
Quantum Key Distribution in OpenSSL

Master of Science in Technology
Thesis
University of Turku
Department of Computing
Security of Networked Systems
November 2021
Aurora Papotti

Supervisors:
Petri Sainio
Seppo Virtanen

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Aurora Papotti: Quantum Key Distribution in OpenSSL

Master of Science in Technology Thesis, 53 p.
Security of Networked Systems
November 2021

Most of the current communications and systems rely on asymmetric cryptography,
which is used to share a unique secret key between two parties communicating, in
order to encrypt the information exchanged.

Recently, many researchers state that quantum computing will be a threat in 15-20
years. At the moment there is no quantum computer able to crack classical
cryptography, however, a solution to address the threat should be found as soon as
possible before classical cryptography reaches its expiration date, and all
communications and systems will be cracked.

Quantum cryptography is considered a problem, but from another perspective, it is
also the solution to it. In fact, this technology is strong enough to protect both from
quantum and classical attacks. Quantum cryptography is considered secure because
it is based on quantum physics laws.

The benefits of quantum cryptography, combined with the ones of symmetric
cryptography offer an alternative solution to the Key Exchange problem:
Quantum Key Distribution (QKD). The technology is a protocol that describes a
cryptographic technique to exchange a secret key between two end
users/applications within a communication.

This thesis starts by presenting the quantum threat, and the reasons that make
quantum computing risky for classical communications and systems. Moreover, it
states the importance to invest resources in this field of research in order to find a
solution to address the problem once it will be a real risk.

Finally, I explain my contribution to Cefriel activities in the context of Quantum
Key Distribution. The internship activity described is a demonstrative approach to
integrate QKD technology into the OpenSSL library. The project aims to
demonstrate the effectiveness and the feasibility of using QKD technology in SSL
communications.

Keywords: Asymmetric Cryptography, Symmetric Cryptography, Quantum
Cryptography, Quantum Key Distribution, TLS/SSL, OpenSSL

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 3

1.3 Overview . 4

2 The Quantum Threat 6

2.1 The current state of cryptography . 6

2.2 Brief History of Quantum Cryptography 8

2.3 Why quantum cryptography is a threat to classical cryptography . . . 9

2.4 Quantum threat solution . 12

2.4.1 Post-Quantum Cryptography 13

3 Quantum Key Distribution 15

3.1 Quantum computing and symmetric cryptography 15

3.2 What is Quantum Key Distribution 18

3.3 Quantum Key Distribution networks 20

3.4 The limits of Quantum Key Distribution 21

4 QKD in OpenSSL 23

4.1 TLS/SSL . 24

4.1.1 Workflow . 25

i

4.2 OpenSSL . 30

4.3 The ETSI QKD API . 30

4.3.1 QKD Application Interface Specification Description 31

4.3.2 QKD Application Interface API Specification 33

4.4 Implementing QKD in OpenSSL . 34

4.4.1 Approaches to add QKD support to OpenSSL 36

4.5 Hacking the OpenSSL Diffie-Hellman engine to add QKD 40

4.5.1 The qkd_engine_client.c file 42

4.5.2 The qkd_engine_server.c file 43

4.5.3 The qkd_engine_utils.c file 45

4.6 QKD + OpenSSL Workflow . 46

4.7 Encountered Challenges and Limitations 49

5 Conclusion 51

5.1 Future works . 52

5.2 Future Collaborations . 53

References 54

ii

1 Introduction

Technology is a powerful tool that helped us in developing as a society. Many

services, such as bank transaction, messaging services and online shopping, with

the progress of the Internet became digitalised, and this evolution introduced many

benefits but also it brought a new challenge: guarantee the secrecy of the information

exchanged, and stored.

Over the last years, cryptography allowed us to protect ourselves from

malicious attackers. Many services rely on a type of cryptography called

asymmetric cryptography, which is used to share a secret key between two

communicating parties that aim to exchange information secretly over an insecure

channel. This kind of cryptography has always been enough to guarantee security,

until the advent of Quantum Cryptography. The latter is based on quantum

physics laws, and many researchers state that it may be a threat to our current

cryptographic systems because it is more powerful. Quantum Cryptography is

considered a huge problem, however, from a different perspective it is also the

solution to it. In fact, quantum cryptography is secure against both "classical"

attacks and quantum attacks.

In the context of cyber security one of the biggest challenge is the Key Agreement

Problem: exchange a secret key between two users without being intercepted by an

eavesdropper. Charles Bennett and Gilles Brassard took advantage of the quantum

computing’s benefits to propose Quantum Key Distribution: a protocol describing

CHAPTER 1. INTRODUCTION 2

a new and secure cryptographic solution to the problem of exchanging a secret key

without being intercepted.

This thesis describes my contribution to Cefriel activities in the context of

Quantum Key Distribution. Cefriel, with the collaboration of Italtel, the

Polytechnic of Madrid, Telefonica, the Polytechnic of Milan, and CNR,

participated in the Quantum-Secure Net1 EIT Digital funded project in 2020. The

objective of the project was to develop a simple and flexible solution for

unconditionally insecure communication systems based on QKD technology, to

make them work with actual metropolitan networks based on optical fiber. Cefriel

developed two prototypal scenarios to demonstrate the usage of QKD technology:

• One scenario describes the usage in Blockchain context

• The other scenario describes the usage in SSL context.

Both scenarios aim to demonstrate that QKD technology can be applied both

to the finance market, and IoT (Internet of Things) or IIoT (Industrial IoT)

communications. On a broader level, the project can be adapted to any services or

technologies that need a symmetric key.

During my internship activity, I focused on the usage of Quantum Key

Distribution in the scenario of SSL, the aim was to use a QKD key as a pre-shared

key for the SSL protocol. Over the last 6 months, I implemented a dynamic library

to extend the OpenSSL library and to add support for the QKD technology. The

activity has been simulated through an ETSI 004 simulator implemented by the

University of Madrid to retrieve a QKD key, which is used as a secret key between

two parties communicating.

The thesis is divided into two parts. The first part of the thesis gives an insight

into the current state of classical cryptography and quantum cryptography. In

1https://www.eitdigital.eu/fileadmin/files/2020/factsheets/digital-tech/EIT-D

igital-Factsheet-Q-Secure-net.pdf

https://www.eitdigital.eu/fileadmin/files/2020/factsheets/digital-tech/EIT-Digital-Factsheet-Q-Secure-net.pdf
https://www.eitdigital.eu/fileadmin/files/2020/factsheets/digital-tech/EIT-Digital-Factsheet-Q-Secure-net.pdf

CHAPTER 1. INTRODUCTION 3

particular, I described the cryptographic techniques which most services depend

upon to offer security, highlighting their weakness against quantum computing.

Moreover, I state the reasons why we should invest money and resources in the

research of quantum cryptography. In conclusion, the second part of the thesis

describes my internship activity at Cefriel, therefore, the implementation and

design choices of my solution to introduce QKD technology in the OpenSSL

library, the limitations of the solution, and some ideas for future works.

1.1 Motivation

This thesis aims to inform the reader about the quantum cryptography threat.

The current cryptographic techniques are considered weak against this new

technology, at the moment there are only theoretical demonstrations, however, it is

important to perform researches in order to be ready when the risk will become

practical. Government, industry, and academia are investing resources in projects

to find solutions to the problem of quantum computing. Among the different

projects, we find two main technologies: Quantum Key Distribution and

Post-Quantum Cryptography. This thesis focuses on the description of the first

technology, in particular, it proposes a solution to demonstrate an approach to add

Quantum Key Distribution support in the OpenSSL library. This solution does

not aim to offer a go-to-market product, however, it shows the effectiveness of

integrating the quantum technology into a widely used protocol such as TLS/SSL.

