

1

Network Intrusion Detection System
using Deep Learning Technique

Cyber Security
Master’s Degree Programme in Information and Communication Technology

Department of Computing, Faculty of Technology
Master of Science in Technology Thesis

Author:

Donatus Ifeanyichukwu Edeh

Supervisors:
 Ethiopia Nigussie

 Antti Hakkala

June 2021

The originality of this thesis has been checked in accordance with the University of Turku quality
assurance system using the Turnitin Originality Check service.

i

Master of Science in Technology Thesis Department of Computing, Faculty of Technology University of Turku Subject: Cyber Security Programme: Master’s Degree Programme in Information and Communication Technology Author: Donatus Ifeanyichukwu Edeh Title: Network Intrusion Detection System using Deep Learning Technique Number of pages: 75 pages, 2 appendix pages Date: June 2021 The rise in the usage of the internet in this recent time had led to tremendous development in computer networks with large volumes of information transported daily. This development has generated lots of security threats and privacy concerns on networks and data. To tackle these issues, several protective measures have been developed including the Intrusion Detection Systems (IDSs). IDS plays a major backbone in network security and provides an extra layer of security to other security defence mechanisms in a network. However, existing IDS built on a signature base such as snort and the likes are unable to detect unknown and novel threats. Anomaly detection-based IDSs that use Machine Learning (ML) approaches are not scalable when enormous data are presented, and during modelling, the runtime increases as the dataset size increases which needs high computational resources to fulfil the runtime requirements.
This thesis proposes a Feedforward Deep Neural Network (FFDNN) for an intrusion detection system that performs a binary classification on the popular NSL-Knowledge discovery and data mining (NSL-KDD) dataset. The model was developed from Keras API integrated into TensorFlow in Google's colaboratory software environment. Three variants of FFDNNs were trained using the NSL-KDD dataset and the network architecture consisted of two hidden layers with 64 and 32; 32 and 16; 512 and 256 neurons respectively, and each with the ReLu activation function. The sigmoid activation function for binary classification was used in the output layer and the prediction loss function used was the binary cross-entropy. Regularization was set to a dropout rate of 0.2 and the Adam optimizer was used. The deep neural networks were trained for 16, 20, 20 epochs respectively for batch sizes of 256, 64, and 128. After evaluating the performances of the FFDNNs on the training data, the prediction was made on test data, and accuracies of 89%, 84%, and 87% were achieved. The experiment was also conducted on the same training dataset (NSL-KDD) using the conventional machine learning algorithms (Random Forest; K-nearest neighbor; Logistic regression; Decision tree; and Naïve Bayes) and predictions of each algorithm on the test data gave different performance accuracies of 81%, 76%, 77%, 77%, 77%, respectively.
The performance results of the FFDNNs were calculated based on some important metrics (FPR, FAR, F1 Measure, Precision), and these were compared to the conventional ML algorithms and the outcome shows that the deep neural networks performed best due to their dense architecture that made it scalable with the large size of the dataset and also offered a faster run time during training in contrast to the slow run time of the Conventional ML. This implies that when the dataset is large and a faster computation is required, then FFDNN is a better choice for best performance accuracy.

Keywords: Cybersecurity; Deep learning; Machine learning; Intrusion detection system;

Computer networks

ii

Table of Contents
List of Tables iv
List of Figures v
List of Abbreviation vi
Acknowledgment viii
1 Introduction 1

1.1 Motivation 1
1.2 Problem 2
1.3 Objective 3
1.4 Research questions 3
1.5 Thesis Organization 4

2 Machine Learning Methods for Intrusion Detection 5
2.1 Cybersecurity 5
2.2 Network security 7

2.2.1 Network Protocols 7
2.2.2 Network Attacks 9

2.3 Intrusion Detections 11
2.3.1 Misuse-Detection Method 11
2.3.2 Anomaly Detection Method 12
2.3.3 Hybrid Detection Method 13
2.3.4 Stateful Protocol Analysis Method 14

2.4 Machine Learning in Cybersecurity 14
2.5 Machine Learning in Network Intrusion Detection 16

2.5.1 Decision Tree (DT) 16
2.5.2 Logistic Regression (LR) 17
2.5.3 Support Vector Machine (SVM) 18
2.5.4 K-Nearest Neighbor (KNN) 18
2.5.5 Naïve Bayes (NB) 19
2.5.6 Random Forest (RF) 19
2.5.7 Artificial neural network 20

2.6 Deep Learning Methods and Concepts 21
2.6.1 Terms Associated with Deep Neural Networks 26

iii

2.7 Related works 29
3 Design and Methods 31

3.1 Methods and Material 31
3.1.1 Tools and Environment 31
3.1.2 Dataset Description 31
3.1.3 Feature Encoding 37
3.1.4 Feature Scaling 38
3.1.5 Feature Selection 38

3.2 Classification methods 39
3.2.1 Binary Classification 39
3.2.2 Multi-class classification 40

3.3 Statistical measures 40
3.4 Model Implementation 42

3.4.1 Implementation of Conventional ML models 42
3.4.2 Implementation of DNN models using Feed Forward Deep Neural Network (FFDNN)
 43

4 Simulation and Results 46
4.1 Simulation Environment for Conventional Machine Learning algorithms 46

4.1.1 Performance Analysis of the Conventional ML algorithms on Test dataset 46
4.2 Simulation Environment for FFDNN 47

4.2.1 Performance Analysis of the FFDNNs on the training set 49
4.2.2 Performance Analysis of the FFDNNs on the Test set 50

4.3 Results Analysis and Discussion 53
4.4 Recommendations 54

5 Conclusion and Future work 56
References 58
Appendices 65

iv

List of Tables
Table 1: Attack categories with examples [11] 10

Table 2: Differences between Misuse detection and Anomaly detection [2] 13

Table 3 Types of Intrusion Detection Approaches [17] 14

Table 4: List of NSL-KDD dataset files and their descriptions [48] 32

Table 5: Basic Features of each Network Connection Vector [48][49] 33

Table 6: Basic Features of each Network Connection Vector [48][49] 34

Table 7: Attribute value Type [48] 36

Table 8: Attack types of the different attack classes in NSL-KDD dataset [48] 37

Table 9: Details of Normal and Attack data in different types of NSL-KDD dataset [48] 37

Table 10: Confusion matrix 40

Table 11: Distribution of training and testing records 42

Table 12: Summary of Parameters in the different FFDNNs 45

Table 13: Results obtained from Confusion Matrices for Conventional ML Algorithms 46

Table 14: Precision, Recall, and F1 measure for binary classification on KDDTest+ 47

Table 15: Results obtained from Confusion Matrices for the three FFDNNs 51

Table 16: Metrics based on Confusion Matrix for FFDNNs in percentage 51

Table 17: Precision, recall, F1 measure and accuracy for FFDNN-1, FDNN-2, & FFDNN-3 51

Table 18: Performance Comparison of FFDNNs with five ML methods on KDDTest+ 52

v

List of Figures
Figure 1: Comparison between the OSI and the TCP/IP models [12] 8

Figure 2: Relationship between AI, ML, and DL 15

Figure 3: Example of a Decision tree with attack classification [21] 17

Figure 4: A Simple Structure of an Artificial Neural Network 20

Figure 5: A Deep Neural Network Architecture 22

Figure 6: Different Deep Neural Network Architectures 23

Figure 7: Representation of layers of the FFDNN 23

Figure 8: Overall Architecture of CNN for a Classification task [17] 24

Figure 9: Generative adversarial network [7] 26

Figure 10: System flow of the FFDNN Classification model 43

Figure 11: The General Architecture of FFDNNs as implemented in Keras 44

Figure 12: Precision, Recall, and F1 measure for binary classification on KDDTest+ 47

Figure 13: Summary of the FFDNN-1, FFDNN-2 & FFDNN-3 results after each epoch 49

Figure 14: Loss curves for FFDNN-1, FFDNN-2 & FFDNN-3 49

Figure 15: The training loss and validation loss rates during FFDNN-1, FFDNN-2 & FFDNN-
3 training 49

Figure 16: The training accuracy and validation accuracy curves for FFDNN-1, FFDNN-2 &
FFDNN-3 models 50

Figure 17: Confusion matrices yielded by FFDNN-1, FFDNN-2 & FFDNN-3 50

Figure 18: ROC curves show area under curve for FFDNN-1, FFDNN-2, FFDNN-3 50

Figure 19: Graph on Precision, recall, F1 measure and accuracy for FFDNN-1, FFDNN-2, &
FFDNN-3 52

Figure 20: Graph on Detection Accuracy for Different ML Models 52

file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671895
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671896
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671897
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671898
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671899
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671900
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671901
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671902
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671903
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671904
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671905
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671906
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671907
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671908
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671909
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671909
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671910
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671910
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671911
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671912
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671913
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671913
file:///D:/Donatus_Thesis/Thesis_Writing/UTU-Master_Thesis_Updated.docx%23_Toc78671914

vi

List of Abbreviation

Acc: Accuracy 51
Adam: Adaptive Moment Estimation 28
AUC: Area under Curve 51
CNN: Convolutional Neural Networks 24
CSWC-SVM: Sample weighted C-support Vector Machine 18
DBN: Deep Belief Network 25
DL: Deep Learning 3
DNN: Deep Neural Network 3
DoS: Denial of service 1
DT: Decision tree 2
FFDNN: Feedforward Deep Neural Network i
FN: False Negative 51
FP: False Positive 51
FPR: False Positive Rate 51
FTP: File Transfer Protocol 9
GAN: Generative Adversarial Networks 25
GPUs: Graphical Processing Units 22
HIDS: Host-Based Intrusion Detection System 11
HTTP: Hyper Text Transport Protocol 9
IDSs: Intrusion Detection Systems i
IoT: Internet of Things 2
ISO: International Organization for Standardization 8
IT: Information technology 1
KNN: K-Nearest Neighbor 2
LR: Logistic Regression 2
MC: Misclassification 51
ML: Machine Learning 3
MLP: Multi-layer perceptron 2
NB: Naïve Bayes 2
NIDS: Network-Based Intrusion Detection System 11
NSL-KDD: NSL-Knowledge discovery and data mining i
OSI:Open Systems Interconnection 8
PCA: Principal Component Analysis 19
R2L: Root to Local 10
ReLu:Rectified Linear Unit 27

vii

RF: Random Forest 2
RMSProp: Root Mean Square Propagation 28
RNN: Recurrent Neural Network 24
SAPs: Service Access Point 7
SGD: Stochastic Gradient Descent 28
SMTP: Simple Mail Transfer Protocol 9
SVM: Support Vector Machine 2
Tanh: Tangent 27
TCP: Transmission Control Protocol 9
TN: True Negative 51
TP: True Positive 51
TPR: True Positive Rate 51
TPUs: Tensor Processing Units 22
U2R: User to Root 10
UDP: User Datagram Protocol 9

viii

Acknowledgment
Thanks to Almighty God for wisdom and grace to have achieved this thesis. I also thank my
wife and family for their encouragement throughout my studies.
A very big thank you to my supervisors Ethiopia Nigussie and Antti Hakkala for their guardians.

1

1 Introduction

1.1 Motivation
Computer networks have increased tremendously over the years due to the advent of a digital
revolution, and the development has relatively led to a high number of attack vectors on the
networks. It is envisaged that by 2023, that there will be an increase in the number of IP-
connected devices that would produce an enormous amount of IP traffic up to 4.8ZB [1]. This
would pose security challenges to the conventional IDS and traditional machine-learning
mechanism already in existence. Internet security threats have continued to rise with an
increase in the internet network, and that has made cybersecurity an essential field of research.
The major Cybersecurity techniques in use include antivirus software, firewall, and intrusion
detection systems (IDSs) [2], which are still playing useful roles today in cybersecurity defence
to ensure that networks are protected from internal and external malicious attacks.

In the security of networks, the IDS makes the firewall more progressive by serving as an
additional layer to disallow rules based on traffic activities. Business operation depends more
on Information technology (IT) and networks. Therefore, the need to provide adequate
protection to data is essential. We now live in a digital world, where many critical
infrastructures are linked to the internet, and money and information have become digital assets.
No doubt, this transition has transformed IT, making it a complex technology with many IoT
devices and systems connected to the internet [3].
Spam, Denial of service (DoS) attacks, worms, phishing attacks in one way or the other depends
on some form of harmful software called malware. Malware is a programming software
designed by cybercriminals to exploit vulnerabilities found in a network of computer systems.
Examples include viruses, ransomware, worms, Trojans, spyware, etc.
Over the years, this malicious software has spread and become more complex, most especially
from the first decade of the 21st century [4], causing havoc on the computer systems and
networks, theft, and other illegal activities, and in this present-day generation has become a
serious security issue and have continued to grow. So, there is a need for a stronger network
security defence using machine learning techniques that is capable of addressing these security
challenges, even up to the future.

2

Nowadays, the use of machine learning in cybersecurity is becoming popular, and cybersecurity
researchers are not relenting in ensuring that a state-of-the-art cybersecurity defence would be
achieved, because data has become an essential asset to so many organizations, and because
many of these data have been digitalized, they must be given adequate protection in this digital
age to preserve integrity, availability and confidentiality of services. The Naïve Bayes (NB),
K-Nearest Neighbor (KNN), Random Forest (RF), Logistic Regression (LR), Decision tree
(DT), Support Vector Machine (SVM), and Multi-layer perceptron (MLP) are some of the
commonly used conventional machine learning methods that have already been applied to
anomaly detection and classification, and other areas of cybersecurity such as malware
detection. Compared to the signature-based IDS, the machine learning techniques can detect
unknown and novel attacks. The challenge faced by these conventional machine learning
methods is that they are not scalable to a large dataset because of their shallow architecture, and
again their feature extraction phase is done manually.

