radial basis function kernel (RBF) [34]. RBF

kernel enables SVM to inspect different data points relationship in higher dimension.

6.3 Region Based Convolutional Neural Network

Convolutional neural network (CNN) can be used just like Histogram of Oriented Gradi-

ents (HOG) for classifying an image. But when we discussed about object detection in

chapter 4.4, we described two tasks for object detection: classification and localization.

Old school way to achieve localization with CNN is to combine it with a sliding window

algorithm. This approach is highly computationally expensive, because we would have

to run every sliced part of the image through our network. Sliding window would also

be very sensitive to our hyper-parameters. For 512x512 image and a kernel with a size

of 32x32 we can calculate the number of passable images by using equations 3.3 and

3.4 (discussed in chapter 3.2). We get the total number of 231361 images when sliding

window is moved with a step size of one each time.

In 2013 Uijlings et al. introduced optional method to replace sliding window from

object detection solutions [35]. This method is called selective search. Proposed method

suggests areas from the input image which could contain an object. The classification of
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this area will be done with a classifier. In figure 6.3b, we can see few regions proposed

by selected search. Selective search does not now what object should be found, instead it

works with superpixels and creates regions. Superpixels can be imagined as a collection

of pixels creating some sort of context, for example, pixels in superpixels might be similar

in colour or another low-level feature [36]. In figure 6.3a, we can see how well the super-

pixels’ boundaries follows the character’s outlines. Each super pixel is represented in the

figure as an area with black outline. With the help of superpixels, selective search creates

region proposals. The number of proposed regions is around 2000 proposals. Compared

to the sliding window images, selected search return much fewer images.

(a) Visualization of superpixels (b) Suggested regions with selected search

Figure 6.3: Visualization of different parts of selective search

Girshick et al. [37] proposed new object detector that utilizes CNN and selective

search. This combination is in a paradigm called ”recognition using regions” [38]. This

object detector is called Region Based Convolutional Neural Network and it can solve

object detection and object segmentation (discussed in chapter 4.5) tasks. Girshick et al.

implementation of R-CNN is simple as an idea. Select search extracts about 2000 region

proposals from the input. These proposals are fed to CNN which outputs features to the

classifier layer. Support Vector Machines are used to classify given features and to give

the final classification to the given input. [38]
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Region Based Convolutional Neural Network (R-CNN) is well performing, but it is

not capable of performing in real time. This is because R-CNN is the convolutional neural

network passing for each object proposal provided by region proposal algorithm . In 2015

Girshick et al. proposed a new version of R-CNN called Fast R-CNN. Fast R-CNN was

created to reduce the R-CNN’s object detection time, which is according to Girshick about

47 seconds per image [39]. The proposed network could do the object detection in 0.3

seconds, which is a significant difference for detection steps. [39]

The reason for the reduction of time used for detections is the architecture used in Fast

R-CNN. Unlike the R-CNN, Fast R-CNN processes the whole input image to produce a

new feature map. Generated feature map is used for each proposed region. For each

proposed region, Fast R-CNN use Region of Interest (RoI) pooling to extract a feature

vector from the region. Feature vector is then given as an input for fully connected layers

that splits into two sibling networks. One of the sibling networks produces the estimations

for different classes by using softmax, which differs from R-CNN that use Support Vector

Machines. Other network gives us a refined bounding-box as four values. [39]

To reduce the total time used for extracting objects from the given images, bottleneck

needed to be removed. Fast R-CNN fixed the time used for convolutions, but it did not

touch the region proposal. Region proposal step is slow and is run on CPU, while the

CNN part is run on GPU [40]. In 2016 Ren et al. [40] proposed a new R-CNN network,

which solves the region proposal bottleneck. Network’s name is Faster R-CNN, which

utilize the Fast R-CNN, but replaces the region proposal step with a new neural network

called Region Proposal Network (RPN) [40]. Paper’s authors say that region proposal

could be reimplemented for a GPU, but it would miss benefits of shared computing.

Region Proposal Network is almost like selective search when only inspecting input

and output. RPN takes an input image and outputs regions as proposals where objects

might be found, just like selective search or any other region proposal algorithm. Un-

like selective search, RPN is a convolutional network. RPN use sliding window with a
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small network which output is mapped to a lower dimensional feature vector. Features are

then fed into two different fully connected layers to provide information for region pro-

posals. These two layers are called Box-regression layer (REG) and Box-classification

layer (CLS). REG provides the bounding boxes and CLS provides an objectness score,

which measures how likely the suggested region is not background. Because RPN can

propose multiple regions for each sliding window location, REG and CLS are capable

also for providing multiple outputs. [40]

Region Proposal Network (RPN) use reference boxes called anchors. These anchor

boxes are used as predefined bounding boxes with different sizes and aspect rations. Slid-

ing window use every defined anchor box every time and are used to obtain first predic-

tions for objects locations. The Box-regression layer will then refine the bounding box.

In the paper authors used nine anchor boxes denoted as k. Because for each anchor box

are processed by REG and CLS at the same time, the output sizes for these two layers are

4k and 2k. [40]

For Faster R-CNN, the Region Proposal Network was fused with Fast R-CNN. The

feature map generated by Fast R-CNN is used as RPN’s input image. This fusion allows

Faster R-CNN to use shared computing. RPN’s output will be used for Fast R-CNN’s RoI

pooling. Thanks to the fusion of RPN and Fast R-CNN, Faster R-CNN does not suffer

from bottleneck caused by region proposal step. RPN proposes 300 regions instead of

around 2000 proposals usually outputted by selective search. Even with lower number of

proposed regions, Faster R-CNN has high object detection accuracy. [40]

6.4 You Only Look Once

In 2016 Redmon et al. introduced a new approach for object detection [41]. You Only

Look Once (YOLO) (also known as YOLO V1) is a deep neural network just like R-CNN

discussed earlier in chapter 6.3, but is does not use regional proposal to find potential
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bounding boxes. It is also good to know, that unlike Histogram of Oriented Gradients

(chapter 6.2) and Region Based Convolutional Neural Network (chapter 6.3), YOLO does

not use sliding window nor regional proposals. [41]

YOLO takes a new approach for the object detection, instead of trying to solve clas-

sification problem, it solves the regression problem. Unlike CNN-based networks, which

look at the input image multiple times, YOLO only looks at the image once (as the name

suggests). According to the authors, YOLOv1 is 2.5 times faster than Faster R-CNN. Rea-

son for YOLO’s speed is its simple structure. It contains only one convolutional neural

network, which predicts multiple bounding boxes and class probabilities simultaneously.