1.2 Contributions

This thesis brings contributions to Cefriel activities in the context of Quantum

Key Distribution. Last year Cefriel participated in the Quantum-Secure Net EIT

funded project, and they developed two prototypal scenarios to demonstrate possible

CHAPTER 1. INTRODUCTION 4

usages of QKD technology: (i) one scenario shows its usage with Blockchains, (ii)

the other shows its usage in SSL communications. During my internship activity,

I had the opportunity to focus on the latest scenario. In this thesis, I demonstrate

the effectiveness of integrating Quantum Key Distribution into one of the most used

open-source SSL implementations: the OpenSSL library.

This thesis cannot be considered a contribution to the OpenSSL library, and the

OpenSSL community. The project here described involves the implementation of

a dynamic library that is loaded during the configuration of the OpenSSL library,

which means, it is an independent third party from the main library, the support of

the library’s community is not involved. I made this implementation choice in order

not to modify the source code, and take advantage of the maintenance and update

of the OpenSSL library from the OpenSSL maintainers.

Chapter 4 describes in detail the implementation and design choices made,

explaining the reasons for each choice. Moreover, in this part of the thesis, I state

the limitations of my work, giving possible ideas for future developments and

progresses.

1.3 Overview

This thesis gives a background about classical cryptography and quantum

cryptography, and it describes the problem of the current cryptographic

techniques’ weakness against the threat of quantum computing. In addition, a

personal internship activity is described to demonstrate a possible solution to the

problem. This work is organized as follow:

• Chapter 2 introduces some basic notions about classical cryptography and

quantum cryptography. Moreover, it explains the quantum threat problem

and the reasons we should invest in this research to find solutions in order to

CHAPTER 1. INTRODUCTION 5

be ready for possible future attacks.

• Chapter 3 describes the Quantum Key Distribution protocol. I decided not to

focus on the implementation details of different protocols because I think it

was unnecessary for the purposes of the thesis, a general overview is enough

to understand the proposed work.

• Chapter 4 described my Internship activity at Cefriel. The reasons and

objectives of the project are described to begin with. In addition a general

background about TLS/SSL protocol, OpenSSL library, and ETSI APIs is

provided, in order to understand the technologies involved in the project. In

conclusion, I describe in detail the implementation choices made to develop

the proposed solution.

• Chapter 5 concludes this work with some final remarks and personal insights.

In addition, some ideas for possible future work are proposed.

2 The Quantum Threat

The first section of this chapter describes the current state of cryptography and

the classical cryptographic techniques. Most of the current systems are based on

asymmetric cryptography, therefore, a general overview about about this kind of

cryptography is given with the aim of helping the reader to fully understand the

context of this work.

Section 2.2 describes the birth of Quantum Cryptography with the purpose of

introducing the problem presented in Section 2.3: the Quantum Threat. Moreover,

Section 2.3 intends to warn the reader about the risks with quantum computing,

highlighting the importance of investing money and resources to study this

technology, and find appropriate solution to the problem.

Section 2.4 introduces two technologies that are research’s subject to address

the problem of quantum attacks. The two technologies described in this section are

Post-Quantum Cryptography, and Quantum Key Distribution.

2.1 The current state of cryptography

Everyone uses Internet to send messages, perform online transactions, and buy

online. All these tasks need a security mechanism in order to protect and keep

secret the information exchanged and stored for each user. When you open a new

chat on a messaging service like WhatsApp, have you ever noticed the message

"This conversation is end-to-end encrypted"?. This means that the conversation is

CHAPTER 2. THE QUANTUM THREAT 7

readable only for the two parties communicating, there are no third parties able to

intercept the messages, and cryptography is accountable for making this happens.

Most of the current services are built upon cryptography to encrypt sensible

information/data; in particular, they are based on a type of cryptography which is

defined as public-key cryptography. The core function of public-key

cryptography (or asymmetric cryptography), resides in the use of a pair of

keys: a public key (which is is known to everyone), and a private key (which is

known only to the owner’s key). The generation of such keys is based on

mathematical problems defined as one-way functions [1]. A one-way function is a

function that is easy to compute given the input, but hard to compute in the

opposite side given the output. An example of such problems is the prime

factorization: it is easy to multiply two prime numbers, but it is really difficult to

compute the decomposition of a number to find the prime numbers that compose

it. If a person, or a computer, is able to solve these "hard" mathematical

problems, then they are able to bypass the security mechanism. Most of the

problems used in public-key cryptography are based on prime factorization (e.g.

RSA), discrete logarithm (e.g. Diffie-Hellman), and elliptic curve (e.g. ECC).

Although these algorithms are different from each other, they are based on a

unique broader problem: the hidden abelian group.

In order to crack a pure cryptographic system1 an attacker has two possibilities:

• Brute force attack: try all the possibilities to determine the right key that is

able to decrypt the message. This kind of attack takes time, which usually

depends on the key’s length. A brute force attack is always successful, however,

time is a big limitation for the attacker, which makes this attack inefficient.

• Finding the solution to the mathematical problem: this "attack" depends

strongly on the robustness of the one-way function. In particular, we define

1With the term pure I mean a system based on modern (classical) cryptography.

CHAPTER 2. THE QUANTUM THREAT 8

unconditional computational security problems as those problems that

are impossible to solve no matter the attacker’s computational power. In

contrast, practical computational security problems are quite impossible

to solve with the current resources but may be easily breakable in the future [2].

2.2 Brief History of Quantum Cryptography

We have recently heard about Quantum Cryptography, and how it is slowly

becoming a threat to our system. Many researchers have claimed that in the

future (by now, not a too distant future) quantum computers will be able to

exploit modern cryptography [3] (this aspect is described in Section 2.3). Firstly, I

want to introduce quantum cryptography with a brief history of its origin.

Stephen Wiesner and Charles Bennett were two undergraduate students at

Brandeis University in the early 1960’, later the lives of the two students took

different ways. Wiesner graduated from Columbia University, and Bennett from

Harvard, despite this, they managed to keep in touch and meet regularly at the

latter’s communal house in Boston. One day Wiesner talked with Bennett about

his idea: using quantum mechanisms in banknotes, making it impossible to

counterfeit them according to the laws of nature. Wiesner’s idea was based on the

use of a quantum multiplexing channel, where one party could send two messages

to the receiving party in a way that would allow the latter to decide which message

to read, at the cost to destroy the other message irreversibly. The idea is described

in the paper Conjugate Coding [4], Wiesner tried to submit it to the IEEE

Transactions on Information Theory2, unfortunately, the article was rejected [5].

One day in late October 1979, at the 20th IEEE Symposium on the

Foundations of Computer Science, held in Puerto Rico, Charles Bennett mentioned

2https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18

CHAPTER 2. THE QUANTUM THREAT 9

Wiesner’s idea to Gilles Brassard. The latter was scheduled to give a talk on

relativized cryptography, therefore, Bennett thought Brassard might be interested

in Wiesner’s findings [6]. The two researchers discovered how to incorporate the

idea of Wiesner: "The main breakthrough came when we realized that photons were

never meant to store information, but rather to transmit it" [7]. Bennett and

Brassard published the first ever paper on quantum cryptography, the article was

simply titled Quantum Cryptography and it was presented at Crypto ’82 annual

conference [8]. This publication raised interest in the original Wiesner’s paper,

which was finally published in 1983 on SIGACT News3. Finally in 1984, Bennett

and Brassard, building upon their work, proposed BB84, a method for secure

communication [5] [9].