Machine learning algorithms such as the deep learning approach, have started delivering
outstanding results in some major fields of study like medical in area of medicine, diagnosing,
treatment, and prevention [5] [6], other areas of applications include self-driving cars, voice
search, automatic handwritten generation and automatic machine translation [6].
The deep learning approach would be more sophisticated and with the capabilities to overcome
the limitations as found in the traditional machine learning techniques. It is also used in other
various areas of cybersecurity applications such as malware detection and classifications, drive-
by download attacks, file type identification, spam identification, insider threat detection,
network traffic identification, botnet detection, user authentication, false data injection attack
detection, verifying human typed keystrokes and border gateway protocol anomaly detection
[7].

1.2 Problem
As already discussed in section 1.1, the rapid increase in the number of disruptive technologies
such as blockchain, big data, Internet of Things (IoT) has given rise to complex cybersecurity
problems due to the amount of new and unknown threats that is been discover daily.
[2] there is usually a high occurrence of high false alarm rate in the conventional IDS which
has made it prone to many low non-threatening attacks, and this situation occasionally has led
to the ignoring of harmful attacks by a security analyst. Another major issue is that the

3

traditional IDS cannot detect unknown and novel malware variants such as zero-day attacks as
they continue to emerge. This has generated lots of concern to cybersecurity researchers, who
have taken the advantage of data-driven engineering to build machine learning algorithms to
eliminate these limitations. This is a generation of big data technology and the machine learning
approach performance depends on the availability of data it has; however, lack of enough data
harms their performances. The use of a Deep Neural Network (DNN) in cybersecurity is a new
research interest for many cybersecurity professionals [21], and a deep neural network for IDS
is one such research area. This is because the DNNs have the capabilities to manage enormous
data that helps them to have a better performance in classification than the traditional machine
learning techniques, which previously have shown to be a stronger and better defence
mechanism over the signature-based intrusion detection systems.
1.3 Objective
Intrusion detection systems aim to identify intrusion activities and attacks on internet network
that is in progress or already occurred, so it is an active security mechanism that is very
important, powerful, and a core technology of network security. The goal of this thesis work is
to create and analyse a deeper machine learning technique using a deep neural network that can
be implemented on a signature or anomalous behaviour of network traffics.
1.4 Research questions
Cybersecurity has become an essential field of research and this thesis work is done to
contribute and provide an alternative way that intrusion detection systems (IDSs) can be
designed using deep machine learning methods. The focus is based on the discussion in section
1.3 above.
a. What is the importance of using Machine Learning (ML) for cybersecurity?
b. Which ML algorithm is better suited for IDS implementation?
c. How to design intrusion detection systems using the Deep Learning (DL) method?
d. How more desirable is the performance of the designed deep neural network to the existing
methods?

4

1.5 Thesis Organization
The organization of this thesis is as follows:

Chapter one discusses the motivation behind this thesis topic and research interest, problems,
objectives, and the research questions to guide towards the completion of this thesis work.

Chapter two is about Machine learning techniques for intrusion detection. It discussed
cybersecurity, network security, and network attack types. The different types of intrusion
detection methods and intrusion detection systems were also discussed extensively. Another
area of interest was machine learning in cybersecurity, how ML has impacted cybersecurity,
and the major steps of implementation. It also focused on some commonly used conventional
machine learning algorithms (e.g., Support vector machine, Naïve Bayes, Random Forest,
Artificial neural network) already applied to building IDS. Deep learning fundamentals,
concepts, and the different deep neural network architectures that have been used for
cybersecurity were discussed, and finally, a few related works based on deep learning for
intrusion detection systems.

Chapter three discuss the design and methods that were employed in this research work. Firstly,
the software environments where all experiments were performed, and the tools that supported
the success of the experiments were discussed. Also discussed was the description of the NSL-
KDD dataset, and the data pre-processing techniques such as feature encoding, feature scaling,
and feature selection used for processing the training data and test data. The FFDNN binary and
multi-class classifications of the network intrusions, and also the statistical metrics used to
evaluate the performance of the models were discussed., Finally, this chapter also focused on
the FFDNN model architecture and implementation, and the ML model implementations.

Chapter 4 focused on the experimental process and analysis. discusses the dataset, data pre-
processing, model implementation, and analysis. Experimental setup for the FFDNN and
Machine learning models, discussion, and analysis based on the simulation result was detailed.

Chapter 5 focused on the conclusion and Future works

5

2 Machine Learning Methods for Intrusion Detection
2.1 Cybersecurity
We now live in a world of cyberspace where many devices such as the internet of things (IoT),
critical infrastructure, network infrastructures, and computer systems are connected to the
internet, this has shown that we are now in an era of a digital revolution. A large and sensitive
amount of data flow through these networks by the day and need to be protected and treated
with so much care and concern to protect them from malicious attackers. Cybersecurity has
become the backbone for many businesses, organizations, governments, and individuals to
survive in terms of business growth, resources allocation, policy making, data protection, and
privacy preservation. It is a major area of interest for security professionals, because of sensitive
data that need to be protected.

[8] define cybersecurity as the protection of computers, programs, servers, network
infrastructures, and data from unauthorized access or change, by ensuring that the right
procedures, policies, and cyber protective measures are applied. Cybersecurity can be
categorized into six different areas [3]:
1. Network security: This keeps the network and communication of data safe from intrusion
with the use of IDS, firewall, and other cyber security defence mechanisms.
2. Application security: This security ensures that the applications and software are free of
malware infections that can cause data loss and leakage. It can also be seen as the security of
web pages.
3. Information security: Data is key to many organizations, so the protection of vital
information in a database from unauthorized access is of great importance. Data bridge could
cause the organization a fortune to deal with.
4. Operational security: This security is needed to protect the business daily activities of the
organization to ensure smooth running since a large amount of data is handled and transported
during this process.
5. End-user security: Creating security awareness among the workers is very essential, since
they need to understand the fundamentals of cybersecurity and some common cyber threats
such as phishing, ransomware, so they don’t fall victim to cyber-attacks which will directly
affect the security of the organization.

6

6. Disaster recovery and business continuity: This ensures that business operation is returned
to normal as soon as possible after a cybersecurity incident had occurred. Inventory of all the
organization assets, IT infrastructure, all relevant information, and steps of recovery from a
disaster are documented.

The objective of cybersecurity is to ensure the integrity, availability, confidentiality, and
nonrepudiation of information and information management systems through various cyber
defence techniques [9] [10]. This ensures that information such as medical records, financial
records, and personal identity are protected from malicious attacks.

• Confidentiality: Ensuring that sensitive information is not exposed to an unauthorized
individual and systems.

• Integrity: Ensuring that the original information is not tampered with or modified.
• Availability: Ensuring that the information is available to the individual or system when

it is needed.
• Nonrepudiation: Ensuring that information cannot be denied by the sender or system

when it is already transmitted.

Today’s cybersecurity defence incorporates several defence mechanisms such as firewall,
antivirus, network intrusion and spam filter that works in silos to ensure the protection of
computer systems and networks.
Cybersecurity defence fights threats at two levels [10], the host-based defence system which
protects a host system using antivirus, a firewall, and intrusion detection system, and then the
network-based defence system that controls the flow of network traffic also through firewall,
spam filter, antivirus, and network intrusion detection system. However, due to the constant
increase in the number of threats evolving daily, building defence systems that discover known
threats is not enough to protect users, systems, and networks. Cybersecurity professionals,
researchers from institutions, private sectors, and government agencies are collaborating,
exploiting, and designing different cyber defence systems to address these needs. They have
started to involve the use of machine learning (ML) and deep learning (DL) techniques to design
and implement safe and secure systems.

7

2.2 Network security
The major concern of network security is to give individuals the freedom to enjoy computer
networks without the doubt and fear that their rights and privacy are in any form of the danger
of attack. Therefore, it is necessary to guard the networked computer systems and protect data
that are transmitted in the networks or stored in a disk in a networked computer. Again, the
internet has become a centre of attraction to many people all over the world and has become a
dominant technology. It is built on the IP communication protocol which allows people to
communicate and transmit data via a network infrastructure such as a router which can be
controlled by other people and is subject to attack. This attraction to the internet has also
contributed to the growth in big data technology, thus increasing the amount and complexity of
data transmitted from network activities. These activities have grown over the years causing
the design of effective IDS to consume high computational cost and overhead, and so many
computational resources that can hinder intrusion identification.
Network security is concerned with the protection of computer systems connected to a network
from malicious intruders. The goal of network security as already mentioned in section 2.1
which is to provide confidentiality, integrity, availability, and nonrepudiation of data that are
transmitted or stored in networked computers. So, a major area of focus by cybersecurity
researchers is to design network anomaly detection that can detect novel and unknown threats
with a minimum false alarm rate [11].

2.2.1 Network Protocols
Networks are organized in a layered manner, where the designer of the upper layer depends on
the layer below it. Each layer works based on a predefined services to the layer above it using
a predefined Service Access Point (SAPs) utilising the Protocol-Specific Logical Service
Primitives to achieve the operation. They are designed to offer a network service that is either
connection-oriented, where there is the establishment of connection based on mutual
negotiation between entities (sender, receiver, subnet), or a connectionless service that have no
logical connection for that data to be regulated as it passes through the network. Networks need
protocols to work, these protocols allow efficient and effective communication between a client
(web browser) and a server (web server). Network protocols are rules governing the exchange
of data between computers connected to the network and can be found in a stack of layers with
the layer below communicating with the layer above and verse Versa.

8

Figure 1: Comparison between the OSI and the TCP/IP models [12]

The International Organization for Standardization (ISO) initiated the Open Systems
Interconnection (OSI) reference model and designed the computer protocol stack reference
model with seven layers (data link, physical, network, transport, session, presentation, and
application layers), and also to be used as a framework for the development of protocol
standard. Another important reference model called the TCP/IP reference model was also
established. Both reference models were combined to form the hybrid reference model to
standardize the protocol in Computer networking. To compensate for the limitations on both
models, layers 5 and 6 in the OSI reference model were dropped and layers 1and 2 in the TCP/IP
reference model were replaced with layers 1, 2 & 3 of the OSI model. This change was
necessary because the TCP/IP reference model cannot describe modern networks and does not
correctly define the task to be performed in the lowest layer of the model even though it was
widely used. On the other hand, the OSI reference model is not widely used even though it can
properly describe the network. The majority of the functions provided in the OSI model are also
available in the TCP/IP model.

The layers stacked together in the model in section 2.2.1 can achieve their functions through
service and protocols. The service creates the interface between two adjacent layers, the upper
layer is the service provider and the layer beneath is the service user. Again, the service as a set
of operations provided by the upper layer is achievable with the help of protocols. The protocols
are defined based on the layers, for instance, physical protocol, data link protocol, network
protocol, etc. There are different layers with different functions, but to mention are four
important layers of the model [13]:

9

• The application layer supports network applications, which are also controlled by other
protocols depending on the function of the application. These other protocols are Hyper
Text Transport Protocol (HTTP) for web services, Simple Mail Transfer Protocol
(SMTP) for electronic mail services, File Transfer Protocol (FTP) that support file
transfer.

• The transport layer controls the messages from the application layer between a client
and a server. Its functions are well coordinated with the help of two important protocols,
the Transmission Control Protocol (TCP), which offers a connection-oriented network
service, and the User Datagram Protocol (UDP) whose service is connectionless.

• The network layer is concerned with the forwarding of packets in a network through a
gateway or router. It depends on the services of the link layer, and it supports both the
IP protocol and routing protocol which are important for forwarding packets between a
source and a destination.

• The Physical layer is responsible for the sending of bits of a frame from one node to the
other. It is concerned with data encoding, bits representation, and other physical
components such as connectors and cables.

2.2.2 Network Attacks
An attack is a chronological succession of illegal events that compromises the security of a
network or computer system. [11] classify attacks into seven categories based on
implementation.

(i) Infection attack: This attack occurs when the target system is infected with
malicious files.

(ii) Exploding: This occurs when the target system is overflown with malicious code
(iii) Probe: The use of software tools to steal or gather information about the target

system.
(iv) Cheat: Logging into a system with a false identification
(v) Traverse attack: This involves trying many different passwords/keys to gain access

to a system.
(vi) Concurrency: This attack occurs when the service of the system is over-flooded

with lots of identical requests that the service is unable to supply.
(vii) Others: Attacks in this category take advantage of a vulnerability found on a system.

10

Table 1: Attack categories with examples [11]
Main Category Subcategory
Infection Worms,Viruses, Trojans
Exploding Buffer Overflow
Probe Port Mapping Security Scanning, Sniffing
Cheat

MAC Spoofing, Ip Spoofing, DNS Spoofing, Session Hijacking, XSS (Cross-Site Script) Attacks, Hidden Area Operation, and Input Parameter Cheating.
Traverse Dictionary Attacks, Doorknob Attacks, Brute Force.
Concurrency DDoS (Distributed Denial of Service), Flooding.