[41]

For predicting bounding boxes, YOLO uses whole image’s features. Input image

is split into NxN regions, and each region has their own responsibilities. Each region

predicts a bounding box and a confidence score about how sure region is that in the given

bounding box exists an object. Predicted bounding boxes are represented by four values:

X, Y, W, H. X and Y are coordinates for the center of the predicted bounding box. Width

and height are relative values from the whole image, so their values range from zero (0)

to one (1). Additionally, each region predicts class probabilities for every known class.

YOLO then uses Intersection over union to clean predicted bounding boxes. [41]

Half a year later Redmon and Farhadi introduced a first incremental upgrade for

YOLOv1, called as YOLOv2 [42]. According to the authors, YOLOv2 fixes YOLOv1’s

localization error as well its other shortcomings. Two of the many structural changes are

addition of Batch normalization and a usage of Anchor Boxes. Authors of the paper were

able to use YOLOv2 to create a network called YOLO9000, which was a state-of-the-art

object predictor. YOLO9000 can detect over 9000 different classes in a real-time. [42]

Third version of YOLO was released in 2018 [43] bringing incremental changes to

YOLOv2. Name of YOLO’s third version is YOLOv3. YOLOv3 has better bounding

box prediction and class prediction. For class prediction YOLOv3 replaced Softmax with
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logistic classifier. Improvements for detecting object with different scales by doing pre-

dictions over three (3) different scales. This type of prediction is done by having upscaling

in the feature extraction neural network. YOLOv3 was published in 2018 but is still one

of the fastest object detectors with a reasonable accuracy. [43]



Chapter 7

Data Association

7.1 Introduction

Second part’s job in Tracking-by-Detection is to connect different detections provided

by object detectors between frames. To simplify this chapter, we will be using a term

tracker for algorithms used for data association. Tracker’s job is to assign identifiers for

detections and track of them between frames. Good tracker can even track objects when

object detection step fails for few frames, or the object is occluded by something. Tracker

should be able to track multiple objects correctly, even when detectors fail to identify

them in some frames.

Trackers’ have challenges they need to handle. In my opinion, one of the most com-

mon problem is the identification switch, which usually occurs when objects overlap.

Other challenges trackers face are occlusion of an object and imperfect detections. In this

chapter we will go through a few different trackers. The order of trackers will be from

simplest to most complex, according to my opinion.

Tracking algorithms are divided into two groups: online and batch trackers. Online

trackers algorithms are capable for real time tracking. Detections can be fed to the tracker

directly and it can associate those detections between frames. Because of this, online

trackers can be used, for example, in autonomous driving applications [44]. Online tracker
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algorithms, which are capable for working in real-time, are the main focus of this work.

If our goal is to process video sequence, we have access every frame in the sequence.

Batch tracking algorithm can be used when we have access for every frame. As the

name suggests, batch tracking processes the video sequences in batches, unlike the online

trackers which are solving the data association frame-by-frame. Batch tracking algorithms

are trying to usually solve tracking as a global optimization problem [44]. To learn more

about batch tracking algorithms for MOT, I suggest reading Multiple Object Tracking

Using K-Shortest Paths Optimization by Jerome Berclaz et al. [45]

7.2 Euclidean distance

In my opinion, the simplest tracker is an algorithm using Euclidean distance. This algo-

rithm uses the Euclidean distance to connect object detections between each frame. To

make the calculations easier, we are not using the bounding boxes for the calculations.

Instead, we are using centroids for distance calculations.

Centroids are center points of provided bounding boxes. Calculating a center point is

easy and fast for bounding box, because it is a rectangle. If bounding box is provided with

coordinates for top left corner with width and height, we can just divide those dimensions

by two (2). By using those remainders with given coordinates, we get the locations for

centroid of that bounding box. To calculate the Euclidean distance between centroids, we

use following equation for two dimensional space:

d(P,Q) =
√

(Px −Qx)2 + (Py −Qy)2 (7.1)

Where P and Q are coordinates in two-dimensional space.

This tracker assigns a new identifier for new objects and reassigns these identifiers to

detections in a new frame by using the calculated distance. When pairing detections, we

assume the nearest new detection is the same object that was detected in earlier frame.

This causes a problem when detections overlap. Overlapping usually ends up with identi-
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fication swapping. Because this tracker only cares about the distance, it does not know in

what directions objects are moving. For examples if two pedestrians pass each other by

moving opposing directions, Euclidean tracker will mostly swap their ids. This scenario

assumes that both pedestrians are detected by the detector layer. In figure 7.1, we can

see how a tracker using Euclidean distance would swap identifiers. When new detections

are close to old detections, swapping can easily happen. This will also lead to problems

when trying to track pedestrians in crowd. But usually, it is most likely that the person in

front will be detected, but the one behind will not be detected. Euclidean distance tracker

cannot handle missing detections by default, so described event would lead to identifier

swapping for the person in front. But for the person behind, this will lead to completely

new identifier.
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Figure 7.1: Visualization of identifiers switching for Euclidean distance
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Figure 7.2: Euclidean distance tracking with visualization of maximum distance

Euclidean distance tracker does not know much about the object it is tracking. Be-

cause it only knows the last location, it cannot reidentify that object if we are missing

a detection. So, what would happen if we lost the detection but in that same frame, we

found a new object on the opposite side of the image? Tracker would assume that the new

object is the same as the one we lost. We know that this should not be possible, so we

must create limit for the maximum distance between detections. In figure 7.2, we have a

visualization of this maximum distance. The variable d in the figure is a hyper-parameter

which indicates the maximum allowed distance. It prevents tracker from connecting de-

tections with arbitrary distances. In my opinion this is a solid improvement idea, but it

has a noticeable drawback. The maximum distance is decided by us, so we can easily give

it a bad value. Also because of this range, this tracker will struggle to track fast moving

objects.

For single object tracking, we can just assume that the object in frame T +1 is same as

in the frame T . As for Multiple Object Tracking we must reidentify objects in frame T+1

to match the ones in frame T . Let’s assume our detections are perfect, and the amount

of detection is equal between frames T and T + 1. Simplest way to associate detections

between frames with Euclidean distance would be to calculate distances between every
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detection between frames. After these, calculations we would just associate detection by

using shortest distance. To ensure our association is optimal, we should try to minimize

the total sum of selected distances. This approach works, but it has a time complexity of

factorial time (O(n!)).