2.3 Why quantum cryptography is a threat to

classical cryptography

The classical cryptography based on asymmetric encryption has always been

enough to protect systems from malicious attackers, but the evolution of quantum

cryptography is endangering the entire modern cryptographic system. At the

beginning, the quantum threat was considered only a theory, in fact, despite the

quantum algorithm for integers factorization developed by Peter Shor [10], with

the potential to decrypt RSA-encrypted communications [11], and several

experimental progresses since the late 1990s, many researchers believed that

"fault-tolerant quantum computing is still a rather distant dream" [12]. In contrast,

over the last years investment in quantum computing research has increased [13],

and as result, Google AI, in partnership with the U.S. National Aeronautics and

Space Administration (NASA), on the 23rd October 2019, claimed to have

3https://dl.acm.org/newsletter/sigact

https://dl.acm.org/newsletter/sigact

CHAPTER 2. THE QUANTUM THREAT 10

achieved quantum supremacy [14]. Moreover, in February 2019, IBM

commercialized IBM Q System One, the first remotely usable quantum computer.

Quantum cryptography is based on quantum physics’ laws. We all know the

bit, the unit information in binary computing, which can assume the value 0 or

1, representing two distinct tension levels. Instead, in quantum computing the unit

information is the qubit, whose value is a combination of 0 and 1, and may represent

the spin of the electron, or the polarization of a single photon [15].

Quantum computers are faster and powerful, they are able to solve some kinds

of problems more efficiently. According to some researches, the Shor algorithm, and

other quantum algorithms, show that the time required to decrypt the keys used in

asymmetric encryption increases slightly at the extension of cryptographic keys. A

practical example could be the hidden abelian group, this problem can be solved in

an exponential time with classical computing, instead, quantum computing is able

to solve it in a polynomial time, respect to the key’s length. All the algorithms

that are considered practical computational security (e.g. RSA, ECC, AES) can be

cracked in a time that is independent of the keys’ length; the computing power and

the time involved in the computation are normal [16] [17] [18].

At this point, we have to ask our-self: why do we need to invest in quantum

research? Most of the researches show theoretical attacks, but the hypothesis that

a quantum computer with enough power to exploit the modern cryptography will

be created, is raising interest in this field of research. Moreover, while quantum

cryptography is considered the threat on one side, it is also the weapon against

it. In fact, quantum cryptography is secure against both classical and quantum

attacks. However, there are some limitations with quantum cryptography: (i) both

parties involved in a communication, need to have access to a quantum computer,

(ii) that is quite expensive at the moment, therefore, it is inefficient and not very

feasible [19]. Quantum cryptography is at an intermediary-advanced stage, there

CHAPTER 2. THE QUANTUM THREAT 11

are already some practical uses of it, and it has made a lot of progress over the

years, however, its cost makes impracticable to absolutely replace all the modern

cryptographic systems. Although the use of quantum cryptography in all contexts is

something considered for a later future [20], there are several reasons why we should

study quantum cryptography:

• Quantum cryptography is a new science and technology: companies,

governments, and university are approaching it in different ways, therefore, it

is not possible to have an accurate time estimation of when quantum

computing will reach a level that will compromise the classical cryptographic

systems. However, we have to be prepared once a powerful quantum

computer will be created. We need to study, implement and test this new

technology now to be reactive to the future threat.

• The migration from a modern system to a new one is always a tough process, in

particular, when we are talking about cryptographic systems. Many years are

required to reach the transition to a new technology, or simply an update of an

algorithm. Moreover, many resources are involved: the entire infrastructure

needs to be changed, the developers need to be trained, and old applications

and new cryptographic standards need to be re-designed, not to mention the

deployment of the new solution.

• Until now we have talked about the protection of information exchanged

between two parties, but we should also be concerned about the protection of

stored data. Companies are storing a huge amount of data, that is encrypted

according to government legislation (e.g. GDPR). There are some data that

we can consider irrelevant, but others contain sensitive information, and the

main goal is to maintain their secrecy. This kind of data may include

personal or health information (personally identifiable information/personal

CHAPTER 2. THE QUANTUM THREAT 12

healthcare information PII/PHI), or government information, therefore, a

"lifetime" encryption is required.

2.4 Quantum threat solution

Currently, there is not a technology or a quantum computer that is capable of

cracking our codes-practical, therefore, it is impossible to estimate an expiration

date for the security of modern communications/systems. Nevertheless, many

experts insist that the time to act and be prepared is now. In particular, the

mathematician Michele Mosca of the Institute for Quantum Computing at the

University of Waterloo in Canada declares that the chance that quantum threat

will occur in 10 or 20 years is not a risk we can ignore, it is a threat to the global

economy, and a defense mechanism should be planned as soon as possible [21].

Previously, in Section 2.1, I mentioned that most of the modern cryptographic

systems on which we depend upon (e.g. to secure communications or to perform

online transactions), rely on hard mathematical problems to solve, such as prime

factorization, or discrete algorithms. These mathematical problems are the reason

that makes modern cryptography enough strong to protect ourselves from cyber

attacks. However, while these problems are impossible for today’s computers to

solve, it also leads to possible future risks. Imagine that an attacker is able to collect,

and store sensible information encrypted with classical cryptographic techniques; if

the attacker in 10 or 15 years manages to use a quantum computer, they will be

able to decrypt the data.

Government, industry, academia are investing money and resources to prepare

the world for this post-quantum era, in particular, Germany has invested €2 billion

in quantum computing and related technologies over five years, funding over seven

initiatives and incentivising collaboration between industry and academia [22].

The particularity of Quantum Cryptography is its dual role: (i) on one side is

CHAPTER 2. THE QUANTUM THREAT 13

considered a threat, (ii) on the other side it is the defense against both classical and

quantum attacks. Therefore, if quantum computers are considered a problem (they

can be used to break classical cryptography), they are also the solution for it (they

can be used to build strong cryptography). In particular, the protocol Quantum

Key Distribution was invented to address the problem of key agreement within a

communication. Quantum Key Distribution is explained in Chapter 3.

There is another project run by the U.S. National Institute of Standards and

Technology (NIST), that focuses on a different technology: Post-Quantum

Cryptography [23]. In the next section, I present Post-Quantum Cryptography.

2.4.1 Post-Quantum Cryptography

The main characteristic of quantum cryptography is its power, in fact, it is based

on quantum physics laws that make it unbreakable no matter how powerful the

computer owned by an attacker is. There is no computing power, or algorithm

that can crack this cryptography. Therefore, Quantum Cryptography is also being

studied as a solution to deal with the future quantum threat. However, there are

some side effects that make the use of Quantum Cryptography inefficient (at the

moment). Both parties within a communication need to have access to a quantum

computer, to begin with. In addition, the cost of this technology is still high, and it

is not affordable for everyone: this makes quantum cryptography impracticable and

inefficient.

Quantum Cryptography’s side effects have prompted the research to focus on

another type of cryptography: Post-Quantum Cryptography. This kind of

cryptography can be performed with classical computers, but it is considered

secure against attacks performed by quantum computers.

Section 2.3 describes public-key cryptography, which is based on mathematical

problems that are hard to solve, however, it has been proven theoretically that

CHAPTER 2. THE QUANTUM THREAT 14

modern cryptography can be cracked with Shor’s algorithm. Post-quantum

cryptography can be considered as classical cryptography because it can be

performed with classical computers, however, it is stronger than asymmetric

cryptography because it is based on different mathematical principles that are

difficult to solve even by a quantum computer. The terms quantum cryptography

and post-quantum Cryptography can be easily misunderstood, but these two

technologies have nothing in common; one needs a quantum computer to be

performed, and the other does not.

Some reliable post-quantum ciphers against Shor’s algorithm have been

implemented [24] [25], however, post-quantum cryptography lacks the adjective

unconditional computational security. It cannot be demonstrated that the

post-quantum cryptographic algorithms are unbreakable in a polynomial time [26].

Like public-key cryptography, there is no mathematical proof of the effectiveness of

this technology against quantum computers. Nevertheless, because of the

difficulties with quantum cryptography as a solution to the quantum threat, it is

interesting to investigate other types of solutions that can increase the security

level of the modern communications and systems a bit. In addition, post-quantum

cryptography fills the gap in the worst case scenario where the attacker is the only

party that can have access to a quantum computer, and the victim cannot have

access to it.