Attacks can also be passive in which an intruder monitors the traffic to collect vital information
to start an attack, examples are packet sniffing, traffic monitoring, and analysis. Again, it could
be active, an attack that could cause a devastating effect on a network.
The active attack has been classified into four different categories, namely denial of service
(DoS), R2L, probe, and U2R [46] [47].

1. Denial of service (DoS): This is a blocking attack whereby an attacker blocks access to

the system from legitimate users. In other words, it is an explicit attempt by attackers to
prevent the right user access to the service e.g., syn flood, smurf attack, ping of Death.

2. Probe: This kind of attack involves gaining information about a remote user from the
network. It is deliberately crafted by an attacker on a targeted victim e.g. port scanning
using portsweep, IPsweep, Nmap.

3. Root to Local (R2L): Unlawful access from a remote machine, cybercriminal invades
into a user remote machine and gains access to vital information e.g. password guessing.

4. User to Root (U2R): Unlawful access to local super user privileges. cybercriminal logs
into user account using normal account login and tries to gain administrative privileges
by taking advantage of the vulnerability found in the system e.g. buffer overflow attacks.

11

2.3 Intrusion Detections
 It is useful and important to detect abnormal activities by monitoring network traffics that has
escaped through the firewalls and steal user and system information, so that system
administrators can stop and prevent further damage by the malicious intrusion by taking
appropriate actions. This intrusion detection monitoring can be achieved by the use of an
automated system called the intrusion detection system (IDS). This idea of intrusion detection
was first initiated in the mid-’80s by Dorothy Denning and Peter Neumann [2] [14]. IDSs are
essential security mechanisms that play a significant role in network security. It complements
other security technology such as firewall, antivirus and access control to offer effective
protection to security in today’s technology. An intrusion detection system can be a hardware
device or software application that monitors a network or a system for suspicious and illicit
activities. Over the years many IDS products have emerged as of the writing of this thesis.

 The IDS monitors and analyses ingress packets that have bypass the firewall and send alarm
signals if any malicious intrusion or attack is detected. There are two major intrusion detection
mechanisms according to deployment [11] [17] [18], a Host-Based Intrusion Detection System
(HIDS) and a Network-Based Intrusion Detection System (NIDS). A host-based intrusion
detection system is deployed to monitor and analyse system events (application logs, file
systems) in the operating system of a host computer. Network-based intrusion detection is
deployed through a network device to monitor and analyse network traffics (packets) in real-
time. A hybrid detection system will combine both approaches for efficient and effective
intrusion detection. The intrusion detection system can further be divided into two types
according to the method of detection.
2.3.1 Misuse-Detection Method
This is a signature-based method that relies on detecting the signature of known attacks. It
monitors network activities to detect any known attacks that correspond to attacks that are
already stored in the IDS. Such monitoring involves searching for known malicious threats by
scanning through the network activities, and then it would make a decision based on several
important prior knowledge of the attack signature. A generic misuse/ signature detection
system comprises five general steps [10], namely data collection, pre-processing the data
collected, perform pattern matching and intrusion detection, rule generations, and then defence
response. Most times attacks whose signatures are not stored in the system would bypass the

12

IDS, and this has been the problem of the signature-based IDS. This implies that the technique
has the limitation of detecting unknown attacks, but the good is that it has a high rate of
detection and the alarm rate is low, and can easily be implemented. Another important aspect
of this method is that it can be used to detect and recognize unique patterns (patterns from
network packets and log files identified as threats) of suspicious and unauthorized behaviour
which can be used against any further attacks of such similar behaviour.

Another drawback of this method is that it is designed based on domain expert's knowledge
which varies in terms of experience, and as such so much anomalous behaviour might not be
covered which can lead to inadequate detections.
2.3.2 Anomaly Detection Method
This method combines machine learning and statistical approach to recognize normal network
traffic differently from abnormal traffic. Its goal is to monitor the network activities to find
behaviour that is unusual (anomaly behaviour) or that does not conform to the normal behaviour
of network activities. It has the advantage of detecting new attacks based on its approach and
can be classified based on three different styles of anomaly detection [11]:

• Supervised anomaly detection: A model is designed by training a dataset that has
instances for normal class and anomaly class. The designed model then predicts unseen
data to determine which class it belongs to.

• Semi-supervised anomaly detection: The model design is similar to that of supervised
anomaly detection, but the training data has labelled instances for only the normal class,
and no labels for the anomaly class.

• Unsupervised anomaly detection: The designed model does not require training data,
instead it assumes that normal instances occur much frequently than anomaly instances
in the test data. This technique suffers from a high false alarm rate once the assumption
fails.

For the network anomaly, anomalies occur due to [11] (i) anomalies from network operations;
(ii) When servers are unable to respond to many requests within a given time, this is called flash
crowd; (iii) Anomalous from malicious activities in a network, this can be described from three
points of view. It is a point anomaly when there is a deviation of event from previous normal
activities. It can be a contextual anomaly that describes an instance that is exceptional within a

13

given context, and finally, it could be a collective anomaly where a group of instances deviates
abnormally with reference to a given normal behaviour of activities in a network.

Table 2: Differences between Misuse detection and Anomaly detection [2]

2.3.3 Hybrid Detection Method
This combines the capabilities of misuse detection and anomaly detection systems to improve
the techniques of the IDSs. This implies that the hybrid detection system can detect known
threats and also unknown threats. Researchers believe that this development will solve the
issues of the drawbacks found in the misuse system of being unable to detect unknown
intrusions, and the anomaly detection producing a high percentage of false alarms. The outputs
gathered from the anomaly and signature-based methods by the HDM are used to make a final
decision on the probability of an attack. Ozgur et al [15] proposed a hybrid detection system
that combined both anomaly and misuse detection approaches, also included a decision support
system that will manage the outcomes of both detection approaches. They used the Self-
Organizing Map (SOM) structure to model normal behaviour in the anomaly detection method
and then used the J.48 decision tree technique to classify different attacks in the misuse method.
Any deviation from normal behaviour is considered an attack.

 Misuse Detection Anomaly Detection
Detection performance Low false alarm rate; High missed alarm rate Low missed alarm rate; High false alarm rate
Detection efficiency High, decrease with scale of signature database Dependent on model complexity
Dependence on domain knowledge Almost all detections depend on domain knowledge

Low, only the feature design depends on domain knowledge
Interpretation Design based on domain knowledge, strong interpretative ability

Outputs only detection results, weak interpretative ability
Unknown attack detection Only detects known attacks Detects known and unknown attacks

14

2.3.4 Stateful Protocol Analysis Method
This performs the same manner as the anomaly-based method, but it identifies deviations of
protocol state in a state table. It gathers information about connections between the host and
remote computer and compares it to entries in the state table. The information includes source
IP port and Address, destination IP port and address, and the protocols in use. Other functions
perform by this IDS are, protocol state tracking, traffic rate monitoring, IP packet reassembly
and dynamic application layer protocol analysis [16].

Table 3 Types of Intrusion Detection Approaches [17]
Method Pros Cons
Signature-based IDS Simplest and effective method to detect known attacks Ineffective to detect unknown attacks
Anomaly-based IDS Effective to detect unforeseen vulnerabilities Anomaly is not always an indicator of intrusions and may increase false-positive rate
Hybrid Approach Reduce the false positive rate of unknown attacks Model might be complex
Stateful Protocol Analysis Know and trace the protocol; state Unable to inspect attacks looking like benign protocol behaviours.

2.4 Machine Learning in Cybersecurity
Due to the advent of big data technology in this 21st century, there has been an enormous amount
of data distribution in the network which could be vulnerable to attack. Therefore, machine
learning and statistics, coupled with some other relevant inter disciplines are needed to solve
the challenges of cybercrimes.

Machine learning is a subset of artificial intelligence that makes the computer learn from data
[17] combining different disciplines as statistics, data mining, and data science. Models can be
built from machine learning algorithms and such models can be used to predict newly input
data. Machine learning can be divided into two categories shallow learning and deep learning
[9]. Shallow learning was the traditionally used method, also called conventional machine
learning methods that are based on the learning of data without using networking, they are fast
and mostly perform very well on a small amount of data. They are still in use in today’s

15

cybersecurity because they have been used and found to be very useful and effective in different
areas of cyber defence [3]. On the other hand, deep learning methods are advanced and capable
of handling a large amount of data. It automatically extracts relevant information from the data
which are necessary for building a system.

ML technique can be automated to analyse threats, attacks, and other security incidents quickly
and efficiently. It can be deployed for a variety of cybersecurity problems such as DDoS attack
detection, malware detection, spam mail, phishing detection, user identification, social media
analytics, detection of software vulnerabilities, detection of advanced persistent threats,
detection of information leakage, detection of identity theft and anomaly detection [19].
Machine learning algorithms are very useful for improving the detection performance of a
system [3], the algorithm study and learn the patterns in the data fed into it and then use the
trained data to prevent data breaches that could harm the system in the future. Generally,
machine learning algorithms are designed to deal with three kinds of problems, classification,
regression, and clustering and the learning involve three general phases, pre-processing,
training, and detection [9].

• Pre-processing: This involves the collection of data from the network environment.
Feature engineering and feature selection are performed on the data before they are fed
into the machine learning algorithm.

• Training: The algorithm trains the pre-processed data and learns the unique
characteristics present in the different types of data, and then builds a model based on
these characteristics.

Figure 2: Relationship between AI, ML, and DL

AI
ML

DL

16

• Detection: The system model built from training is used to compare to the network
traffic to be monitored. If there is a deviation or anomaly in the observed pattern, pattern
been observed matched an existing threat, the model triggers an alarm.

2.5 Machine Learning in Network Intrusion Detection
Machine learning methods are vital to the building of IDS, these methods could be identified
in three different paradigms, supervised unsupervised and hybrid methods. Network intrusion
detection is considered a classification problem, that requires a labelled training dataset for
modelling. In most cases the labelled data that correspond to normal behaviour is available, but
label data for anomaly detection are not [10]. To build a machine learning algorithm that is
efficient, attack-free training data is required, but it is difficult to obtain such data in a real-
world network [10], as such causes an imbalance of data distribution in the design of IDSs.
Machine learning approaches that have been used for IDS include supervised learning methods
such as the Artificial Neural Network (ANN), Decision tree (DT), K-nearest Neighbour (KNN),
Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes
(NB) [9], unsupervised learning methods such as the K-means clustering, Self-Organized Map
(SOM), and the hybrid methods [2] [9]. They have produced good results, though their
performances are limited due to the shallow architecture that has made them not scalable to
large datasets, and their feature extraction is not automatic.

2.5.1 Decision Tree (DT)
Ethem Alpaydin [20] defines a decision tree as a “hierarchical data structure implementing the
divide-and-conquer strategy”. It is a nonparametric technique that is suitable for both
classification and regression problems. The model is tree-like in architecture which can easily
be interpreted. It learns by performing feature selection, generating, and pruning trees. During
training, the algorithm can select the most suitable features and build child nodes from the root
node. Decision tree classifiers that have been used are ID4, C4.5, and CART, they have better
accuracy for known intrusions but are not good at detecting unknown intrusions [21].

17

Figure 3: Example of a Decision tree with attack classification [21]

Ingre et al [22] proposed a decision tree-based IDS for the NSL-KDD dataset. 14 features were
selected from the dataset using the correlated feature selection (CSF) method. The overall
accuracy was 83.7% and 90.3%. Azad et al [23] also proposed an intrusion detection system
based on a C4.5 decision tree on a KDD Cup 99 dataset and a high accuracy of 99.89% was
achieved.
2.5.2 Logistic Regression (LR)
This is a logarithm linear model mostly used to model dichotomous outcome variables (binary). It is
used to describe data and to explain the correlation between one dependant binary variable and one or
more nominal or ordinal variables. It is efficient for training a model and easy to construct, and Its
probability can be calculated through a parametric logistic distribution [2].

 𝑃(𝑌 = 𝑘/𝑥) =

𝑒𝑤𝑘∗𝑥

1+∑ 𝑒𝑤𝑘∗𝑥𝑘−1
𝑘

 (1)
Where k = 1, 2, … k-1, and 𝑥 is classified into the maximum probability class
Kamarudin et al [24] proposed an anomaly-based detection model using a binary logistic regression
technique combined with a statistical method. The model was designed to detect R2L and U2R attacks
at different instances by examining the degree of normal field values within the data link layer, network
layer, and transport layer of the OSI Seven Layer Model. The result obtained outperformed other
existing methods (DARPA best system, PbPHAD) at 78.95% for R2L and 84.61% for U2R.