The task of associating old detections with new detections can be viewed as an as-

signment problem where we try to minimize the total distance between detections. As-

signment problems can be easily solved with Hungarian algorithm developed by mathe-

matical Kuhn in 1955 [46]. Hungarian algorithm tries to create pairs with minimal cost

[47]. Let’s call the matrix given to the Hungarian algorithm as a Cost matrix. To create

the cost matrix, we need to have two groups. For example, first group is parts we need to

fix a car and the second group is shops that sells those parts. The problem is that we can

only buy one part per store. From the two groups we create a matrix a size of number of

needed parts and the number of stores. Each row in the matrix represents a part from the

parts groups and each column represents a store. We fill each row with a price of that part

for corresponding store’s column. After filling the whole matrix, we have a cost matrix

which can be fed to the Hungarian algorithm to tell us where we should buy each part to

spend as little money as possible.

Hungarian algorithm contains five (5) different steps to find the optimal assignments.

Step 1 is to subtract minimums from each row. Step 2 is to subtract minimums from

each column. Step 3 is to use a least number of lines to cover each zero. If the number

of lines is less than the number of rows, go to step 4, otherwise go to step 5. Step 4 is

to subtract the minimum value from the uncovered values and add it to the values which

were crossed twice. Go to step 3. Step 5 is to select a zero value for each row and column.

[47] Compared to the brute force method earlier, Hungarian algorithm’s time complexity

is only O(n3).

Let’s go the Hungarian algorithm through with an example case. We have four detec-

tions in frame T − 1 and four detections in frame T . Let’s create a 4 by 4 matrix and fill
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it with the Euclidean distances, where rows represent the detections in frame T − 1 and

columns are the detections in frame T . In Figure 7.3a, we can see the original matrix.

Now we apply the first step to the matrix, and we subtract minimums from the rows. In

this example, minimums are following for the rows: [4, 10, 12, 5]. After subtracting we

get the matrix in Figure 7.3b. Next step is to subtract minimums from the columns. For

columns, minimums are following [0, 0, 0, 9]. After subtracting we get the matrix in Fig-

ure 7.3c. After subtracting , we must find the minimum number of lines to cover each zero

in the matrix. In this example, the minimum number of lines is three (3) as we can see

from the figure 7.3d. Unfortunately, number of lines is less than the number of detections

(4). Because of this, we must step 5. First, we need to find the minimum value which is

not covered by any lines. In this case, the minimum value is three (3). We subtract the

value from every non-covered field, and if the field is covered by two lines, we add the

value to it. As a result, we get the matrix in Figure 7.3e. Now we repeat the step 3 and

find the minimum number of lines requires to cover zero fields. The minimum number of

lines is four, which is the same as the required amount. Finally, we move to the step 5 and

select a column for each row as in the figure 7.3f. After selecting, we have the optimal

assignments for detections.
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64 4 19 13

10 13 72 33

12 85 53 92

77 78 5 89


(a) Original matrix



60 0 15 9

0 3 62 23

0 73 41 80

72 73 0 84


(b) Subtract row minimums



60 0 15 0

0 3 62 14

0 73 41 71

72 73 0 75


(c) Subtract column mini-

mums

60 0 15 0

0 3 62 14

0 73 41 71

72 73 0 75


(d) Checking minimum zero

covering lines



63 0 15 0

0 0 59 11

0 70 38 68

75 73 0 75


(e) Subtract and add global

minimum



63 0 15 0

0 0 59 11

0 70 38 68

75 73 0 75


(f) selecting zeros

Figure 7.3: Hungarian algorithm steps

7.3 Kalman filter

Euclidean distance-based tracker has multiple different problems as discussed earlier in

chapter 7.2. It cannot recover from imperfect detections and will always assign new ID

for the detection. For handling this problem, we need to have an algorithm which can

continue tracking even without detections. In another words, we need to find an algorithm

which can predict where the detection should be in frame t + 1. One popular algorithm

for solving this kind of problem is called Kalman filter.

Kalman filter was developed by Kalman in 1960 [48]. Kalman filter is an estima-

tor, which has an ability to estimate system’s error covariance. It also has an ability to

improve system measurements recursively. Due to these features, Kalman filter has mul-

tiple different real-life implementations in several different field. One of the first real life
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uses cases for Kalman filter was its usage to solve problem related to space navigation

in Apollo Project in 1961 [49]. Additionally, Kalman filter is used in example global

navigation satellite systems [50][51].

Kalman filter (also known as Linear quadratic estimation [52]) is a capable algorithm

of providing estimations about different states. It uses previous measurements to create

predictions how would the state change for the following measurement. Because Kalman

filter’s internal structure is quite a vast concept to cover, in this work we will only cover

the key points. This allows us to gain a general understanding of how Kalman filter works

and why it is still relevant estimator algorithm.

Kalman filter is capable of using noisy measurements to create accurate predictions

from previous measurements. For creating state estimation for moment t, Kalman filter

stores only information calculated from previous measurement t−1. After each measure-

ment, the state is updated with the new measurement from moment t. To accomplish this,

Kalman filter is working as a cycle between two different stages: prediction and update

[53]. When in predict stage, Kalman filter outputs an estimation of the state before tuning

the estimate with actual measurements in update stage. [48]

Kalman filter does not expect large changes for trackable objects motion. For example,

as we can see from figure 7.4, Kalman filter’s predictions are reasonably good for first few

frames. When measurement’s location changes unexpectedly, Kalman filter’s prediction

is far from the measurement. Kalman filter tries to correct its predictions and shown in the

figure 7.4, predictions and measurements are close each other soon. When the movement

of an object is not changing greatly, Kalman filter predicts quite accurately as can be seen

from figure 7.5. Compared to predictions from figure 7.4, predictions are measurements,

which are close to each other at all times.
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Figure 7.4: Kalman filter predicting objects location with constant speed from left to right
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Figure 7.5: Kalman filter predicting object that is moving in curve moving from right to

left

7.4 Simple Online and Realtime Tracking

In 2016 Bewley et al. [54] proposed a tracker algorithm called Simple Online and Real-

time Tracking (SORT). SORT is an online tracker and focuses on frame-to-frame associ-

ations. Unlike many other detectors in 2015, SORT does not try to be robust to detection

errors . Bewley et al. tells in their paper that SORT was motivated by the MOTChal-
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lenge released in 2015. In MOTChallenge’s 15 data set results, SORT was the best online

tracking algorithm in 2015 with the MOTA of 33.4 whereas the highest MOTA for batch

trackers was 33.7. [54]

SORT is a pragmatic tracking algorithm and is based on two classical methods. In its

core SORT uses Kalman filter (explained in earlier chapter 7.3) and Hungarian algorithm

(explained in earlier in the end of chapter 7.2). For every trackable object SORT keeps a

state for each object to work as an estimation model:

x = [u, v, s, r, u̇, v̇, ṡ]T

In the state model, u and v represents the objects centroid’s location in horizontal and

vertical location. s represents the scale and r is the aspect ratio of objects bounding box.