3 Quantum Key Distribution

This chapter begins with Section 3.1, which focuses on showing the benefits of

symmetric cryptography combined with those of quantum computing to obtain an

optimal cryptographic solution to the key agreement problem. The solution

described in this chapter, to address the quantum threat, is the Quantum Key

Distribution protocol, which is presented in Section 3.2. I decided not to describe

the different implementations of Quantum Key Distribution because I used this

technology as a "black-box" for my project. The main goal of my internship

activity was just to incorporate this technology into SSL communications.

Section 3.3 presents several implementations of Quantum Key Distribution

systems. These QKD networks have been developed by research institutes in

different countries, in order to demonstrate the effectiveness of QKD technology.

This section also aims to introduce some security issues that Quantum Key

Distribution has to deal with. In conclusion, these challenges are described in

Section 3.4.

3.1 Quantum computing and symmetric

cryptography

Until now we have taken into account only asymmetric cryptography, the attacks

we have mentioned do not concern symmetric cryptography (the same encryption

CHAPTER 3. QUANTUM KEY DISTRIBUTION 16

key is used by both sides). The theorem of Shannon developed in 1949

demonstrates that symmetric cryptography allows to obtain the perfect

secrecy [27]. The benefits of quantum cryptography combined with those of

symmetric cryptography, lead to a protocol for sharing an encryption key between

two parties in a secure manner: Quantum Key Distribution. Before discussing this

protocol, a brief recap of asymmetric cryptography and symmetric cryptography is

provided below.

Public-key cryptography guarantees confidentiality. In a scenario where one

party (Alice) wants to send a secret message to another (Bob), the workflow is as

follows:

1. Alice encrypts a message with Bob’s public key.

2. Alice sends the message to Bob.

3. Once Bob received the message, he uses his private key to decrypt the message.

The communication in this scenario is unidirectional, Alice is not able to read Bob’s

messages because she doesn’t know his private key. Asymmetric cryptography is

slower than symmetric cryptography, therefore, it is usually used to share a secret

key between two parties: Alice sends a message to Bob which is the secret key, the

latter is used to encrypt and decrypt all the communication between the two parties.

In Figure 3.1 there is a schema that summarizes the functionality of asymmetric

cryptography and symmetric cryptography.

The Key Establishment Mechanism (KEM), is the method by which

cryptography keys are exchanged, which is also the main challenge in symmetric

cryptography: exchanging the secret key between two parties without being

intercepted. Therefore, asymmetric cryptography is used in the initial phase of

communication to exchange the secret key without interference. A common

scheme used to share the secret key was initially proposed by Diffie Hellman [28],

CHAPTER 3. QUANTUM KEY DISTRIBUTION 17

Figure 3.1: At the top of the figure, symmetric encryption with the same key shared

between two parties. At the bottom, asymmetric encryption with two different keys:

the private key and the public key. The public key is used for the encryption and

the private key is used for the decryption.

CHAPTER 3. QUANTUM KEY DISTRIBUTION 18

now it is one of the foundations on which the SSL protocol is based.

3.2 What is Quantum Key Distribution

In Section 2.2 I briefly explained the story of quantum cryptography and the

Quantum Key Distribution (QKD) protocol invented by Charles Bennett and

Gilles Brassard in 1984. The protocol describes an alternative cryptographic

solution to the key agreement problem: sharing a secret key between two parties

without being intercepted. In contrast to public-key cryptography, QKD has been

demonstrated to be unconditionally secure [29][30].

Quantum Key Distribution takes advantage of the quantum properties of photons

to exchange a symmetric cryptographic key, which is used to encrypt messages

exchanged over a "traditional" channel. The security of QKD resides in the universal

natural laws that are reliable against any computing power, algorithm, or quantum

computer. One principle that guarantees secrecy with quantum cryptography is a

fundamental law of quantum cryptography: "it is impossible to gain information

about non-orthogonal quantum states without perturbing these states" [31]. This

means that the security in this kind of system resides in the event that an attacker

tries to intercept the information exchanged. If an eavesdropper, commonly called

Eve, tampers on the quantum channel connecting two legitimate users, Alice and

Bob, she will leave traces of errors in the key exchange. In this case, Alice and Bob

can decide whether to exchange a new key or interrupt the transmission.

Another benefit of QKD is related to information security, in fact, it is

demonstrated to be an information-theoretically-secure system, which means that

the system is unbreakable even if the attacker has unlimited computing power.

Since the security of a QKD system does not rely on difficult mathematical

problems to solve, the system is secure against both classical attacks and quantum

attacks.

CHAPTER 3. QUANTUM KEY DISTRIBUTION 19

The last, but not least, property that QKD benefits from when it is used to

generate several encryption keys in a row, is called forward-secrecy: all the different

keys that are exchanged over a QKD link are independent of each other. Therefore,

even if an attacker is able to compromise a key, he/she is not able to compromise all

the others. This characteristic is highly appreciated both for guaranteeing a higher

security level in networks, and for storing long-term data.

Basic principles of QKD

In this section, without going into details, I briefly describe the general structure

and the basic principle of a QKD system: the QKD link. A QKD link is a point-

to-point connection between two peers that want to exchange secret keys. A basic

implementation of a QKD link consists of:

• quantum channel: an optical fiber channel capable of transmitting quantum

information (qubit) between two users, Alice and Bob.

• classical channel: a classical communication channel that is public, but

authenticated, between the two parties to perform the phases after the secret

key is being exchanged.

• exchange key protocol: a protocol that takes advantage of quantum

properties to ensure security by detecting interceptions or errors, and

evaluating the amount of information lost or intercepted.

The workflow of a QKD system can be described as follows. Alice sends over

the quantum channel a sequence of non-orthogonal quantum states of light encoded

by a random stream of classical bits. Once Bob has received these quantum states,

he performs some measurements and shares some classical data correlated with

Alice’s random stream. Then, the classical channel is used to test the correlations

between Bob’s data and Alice’s data. High correlations statistically imply that no

CHAPTER 3. QUANTUM KEY DISTRIBUTION 20

Figure 3.2: Schema of a basic QKD system. The QKD link is composed by a

quantum channel, and a classical channel. Two users, Alice and Bob, communicate

by means of the QKD link to share a secret key.

eavesdropping has taken place on the quantum channel. In the opposite case, it is

necessary to abort the key generation process and start it again.

3.3 Quantum Key Distribution networks

Some research institutes over different countries invested enormous resources to

implement Quantum Key Distribution systems, in order to demonstrate the

effectiveness and feasibility of QKD technology. The first QKD network is the

DARPA quantum network, which was proposed by BBN Technologies in

collaboration with Harvard and Boston universities. DARPA quantum network

has 10 quantum nodes and adopts a hybrid network type (i.e., active optical

switch and trusted node networks) [32] [33].

In 2004, the project SECOQC QKD network was launched. This project

defines practical applications of QKD networks with the aim of analyzing QKD

networks’ issues, in particular security aspects, communication protocols, design

and architecture, and implementation methods [32] [34].

Another example is the Tokyo UQCC (Updating Quantum Cryptography and

Communication) QKD testbed network launched in Japan in October 2010. The key

CHAPTER 3. QUANTUM KEY DISTRIBUTION 21

distribution service of this QKD network was used to perform a live demonstration

of secure TV conferencing [32].

There are plenty of experiments and studies that provided beneficial results in

terms of the network framework, key generation rate, communication distance, and

routing protocol. However, Quantum Key Distribution presents some issues and

challenges and issues that need to be addressed; in particular, these issues involve

the security aspect. The most important security challenges that Quantum Key

Distribution has to deal with are:

• the lack of a point-to-multipoint mechanism in QKD networks.