18

2.5.3 Support Vector Machine (SVM)
This is a maximum margin method that allows a model to be written as the sum of influences of some
of the features of the data (or of some of the training data points). These influences can be calculated
through sophisticated kernel functions, that allow the building of complex models using only linear
formalities. The SVM aims to find the best hyperplane that divides classes by maximizing the distance
between the hyperplane and the nearest samples of each class (support vector).
Gao et al [25] In 2009 has proposed an intrusion detection approach based on classifying SVM. They
used the method of genetic algorithm to optimize the SVM parameters to help improve the detection
accuracy and rate of convergence. The model performed well with the mean squared errors of train
sample and test sample of 0.0047 and 0.0596 respectively. Recently, this year 2021, Jiang et al [26] had
proposed a new intrusion detection method based on an improved SVM named Class and Sample
weighted C-support Vector Machine (CSWC-SVM). SVM in the recent past has been successful as a
classification algorithm in many classification problems because of its high generalizing performance
and global optimal convergence [26].
2.5.4 K-Nearest Neighbor (KNN)
K-Nearest Neighbor classification algorithms make predictions depending on the k nearest samples in
the feature space after memorizing the training data. It is a non-parametric, lazy learning algorithm that
performs classification based on a distance function that measures the difference or similarity between
two instances in the dataset. Considering x and y as the two instances, the standard Euclidean distance
𝑑(𝑥, 𝑦) between them can be calculated as

 𝑑(𝑥, 𝑦) = √∑ (𝑥𝑘 − 𝑦𝑘)2𝑛

𝑘=1 (2)

Where 𝑥𝑘 and 𝑦𝑘 are the 𝑘𝑡ℎ featured elements of instance x and y respectively, and n is the number
of features present in the dataset [3].
Atefi et al [27] used the CICIDS-2017 dataset to perform anomaly analysis of the intrusion detection
system for classification using the K-Nearest Neighbors and Deep Neural Network (DNN). The idea
was basically to improve on the detection accuracy of IDS using the newest dataset as against the old
dataset of Kddcup'99. The KNN model performed 88% and the DNN performed 92% detection
accuracies.

19

2.5.5 Naïve Bayes (NB)
This is a classifier based on the theory of probability. It applies Bayes theorem with independent attribute
guess to computes the conditional probabilities of the data of a given class and the prior probabilities of
each class during training. This implies it takes to rely on the conditional probability and the hypothesis
of attribute independence [2]. Let’s assume the features are independent statistically, then the
probability of sample S represented with a set of features ‘a’ associated with a class C can be computed

[28]

 𝑃𝑟(𝑐 𝑆) = 𝑃(𝑐) × 𝜋𝑖−1

𝑑 𝑃𝑟(𝑎𝑖 𝑐)⁄⁄ (3)

B. S Sharmila et al [29] performed an experimental comparison of Naïve Bayes algorithm and Principal
Component Analysis (PCA) on IDS-based implementation using Scikit learn python library. According
to their experimental result, the PCA-based NSL-KDD IDS had better accuracy than the Naïve Bayes
IDS.

2.5.6 Random Forest (RF)
Random Forests are a group of decision trees constructed at training time for classification or regression
tasks, and each tree has been trained on different subsets of the training data. During training, a
bootstrapped dataset for a set of decision trees is created and prediction is made based on the highest
number of votes. They have the advantage of less overfitting and generalizing better.
J. Zhang et al [30] proposed a new systematic framework using Random forests in misuse, anomaly,
and hybrid network-based IDS. The misuse random forest classifier was built based on pattern intrusion
and was able to detect intrusions when matched with the network activities. The anomaly-based random
forests were able to detect novel intrusions, and the hybrid combined the advantages of both the misuse
and anomaly to improve the performance of the IDS. Another recent discovery using random forest
classify was presented by Guowei ZHU et al [31], they proposed a power system network intrusion
detection method based on a random forest algorithm. The random forest decision tree was constructed
from the power system network intrusion sub-sample, and the Gaussian mixture clustering was used to
process the training dataset into different clusters, and an RF classifier was trained on each cluster. The
accuracy was obtained by calculating the measurement residual of the power system network attack,
and the experimental result shows that their proposed system has high network intrusion detection
performance.

20

2.5.7 Artificial neural network
The idea of an artificial neural network was inspired by the biological neuron of the human nervous
system and brain. Biologists, however, have shown that the human body system comprises thousands to
millions of nerve cells called neurons. These neurons are interconnected together in a very complex
manner to perform their various functions in the human body system. The idea was adopted to create
the first neuron called the McCulloch-Pitts model in the 1940s [32]. Over the years, several models of
the artificial neural network have been developed based on different topologies, learning algorithms,
and functionalities.
Yusuf Sani et al [33] in 2009 have published their paper in IEEE. They discussed the use of neural
networks in anomaly intrusion detection systems. The feedforward network and recurrent neural
network were used as a case study. The paper explains how the neural network IDs should be
implemented to overcome limitations (building so many signatures relative to different attacks, cannot
detect zero-day attack) found in existing IDS. They believe that neural network-based IDS have better
advantages such as better performance, less development cost, highly scalable, and can reduce false
positive and false negative error rates. This paper is one of the several papers published as regards the
importance of artificial neural networks for IDS in the previous years.
2.5.7.1 The Architecture of Artificial Neural Network
There are several nodes interconnected together according to specific network architecture in the neural
network, and each node receives an input with a signal strength called the weight. Every Artificial neural
network is made up of the input layer, hidden layer, and output layer.

X1

X2

 Output
 X3

X4

Inputs

Input layer Hidden layer Output layer

Figure 4: A Simple Structure of an Artificial Neural Network

21

The Components of the artificial neural network consist of three major components:
• Weights: This determines the strength of the inputs, for a network with several neurons,

the weights 𝑤𝑖 are represented in a vector space, which multiplies an input vector 𝑥𝑖 of the
same dimension.

 Considering the weight vector as 𝑤𝑖 = [𝑤1 𝑤2 𝑤3 𝑤4 𝑤5]𝑇 and
 Input vector, 𝑥𝑖= [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5]
 Therefore, the strength of the input signal becomes:
 𝑤𝑖𝑥𝑖= [𝑤1 𝑤2 𝑤3 𝑤4 𝑤5]𝑇 [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5] (4)
• Thresholds: This is a value that is uniquely assigned to a neuron, it marks the position of

the maximum gradient value of the activation function. Neurons get activated when the
input signal exceeds a threshold value.

• Activation functions: This function is also called the transfer function, threshold function,
or squashing function. It determines the activation of a neuron depending on the network
input and threshold value, it takes the combined inputs, applies a function on it, and passes
out the output values. It depends on the previous activation state of the neuron and the
external input. There are different activation functions depending on the kind of problem
to be solved, but the three common choices are Sigmoid, ReLU, and Softmax.

Other components include the input layer which contains a certain number of neurons that
should be equal to the dimensionality of the data. It takes inputs and distributes them to the
hidden layer. The number of units in the output layer is a function of the type of problem
to be solved, whether it is a binary classification problem or multiclass. The inner layers
in the network are the hidden layers that define the depth of the neural network, and within
the hidden layers, complex computations occur.

2.6 Deep Learning Methods and Concepts
Deep learning has become an increasing area of demand to many researchers in different fields
most especially in science and technology. Models created from deep learning can be applied
to many different tasks in cybersecurity, finances and stock market, medicine, image
processing, search engine, and pattern recognition [34]. This sudden growth of DL could be
attributed to a few factors such as the increase in the amount of data (especially unstructured
data) as a result of the digital age that has made the number of devices connected to the web

22

increase. Improvement in computing infrastructure is another contributing factor. Deep learning
programming can be implemented much faster with the advent of computing layers such as
Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) at affordable cost. The
sudden rise in the growth of DL was also initiated by the availability of different open-source
frameworks (TensorFlow, Keras, PyTorch, MXNet, and Caffe) that could be used to build and
implement the DL models. The DL models were able to offer extreme versatility and
performance in the different areas they were applied to [2].

Deep learning is a branch of machine learning that deals with different types of artificial neural
networks with more than one hidden layer. A conventional artificial neural network already
discussed in section 2.5 consists of only one hidden layer. This is a shallow neural network that
does not possess the power to perform feature extraction [17] and is not dense enough. The
more hidden layers in the architecture of an artificial neural network, the deeper the neural
network becomes, thus acquiring the name Deep Neural Network (DNN). Deep learning models
can learn features from input data, that is, learning different levels of features across several
layers of its network. More so, they can scale well on a large dataset to gain better results in
terms of performance [35], meaning the model's performance gets better with more data.

1 1

2

3
4

5

6

7

8
9

10

11

X1

X2

X3

X4

Output

Input Layer Hidden Layers Output Layer

y

Figure 5: A Deep Neural Network Architecture

23

There are different deep learning methods based on diverse different architecture [2][17] and
can be classified into three groups, namely, generative, discriminative, and hybrid DL models:

• Feedforward Deep Neural Networks (FFDNN)
The feedforward neural network is a multilayer neural network that has only one
direction, from the input to the output, and can be trained through backpropagation. The
FFDNN architecture is obtained by increasing the number of hidden layers in the
architecture, thus making it a deep neural network.

Deep Learning
Architecture

Hybrid DL Model Discriminative DL
Model

Generative DL
Model

GANs DBNs CNNs RNNs FFDNNs
Figure 6: Different Deep Neural Network Architectures

Figure 7: Representation of layers of the FFDNN

(Normal)

(Attack)

1

Neuron

 In
put

2

N
Output

Layer N Layer 1

Hidden Layers

o u t pu t

24

Figure 8: Overall Architecture of CNN for a Classification task [17]

• Convolutional Neural Networks (CNN)
This process is input stored in arrays [17], like colour or grayscale images that are 2D
of pixels, three-dimensional (3D) arrays (e.g videos), and one-dimensional(1D) arrays
(e.g signals). It is best fitted for data that are spatial (unstructured). In 2012, CNN
recorded success at the ImageNet competition, with an outstanding performance over
other methods [36]. It has been helpful in several other areas such as language modelling
(speech recognition), computer vision, image detection, facial recognition, medicine,
and cybersecurity.

CNN is made up of three important layers, the convolution layer, pooling, and
classification layer. The convolution layer is the core part of the CNN where the data
processing begins. it is used to extract important features from the image by performing
two distinct steps, feature detecting (making matrix or pattern on the data to transform
it into a feature map) and feature mapping (Obtaining small images from feature
detecting), this process is called convolution operation. The work of the pooling layer
is to reduce the dimensions of the feature maps so that only the relevant features are
kept. This will also help to reduce the computational time of the pooling operation. This
process can also be called downsampling or subsampling, it has three different types,
max-pooling, average pooling, and sum pooling [37]. The fully connected layer is a
feedforward neural network that performs classification on the extracted features.

• Recurrent Neural Network (RNN)
RNN is a special type of feedforward neural network that processes data in a sequence
of times. The design of its network is based on the concept of sequential memory [38].
The hidden layers, after receiving information and giving output, still feedback the
information of the output into itself, that is, data and information flow in a cycle. This

25

makes it a robust technique for processing sequential data, which is not possible in
another deep neural network (CNN, FFDNN). RNN can retain information in its
memory, but it cannot store this information for too long when the input sequence
becomes too long, at this point, it begins to have the problem of vanishing gradient. This
issue of vanishing gradient was resolve by the design of another type of RNN called the
Long short-term memory (LSTM). This variant is made up of a special structure called
the ‘gate’, this will keep the information in the memory for a longer period as required,
and can also discard information when it is no longer needed. The deep neural network
has been successfully used for speech recognition, language translation & other time
series prediction task [17].

• Deep Belief Network (DBN)
This is a class of unsupervised deep neural networks adapted to different functions. It is
made up of multiple layers of hidden neurons. The layers are connected, but there is no
connection between the hidden neurons. It comes in three different variants [17], Deep
Autoencoders, Restricted Boltzmann Machines (RBM), and in combined form (DBNs
or RBM, or Deep Autoencoder coupled with classification layers). Each variant is
designed to solve specific kinds of problems, and they have been used in the area of
cybersecurity for intrusion detection systems.

• Generative Adversarial Networks (GAN)
This deep learning algorithm was introduced by Ian Goodfellow et al in 2014 [39]. It is
an unsupervised deep neural network that combines the architecture of two neural
networks. The two neural networks compete against each other to optimize weights and
biases with the purpose to minimize their errors. One neural network act as a generator
that takes input data and produces output data (fake data) which have the same attributes
as the real data, the second neural network acts as a discriminator and takes the fake
data and real data, and tries to distinguish between the two. After the training, the
generator must have learned and is capable of generating new data that is not
distinguishable from the real data.

26

GAN has been used for Image creation such as image enhancement, caption generator,
and optical flow estimation [17].

2.6.1 Terms Associated with Deep Neural Networks
(a) Loss function
Training the samples and calculating the output on the training inputs, and then comparing the
result with the real label defines the error function or loss function. So, there is a need to define
a function that measures error when training a model. Defining the loss function for a deep
neural network depends on the problem and objectives to be achieved because different
networks have different predictions based on the inputs. For classification, the loss is obtained
by computing the probability of the model error which is also the proportion of misclassified
inputs in the dataset. Two common loss functions used for classification are:
1. Binary cross-entropy: This is used when dealing with two-class/binary classification
problems. The output is a probability between 0 and 1.
2. Categorical cross-entropy: This is defined for a multi-class (more than two classes)
classification problem.

Real Data

Generator

Generated
Data

Discriminator

Input
Figure 9: Generative adversarial network [7]

27

(b) Activation function
Section 2.5.7 already discussed the activation function. When designing a deep neural network,
aside from choosing the size of the layers and number of neurons, the activation function is also
an important parameter that needs to be chosen for the hidden layers and output layer. The
activation function is chosen depending on the nature of the problem to be solved and how well
the performance of the model is evaluated. Some of the ones mentioned below were used in
this research work.

• Sigmoid
This activation function is used at the output layer for a binary classification. Its output
is the probability of a given input belonging to a class. The out of a sigmoid function is
between 0 and 1. Mathematically, it can be expressed [18] as:

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1+𝑒−𝑥 (5)
• Tangent (Tanh)

The output of the tanh function falls in the range -1 and 1. It is mostly used in the hidden
layers and the average of the outputs in each layer is close to zero. The mathematical
expression [18]:

 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 =
𝑒2𝑥−1

𝑒2𝑥+1
 (6)

• Rectified Linear Unit (ReLu)
It is a nonlinear function that can improve performance and reduces the number of
computations during training by reducing the state of vanishing and error gradient
problems. When large numbers of layers are used in the hidden, the ReLu can enhance
training because of its speed [18]. It returns 0 if it receives any negative input, and
returns the same value if it receives any positive value.