When SORT associates a new detection to the target object, the new bounding box is

used to update the target’s state. With this update, Kalman filter updates the velocity

component of the model. [54]

To handle data association, SORT uses Hungarian algorithm with Intersection over

union. For existing targets, new bounding box location is estimated for current frame by

using Kalman filter for predicting the location. Then an assignment cost matrix is calcu-

lated for each detection and estimated bounding box as a distance of IoU. Assignment

matrix is solved with Hungarian algorithm, but the assignments can be rejected if the de-

tection to target overlap is less than IOUmin given as a hyperparameter. According to

Bewley et al. IoU distance handles well short-term occlusions happening when objects

pass each others. [54]

SORT creates a new tracking if every overlap for detection is less than IoUmin. New

trackers velocity is set to zero because it is not observed at this point. The tracker goes

through what Bewley et al. calls probationery period [54]. During this period tracker

need to be associated with enough detections as an evidence to prevent tracking of false

positives. [54]

SORT creates and maintains several trackers. In order to prevent an unbounded growth
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of the number of trackers, SORT will remove trackers. Every tracker keeps a track of the

number of consecutive non-detected frames. SORT then terminates the tracker if the

number of frames for tracker is larger than TLost. Removing trackers also helps SORT to

prevent localisation errors which may be caused by trackers’ predictions. Bewley et al.

used TLost = 1 [54] in all their experiences with SORT. According to them, this value

has two reasons. The used constant velocity model in SORT is a poor predictor and they

created SORT to solve frame-to-frame tracking. [54]

7.5 Sort with Deep Association Metric

SORT approaches the MOT problem as a frame-by-frame problem. Because of this and its

dependency on detectors’ ability to detect objects well. In Bewley et al. paper [54] has the

highest number of identification switches (1001) when comparing to other online trackers.

In 2017 Wojke et al. [55] proposed a new version of SORT that uses Convolutional neural

network (CNN) to work with the Kalman filter to reduce the number of identification

switches. Sort with Deep Association Metric is better known as Deep SORT. [55]

According to the authors of Deep SORT [55], this tracker’s track handling and state

estimation are mostly identical to SORT. Deep SORT’s state space for Kalman filter is

eight dimensional [55]:

(u, v, γ, h, ẋ, ẏ, γ̇, ḣ)

Just like SORT, Deep SORT uses Hungarian algorithm to solve assignment problem

for associating trackers with detections. In order to use motion information when associat-

ing detections with trackers, Deep SORT uses Mahalanobis distance[55][56] for Kalman

predictions and new detections. Mahalanobis distance is almost like Euclidean distance

because both can be used to give a distance between two points[56]. In Mahalanobis’ case,

the given distance measures how far is the point from a distribution. Mahalanobis distance

is used in Deep SORT to measure how far away a detection is from a track location by
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using Kalman filter’s predicted state[55]. Because predictions provided by Kalman filter

are rough estimates, Deep SORT adds another metric called Deep Appearance Descriptor.

Every other tracker described earlier can do tracking with just only detections’ bound-

ing boxes. This is where Deep SORT differentiates from others. Deep SORT needs the

image where the provided detections where extracted. Reason for this is the CNN in

Deep SORT. Wojke et al. calls this CNN as Deep Appearance Descriptor and it is used

to extract 128 values as a feature vector from the image within the bounding box. In table

7.1 we can see Deep SORT’s CNN architecture for Deep Appearance Descriptor. Deep

SORT’s CNN is a wide residual network[55] with two convolutional layers, max pooling

layer and six residual layers, dense layer and batch layer with L2 normalization layer.

Dense layer is used to compute the global feature map of 128 values and the batch and

L2 normalization layer is used to convert values to be compatible with the used cosine

appearance metric. [55] Nicolai Wojke et al. used Motion Analysis and Re-identification

Set (MARS) data set to train the CNN to extract features. [55] MARS data set is a large

data set containing multiple videos used to research person reidentification and it contains

1,261 different pedestrians [57].

Index Layer type Patch Size Stride Size Output Size
1 Convolutional 3 × 3 1 32 × 128 × 64
2 Convolutional 3 × 3 1 32 × 128 × 64
3 Max Pool 3 × 3 2 32 × 64 × 32
4 Residual 3 × 3 1 32 × 64 × 32
5 Residual 3 × 3 1 32 × 64 × 32
6 Residual 3 × 3 2 64 × 32 × 16
7 Residual 3 × 3 1 64 × 32 × 16
8 Residual 3 × 3 2 128 × 16 × 8
9 Residual 3 × 3 1 128 × 16 × 8

10 Dense 128 x 1
11 Batch and L2 normalization 128 x 1

Table 7.1: Deep SORT’s CNN architecture [55]



Chapter 8

Results

8.1 Object detectors

Comparing different object detectors is no small task. Training and fine-tuning different

object detection models are very time consuming and it can take very long time. One of

the most used data set for object detectors is called Common Objects in Context (COCO)

provided by Microsoft [58]. Many of the state-of-the-art object detection models are

trained and tested with COCO data set [58] and their results are given in COCO’s own

metric mAP@[.5, .95]. This metric shows how well does the model perform over multiple

different categories with different accuracies.

Both neural network based object detectors are very capable detectors. Faster R-CNN

achieved mAP@[.5, .95] score of 21.9 [40] and one of the latest invariants of Faster R-

CNN called as Faster R-CNN w TDM got 36.8[43] as a score. YOLOv3 does also well

for COCO’s evaluation with a mAP@[.5, .95] of 33.0[43]. For Histogram of Oriented

Gradients with Support Vector Machine, I was unable to find COCO’s mAP@[.5, .95]

results. This might be so, because object detection field has been dominated by neural

networks for a long time [14].
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8.2 Tracking

When comparing different trackers’ performance, I used precalculated detections pro-

vided in MOT20 data set [18]. I decided to use training data set’s precalculated detections

and ground-truths to evaluate how well does the trackers work. Training data set con-

tains four (4) different video sequences with different lenghts. These four sequences are

described in table 8.1.

Sequence Frames Tracks Density

MOT20-01 429 74 46.32

MOT20-02 2782 270 55.62

MOT20-03 2405 702 130.42

MOT20-05 3315 1169 194.98

Table 8.1: MOT20 training sequences’ data [18]

Method MOTA MOTP IDF1 FM ID Switch

Euclidean distance 16.4 87.6 3.8 53802 393360

Kalman filter 50.3 87.2 16.7 35793 46593

SORT 52.0 87.5 52.1 40489 5809

Deep SORT 53.5 86.2 43.5 24711 8228

Table 8.2: Results of Tracking with provided detections in MOT20 [18]

Evaluation was done with MOTChallenge’s official evaluation kit TrackEval [59].