• the lack of a suitable security interface between the classical end

users/applications and the quantum nodes.

3.4 The limits of Quantum Key Distribution

Quantum Key Distribution seems to perfectly guarantee the integrity of the keys,

however, it does not mean that unhackable communications are within our reach.

Section 3.3 describes several Quantum Key Distribution networks that have been

implemented over the last years. However, while QKD technology has many benefits,

it has to deal with some security issues that are subjects of research. The first major

issue is the lack of a point-to-multipoint mechanism in QKD networks, in fact, all the

QKD networks allow two remote end users/applications to distribute session keys,

providing a point-to-point key distribution service: there is no point-to-multipoint

mechanism [32].

Another issue is the lack of an adequate security interface between the classical

end users/applications and the quantum nodes. In Section 2.4, I mention the high

construction cost of quantum technology, which makes it unfeasible for an end

user/application to have access to a dedicated quantum node to access the service

CHAPTER 3. QUANTUM KEY DISTRIBUTION 22

implemented by a QKD network. Therefore, in order to have access to a quantum

node, several end users/application need to share one quantum node, which means

they still use a classical network to link a quantum node. It is important to design

a security mechanism for the communication between the end users/applications

and the quantum nodes [32].

Moreover, Quantum Key Distribution needs relays, which leads to another

weakness. When two communicating parties are far apart, the QKD networks need

repeaters to transmit messages, and these repeaters may be a hackable point. In

addition, the use of routers and hubs is necessary in QKD networks to route

messages, which makes them another weak point [35].

4 QKD in OpenSSL

Over the last 6 months, I contributed to Cefriel activities in the context of

Quantum Key Distribution (QKD). Cefriel participated in the Quantum-Secure

Net EIT Digital funded project in 2020. Its objective was the development of a

prototype of a QKD transmitter/receiver. The project, whose activity leader was

Italtel, included the Polytechnic of Madrid, Telefonica, the Polytechnic of Milan,

Cefriel, and CNR. The QKD is a secure communication method that involves key

distribution using quantum derivation techniques. Using this device, two entities

that want to share a message and want it to be accessible only to them can exploit

a particular type of key to ensure that no malicious third party has intercepted the

message. QKD is the only known encryption method that, under certain

conditions, and combined with a one-time pad, has unconditionally secured

encryption symmetric key protocol and offers forward secrecy. The objective of my

internship was to develop a complete software stack of an IPSEC/TLS over PSK

library, adapting existing open-source SSL implementation. The activity is

simulated through an ETSI 004 simulator.

This chapter begins with Section 4.1, which aims to give some basic notions of

TLS/SSL protocol, providing the reader with an overview of SSL communications.

Section 4.2 describes the OpenSSL library, the most popular open source

implementation of the SSL and TLS protocols. The Section 4.3 briefly introduces

the ETSI QKD APIs, then, how they should be implemented. These three sections

CHAPTER 4. QKD IN OPENSSL 24

aim to explain to the reader the technologies involved in the project, explained in

detail in the following sections of Chapter 4, in order to make easier the

comprehension of the presented work.

In Section 4.4 I explain the general structure of the project, and the different

approaches to introduce the QKD technology into the OpenSSL library. In

particular, I present the motivation of my implementation choices. The Section 4.5

describes in detail the structure of the project, and which procedure I followed to

implement it. In addition, Section 4.6 explains the workflow of the presented

solution, providing a working demonstration.

Finally, Section 4.7 aims to present the challenges encountered during the

development of this work, and the limitations of the final solution achieved.

4.1 TLS/SSL

Secure Sockets Layer protocol (SSL) was designed to provide secure

communications over a computer network. Nowadays, SSL is deprecated and its

successor Transport Layer Security (TLS) has replaced it. This protocol is mainly

used in all situations where application layer information needs to be end-to-end

encrypted before TCP transmission. For example, it is used as the security layer in

HTTPS, and in applications such as email, instant messaging, and voice over IP.

TLS was first proposed by Internet Engineering Task Force (IETF) in 1999, now,

the current version is TLS 1.3, and it was defined in August 2018. Before TLS, the

SSL protocol was developed by Netscape Communications with the goal of adding

the HTTPS protocol to their navigator web browser. Earlier SSL specifications were

helpful in implementing the TLS protocol.

SSL is obsolete, but since it is the first implementation of securing the application

layer messagges before transportation, and the later TLS is based on it, the two terms

are used interchangeably. However, the two protocols are different, in particular, the

CHAPTER 4. QKD IN OPENSSL 25

main difference relies on the level of security; TLS is an upgraded and more secure

version of SSL, therefore, it is widely used throughout the Internet. A server can

guarantee different versions of SSL and TLS, however, using the highest version of

the protocol is recommended to avoid vulnerabilities related to older versions (e.g.

SSL 3.0 or TLS 1.0). Today, when someone refers to the protocol with the term SSL

they actually mean TLS, in order to be consistent, through the section I will refer

to the subject protocol with the term TLS.

The purpose of the TLS protocol is to provide privacy and data integrity between

two or more communicating parties (e.g. computer applications). The protocol runs

on top of the transport layer in the TCP/IP model, and it consists of two layers:

the TLS record protocol, and the TLS handshake protocol.

4.1.1 Workflow

The protocol is used within a communication across a network between a Client-

Server application, the aim is to provide privacy and data integrity against tampering

and eavesdropping. As I mentioned previously, the protocol itself is the composition

of two layers: the TLS Record Protocol and the TLS Handshake protocol. At

the lowest layer the TLS Record Protocol is implemented , and it offers a secure

connection with two properties:

• Private connection: in order to guarantee secrecy, symmetric cryptography is

used for data encryption (e.g. AES, RC4, etc.). The keys are based on a

secret negotiated by the TLS Handshake Protocol, and they are unique for

each different connection.

• Reliable connection: a keyed MAC is included in the message to provide data

integrity. Secure hash functions (e.g. SHA-1, etc.) are used for MAC

computations. Moreover, the Record Protocol can operate without

encryption, differently, it cannot operate without a MAC.

CHAPTER 4. QKD IN OPENSSL 26

The TLS Record Protocol is an encapsulation of the higher protocols, such as

the TLS Handshake Protocol. The latter ensures authentication and negotiation

of encryption algorithms and cryptographic keys between server and client, before

the first byte of data is transmitted or received by the application protocol. The

connection security provided by the Handshake Protocol has three properties:

• The peer’s identity is authenticated by means of asymmetric (public key)

cryptography (e.g. RSA, DSA, etc.). Authentication may be optional but is

required at least for one of the peers.

• The shared secret negotiated between the client and the server is inaccessible

to eavesdroppers. Even if an attacker who is able to place himself in the middle

of the communication, he is not able to obtain the shared secret.

• There is no attacker who can modify the negotiation without being detected

by the communicating parties. Therefore, the negotiation is reliable.

In the next two sections, I briefly explain the TLS Record Protocol and the TLS

Handshake Protocol.

TLS Record protocol

Once the Record Protocol has received the data from the application layer, several

operations are performed:

1. Fragmentation: the data is fragmented into blocks. A sequence number is

added to each block to protect against attacks that attempt to reorder data.

2. Compression: the data is compressed according to the algorithm negotiated

during the handshake phase.

3. Add MAC: a MAC is applied to the data to guarantee data integrity of the

outgoing messages.

CHAPTER 4. QKD IN OPENSSL 27

4. Encryption: the data is encrypted using the cryptographic keys and

algorithms negotiated during the handshake phase.

5. Append TLS Record Header: a TLS Record Protocol header is applied to

the data.

As final step, the data is sent to the TCP protocol of the transport layer for

the transmission. In case the data is an incoming message, the reverse process in

performed.