 𝑅𝑒𝐿𝑢 = max (0, 𝑥) (7)
• Softmax

The Softmax function is also called the normalized exponential function. It normalizes
the input into a probability distribution that sums to 1. It can be computed [18] as:

 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =

𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

 (8)

28

(c) Optimization function
Training the deep neural network requires changing the model parameters (weights, learning
rate) until the minimal loss (difference between predicted output and the real output) is obtained
and the most accurate result is achieved. This process of tuning is called the optimization
process. The optimization functions are the algorithms or methods used during the optimization
process. The commonly used optimizers are:

• Stochastic Gradient Descent (SGD): This is a gradient-based optimizer extended from
Gradient Descent. The optimizer takes randomly a small set of the training samples
instead of the whole samples per iteration. SGD uses only the learning rate for
parameter updating.

• Root Mean Square Propagation (RMSProp) Optimisation: This functions in a
similar manner as the gradient descent with momentum but the gradient calculation
is different. The momentum will allow the accumulations of the gradient of the past
steps to determine the direction to move.

• Adaptive Moment Estimation (Adam): This optimizer is used to minimizes loss in
binary classification and multi classification. It has the fastest convergence when
compared to other optimizer functions. This is because Adam uses three parameters
namely a weighted average of gradient, a weighted average of squared gradient and a
learning rate to update the parameters during training at every iteration.

Building the neural network requires choosing two important hyperparameters (batch size and
number of epochs) for the optimization process. The two parameters contribute to the
improvement of the model performance during training if properly fine-tuned.

(d) Regularization: Regularization is a method used to modify the deep learning algorithms.

This involves tuning the hyper-parameters of a deep neural network that are used to control
the learning process of a neural network. They are set before the start of the learning process
e.g number of epochs, number of branches, dropout rate, etc. In deep learning, a commonly
used regularization is the inclusion of a dropout layer to the layers of the network with a
dropout rate of between zero to one. A dropout layer is a form of regularization that helps
to reduce overfitting so that the model can generalize well on unseen data.
When it is applied, it means the training is performed on a small network compared to the
original network, and since a smaller network can be less flexible, the possibility of

29

overfitting is reduced. The idea is that it randomly drops out a few neurons or sets the
neurons to zero thereby reducing computation in the training process. Also, during the
process of dropout, the number of weights updated during the training is reduced to allow
other weights to participate in the learning process. This helps the weight values to spread
out better at the final stage thereby reducing overfitting in the network.

(e) Iteration: This is the number of batches needed to complete one epoch. The number of

iterations depends on the size of the batch, for a large batch the number of iterations will be
small and does not need to change much before the neural network learns well.

(f) Batch size: This accounts for the training dataset present in a single batch. Since one epoch

is too big to be fed into the computer at once, and because of system limitations, the dataset
can be divided into several batches which determines the number of iterations.

(g) Epoch: One epoch is attained when an entire data is passed in and out of the neural network

at once. Continuous feeding of the training data to the neural network can help to improve
the weights. Updating of the parameter is done after each iteration. An increase in the number
of epochs can generally increase accuracy and lower the loss.

(h) Learning rate: This parameter is important in the configuration of the deep neural network,

and takes smaller values in the range between 0 and 1. It controls how fast the model adapts
to the problem. A smaller learning rate would require more training epochs in relation to the
smaller changes made to the weight on each update, and on the other hand, larger learning
rates would require fewer training epochs.

2.7 Related works
There have been many analytics research works in intrusion detection systems using deep
learning in the previous years. This area of research has started to gain popularity because of
its ability to learning and development, which makes them very effective and efficient in
tackling the alarming increase in the number of unpredictable attacks. Using deep learning
techniques in the design of IDS gives it extra performance with high accuracy. There have been
different approaches to intrusion detection using deep learning algorithms.

30

Salama et al [40] proposed a hybrid approach of IDS. Their works entail the use of Restricted
Boltzmann Machine (RBM) as the feature reduction method, followed by a Support Vector
Machine (SVM) as the classifier. The NSL-KDD dataset was used which has 22 training attack
types and 17 types in the test data. The hybrid approach shows a higher percentage of
classification better than Support Vector Machine as a stand-alone algorithm. Alom et al [41]
in 2015 proposed the design of an effective intrusion detection system that is intelligent and can
interpret intrusion from incoming network traffic. They trained a deep belief neural network
(DBN) using the NSL-KDD dataset, the model was able to identify any kind of unknown attacks
in a dataset that was fed into it, and had a detection accuracy of about 97.5%.

Alazab et al [42] conducted a malicious network traffic classification experiment using the
UNSW-NB15 dataset in a convolutional neural network architecture. They first analysed+ the
experiment with a fully connected neural network (3 layers of 256, 1024, and 7 nodes) as a
benchmark for comparison to the CNN techniques. Though the fully connected neural network
achieved the highest accuracy on the test data, the CNN performance accuracy was close as
well with five to ten times fewer trainable parameters.

Kim et al [43] proposed an intrusion detection system model using Long Short-Term Memory
(LSTM) architecture to a recurrent Neural Network (RNN). They trained the model using a
KDD Cup 99 dataset (with 41 features) and trained the network with a time step size of 100,
batch size 50, and epoch 500 and obtained 98.93% accuracy on the test data as the best
performance. IDS on a wireless network based on deep learning using Feed forward deep neural
network (FFDNN) was proposed by Kasongo et al [44]. This DNN was trained using the NSL-
KDD dataset and its performance was compared to conventional machine learning algorithms
(support vector machine, decision tree, k-nearest neighbor, and naïve Bayes). The FFDNN
performance was best with an accuracy of 86.62% on test data. Naseer et al [45] developed an
intrusion detection system model using three different DNNs (CNN, autoencoder, RNN) on the
NSL-KDD dataset. As a baseline for comparison, the same experiment was conducted using
three conventional machine learning algorithms (decision tree, support vector machine, and k-
nearest neighbor). Their training performances were evaluated on two different test datasets
(NSLKDDTest+ and NSLKDDTest21), and the overall result showed that LSTM had the best
performance at 89% and DCNN was 85%. The decision tree, support vector machine, and k-
nearest neighbor had a tie at 82%.

31

3 Design and Methods
3.1 Methods and Material
The research is based on an empirical approach that deals with the detection of intrusions in
network activities using machine learning techniques.
3.1.1 Tools and Environment
The implementations of the Machine learning algorithms and the Feedforward Deep Neural
network were performed using the Google Colaboratory software platform. It was selected
because it is an open-source cloud-based jupyter notebook that is free and offers some awesome
advantages that made it possible to train machine learning and deep learning models on CPUs,
GPUs, and TPUs. These advantages include:
1. Provides free GPU/TPU
2. Zero configuration is required
3. Can access drive directly
4. Uploading files locally is easy
5. It comes with the following pre-installed libraries, NumPy; Pandas; Python; Matplotlib;

Keras; Tensor flow, and Scikit learn which were necessary for the experiment.
But its limitation is that session restarts after 12 hours.
3.1.2 Dataset Description
The training and test data used for this research work was extracted from the NSL-KDD dataset.
It was downloaded from the web page of the University of New Brunswick (Canadian Institute
for Cybersecurity) [46]. The NSL-KDD dataset was proposed by Tavallae et al [47]. It is an
updated version of the KDD Cup99 dataset and is recommended to solve some of the essential
problems found in the KDD’99 dataset [47]. It is an effective standard that researchers can use
to compare different types of intrusion detection systems methods [46] and also to design
intrusion detection systems whether host-based or network-based.
Compared to the KDD’99 dataset, the NSL-KDD dataset have the following advantages:
1. Redundant records present in the train set has been removed to avoid the classifier from

been biased
2. Duplicate records removed from the test set

32

3. The quantity of selected records from each difficulty level domain is inversely proportional
to the level of records in the original KDD dataset.

4. There is a sufficient number of records available in the train and test dataset.

Table 4: List of NSL-KDD dataset files and their descriptions [48]
S/n Name of the file Description
1 KDDTrain+.ARFF The full NSL-KDD train set with binary labels in ARFF format
2 KDDTrain+.TXT The full NSL-KDD train set including attack-type labels and difficulty level in CSV format
3 KDDTrain+_20Percent.ARFF A 20% subset of the KDDTrain+.arff file
4 KDDTrain+_20Percent.TXT A 20% subset of the KDDTrain+.txt file
5 KDDTest+.ARFF The full NSL-KDD test set with binary labels in ARFF format
6 KDDTest+.TXT The full NSL-KDD test set including attack-type labels and difficulty level in CSV format
7 KDDTest-21. ARFF A subset of the KDDTest+.arff file which does not include records with difficulty level of 21 out of 21
8 KDDTest-21.TXT A subset of the KDDTest+.txt file which does not include records with difficulty level of 21 out of 21

Each record contains 41 types of features that are assigned to attack or normal type. The features
are subdivided into three (3) types of attribute value types (Nominal, binary and numeric).

33

Table 5: Basic Features of each Network Connection Vector [48][49]
No Feature Name Description
1 Duration Duration of the connection
2 Protocol type Connection protocol (e.g. TCP, UDP, ICMP)
3 Service Destination service
4 Flag Status flag of the connection
5 Src_bytes Bytes sent from source to destination
6 Dst_bytes Bytes sent from destination to source
7 Land 1 if a connection is from/to the same host/port; 0 otherwise
8 Wrong_fragment Number of wrong fragments
9 Urgent Number of urgent packets
10 Hot Number of “hot” indicators
11 Num_failed_logins Number of failed logins
12 Logged_in 1 if successfully logged in; 0 otherwise
13 Num_compromised Number of “compromised” conditions
14 Root_shell 1 if root shell is obtained; 0 otherwise
15 Su_attempted 1 if “su root” command attempted; 0 otherwise
16 Num_root Number of “root” accesses
17 Num_file_creations Number of file creation operations
18 Num_shells Number of shell prompts
19 Num_access_files Number of operations on access control files
20 Num_outbound_cmds Number of outbound commands in an FTP session
21 Is_host_login 1 if login belongs to the “hot” list; 0 otherwise

34

Table 6: Basic Features of each Network Connection Vector [48][49]
No Feature Name Description
22 Is_guest_login 1 if the login is the “guest” login; 0 otherwise
23 count Number of connections to the same host as the current connection in the past 2 seconds
24 Srv_count Number of connections to the same service as the current connection in the past two seconds
25 serror_rate % of connections that have “SYN” errors
26 Srv_serror_rate % of connections that have “SYN” errors
27 Rerror_rate % of connections that have REJ errors
28 Srv_rerror_rate % of connections that have REJ errors
29 Same_srv_rate % of connections to the same service
30 Diff_srv_rate % of connections to different services
31 Srv_diff_host_rate % of connections to different hosts
32 Dst_host_count Count of connections having the same destination host
33 Dst_host_srv_count Count of connections having the same destination host and using the same service
34 Dst_host_same_srv_rate % of connections having the same destination host and using the same service
35 Dst_host_diff_srv_rate % of different services on the current host
36 Dst_host_same_src_port_rate % of connections to the current host having the same src port
37 Dst_host_srv_diff_host_rate % of connections to the same service coming from different hosts
38 Dst_host_serror_rate % of connections to the current host that have an S0 error
39 Dst_host_srv_serror_rate % of connections to the current host and specified service that have an S0 error
40 Dst_host_rerror_rate % of connections to the current host that have an RST error
41 Dst_host_srv_rerror_rate % of connections to the current host and specified service that have an RST error

35

The features are grouped into four categories [49]:
• Basic features: Features obtained from the packet header (TCP/IP connection) without

the payload inspection. Features 1 to 9 is the basic features.
• Content features: They are generated from the payload of TCP segments and

comprises features 10 to 22. The number of failed logs in an attempt is an example.
• Time-based traffic features: These features capture properties that mature within a

window interval such as features 23 t0 31.
It is divided into two sub-group
a) “same host” features: this checks connections in the past 2 seconds that have the same
destination host as the current connection, and then evaluates the statistics associated
with the protocol behavior, service, etc.
b) “same service” features: it checks only the connections in the past 2 seconds that have
the same service as the current connection.

• Host-based traffic features: Contain features (32 to 41) that are designed to measure
attack within intervals longer than 2 seconds.

The 42nd feature contains data which are part of the 5 different classes of network connection
vectors. They divided into one normal class and four attacks class. The four attack classes are
sub-grouped into DoS, R2L, Probe, and U2R [47] [48].