Result files were generated from the provided detections files for sequences MOT20-01,

MOT20-02, MOT20-03 and MOT20-05. Each of the result files were given to the evalua-

tion script and given results are shown in the table 8.2. Every tested tracker was used as an

online tracker, so each of the trackers were initialized and detections were fed to trackers



CHAPTER 8. RESULTS 56

frame-by-frame. Result files were created during the runtime from trackers’ returned IDs

for different bounding boxes.

Tracker using Euclidean distance did not do very well compared to other trackers.

MOTChallenge provides very challenging sequences with very high density of people.

This caused tracker to switch ids almost between every frame. After manually inspecting

tracker’s result file, I found out that Euclidean distance worked well for objects if the

bounding boxes did not overlap. Many of the ID switches did not make much sense in

multiple cases, but I assume that it is causes by the used algorithm to solve assignment

problem. It might be because Euclidean distance is not great to be used with Hungarian

algorithm. I used my own implementation of Euclidean distance-based tracker which can

be seen in appendix A.

Sequence MOTA MOTP IDF1 FM ID Switch

MOT20-01 14.5 91.1 6.6 849 7706

MOT20-02 24.7 91.9 7.7 3603 41905

MOT20-03 20.9 85.8 4.4 14188 97662

MOT20-05 12.2 82.3 2.5 35162 246087

Combined 16.4 87.6 3.8 53802 393360

Table 8.3: Results for Euclidean distance based tracker with provided detections in

MOT20 [18]

Kalman filter-based tracker did much better than the Euclidean based tracker as could

be expected. Using the state estimation where trackable object would be in the next

frame helped the tracker to handle cases where object was not detected by the detector.

This led to having only 46593 identification switches compared to Euclidean’s 393360.

One surprising result is that this tracker scored better than SORT for the MOTA score.

For testing, I created and used my own implementation of Kalman filter tracker. It uses
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Kalman filter to predict trackable object’s new location and then calculates the Euclidean

distances between every detection and predictions. Most optimal associations are done by

Hungarian algorithm, implementation of Kalman based tracker can bee seen in appendix

B.

Sequence MOTA MOTP IDF1 FM ID Switch

MOT20-01 57.6 90.6 42.5 279 328

MOT20-02 52.8 91.4 28.3 1946 2475

MOT20-03 49.5 85.4 16.6 11340 14277

MOT20-05 49.9 86.9 13.1 22228 29513

Combined 50.3 87.2 16.7 35793 46593

Table 8.4: Results for Kalman filter based tracker with provided detections in MOT20

[18]

Simple Online and Realtime Tracking (SORT) did very well compared to Euclidean

distance and Kalman filter-based trackers. SORT has the lowest number of ID switches,

fragmentation and Identification F1 Score. Because SORT has a probationary period

for new detections, this tracker does not provide any tracking for the first two frames.

This reduces MOTA and MOTP scores because TrackEval compares result files for the

ground-truth files. When manually inspecting SORT’s results I did not find anything

weird, as a matter of fact it handled detections in dense areas very well. To test SORT,

I used its official open-source implementation provided in its official GitHub repository

(https://github.com/abewley/sort)[54] and implementation’s structure was

used as an inspiration for my implementation for Euclidean and Kalman trackers. For

testing SORT I used non-default values for TLost and time for probationary period. TLost

was 100 and probationary period was set to 1. I selected these values because SORT

had submitted its new results for MOT20 challenge with those values for MOTChal-

lenge’s official result board (https://motchallenge.net/results/MOT20/)
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[1]. Change from default values to new values caused MOTA to increase from 45.8 to

50.3 and mostly made results better. Only negative effect was that the FM increased from

19570 to 46593 which is significantly worse.

Sequence MOTA MOTP IDF1 FM ID Switch

MOT20-01 56.4 91.5 58.8 368 77

MOT20-02 52.3 92.0 52.2 2459 516

MOT20-03 51.2 85.7 56.1 12941 2176

MOT20-05 52.2 87.3 49.9 24721 3040

Combined 52.0 87.5 52.1 40489 5809

Table 8.5: Results for SORT with provided detections in MOT20 [18]

Sort with Deep Association Metric (Deep SORT) got the highest Multi-Object Track-

ing Accuracy (MOTA) which is usually the primary metric used to compare different

trackers and their performance. For testing Deep SORT, I used its official open-source

implementation found at its GitHub repository (https://github.com/nwojke/

deep_sort)[55]. Because Deep SORT was going to be used for tracking pedestrians

from video sequences, I decided to use the pre-trained CNN provided by original authors

[55]. Reason for this decision was that the provided pre-trained CNN was trained on

MARS data set and was therefore capable for extracting features of different pedestri-

ans. In the original paper of Deep SORT [55], the difference between SORT’s and Deep

SORT’s MOTA was 1.6 for MOT16[25] data set. In my testing the difference between

these two trackers was 1.5 for MOT20 training data set. It is interesting to see that even

with a different data set, the different between SORT and DeepSORT remains almost

the same. Other interesting thing can be found in the trackers’ result table 8.2. SORT’s

number of identification switches is almost half of the number for Deep SORT. In the

Deep SORT’s paper [55] authors says that Deep Appearance Descriptor would lower the
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number of Identification switches compared to the SORT.

Sequence MOTA MOTP IDF1 FM ID Switch

MOT20-01 56.6 90.1 54.3 242 112

MOT20-02 52.6 90.7 45.0 1552 766

MOT20-03 53.3 84.1 46.6 8129 2711

MOT20-05 53.7 86.1 41.3 14788 4639

Combined 53.5 86.2 43.5 24711 8228

Table 8.6: Results for Deep SORT with provided detections in MOT20 [18]



Chapter 9

Conclusion

According to different papers’ results and reviews, I think that we cannot justify the re-

placement of neural network-based detector with non-neural network detector. If the goal

is to detect object from a single class, Histogram of Oriented Gradients might be a reason-

able solution, but in my opinion, we should use neural network-based detector. It would

be a good research idea to do extensive research on HOG and its variants.

Also, because trackers’ performance is highly correlated with detections quality, I

think that it is required to have well performing detector like YOLO V3, Faster R-CNN

or some other object detection model. When selecting the object detector, selection should

be done regarding the planned usage. Many two-stage detectors like Faster R-CNN are

usually more accurate than single-stage detectors, but are not capable for real-time detec-

tions. For extracting detections, for example from video, two-stage detectors might be the

reasonable option. If the goal is to use real-time video feed, like from a traffic camera,

single-stage detectors are almost mandatory.