TLS Handshake protocol

The TLS Handshake Protocol’s aim is to negotiate the security parameters (e.g.

encryption keys and cryptographic algorithms) of a data transfer session. It consists

of a series of sequential messages; the procedure (shown in Figure 4.1) describes a

basic handshake with only the server authenticated (the client is not authenticated).

The provided description refers to TLS 1.2 handshake.

1. Client Hello (client): the client starts the TLS handshake with a ClientHello

message specifying:

• the highest TLS protocol version supported by itself

• a list of supported cipher suites and compression methods

• a random number

• a session ID in case a client attempts to perform a resumed handshake

2. Server Hello (server): the server replies with a ServerHello message

specifying:

• the chosen protocol version: it should be the highest that both client and

server support.

CHAPTER 4. QKD IN OPENSSL 28

• the chosen cipher suite and compression method from the list offered by

the client.

• a random number

• a session ID to allow or confirm a resumed handshake.

3. Server Certificates (server): the server sends his digital certificate to prove

its identity.

4. Server Hello Done (server): a ServerHelloDone message is sent by the server

to indicate the negotiation handshake is done.

5. Client Key Exchange Message (client): this message sent by the client

may contain a PreMaster secret, which is encrypted using the server’s public

key.

6. Key Generation (client/server): The client and the server use the random

numbers and the PreMaster secret to generate a master secret. All the

symmetric encryption keys, or session keys, used in this connection are

obtained from the master secret.

7. Cipher Spec. Exchange (client): this message notifies the server that all the

following messages will be encrypted using the negotiated keys and algorithms.

8. Finished (client): this is the first encrypted message, moreover, it contains

a hash and MAC of the entire conversation. The server has to attempt to

decrypt the message and verify the hash and MAC. If one of the two fails, the

connection should be dropped.

9. Cipher Spec. Exchange (server): this message notifies the client that all the

following messages will be encrypted using the negotiated keys and algorithms.

CHAPTER 4. QKD IN OPENSSL 29

10. Finished (server): the server sends his Finished message. The client has

to perform the same decryption and verification procedure that the server

performed previously.

Figure 4.1: TLS Handshake Protocol phase

TLS 1.3 Handshake

Differently from TLS 1.2 handshake, there is only one round trip. The client sends

a ClientHello message containing a list of supported ciphers according to client’s

preference order, moreover, it makes a guess on the key algorithm that will be

used, in this way, it immediately shares a possible secret key. The server replies

with a ServerHello message containing its key, a certificate, the chosen cipher and

the finished message. Finally, once the client has received the server’s Finished

CHAPTER 4. QKD IN OPENSSL 30

message, it sends a Finished message too. Server and Client are both coordinated

on which cipher suite to use.

4.2 OpenSSL

OpenSSL provides two tools: (i) a SSL toolkit for the Transport Layer Security

(TLS) and Secure Sockets Layer (SSL) protocols, (ii) and a general-purpose

cryptography library. It is a software library widely used by Internet servers,

including a lot of HTTPS websites. The library is written in the C programming

language and is licensed under an Apache-style license, which means that users are

free to get and use it for commercial and non-commercial purposes subject to some

simple license conditions.

The OpenSSL project, based on a fork of SSLeay by EriAndrew Young and Tim

Hudson, and was founded in 1998, the founding members were Mark Cox, Ralf

Engelschall, Stephen Henson, Ben Laurie, and Paul Sutton. Actually the OpenSSL

management committee is composed by 7 people, and there are 17 developers.

4.3 The ETSI QKD API

The acronym ETSI QKD API stands for European Telecommunications Standards

Organization1 (ETSI) Quantum Key Distribution (QKD) Application Programming

Interface (API). These APIs are necessary to interface from the QKD consumer (end

application/user) to the QKD provider (the QKD device), and vice versa.

1https://www.etsi.org/

https://www.etsi.org/

CHAPTER 4. QKD IN OPENSSL 31

4.3.1 QKD Application Interface Specification Description

Figure 4.2: QKD Application Interface and peer relationships. Sites A and B

represent security perimeters at each site (simple schema).

In Figure 4.2 there is a single QKD link enclosed by a red dashed box, the two

endpoints reside at site A and site B. Each site includes a single application (the

yellow box), and a single QKD Module enclosed by a blue box. The QKD Module

implements the QKD protocol (the red box) used to produce QKD keys, that are

managed by the QKD Key Manager peer (represented by the green box). In this

case the QKD API is used by the single peer application to acquire identical sets of

secure keys on demand [36].

CHAPTER 4. QKD IN OPENSSL 32

Figure 4.3: QKD Application Interface and peer relationships. Sites A and B

represent security perimeters at each site (complex schema).

A more complex (and general) scheme is shown In Figure 4.3. There are two

sites inside a network that contain two applications. A single QKD link formed by

QKD Module A3 and QKD Module B1 connects Site A and Site B. The other QKD

modules’ endpoints are not shown in the figure. The QKD Key Servers (the blue

boxes) represent a network layer Key Manager and their objectives are to manage

keys between endpoints, and to deliver identical sets of keys to these endpoints for

the peer applications. In this QKD API a secure key is guaranteed from the QKD

Key Manager peer (link layer), to the QKD Key Server (network layer), as well as

from the QKD Key Server to the applications [36].

CHAPTER 4. QKD IN OPENSSL 33

4.3.2 QKD Application Interface API Specification

OPEN_CONNECT

A (Key_stream_ID) association is reserved for a set

of future keys at both endpoints of the QKD link.

Moreover, a set of parameters is established to define the

expected levels of key service. OPEN_CONNECT() should

be a blocking function, no further operations can be

performed until both peers are connected or until the

timeout value is exceeded.

CLOSE

This function terminates an association established for

a certain Key_stream_ID. After, no more keys can

be allocated for this Key_stream_ID. Since there is

timing differences between the endpoints of the link, this

operation will take place at another time, therefore, any

unused key should be kept until that occurs and then

discarded, or the time to live value of the QoS parameter

is exceeded.

GET_KEY

This API is used to obtain the amount of key material

requested for a specific key_stream_ID. The return

value can be a key_buffer parameter containing the

fixed amount of requested key, or an error message in

case of failure. The GET_KEY() function may be called

as often as desired, and the QKD key manager should

reply at the bit rate specified in the QoS parameter, or

at the best rate the system can manage.

Table 4.1: Brief description of the API functions that a QKD key manager has to

implement as application interface

CHAPTER 4. QKD IN OPENSSL 34

4.4 Implementing QKD in OpenSSL

In this section I explain in detail the implementation of the solution to introduce

the QKD technology into the OpenSSL library, guaranteeing secure communications

between two parties, through the TLS/SSL protocol. The peculiarity resides in the

use of a secret key previously exchanged in a secure way thanks to the use of an

ETSI emulator.

The scenario presented aims to demonstrate the effectiveness and feasibility of

introducing QKD technology in a real context such as TLS/SSL protocol, which is

the core of all secure communications.

Figure 4.4: Schema of QKD technology integrated with TLS. The dashed green box

is the ETSI emulator, and the dashed red box is the TLS component, which retrieves

the QKD key from the emulator.

CHAPTER 4. QKD IN OPENSSL 35

QKD

The role of the Quantum Key Distribution method is played by the ETSI 004

emulator implemented by the Universidad Politécnica de Madrid, which aims to

provide a QKD key: the secret key shared between two users like Alice and Bob.

The ETSI emulator has been downloaded in a local copy, and to execute the

process to retrieve the QKD key, a python script is used to start the procedure

(Figure 4.5).

Figure 4.5: Schema of the QKD system. The python script share_key.py is

responsible to run the ETSI 004 simulator, the output is the QKD key retrieved.

TLS/SSL with Pre-Shared Key

Once the ETSI emulator has finished its process, the obtained QKD key is passed

to Alice and Bob. The shared secret is obtained before the TLS connections, and it

is used by the two users to exchange messages over a channel, which is considered

secure thanks to the advantages of QKD (Figure 4.6).