36

Table 7: Attribute value Type [48]
Type

Features
Nominal Binary Numeric
Protocol_type (2) Service (3)
Flag (4)

Land (7), logged_in (12),
root_shell (14) su_attempted (15)
is_host_login (21) is_guest_login (22)

Duration (1)
src_bytes (5)
dst_bytes (6)
wrong_fragment (8)
urgent (9), hot (10)
num_failed_logins (11)
num_compromised (13)
num_root (16)
num_file_creations (17)
num_shells (18)
num_access_files (19)
num_outbound_cmds (20)
count (23)
srv_count (24)
serror_rate (25)
srv_serror_rate (26)
rerror_rate (27)
srv_rerror_rate (28)
same_srv_rate (29)
diff_srv_rate (30)
srv_diff_host_rate (31)
dst_host_count (32)
dst_host_srv_count (33)
dst_host_same_srv_rate (34)
dst_host_diff_srv_rate (35)
dst_host_same_src_port_rate (36)
dst_host_srv_diff_host_rate (37)
dst_host_serror_rate (38)
dst_host_srv_serror_rate (39)
dst_host_rerror_rate (40)
dst_host_srv_rerror_rate (41)

37

Table 8: Attack types of the different attack classes in NSL-KDD dataset [48]
Attack class Attack types
DoS Back, Land, Smurf, Neptune, Pod, Udpstorm,Teardrop, Apache2, worm.
Probe Satan, Mscan, Ipsweep, Nmap, Saint, Portsweep.
R2L Ftp_write, Snmpguess, Imap, Sendmail, Pht, Multihop, Warezmaster, Guess_password, warezclient, Spy, Xlock, Xsnoop, Httptunnel, Snmpget attack.
U2R Rootkit, Loadmodule, Buffer_overflow, Perl, Xterm, sql attack.

Table 9: Details of Normal and Attack data in different types of NSL-KDD dataset [48]
Dataset type Number of Records

Total Normal DoS Probe U2R R2L
KDDTrain+20% 25192 13449 (53%) 9234 (37%) 2289 (9.16%) 11(0.04%) 209 (0.8%)
KDDTrain+ 125973 67343 (53%) 45927 (37%) 11656 (9.11%) 52 (0.04%) 995 (0.85%)
KDDTest+ 22544 9711 (43%) 7458 (33%) 2421 (11%) 200 (0.9%) 2654 (12.1%)

3.1.2.1 Data Pre-processing
Data pre-processing is an essential step that is needed before training the model. It helps to
remove the outliers, missing values, duplicates, and converts categorical variables into
numerical values, and normalizes the data. For this research, the KDDTrain+ dataset was used
as the training set and KDDTest+ as the test dataset.
3.1.3 Feature Encoding
The features were encoded in three different methods. Label encoding and One Hot encoding
techniques were used to convert the categorical features into numerical values in two different
situations, that is building two similar models with different encoding technology. The
Binarization technique was used to convert the attack class (target variable) into 0’s and 1’s to

make the classifier algorithm more efficient.

(a) Binarization: The Normal situations were assigned values 1’s and other attack types were

assigned 0’s irrespective of whether it is from DoS, Probe, U2R, or R2L.

38

(b) LabelEncoder: Label-Encoder is used to convert the three categorical features
protocol_type, flag, and service, into numerical values. After label encoding, there was no
increase in the number of features as the feature dimensions remain 41. The output of the
LabelEncoder is still in the form of a data frame.

(c) One-Hot-Encoding is used to convert the three categorical features protocol_type, flag and
service into numerical values in the form of binary. The protocol_type feature has three
attributes: TCP, UDP, and ICMP. One-hot-encoding converts them into binary vectors of
[1,0,0], [0,1,0], [0,0,1], respectively. In the same manner service and flag features. After One-
hot-encoding, the KDDTrain+ datasets are mapped from 41-dimensional features to 122-
dimensional features (38 continuous, and 84 binary values related to the categorical features).
The output of the One-Hot-Encoding is a NumPy array.
3.1.4 Feature Scaling
The input was normalized so that they will be centred around zero and have the same scale.
This is because the value of the input influences the update rule. [50] The min-max
normalization method is used to scale the value 𝑋𝑖,𝑗 between the range [0,1].
Let value after normalization = 𝑋′
Value before normalization = 𝑋

 𝑋′−0

1−0
=

𝑋−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
 (9)

 𝑋′ =

𝑋−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
 (10)

3.1.5 Feature Selection
Feature selection selects the most important features and discards features that are not relevant
so that the model would be easier to understand, and as well run faster and perform well. Two
different selection techniques were used, Random Forest and Boruta.
• Random Forest: RF is an embedded method that combines the qualities of the filter and

wrapper methods. It has many (4 - 12) hundred decision trees, each tree is built over a
random extraction of the observations from the dataset and the features. It divides the dataset

39

into two buckets, each bucket having observations that are closely related among themselves,
but different from the ones in the other bucket. The measure of impurity is the Gini Impurity,
and how pure each bucket determines the importance of each feature. This method was easy
to interpret and can generalize well.

• Boruta is built around Random Forest and can be used on Random Forest model, XGBoost,
and Regression models. Its working principle involves creating shadow features (random
features and shuffle values in columns), A Random Forest model is trained on the data and
feature importance is calculated via Mean decreasing Gini impurity. It checks if real features
have higher importance compared to shadow features, if the original feature performs better,
then it is marked as important. This is repeated for every iteration. This is a good method of
feature selection because features do not compete among themselves but instead compete
with a randomized version of themselves (shadow features), where the importance of each
original feature is compared with a threshold (highest feature importance recorded among
the shadow features). In Boruta, a feature is important if it does better than the best-
randomized feature.

3.2 Classification methods
3.2.1 Binary Classification
The conventional machine learning algorithms and deep neural network algorithms are
presented for binary classification of the KDDTrain+ dataset. Specifically, K-Nearest
Neighbors (KNN), Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF),
Naïve Bayes (NB), Logistic Regression (LR), and a Feedforward Deep Neural Network
(FFDNN) are implemented. The classification was done for two different cases:

(i) Using all 41 features of the KDDTrain+ dataset to carry out a binary (Normal and
Attack) classification and evaluating the performance of the models (ML and DL
algorithms) on the KDDTest+ dataset.

(ii) Using reduced features obtained through feature selection to carry out a binary (Normal
and Attack) classification and evaluating the performance of the FFDNNs models on
the KDDTest+ dataset.

40

3.2.2 Multi-class classification
FFDNN multi-class classification of the intrusion detection on KDDTain+ was considered for
future work, already mentioned that the attacks were divided into four categories, DoS, Probe,
R2L, and U2R. The FFDNN model will be trained to classify the various anomalies into their
different classes, and the prediction on the test data will confirm how well the model has
achieved the desired accuracy. and the model was trained on them. However, based on the result
of the binary classification, there is no doubt that the Feedforward deep learning model will
perform well.
3.3 Statistical measures
The ground truth value is needed in the evaluation to estimate the different statistical measures.
It is composed of a set of connection records labelled either Normal or Attack in the case of
binary classification. The evaluation of the metrics is based on the four output values of the
confusion matrix in Table 10 obtained by considering the calculated predicted class versus the
actual class (ground truth).
Table 10: Confusion matrix
 Predicted class

Normal Attack
Normal True Negative (TN) False Positive (FP)
Attack False Negative (FN) True Positive (TP)

Considering the number of Normal and Attack connection records in the test dataset, the
following terms are used for determining the quality of the classification models [7] [18]:

• True Positive (TP) - the number of connection records correctly classified to the Attack class.
• True Negative (TN) - the number of connection records correctly classified to the Normal
class.
• False Positive (FP) - the number of Normal connection records wrongly classified to the
Attack connection record.
• False Negative (FN) - the number of Attack connection records wrongly classified to the
Normal connection record.

Act
ual

clas
s (G

roun
d

Tru
th)

41

The following evaluation metrics as listed below are evaluated based on TP, TN, FP, and FN.
1) Accuracy (acc): It estimates the ratio of the correctly recognized connection records to the
entire dataset. The higher the accuracy, the better the machine learning model prediction is
(Accuracy ∈ [0, 1]). It is a good measure for the test dataset that contains balanced classes and
is defined as follows:
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (11)

2) Precision (P): Also called the positive predictive value (PPV). It calculates the ratio of the
correctly identified attack connection records to the number of all identified attack connection
records. Higher precision indicates that the machine learning model performed better (Precision
∈ [0, 1]). Precision is defined as follows:
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (12)

3) F1-Score (F1): It is also the F1-Measure, it is defined as the harmonic mean of Precision (P)
and the true positive rate (Recall). If the F1-Score is higher, the model is better (F1−Score ∈ [0,
1]). F1-Score is defined as follows:

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × (

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) (13)

4) True Positive Rate (TPR): It is also called Recall or Sensitivity, or Probability of Detection
(PD). It calculates the ratio of the correctly classified Attack connection records to the total
number of Attack connection records. If the TPR is higher, the machine learning model is better
(TPR ∈ [0, 1]). TPR is defined as follows:

 𝑇𝑃𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (14)

5) False Positive Rate (FPR): It is also called False Alarm Rate (FAR or Fall-Out), It calculates
the ratio of the Normal connection records flagged as Attacks to the total number of Normal
connection records. Lower FPR indicates that the machine learning model is better (FPR ∈ [0,
1]). FPR is defined as follows:

 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
 (15)

42

6) Area under the Curve: This is the size of the area under the Receiver Operating
Characteristics (ROC) curve. ROC is a graph plotted between the TPR on the y axis to FPR on
the x-axis across different thresholds. AUC is a good measure for evaluating the performance
of the machine learning models. If the AUC is higher, the machine learning model is better.

 𝐴𝑈𝐶 = ∫

𝑇𝑃

𝑇𝑃+𝐹𝑁
𝑑

𝐹𝑃

𝑇𝑁+𝐹𝑃

1

0
 (16)

3.4 Model Implementation
The model implementation takes into consideration the results obtained on the evaluation of the
test data (KDDTest+) set using statistical measures as mentioned in Section 3.4. The
KDDTrain+ dataset was divided into two parts, namely a training dataset and a validation
dataset. The test dataset has a different folder. The training dataset is used for training the model,
and its prediction accuracy is measured on the validation set. Once I am satisfied with my
selected model type and hyperparameters, my next step was to predict the test dataset using the
new model

Table 11: Distribution of training and testing records
Dataset type Number of Records

 Total Normal DoS Probe U2R R2L
KDDTrain+ 125973 67343 (53%) 45927 (37%) 11656 (9.11%) 52 (0.04%) 995 (0.85%)
KDDTest+ 22544 9711 (43%) 7458 (33%) 2421 (11%) 200 (0.9%) 2654 (12.1%)

3.4.1 Implementation of Conventional ML models
KDDTrain+ dataset was trained using conventional machine learning algorithms, namely
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Decision
Tree (DT), Random Forest (RF), and Logistic Regression (LR), their performances were
evaluated on the KDDTest+ dataset and the classification reports and various performance
accuracies are shown in Table 13 & Table 14 were obtained from their confusion matrices
respectively. After training the models using the training dataset, they were evaluated on the

43

validation datasets, after which predictions are made on the test dataset for final performance
results from the different ML models.
3.4.2 Implementation of DNN models using Feed Forward Deep Neural Network

(FFDNN)
The performance of the FFDNN was studied using the complete features (41 features) and the
reduced features of the KDDTrain+ dataset. The KDDTest+ was used to predict training and
validation accuracy. The validation loss and accuracy curves were used to monitor the
behaviour of the model to avoid overfitting, with this principal criterion the trained model can
either be accepted or rejected.

The architecture of the FFDNNs was designed for binary classifications. They are made up of
three layers of two hidden layers consisting of several neurons as listed in Table 12, and an
output layer with one neuron in each model. Dropout layers were included to regularize the
model during training to reduce overfitting. ReLu activation function was used in each hidden
layer and the sigmoid activation function for binary classification was used in the output layer.
The prediction loss function for sigmoid is defined using binary cross-entropy, estimated in
[18] as

𝑙𝑜𝑠𝑠(𝑝𝑑, 𝑒𝑑) = −

1

𝑁
∑ [𝑒𝑑𝑖𝑙𝑜𝑔𝑝𝑑𝑖 + (1 − 𝑒𝑑𝑖) log(1 − 𝑝𝑑𝑖)]𝑁

𝑖=1 (17)

Feature
selection

Dataset FFDNN

Feature engineering

Classifier Input Pre-processing
Feature

encoding
Feature scaling

Figure 10: System flow of the FFDNN Classification model

44

Where pd is a vector of predicted probability for all samples in the testing dataset, ed is a
vector of an expected class label, values are either 0 or 1.
The FFDNN model is compiled with the Adam optimizer and “accuracy” as the metric for

validation.

For the multi-class classification, the prediction loss was estimated using categorical cross-
entropy given by in [18] as

𝑙𝑜𝑠𝑠(𝑝𝑑, 𝑒𝑑) = − ∑ 𝑝𝑑(𝑥)log (𝑒𝑑(𝑥))𝑥 (18)

Where ed is a true probability distribution and pd is the predicted probability distribution.

Dense(units=1)

Dense (units= n)

Output (probability)

Dense (units= 2n)
 Sequential

Input (Normalized data)
Figure 11: The General Architecture of FFDNNs as implemented in Keras

45

Table 12: Summary of Parameters in the different FFDNNs
Parameters FFDNN-1 FFDNN-2 FFDNN-3
Number of features 41 13 122
Feature selection No Yes No
Features Encoding LabelEncode LabelEncode OneHot
Number of layers 3 3 3
Activation function in hidden layers ReLU ReLU ReLU
Number of neurons in first hidden layers 64 32 512
Number of neurons in second hidden layers 32 16 256
Activation function in the output layer Sigmoid Sigmoid Sigmoid
Dropout rate 0.2 0.2 0.2
Optimizer Adam Adam Adam
Batch size 256 64 128
Number of epochs 16 20 20

46

4 Simulation and Results
4.1 Simulation Environment for Conventional Machine Learning algorithms
The simulation was carried out in the google colaboratory platform. All the necessary libraries
(NumPy, Pandas, Scikit learn, Matplots, Seaborn) that are required to build the ML algorithms
were imported. The first phase was data (train and test data) importation and pre-processing.
There are no missing values and duplicates in the training and test data. The data preparation
involves the binarization of the target labels into normal or attack (normal = 0 and attack = 1),
encoding categorical data, passing data as NumPy array, and then normalizing the data and was
passed into the ML algorithms.