For tracking algorithm, I think that it is reasonable to replace deep learning-based

trackers with more classical methods. I inspected the state-of-the-art tracking algorithms

from MOTChallenge 2020 results [18]. I found out that to achieve MOTA higher than

SORT or DeepSORT, it would have a great impact for the time needed to associate de-

tections with old ones. For example, SORT is capable to process around 57 frames per
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second (FPS) according to the MOTChallenge 2020 results. If we would use state-of-the-

art tracking algorithm, the FPS would reduce to below seven FPS. In my opinion this has

no place in real life if we are trying to do real-time tracking. If it is possible to spend that

much time per frame, I think that using batch tracking algorithm would be reasonable.

From tables 8.2, 8.5 and 8.6 we can see that the difference between SORT and Deep

SORT, Multi-Object Tracking Accuracy (MOTA) scores are not far apart. Because MOTA

scores are so close to each others, I think that SORT should be used instead of DeepSORT

in this scenario. The main difference between SORT and Deep SORT is that Deep SORT

uses a CNN model to help with tracings. SORT and Deep SORT were both state-of-the-

art tracking algorithms, but in this case SORT was able to generalise tracking better than

Deep SORT. CNN model in Deep SORT has precalculated weights that the author [55]

provides and with them, model should be able to extract features well from pedestrians.

If we need to track something else than pedestrians, we will have to train Deep SORT’s

CNN model for any other category.



References

[1] Patrick Dendorfer, Aljosa Osep, Anton Milan, Konrad Schindler, Daniel Cremers,

Ian Reid, Stefan Roth and Laura Leal-Taixé. Motchallenge: A benchmark for
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Appendix A

Naive object tracker using Euclidean

distance

1 import numpy as np

2 import math

3 from s c i p y . o p t i m i z e import l i n e a r s u m a s s i g n m e n t

4

5

6 c l a s s E u c l i d e a n T r a c k e r ( o b j e c t ) :

7 c o u n t = 0

8

9 def i n i t ( s e l f , bb ) :

10 s e l f . id = E u c l i d e a n T r a c k e r . c o u n t

11 E u c l i d e a n T r a c k e r . c o u n t += 1

12 s e l f . l a s t l o c a t i o n = E u c l i d e a n T r a c k e r . b o u n d i n g b o x t o c e n t r o i d (

bb )

13 s e l f . bb = bb

14

15 def u p d a t e ( s e l f , bb ) :

16 s e l f . l a s t l o c a t i o n = E u c l i d e a n T r a c k e r . b o u n d i n g b o x t o c e n t r o i d (

bb )

17 s e l f . bb = bb
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18

19 def g e t s t a t e ( s e l f ) :

20 re turn s e l f . bb

21

22 def b o u n d i n g b o x t o c e n t r o i d ( bb ) :

23 re turn np . a r r a y ( [ ( bb [ 0 ] + bb [ 2 ] ) / 2 , ( bb [ 1 ] + bb [ 3 ] ) / 2 ] )

24

25 def r e p r ( s e l f ) :

26 re turn s t r ( s e l f . id ) + ’ ’ + s t r ( s e l f . l a s t l o c a t i o n )

27

28

29 c l a s s E u c l i d e a n ( o b j e c t ) :

30

31 def i n i t ( s e l f , m a x d i s t a n c e =1500) :

32 s e l f . m a x d i s t a n c e = m a x d i s t a n c e

33 s e l f . t r a c k e r s = [ ]

34 s e l f . f r a m e c o u n t = 0

35

36 def c a l c u l a t e d i s t a n c e m a t r i x ( s e l f , d e t e c t i o n s , t r a c k e r s ) :

37 d i s t a n c e m a t r i x = np . z e r o s ( ( l e n ( d e t e c t i o n s ) , l e n ( t r a c k e r s ) ) )

38 f o r i in range ( l e n ( d e t e c t i o n s ) ) :

39 f o r j in range ( l e n ( t r a c k e r s ) ) :

40 d i s t a n c e m a t r i x [ i ] [ j ] = s e l f .

c a l c u l a t e e u c l i d e a n d i s t a n c e (

41 E u c l i d e a n T r a c k e r . b o u n d i n g b o x t o c e n t r o i d (

42 d e t e c t i o n s [ i ] ) ,

43 t r a c k e r s [ j ]

44 )

45 re turn d i s t a n c e m a t r i x

46

47 def c a l c u l a t e e u c l i d e a n d i s t a n c e ( s e l f , p o i n t a , p o i n t b ) :

48 re turn math . s q r t ( ( p o i n t a [ 0 ] − p o i n t b [ 0 ] ) **2 + ( p o i n t a [ 1 ] −

p o i n t b [ 1 ] ) **2)
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49

50 def g e t d e t e c t i o n s t o t r a c k e r s a s s o c i a t i o n s ( s e l f , d e t e c t i o n s ,

t r a c k e r s ) :

51 i f l e n ( t r a c k e r s ) == 0 :

52 re turn np . empty ( ( 0 , 2 ) , d t y p e = i n t ) , np . a r a n g e ( l e n (

d e t e c t i o n s ) ) , np . empty ( ( 0 , 2 ) , d t y p e = i n t )

53

54 d i s t a n c e m a t r i x = s e l f . c a l c u l a t e d i s t a n c e m a t r i x (

55 d e t e c t i o n s , t r a c k e r s )

56 d e t e c t i o n r o w , t r a c k e r c o l u m n = l i n e a r s u m a s s i g n m e n t (

d i s t a n c e m a t r i x )

57 matches = np . a r r a y ( l i s t ( z i p ( d e t e c t i o n r o w , t r a c k e r c o l u m n ) ) )

58 m a t c h e d i n d i c e s = [ ]

59 u n m a t c h e d d e t e c t i o n s = [ ]

60 u n m a t c h e d t r a c k e r s = [ ]

61 i f l e n ( matches [ 0 ] ) > 0 :

62 f o r i in range ( l e n ( matches ) ) :

63 d e t e c t i o n i n d e x = matches [ i ] [ 0 ]

64 t r a c k e r i n d e x = matches [ i ] [ 1 ]

65 d i s t a n c e = d i s t a n c e m a t r i x [ d e t e c t i o n i n d e x ] [

t r a c k e r i n d e x ]

66 i f ( d i s t a n c e > s e l f . m a x d i s t a n c e ) :

67 u n m a t c h e d t r a c k e r s . append ( t r a c k e r i n d e x )

68 u n m a t c h e d d e t e c t i o n s . append ( d e t e c t i o n i n d e x )