CHAPTER 4. QKD IN OPENSSL 36

However, this work is not risk-free, and some clarifications are necessary. The

QKD key retrieved from the ETSI emulator, and shared between Alice and Bob,

is passed over a socket communication, which means that the transmission of the

QKD key relies on classical cryptography, to begin with. This implementation choice

lacks security, but it is enough for proof of concept purposes, it demonstrates the

feasibility of introducing QKD technology into the OpenSSL library. Moreover, this

work only describes a demonstrative approach; the goal is not to achieve a go-to-

market solution.

Finally, due to lack of resources, Alice and Bob lie on the same virtual machine,

therefore, the server used for the communications, and for SSL certificates, is the

local host of the virtual machine. Of course, in a real scenario, Alice and Bob are

physically in two different geographical places, therefore, it would be necessary to

introduce a VPN tunnel between the two locations and above all create a server that

allows communication with appropriate certificates. However, the implementation

of the project in a wider context is out of scope for the purposes of this thesis,

moreover, for time and resources reasons, it was not possible to develop it. The

final solution achieved is good enough to demonstrate an approach to use QKD

technology in TLS/SSL communications.

4.4.1 Approaches to add QKD support to OpenSSL

In order to extend the OpenSSL library to add support for the QKD technology in

OpenSSL using the ETSI QKD API there are two different possibilities:

• create an OpenSSL engine: in this case we can simply "abuse" an existing

classical protocol like Diffie-Hellman. Therefore the solution would be to hack

the existing engine-based extension mechanism for Diffie-Hellman.

• modify the OpenSSL state machine: in this case we should introduce

QKD as a new first-class key exchange protocol.

CHAPTER 4. QKD IN OPENSSL 37

Figure 4.6: The QKD Key obtained by the ETSI emulator is used as symmetric

encryption key in TLS/SSL.

Hacking existing engine-based extension mechanism for Diffie-Hellman

The OpenSSL engine mechanism allows third parties to extend the OpenSSL engine.

The engine is an extension that can be implemented as a dynamic library (.dylib files

on macOS or .so files on Linux), and it is loaded during the OpenSSL initialization

without modifying the OpenSSL source code itself. OpenSSL configuration files are

used to control which extensions should to be loaded into OpenSSL. This solution is

simple, and since we do not make any changes to the source code, it allows to keep

the OpenSSL library updated and maintained according to the official releases.

OpenSSL engines were created with the intent of offloading time-consuming

cryptographic operations from the default software implementation in OpenSSL,

using special-purpose crypto acceleration hardware instead. The library’s

maintainers have decided a-priori which operations should be offloaded. In order to

offload these specific cryptographic operations, some APIs have been implemented.

CHAPTER 4. QKD IN OPENSSL 38

The engine APIs allow a dynamically loaded engine to register a callback function

that OpenSSL will call when it needs to be performed. This registered function is

used instead of OpenSSL’s default software implementation.

In my current implementation of QKD support in OpenSSL I decided to use the

engine mechanism, in order to avoid modifying the OpenSSL source code (approach

explained in the next section). However, engines for QKD protocols are not currently

supported in OpenSSL, therefore, it is necessary to "hack" an existing classical

protocol. In my case I decided to "abuse" of Diffie-Hellaman API (DH). The use of

this approach avoids implementing the whole state machine for the engine: OpenSSL

does it for you.

In order to overload the Diffie-Hellman protocol it is necessary to overload the

proper callbacks in the DH_METHOD structure. In my case I overloaded two callback

functions:

• The Diffie-Hellman compute_key engine callback: this one is called to perform

the first step of Diffie-Hellman key exchange, which is choosing a private key

and computing the corresponding public key. In my case I do not need the

private and the public key, therefore I hacked this callback by simply defining

a fixed pair of private and public keys.

• The Diffie-Hellman generate_key engine callback: this one is called to

perform the second part of Diffie Hellman key exchange, which is generating

the shared secret using the pairs private-public keys of the parties involved in

the communication, and the negotiated Diffie-Hellman parameters (g and p

parameters). I hacked this callback to instead open a socket communication

with the QKD app of the ETSI simulator to retrieve the QKD key.

CHAPTER 4. QKD IN OPENSSL 39

Figure 4.7: Schema of the implemented OpenSSL engine to introduce QKD

technology into OpenSSL

Introduce QKD as a new first-class key exchange protocol

OpenSSL engines can only be used to accelerate a pre-determinated set of operations

in existing cryptographic algorithms. As a result of how engines are implemented in

OpenSSL it is not possible to use them to introduce a completely new key exchange

algorithms such as QKD.

The way I have adopted to introduce QKD support does not affect the OpenSSL

source code (summarized in the previous section), however, this solution cannot be

consider a go-to market solution. The proper way to introduce QKD into OpenSSL

would be to modify the source code, introducing QKD as a first-class abstraction in

OpenSSL. An engine for QKD (not to hack Diffie-Hellman) would still be necessary

because usually the QKD provider is implemented on an external device reachable

through the ETSI API.

CHAPTER 4. QKD IN OPENSSL 40

4.5 Hacking the OpenSSL Diffie-Hellman engine to

add QKD

In this section I explain in detail how I hacked the existing OpenSSL

Diffie-Hellman engine. In order to hack the engine it is necessary to overload the

two callback functions of the DH_METHOD structure: compute_key engine callback,

and generate_key engine callback. The library OpenSSL is huge, and it is very

difficult to understand which callback functions should be overloaded. Luckily,

while I was doing research on extending the OpenSSL library, I found the website

of the Pan-European Quantum Internet Hackathon held on November 5-6th 20192,

and organized by RIPE labs. A github repository with a mock implementation of

the ETSI API, and a description of approaches to extend the OpenSSL library,

was offered for the challenge. From their guidelines I considered the advise to

"abuse" the existing engine-based extension mechanism for Diffie-Hellman.

Moreover, in order to understand the how engines work in OpenSSL, and to have a

general insight into the library, I used the following resources:

• OpenSSL wiki main page3

• OpenSSL wiki libcrypto main page4

• OpenSSL wiki Diffie-Hellman5

• OpenSSL wiki example ECDH engine6

2https://labs.ripe.net/author/ulka_athale_1/take-part-in-pan-european-quantum

-internet-hackathon/
3https://wiki.openssl.org/index.php/Main_Page
4https://wiki.openssl.org/index.php/Libcrypto_API
5https://wiki.openssl.org/index.php/Diffie_Hellman
6https://wiki.openssl.org/index.php/Creating_an_OpenSSL_Engine_to_use_indigen

ous_ECDH_ECDSA_and_HASH_Algorithms

https://labs.ripe.net/author/ulka_athale_1/take-part-in-pan-european-quantum-internet-hackathon/
https://labs.ripe.net/author/ulka_athale_1/take-part-in-pan-european-quantum-internet-hackathon/
https://wiki.openssl.org/index.php/Main_Page
https://wiki.openssl.org/index.php/Libcrypto_API
https://wiki.openssl.org/index.php/Diffie_Hellman
https://wiki.openssl.org/index.php/Creating_an_OpenSSL_Engine_to_use_indigenous_ECDH_ECDSA_and_HASH_Algorithms
https://wiki.openssl.org/index.php/Creating_an_OpenSSL_Engine_to_use_indigenous_ECDH_ECDSA_and_HASH_Algorithms

CHAPTER 4. QKD IN OPENSSL 41

• OpenSSL wiki SSL and TLS tutorial7

• OpenSSL man page for engines8

• OpenSSL man page for DH_generate_key engine callback9

• OpenSSL man page for DH_compute_key engine callback10

• Gost-engine/engine GitHub repo containing an OpenSSL engine

implementation11

The implementation of the OpenSSL engine to add QKD is structured on three

different files:

• qkd_engine_client.c: this file contains the engine code that is unique to the

client. It includes the implementation of the callback functions compute_key

and generate_key

• qkd_engine_server.c: this file contains the engine code that is unique to the

server. It includes the implementation of the compute_key and generate_key

• qkd_engine_utils.c: this file contains the engine code that is common to

the client and the server. It includes the implementation of the function to

bind the engine to the OpenSSL library, and the functions managing the socket

communication between the ETSI emulator and the peer’s (further information

in Section 4.6).