Training data was divided into train and validation set to verify accuracy after fitting the model.
Each ML model was trained with a 10 folds cross-validation, and the results were evaluated,
after which prediction was made on the validation set to obtain accuracy, confusion matrix, and
classification report. Obtaining satisfactory results, the test data was now passed into the models
to obtain acceptable accuracies.
4.1.1 Performance Analysis of the Conventional ML algorithms on Test dataset
Table 13: Results obtained from Confusion Matrices for Conventional ML Algorithms
 DT

(%)
LR
(%)

RF
(%)

NB
(%)

KN
(%)

Accuracy 81 76 77 77 77
True Negative (TN) 41 32 42 42 13
False Positive (FP) 2 11 1 1 30
False Negative (FN) 15 15 23 22 14
True Positive (TP) 42 42 34 35 43
True Positive Rate (TPR) 74 73 59 61 75
False Positive Rate (FPR) 5 26 3 2 70

47

0

20

40

60

80

100

120

Decision tree Logistic regression Random forest Naïve Bayes K-Nearest Neighbor
Precision (%) Recall (%) F1 Measure (%) Accuracy (%)

Figure 12: Precision, Recall, and F1 measure for binary classification on KDDTest+

Table 14: Precision, Recall, and F1 measure for binary classification on KDDTest+
Classifier Precision (%) Recall (%) F1 Measure (%) Accuracy

(%)
Decision tree (DT) 95 74 83 81
Logistic regression (LR) 79 73 76 76
Random forest (RF) 96 59 73 77
Naïve Bayes (NB) 98 61 75 77
K-Nearest Neighbor (KN) 58 75 65 77

4.2 Simulation Environment for FFDNN
Preparing the programming environment in the google colaboratory involves importing all the
necessary libraries (NumPy, Pandas, Scikit learn, Keras, Tensor flow, Matplot, Seaborn) that
are required to build the Deep Neural Network model. The first phase of the experiment was to
import, clean, and prepare the training and test data. Based on the information about the data
previously discussed in section 3.1.2, there are no missing values and duplicates. The data
preparation involves the binarization of the target labels into normal or attack, encoding
categorical data, passing data as NumPy array, and then normalizing the data to be ready to be
fed into the deep neural network.

48

The Deep Neural Network was created using a sequential model from Keras API integrated
into TensorFlow. The model architecture of three layers, the activation functions, number of
neurons, and dropout layers of FFDNNs is shown in Appendix 1. Also available in appendix 2
is the model summary that shows the number of trainable parameters (weights and biases).
Having defined the model architecture, the next step was to create the model compiler, and
finally, the deep neural network was trained and its performance was evaluated both on the
training dataset and validation dataset.

49

Figure 14: Loss curves for FFDNN-1, FFDNN-2 & FFDNN-3

Figure 15: The training loss and validation loss rates during FFDNN-1, FFDNN-2 & FFDNN-3 training

4.2.1 Performance Analysis of the FFDNNs on the training set

Figure 13: Summary of the FFDNN-1, FFDNN-2 & FFDNN-3 results after each epoch

50

Figure 16: The training accuracy and validation accuracy curves for FFDNN-1, FFDNN-2 & FFDNN-3 models

4.2.2 Performance Analysis of the FFDNNs on the Test set

Figure 17: Confusion matrices yielded by FFDNN-1, FFDNN-2 & FFDNN-3

Figure 18: ROC curves show area under curve for FFDNN-1, FFDNN-2, FFDNN-3

51

Table 15: Results obtained from Confusion Matrices for the three FFDNNs
Metrics FFDNN-1 FFDNN-2 FFDNN-3
True Negative (TN) 8639 8166 8467
False Positive (FP) 1072 1545 1244
False Negative (FN) 1425 2044 1699
True Positive (TP) 11408 10789 11134
Total 22544 22544 22544

Table 16: Metrics based on Confusion Matrix for FFDNNs in percentage
 FFDNN-1

(%)
FFDNN-2
(%)

FFDNN-3
(%)

Accuracy (Acc) 89 84 87
True Negative (TN) 38,3 36 37
False Positive (FP) 5 7 6
False Negative (FN) 6 9 8
True Positive (TP) 51 48 49
Misclassification (MC) 11 16 13
Area under Curve (AUC) 95 86 92
True Positive Rate (TPR) 89 84 87
False Positive Rate (FPR) 11 16 13

Table 17: Precision, recall, F1 measure and accuracy for FFDNN-1, FDNN-2, & FFDNN-3

DNN Classifier Precision (%) Recall (%) F1 Measure (%) Accuracy
(%)

FFDNN-1 91 89 90 89
FFDNN-2 87 84 85 84
FFDNN-3 90 87 88 87

52

65

70

75

80

85

90

Decision
tree

Logistic
regression

Random
forest

Naïve Bayes K-Nearest
Neighbor

FFDNN-1 FFDNN-2 FFDNN-3

P
er

ce
n

ta
ge

Classifier Methods

Detection Accuracy

80

85

90

95

Precision Recall F1 Measure Accuracy

P
er

ce
n

ta
ge

Metrics

FFDNN-1 FFDNN-2 FFDNN-3

Figure 19: Graph on Precision, recall, F1 measure and accuracy for FFDNN-1, FFDNN-2, & FFDNN-3

Figure 20: Graph on Detection Accuracy for Different ML Models

Table 18: Performance Comparison of FFDNNs with five ML methods on KDDTest+
Classifier Methods Detection Accuracy

(%)
Decision tree 81
Logistic regression 76
Random forest 77
Naïve Bayes 77
K-Nearest Neighbor 77
FFDNN-1 89
FFDNN-2 84
FFDNN-3 87

53

4.3 Results Analysis and Discussion
In this thesis, the researcher has conducted a comparative study of the machine learning
approaches for intrusion detection using conventional machine learning algorithms and
feedforward deep neural networks (FFDNN). My main idea was to develop an FFDNN as a
classifier to classify network traffic intrusions in the NSL-KDD dataset as normal or attack
while using the conventional machine learning approaches as my controlled experiment. The
analysis was performed on five different ML algorithms (DT, LR, RF, NB, KNN) and their
performances on the test data gave 81%, 76%, 77%, 77%, 77% respectively.

I also analysed three different FFDNNs, namely FFDNN-1, FFDNN-2, FFDNN-3 based on
different hyperparameter values, feature reduction, and data encoding techniques. Their
performances on the test data are 89%, 84%, and 87% respectively. Some important
performance indicators, namely, accuracy, true positive rate (TPR = recall), false-positive rate
(FPR), precision, F1 measure, and ROC area under the curve (AUC) are used as the bases to
judge the model's performance.

Considering overall performances of all models, the FFDNN-1 performed best with the highest
detection accuracy of 89% and precision of 91%, however, the precisions of the DT, RF, and
NB were quite high even though their detection accuracy were not above 80% except DT that
gave 81%. High precision indicates that the models are reliable compared to low precision that
can result in a lot of false positives as in the case of the KNN classifier. Another point to note
is that high recall does not necessarily mean the best performance, but rather higher F1-measure
shows that the model had performed very well. This is because the F1 measure takes into
account the harmonic mean of precision and recall, so it tells how accurate a model is. From
the results shown in Table 17 FFDNN-1 had an F1-measure of 90% which makes it the best
model, other FFDNN variants also had a high F1-measure when compared to the F1-measure
of the conventional machine learning algorithms.

Another important metric that shows that the FFDNNs performed well is their high ROC area
under the curve (AUC), FFDNN-1, FFDDN-2, and FFDNN-3 in Table 16 all had values of
95%, 86%, and 92% in that order. The higher the AUC value, the more optimal the model
becomes (note that 100% indicates a perfect model). Also, it is good to know that the primary
aim is to develop machine learning models that would maintain acceptable true positive rate

54

(TPR) or detection rate (DR) with low false alarm rate (FAR) or false positive rate (FPR),
looking at Table 13 and Table 16, you could see that DT, RF, and NB had very low FAR of
5%, 3% and 2% respective compared to FFDNNs 11%, 16%, and 13%. This is good even
though their detection rates were not as high as the FFDNNs, however, there could still be an
improvement in ensuring that the FFDNNs produce low FAR since they are scalable in terms
of architecture, but this would involve more computational cost.

I would like to point out that any variant of the feedforward deep neural network (FFDNN-1,
FFDNN-2, and FFDNN-3) has the capability as a classifier to classify network traffic intrusions
with a high detection rate while offering a reduced FAR, it only depends on the model design,
hyperparameters, and architecture.
Limitations in the ML approach for intrusion detection are high FAR and how to strike a balance
between false positive and false negative in terms of intrusion detection policies or profiling. I
believe this limitation can be solved by the development of a deeper neural network or the use
of another variant of a deep neural network like the convolutional deep neural network (CNN).

4.4 Recommendations
The recommendations are based on my observations while performing my experiments.

(1) The hyperparameters (batch size, number of epochs, etc) are very important factors to
consider with care when fine-tuning to avoid the deep neural network from overfitting
or underfitting during training.

(2) Acceptable parameters can be achieved by carefully observing the shape of a plot of
the training loss and validation loss rates, a plot of the training accuracy and validation
accuracy rates, and also the plot of the loss curve function during training of the model.

(3) During prediction on the test dataset, the ROC curve can be used to visualize the binary
classification of the DNN and to identify an ideal threshold that will yield optimal
performance.

(4) The lower the batch size, the higher the training time and slower the training model,
and vice versa.

(5) Improvement in the performance accuracy reduces the false positive (FP) & false
negative (FN).

55

(6) Increasing the width of the neural network, i.e the higher the neurons in the hidden
layers, the more parameter to be trained will increase, and this also improves the
accuracy, TP, TN, and reduces FP, FN.

(7) Increasing the depth of the neural network, i.e increasing the number of hidden layers
improves the statistical metrics.

56

5 Conclusion and Future work
In this thesis, Machine learning algorithms of binary classifiers applied to network intrusion
detection have been discussed. As I mentioned earlier in section 1.3 as part of the thesis
objectives, a deeper machine learning technique using the feedforward deep neural network
(FFDNN) was developed. I first review the IDS concepts and the different IDS methods. They
are followed by a discussion of some ML algorithms and their applications in network intrusion
detection. Based on some important statistical metrics namely accuracy, true positive rate
(TPR), false-positive rate (FPR), precision, F1 measure, and ROC area under the curve (AUC)
the machine learning algorithms were evaluated on the test dataset and the FFDNN performed
best with a performance accuracy of 89%. The conventional machine learning algorithms such
as DT, RF, and NB also performed well but slightly lesser with performance accuracy of
between 76% to 80%, however, had a low number of false alarms compared to FFDNN. The
FFDNN is scalable in terms of its architecture (depth and width of the neural network) and size
of the dataset which gives it an edge over the conventional machine learning, and therefore
there is a possibility that false alarms can further be reduced, though this would lead to
complexity in the model and high computational cost. During training, the training time in the
FFDNN is reduced as compared to conventional machine learning.

The FFDNN can be deployed in real life to tackle the menace of malicious attacks on network
activities. The experiments have demonstrated the effectiveness of the proposed technique in
terms of correct classification and true positive rates of network records, so this confirms that
the deep learning model would work efficiently to reduce the problem of false alarms. In the
cybersecurity world, threats are constantly increasing as attackers have continued to devise new
methods of attack daily. The deployment of the FFDNN in IDS will greatly help to tackle these
attacks as it can detect unknown and novel threats. Finally, this proposed deep learning model
is scalable which makes room for improvement to enhance its performance, so that as the
change (emergent of new threats) keeps occurring the model will keep adapting to those
changes.

In this thesis, the researcher conducted a binary classification using FFDNN on the NSL-KDD
dataset, the same procedure can be applied for multi-class classification. The researcher hopes
to continue his work in the future for the classification of the five different classes (Normal,
DoS, Probe, U2R, R2L) by the FFDNN model.

57

The NSL-KDD dataset has been used for this thesis work; however, it is relatively outdated and
may not cover many of today’s network threats. So, I intend to experiment using alternative
datasets in the future. Again, in today’s digital world, the increase in the usage of IoT devices

is constantly expanding the amount of data being generated on the network, it would not be
worthwhile developing intrusion detection system using the conventional ML methods, and the
increase in the complexity of the FFDNN to meet up this demand would consume
computational resources. So, it is necessary to continue the research by using the convolutional
deep neural network (CNN) and recurrent deep neural network (RNN) to build a deep learning
model for an intrusion detection system that would be more efficient than using a feedforward
deep neural network in terms of memory utilization, speed, and accuracy. The CNN deep neural
network has the capability of automatic feature selection to select the best features from the
dataset that would enhance the deep neural network performance, in like manner, the RNN is a
time-variant deep neural network that will be very useful in automating an IDS to detect
network intrusions in real-time.