69 e l s e :

70 m a t c h e d i n d i c e s . append ( matches [ i , : ] )

71 m a t c h e d i n d i c e s = np . a r r a y ( m a t c h e d i n d i c e s )

72 e l s e :

73 m a t c h e d i n d i c e s = np . empty ( shape = (0 , 2 ) )

74

75 f o r d , d e t in enumerate ( d e t e c t i o n s ) :

76 i f ( l e n ( m a t c h e d i n d i c e s ) > 0 and d not in m a t c h e d i n d i c e s [ : ,

0 ] ) :
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77 u n m a t c h e d d e t e c t i o n s . append ( d )

78

79 f o r t , t r k in enumerate ( t r a c k e r s ) :

80 i f ( l e n ( m a t c h e d i n d i c e s ) > 0 and t not in m a t c h e d i n d i c e s [ : ,

1 ] ) :

81 u n m a t c h e d t r a c k e r s . append ( t )

82

83 re turn m a t c h e d i n d i c e s , np . a r r a y ( u n m a t c h e d d e t e c t i o n s ) , np .

a r r a y ( u n m a t c h e d t r a c k e r s )

84

85 def u p d a t e ( s e l f , d e t s =np . empty ( ( 0 , 2 ) ) ) :

86 s e l f . f r a m e c o u n t += 1

87 t r k s = np . z e r o s ( ( l e n ( s e l f . t r a c k e r s ) , 2 ) )

88 r e t = [ ]

89 f o r t , t r k in enumerate ( t r k s ) :

90 pos = s e l f . t r a c k e r s [ t ] . g e t s t a t e ( )

91 t r k [ : ] = [ pos [ 0 ] , pos [ 1 ] ]

92 matched , u n m a t c h e d d e t s , u n m a t c h e d t r k s = s e l f .

g e t d e t e c t i o n s t o t r a c k e r s a s s o c i a t i o n s (

93 d e t s , t r k s )

94

95 f o r m in matched :

96 s e l f . t r a c k e r s [m[ 1 ] ] . u p d a t e ( d e t s [m[ 0 ] , : ] )

97

98 f o r i in u n m a t c h e d d e t s :

99 t r k = E u c l i d e a n T r a c k e r ( d e t s [ i , : ] )

100 s e l f . t r a c k e r s . append ( t r k )

101

102 f o r m in r e v e r s e d ( s o r t e d ( u n m a t c h e d t r k s ) ) :

103 s e l f . t r a c k e r s . pop (m)

104

105 f o r t r k in s e l f . t r a c k e r s :

106 r e t . append ( np . c o n c a t e n a t e (
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107 ( t r k . g e t s t a t e ( ) , [ t r k . id + 1 ] ) ) . r e s h a p e ( 1 , −1) )

108

109 i f ( l e n ( r e t ) > 0) :

110 re turn np . c o n c a t e n a t e ( r e t )

111 re turn np . empty ( ( 0 , 2 ) )



Appendix B

Naive object tracker using Kalman filter

1 import numpy as np

2 import math

3 from s c i p y . o p t i m i z e import l i n e a r s u m a s s i g n m e n t

4 from f i l t e r p y . kalman import K a l m a n F i l t e r

5

6

7 c l a s s K a l m a n F i l t e r T r a c k e r ( o b j e c t ) :

8 c o u n t = 0

9

10 def i n i t ( s e l f , bb , max age =5) :

11 s e l f . id = K a l m a n F i l t e r T r a c k e r . c o u n t

12 K a l m a n F i l t e r T r a c k e r . c o u n t += 1

13 s e l f . max age = max age

14 s e l f . n u m b e r o f p r e d i c t e d c o n c u r r e n t f r a m e s = 0

15 s e l f . bb = bb

16 s e l f . k f = K a l m a n F i l t e r ( dim x =4 , dim z =2)

17 s e l f . k f . F = np . a r r a y (

18 [ [ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] , [ 0 , 0 , 0 , 1 ] ] )

19 s e l f . k f .H = np . a r r a y ( [ [ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] ] )

20

21 s e l f . k f . R [ 2 : , 2 : ] *= 1 0 .
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22 s e l f . k f . P [ 4 : , 4 : ] *= 1000 .

23 s e l f . k f . P *= 1 0 .

24 s e l f . k f .Q[ −1 , −1] *= 0 . 0 1

25 s e l f . k f .Q[ 4 : , 4 : ] *= 0 . 0 1

26 s e l f . k f . x [ : 2 ] = s e l f . a s c e n t r o i d ( )

27

28 def u p d a t e ( s e l f , bb ) :

29 s e l f . n u m b e r o f p r e d i c t e d c o n c u r r e n t f r a m e s = 0

30 s e l f . bb = bb

31 s e l f . k f . u p d a t e ( s e l f . a s c e n t r o i d ( ) )

32

33 def g e t s t a t e ( s e l f ) :

34 re turn s e l f . bb

35

36 def a s c e n t r o i d ( s e l f ) :

37 x = ( s e l f . bb [ 0 ] + s e l f . bb [ 2 ] ) / 2

38 y = ( s e l f . bb [ 1 ] + s e l f . bb [ 3 ] ) / 2

39 re turn np . a r r a y ( [ [ np . f l o a t 3 2 ( x ) ] , [ np . f l o a t 3 2 ( y ) ] ] )

40

41 def p r e d i c t ( s e l f ) :

42 s e l f . k f . p r e d i c t ( )

43 re turn s e l f . k f . x

44

45 def b o u n d i n g b o x t o c e n t r o i d ( bb ) :

46 x = ( bb [ 0 ] + bb [ 2 ] ) / 2

47 y = ( bb [ 1 ] + bb [ 3 ] ) / 2

48 re turn np . a r r a y ( [ [ np . f l o a t 3 2 ( x ) ] , [ np . f l o a t 3 2 ( y ) ] ] )

49

50 def u p d a t e w i t h o u t r e a l d e t e c t i o n ( s e l f ) :

51 s e l f . n u m b e r o f p r e d i c t e d c o n c u r r e n t f r a m e s += 1

52 s e l f . k f . p r e d i c t ( )

53 re turn s e l f . k f . x

54
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55 def r e p r ( s e l f ) :

56 re turn s t r ( s e l f . id ) + ’ ’ + s t r ( s e l f . bb )

57

58

59 c l a s s Kalman ( o b j e c t ) :

60

61 def i n i t ( s e l f , max age ) :

62 s e l f . t r a c k e r s = [ ]

63 s e l f . f r a m e c o u n t = 0

64 s e l f . max age = max age

65

66 def c a l c u l a t e d i s t a n c e m a t r i x ( s e l f , d e t e c t i o n s , t r a c k e r s ) :