58

References
[1] Macas, Mayra, and Chunming Wu. "Deep Learning Methods for Cybersecurity and

Intrusion Detection Systems." 2020 IEEE Latin-American Conference on
Communications (LATINCOM). IEEE, 2020.

[2] Liu, Hongyu, and Bo Lang. "Machine learning and deep learning methods for

intrusion detection systems: A survey." applied sciences 9.20 (2019): 4396.
https://doi.org/10.3390/app9204396.

[3] Alghamdi, Mohammed I. "Survey on Applications of Deep Learning and Machine

Learning Techniques for Cyber Security." International Journal of Interactive Mobile
Technologies 14.16 (2020). https://doi.org/10.3991/ijim.v14i16.16953. [Accessed
25.04.2021].

[4] Microsoft Security Intelligence Report Special Edition 10 Year Review Key Findings

Summary, https://www.studocu.com/fi/document/turun-yliopisto/system-application-
and-security/tiivistelmat/microsoft-security-intelligence-report-special-edition-10-
year-review-key-findings-summary/3091316/. [Accessed 02.04.2021].

[5] Vizitiu, Anamaria, et al. "Applying deep neural networks over homomorphic

encrypted medical data." Computational and mathematical methods in medicine 2020
(2020). https://doi.org/10.1155/2020/3910250.

[6] Tariq, Muhammad Imran, et al. "A review of deep learning security and privacy

defensive techniques." Mobile Information Systems 2020 (2020).
https://doi.org/10.1155/2020/6535834.

[7] Berman, Daniel S., et al. "A survey of deep learning methods for cybersecurity."

Information 10.4 (2019): 122. https://doi.org/10.3390/info10040122.

[8] Akbari Roumani, M., et al. "Value analysis of cybersecurity based on attack types."

ITMSOC: Transactions on Innovation and Business Engineering 1 (2016): 34-39.

https://doi.org/10.3390/app9204396
https://doi.org/10.3991/ijim.v14i16.16953.%20%5bAccessed%2025.04.2021
https://doi.org/10.3991/ijim.v14i16.16953.%20%5bAccessed%2025.04.2021
https://www.studocu.com/fi/document/turun-yliopisto/system-application-and-security/tiivistelmat/microsoft-security-intelligence-report-special-edition-10-year-review-key-findings-summary/3091316/.%20%5bAccessed%2002.04.2021
https://www.studocu.com/fi/document/turun-yliopisto/system-application-and-security/tiivistelmat/microsoft-security-intelligence-report-special-edition-10-year-review-key-findings-summary/3091316/.%20%5bAccessed%2002.04.2021
https://www.studocu.com/fi/document/turun-yliopisto/system-application-and-security/tiivistelmat/microsoft-security-intelligence-report-special-edition-10-year-review-key-findings-summary/3091316/.%20%5bAccessed%2002.04.2021
https://doi.org/10.1155/2020/3910250
https://doi.org/10.3390/info10040122

59

[9] Li, Jie, et al. "Machine learning algorithms for network intrusion detection." AI in
Cybersecurity (2019): 151-179. https://doi.org/10.1007/978-3-319-98842-9_6
[Accessed 09.05.2021].

[10] Dua, Sumeet, and Xian Du. Data mining and machine learning in cybersecurity. CRC

press, 2016., Introduction, Pg.1-114.

[11] Bhattacharyya, Dhruba Kumar, and Jugal Kumar Kalita. Network anomaly detection:

A machine learning perspective. Chapman and Hall/CRC, 2019.

[12] Bioinformatics Web Development, “Internet and Networks”, cellbiol.com [Online]

Available: http://www.cellbiol.com/bioinformatics_web_development/chapter-1-
internet-networks-andtcp-ip/the-tcpip-family-of-internet-protocols/ [Accessed:17 July.
2021].

[13] Li, Yadong, et al. "Research based on OSI model." 2011 IEEE 3rd International

Conference on Communication Software and Networks. IEEE, 2011. doi:
10.1109/ICCSN.2011.6014631.

[14] Wang, Jie, and Zachary A. Kissel. Introduction to network security: theory and practice.

John Wiley & Sons, 2015.

[15] Depren, Ozgur, et al. "An intelligent intrusion detection system (IDS) for anomaly and

misuse detection in computer networks." Expert systems with Applications 29.4
(2005): 713-722. https://doi.org/10.1016/j.eswa.2005.05.002. Accessed 25.07.2021.

[16] Weaver, Randy, Dawn Weaver, and Dean Farwood. Guide to network defense and

countermeasures. Cengage Learning, 2013.

[17] Sarker, Iqbal H., et al. "Cybersecurity data science: an overview from machine

learning perspective." Journal of Big data 7.1 (2020): 1-29.
https://doi.org/10.1186/s40537-020-00318-5.

https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1016/j.eswa.2005.05.002.%20Accessed%2025.07.2021
https://doi.org/10.1186/s40537-020-00318-5

60

[18] Vinayakumar, Ravi, et al. "Deep learning approach for intelligent intrusion detection
system." IEEE Access 7 (2019): 41525-41550. Doi: 10.1109/ACCESS.2019.2895334.
[Accessed 25.04.2021].

[19] Thomas, Tony, Athira P. Vijayaraghavan, and Sabu Emmanuel. Machine learning

approaches in cybersecurity analytics. Springer, 2020, https://doi.org/10.1007/978-
981-15-1706-8.

[20] Alpaydin, Ethem. Introduction to machine learning. Third edition, MIT press, 2020.

[21] Xin, Yang, et al. "Machine learning and deep learning methods for cybersecurity."

Ieee access 6 (2018): 35365-35381. Doi: 10.1109/ACCESS.2018.2836950.

[22] Ingre, Bhupendra, Anamika Yadav, and Atul Kumar Soni. "Decision tree-based

intrusion detection system for NSL-KDD dataset." International conference on
information and communication technology for intelligent systems. Springer, Cham,
2017.

[23] Azad, Chandrashekhar, and Vijay Kumar Jha. "Genetic algorithm to solve the problem

of small disjunct in the decision tree-based intrusion detection system." International
Journal of Computer Network and Information Security 7.8 (2015): 56-71.

[24] Kamarudin, Muhammad Hilmi, et al. "Packet header intrusion detection with binary

logistic regression approach in detecting R2L and U2R attacks." 2015 Fourth
International Conference on Cyber Security, Cyber Warfare, and Digital Forensic
(CyberSec). IEEE, 2015. Doi: 10.1109/CyberSec.2015.28.

[25] Gao, Meijuan, Jingwen Tian, and Mingping Xia. "Intrusion detection method based on

classify support vector machine." 2009 Second International Conference on Intelligent
Computation Technology and Automation. Vol. 2. IEEE, 2009. Doi:
10.1109/ICICTA.2009.330.

https://doi.org/10.1007/978-981-15-1706-8
https://doi.org/10.1007/978-981-15-1706-8

61

[26] Jiang, Jiaqi, et al. "A new intrusion detection system using class and sample weighted
C-support vector machine." 2011 Third International Conference on Communications
and Mobile Computing. IEEE, 2011. Doi: 10.1109/CMC.2011.101.

[27] Atefi, Kayvan, Habibah Hashim, and Murizah Kassim. "Anomaly analysis for the

classification purpose of intrusion detection system with K-nearest neighbors and deep
neural network." 2019 IEEE 7th Conference on Systems, Process and Control
(ICSPC). IEEE, 2019. Doi: 10.1109/ICSPC47137.2019.9068081.

[28] Almukaynizi, Mohammed, et al. "Patch before exploited: An approach to identify

targeted software vulnerabilities." AI in Cybersecurity. Springer, Cham, 2019. 81-113.
https://doi.org/10.1007/978-3-319-98842-9_4.

[29] Sharmila, B. S., and Rohini Nagapadma. "Intrusion Detection System using Naive

Bayes algorithm." 2019 IEEE International WIE Conference on Electrical and
Computer Engineering (WIECON-ECE). IEEE, 2019. Doi: 10.1109/WIECON-
ECE48653.2019.9019921.

[30] Zhang, Jiong, Mohammad Zulkernine, and Anwar Haque. "Random-forests-based

network intrusion detection systems." IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38.5 (2008): 649-659. Doi:
10.1109/TSMCC.2008.923876.

[31] Guowei, Z. H. U., et al. "Research on network intrusion detection method of power

system based on random forest algorithm." 2021 13th International Conference on
Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2021. Doi:
10.1109/ICMTMA52658.2021.00087.

[32] Hagan, Martin T., Howard B. Demuth, and Mark Beale. Neural network design. PWS

Publishing Co., 1997. (2nd Edition). [Online]. Available
http://www.hagan.Okstate.edu/NNDesign.pdf . [Accessed 26.06.2021]

https://doi.org/10.1007/978-3-319-98842-9_4
http://www.hagan.okstate.edu/NNDesign.pdf

62

[33] Sani, Yusuf, et al. "An overview of neural networks use in anomaly intrusion detection
systems." 2009 IEEE Student Conference on Research and Development (SCOReD).
IEEE, 2009. Doi: 10.1109/SCORED.2009.5443289.

[34] Alla, Sridhar, and Suman Kalyan Adari. Beginning anomaly detection using Python-based

deep learning. New Jersey: Apress, 2019.

[35] Geetha, R., and T. Thilagam. "A review on the effectiveness of machine learning and

deep learning algorithms for cyber security." Archives of Computational Methods in
Engineering 28.4 (2021): 2861-2879. https://doi.org/10.1007/s11831-020-09478-2.

[36] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification

with deep convolutional neural networks." Advances in neural information processing
systems 25 (2012): 1097-1105.

[37] Ravichandiran, Sudharsan. Hands-on deep learning algorithms with python: master

deep learning algorithms with extensive math by implementing them using tensorflow.
Packt Publishing Ltd, 2019.

[38] Bhagwat, Ritesh, Mahla Abdolahnejad, and Matthew Moocarme. Applied deep

learning with keras: Solve complex real-life problems with the simplicity of keras.
Packt Publishing Ltd, 2019.

[39] Galea, Alex, and Luis Capelo. Applied Deep Learning with Python: Use scikit-learn,

TensorFlow, and Keras to create intelligent systems and machine learning solutions.
Packt Publishing Ltd, 2018.

[40] Salama, Mostafa A., et al. "Hybrid intelligent intrusion detection scheme." Soft

computing in industrial applications. Springer, Berlin, Heidelberg, 2011. 293-303.

[41] Alom, Md Zahangir, VenkataRamesh Bontupalli, and Tarek M. Taha. "Intrusion

detection using deep belief networks." 2015 National Aerospace and Electronics
Conference (NAECON). IEEE, 2015. Doi: 10.1109/NAECON.2015.7443094. [Access
27.04.2021].

https://doi.org/10.1007/s11831-020-09478-2

63

[42] Alazab, Mamoun, and MingJian Tang, eds. Deep learning applications for cyber

security. Springer, 2019. https://doi.org/10.1007/978-3-030-13057-2_5. [Access
28.04.2021].

[43] Kim, Jihyun, et al. "Long short-term memory recurrent neural network classifier for

intrusion detection." 2016 International Conference on Platform Technology and
Service (PlatCon). IEEE, 2016. Doi: 10.1109/PlatCon.2016.7456805. [Access
28.04.2021].

[44] Kasongo, Sydney Mambwe, and Yanxia Sun. "A deep learning method with filter-

based feature engineering for wireless intrusion detection system." IEEE Access 7
(2019): 38597-38607. Doi: 10.1109/ACCESS.2019.2905633. [Access 28.04.2021].

[45] Naseer, Sheraz, et al. "Enhanced network anomaly detection based on deep neural

networks." IEEE access 6 (2018): 48231-48246. Doi:
10.1109/ACCESS.2018.2863036. [Accessed 28.04.2021].

[46] University of New Brunswick, “Canadian Institute for Cybersecurity” NSL-KDD

dataset [Online] Available: https://www.unb.ca/cic/datasets/nsl.html. [Accessed
23.04.2021].

[47] Tavallaee, Mahbod, et al. "A detailed analysis of the KDD CUP 99 data set." 2009

IEEE symposium on computational intelligence for security and defense applications.
IEEE, 2009. Doi: 10.1109/CISDA.2009.5356528.

[48] Dhanabal, L., and S. P. Shantharajah. "A study on NSL-KDD dataset for intrusion

detection system based on classification algorithms." International journal of
advanced research in computer and communication engineering 4.6 (2015): 446-452.
DOI: 10.17148/IJARCCE.2015.4696. [Accessed 23.04.2021].

[49] Jeya, P. Gifty, M. Ravichandran, and C. S. Ravichandran. "Efficient classifier for R2L

and U2R attacks." International Journal of Computer Applications 45.21 (2012): 28-
32.

https://doi.org/10.1007/978-3-030-13057-2_5
https://www.unb.ca/cic/datasets/nsl.html

64

[50] Ali, Peshawa Jamal Muhammad, et al. "Data normalization and standardization: a

technical report." Mach Learn Tech Rep 1.1 (2014): 1-6. DOI:
10.13140/RG.2.2.28948.04489. [Accessed 13.05.2021].

65

Appendices
Appendix 1: FFDNNs Model in Keras Sequential API

FFDNN-1 Model

FFDNN-2 Model

FFDNN-3 Model

66

Appendix 2: Summary of FFDNNs Trainable Parameters

FFDNN-1

FFDNN-2

FFDNN-3

The higher the trainable parameters
(weights and biases), the more
complex the deep neural network
becomes