67 d i s t a n c e m a t r i x = np . z e r o s ( ( l e n ( d e t e c t i o n s ) , l e n ( t r a c k e r s ) ) )

68 f o r i in range ( l e n ( d e t e c t i o n s ) ) :

69 f o r j in range ( l e n ( t r a c k e r s ) ) :

70 d i s t a n c e m a t r i x [ i ] [ j ] = s e l f .

c a l c u l a t e e u c l i d e a n d i s t a n c e (

71 K a l m a n F i l t e r T r a c k e r . b o u n d i n g b o x t o c e n t r o i d (

d e t e c t i o n s [ i ] ) , t r a c k e r s [ j ] )

72 re turn d i s t a n c e m a t r i x

73

74 def c a l c u l a t e e u c l i d e a n d i s t a n c e ( s e l f , p o i n t a , p o i n t b ) :

75 e u c l d i s t = math . s q r t (

76 ( p o i n t a [ 0 ] − p o i n t b [ 0 ] ) **2 + ( p o i n t a [ 1 ] − p o i n t b [ 1 ] )

**2)

77 re turn e u c l d i s t

78

79 def g e t d e t e c t i o n s t o t r a c k e r s a s s o c i a t i o n s ( s e l f , d e t e c t i o n s ,

t r a c k e r s ) :

80 i f l e n ( t r a c k e r s ) == 0 :

81 re turn np . empty ( ( 0 , 2 ) , d t y p e = i n t ) , np . a r a n g e ( l e n (

d e t e c t i o n s ) ) , np . empty ( ( 0 , 2 ) , d t y p e = i n t )

82 i = l e n ( s e l f . t r a c k e r s ) − 1
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83 f o r t r k in r e v e r s e d ( s e l f . t r a c k e r s ) :

84 i f t r k . n u m b e r o f p r e d i c t e d c o n c u r r e n t f r a m e s > s e l f . max age

:

85 s e l f . t r a c k e r s . pop ( i )

86

87 t r a c k e r s p r e d s = np . z e r o s ( ( l e n ( s e l f . t r a c k e r s ) , 2 ) )

88 f o r t r a c k e r , t r k in z i p ( s e l f . t r a c k e r s , t r a c k e r s p r e d s ) :

89 pos = t r a c k e r . p r e d i c t ( )

90 t r k [ : ] = [ pos [ 0 ] , pos [ 1 ] ]

91 d i s t a n c e m a t r i x = s e l f . c a l c u l a t e d i s t a n c e m a t r i x (

92 d e t e c t i o n s , t r a c k e r s p r e d s )

93 d e t e c t i o n r o w , t r a c k e r c o l u m n = l i n e a r s u m a s s i g n m e n t (

d i s t a n c e m a t r i x )

94 matches = np . a r r a y ( l i s t ( z i p ( d e t e c t i o n r o w , t r a c k e r c o l u m n ) ) )

95 m a t c h e d i n d i c e s = [ ]

96 u n m a t c h e d d e t e c t i o n s = [ ]

97 u n m a t c h e d t r a c k e r s = [ ]

98 i f l e n ( matches ) > 0 and l e n ( matches [ 0 ] ) > 0 :

99 f o r i in range ( l e n ( matches ) ) :

100 d e t e c t i o n i n d e x = matches [ i ] [ 0 ]

101 t r a c k e r i n d e x = matches [ i ] [ 1 ]

102 d i s t a n c e = d i s t a n c e m a t r i x [ d e t e c t i o n i n d e x ] [

t r a c k e r i n d e x ]

103 m a t c h e d i n d i c e s . append ( matches [ i , : ] )

104 m a t c h e d i n d i c e s = np . a r r a y ( m a t c h e d i n d i c e s )

105 e l s e :

106 m a t c h e d i n d i c e s = np . empty ( shape = (0 , 2 ) )

107

108 f o r d , d e t in enumerate ( d e t e c t i o n s ) :

109 i f ( l e n ( m a t c h e d i n d i c e s ) > 0 and d not in m a t c h e d i n d i c e s [ : ,

0 ] ) :

110 u n m a t c h e d d e t e c t i o n s . append ( d )

111
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112 f o r t , t r k in enumerate ( t r a c k e r s ) :

113 i f ( l e n ( m a t c h e d i n d i c e s ) > 0 and t not in m a t c h e d i n d i c e s [ : ,

1 ] ) :

114 u n m a t c h e d t r a c k e r s . append ( t )

115

116 re turn m a t c h e d i n d i c e s , np . a r r a y ( u n m a t c h e d d e t e c t i o n s ) , np .

a r r a y ( u n m a t c h e d t r a c k e r s )

117

118 def u p d a t e ( s e l f , d e t s =np . empty ( ( 0 , 2 ) ) ) :

119 s e l f . f r a m e c o u n t += 1

120 t r k s = np . z e r o s ( ( l e n ( s e l f . t r a c k e r s ) , 2 ) )

121 t o d e l = [ ]

122 r e t = [ ]

123 f o r t , t r k in enumerate ( t r k s ) :

124 pos = s e l f . t r a c k e r s [ t ] . g e t s t a t e ( )

125 t r k [ : ] = [ pos [ 0 ] , pos [ 1 ] ]

126 matched , u n m a t c h e d d e t s , u n m a t c h e d t r k s = s e l f .

g e t d e t e c t i o n s t o t r a c k e r s a s s o c i a t i o n s (

127 d e t s , t r k s )

128

129 f o r m in matched :

130 s e l f . t r a c k e r s [m[ 1 ] ] . u p d a t e ( d e t s [m[ 0 ] , : ] )

131

132 f o r i in u n m a t c h e d d e t s :

133 t r k = K a l m a n F i l t e r T r a c k e r ( d e t s [ i , : ] )

134 s e l f . t r a c k e r s . append ( t r k )

135 f o r m in r e v e r s e d ( s o r t e d ( u n m a t c h e d t r k s ) ) :

136 i f m < l e n ( s e l f . t r a c k e r s ) :

137 s e l f . t r a c k e r s [m] . u p d a t e w i t h o u t r e a l d e t e c t i o n ( )

138

139 f o r t r k in s e l f . t r a c k e r s :

140 r e t . append ( np . c o n c a t e n a t e (

141 ( t r k . g e t s t a t e ( ) , [ t r k . id + 1 ] ) ) . r e s h a p e ( 1 , −1) )
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142

143 i f ( l e n ( r e t ) > 0) :

144 re turn np . c o n c a t e n a t e ( r e t )

145 re turn np . empty ( ( 0 , 2 ) )