In the following sections I describe in detail the functions implemented in each

files.

7https://wiki.openssl.org/index.php/SSL_and_TLS_Protocols
8https://www.openssl.org/docs/man1.1.0/man3/ENGINE_add.html
9https://www.openssl.org/docs/man1.1.0/man3/DH_generate_key.html

10https://www.openssl.org/docs/man1.1.0/man3/DH_compute_key.html
11https://github.com/gost-engine/engine

https://wiki.openssl.org/index.php/SSL_and_TLS_Protocols
https://www.openssl.org/docs/man1.1.0/man3/ENGINE_add.html
https://www.openssl.org/docs/man1.1.0/man3/DH_generate_key.html
https://www.openssl.org/docs/man1.1.0/man3/DH_compute_key.html
https://github.com/gost-engine/engine

CHAPTER 4. QKD IN OPENSSL 42

4.5.1 The qkd_engine_client.c file

The qkd_engine_client.c file contains the engine code that is used by the client.

In the file there are implemented three different functions:

• client_generate_key(): this function overload the DH_generate_key()

function. It simply define the pair of private-public keys for the client. Since

the pair of keys is not fundamental for our purposes, I decided to used two

different fixed values, respectively for the private key and the public key.

• client_compute_key(): this function overload the DH_compute_key()

function. This function is fundamental because is the one responsible for

defining the shared-secret, therefore the symmetric key used for the

communication between the client and the server. The function implements a

server socket listening on the 2300 port (running on localhost), and

waiting to receive the QKD key from the QKD app of the ETSI emulator.

• client_engine_bind(): this function is used to bind the client engine to the

library OpenSSL. It is necessary to call the overload dynamic library instead

of the standard library implementation.

1 /∗∗

2 ∗ Ca l l b a c k r e g i s t e r e d i n the c l i e n t OpenSSL eng i n e which i s c a l l e d

3 ∗ when OpenSSL needs the eng i n e to g en e r a t e a D i f f i e −Hel lman p r i v a t e −

4 ∗ −key and to d e r i v e the D i f f i e −Hel lman p u b l i c key from i t .

5 ∗

6 ∗ Retu rns 1 on succe s s , 0 on f a i l u r e .

7 ∗/

8 s t a t i c i n t c l i e n t_gene ra t e_key (DH ∗dh) ;

9

10 /∗∗

11 ∗ Ca l l b a c k r e g i s t e r e d i n the c l i e n t OpenSSL eng i n e which i s c a l l e d

CHAPTER 4. QKD IN OPENSSL 43

12 ∗ when OpenSSL needs the eng i n e to compute the D i f f i e −Hel lman sha r ed

13 ∗ s e c r e t based on D i f f i e −Hel lman parameter s , the s e r v e r p u b l i c key ,

14 ∗ and the c l i e n t ' s p r i v a t e key .

15 ∗

16 ∗ Retu rns the s i z e o f the gene r a t ed sha r ed s e c r e t on

17 ∗ succe s s , −1 on f a i l u r e .

18 ∗/

19 s t a t i c i n t c l ient_compute_key (uns i gned char ∗ sha r ed_sec r e t ,

20 con s t BIGNUM ∗publ ic_key , DH ∗dh) ;

21

22 /∗∗

23 ∗ Bind the c l i e n t eng i n e to OpenSSL l i b r a r y .

24 ∗

25 ∗ Retu rns 1 on succe s s , 0 on f a i l u r e .

26 ∗/

27 i n t c l i e n t_eng i n e_b ind (ENGINE ∗ eng ine , con s t cha r ∗ eng ine_id)

Listing 4.1: Function signatures of the client engine’s main functions

4.5.2 The qkd_engine_server.c file

The qkd_engine_server.c file contains the engine code that is used by the server.

In the file there are implemented three different functions:

• server_generate_key(): this function overload the DH_generate_key()

function. It simply define the pair of private-public keys for the server. Since

the pair of keys is not fundamental for our purposes, I decided to used two

different fixed values, respectively for the private key and the public key.

• server_compute_key(): this function overload the DH_compute_key()

function. This function is fundamental because is the one responsible for

defining the shared-secret, therefore the symmetric key used for the

CHAPTER 4. QKD IN OPENSSL 44

communication between the client and the server. The function implements a

server socket listening on the 2333 port (running on localhost), and

waiting to receive the QKD key from the QKD app of the ETSI emulator.

• server_engine_bind(): this function is used to bind the server engine to the

library OpenSSL. It is necessary to call the overload dynamic library instead

of the standard library implementation.

1 /∗∗

2 ∗ Ca l l b a c k r e g i s t e r e d i n the s e r v e r OpenSSL eng i n e which i s c a l l e d

3 ∗ when OpenSSL needs the eng i n e to g en e r a t e a D i f f i e −Hel lman p r i v a t e −

4 ∗ −key and to d e r i v e the D i f f i e −Hel lman p u b l i c key from i t .

5 ∗

6 ∗ Retu rns 1 on succe s s , 0 on f a i l u r e .

7 ∗/

8 s t a t i c i n t s e rve r_gene ra te_key (DH ∗dh) ;

9

10 /∗∗

11 ∗ Ca l l b a c k r e g i s t e r e d i n the s e r v e r OpenSSL eng i n e which i s c a l l e d

12 ∗ when OpenSSL needs the eng i n e to compute the D i f f i e −Hel lman sha r ed

13 ∗ s e c r e t based on D i f f i e −Hel lman parameter s , the s e r v e r p u b l i c key ,

14 ∗ and the c l i e n t ' s p r i v a t e key .

15 ∗

16 ∗ Retu rns the s i z e o f the sha r ed s e c r e t on succe s s ,

17 ∗ −1 on f a i l u r e .

18 ∗/

19 s t a t i c i n t server_compute_key (uns i gned char ∗ sha r ed_sec r e t ,

20 con s t BIGNUM ∗ c l i en t_pub l i c_key , DH ∗dh) ;

21

22

23 /∗∗

24 ∗ Bind the s e r v e r eng i n e to OpenSSL l i b r a r y .

25 ∗

CHAPTER 4. QKD IN OPENSSL 45

26 ∗ Retu rns 1 on succe s s , 0 on f a i l u r e .

27 ∗/

28 i n t s e rve r_eng ine_b ind (ENGINE ∗ eng ine , con s t cha r ∗ eng ine_id)

Listing 4.2: Function signatures of the server engine’s main functions

4.5.3 The qkd_engine_utils.c file

The qkd_engine_client.c file contains the engine code that is common to the

client engine and the server engine. In the file there are implemented three different

functions:

• create_socket(): this function is used to create the server socket running on

the client and the server. The socket is used to communicate with the QKD

app of the ETSI emulator aiming to received the QKD key and use it as shared

secret in the communication between the client and the server.

• close_socket(): this function is used to terminate the socket communication

between the client (or the server) and the QKD app of the ETSI emulator.

• QKD_engine_bind(): this function is the callback of the

client_engine_bind() and the server_engine_bind() functions. This

function uses the engine APIs and the DH engine APIs to overload the

cryptographic functions of the DH_METHOD structure:

– DH_meth_new()

– DH_meth_set_generate_key()

– DH_meth_set_compute_key()

– ENGINE_set_id()

– ENGINE_set_name()

CHAPTER 4. QKD IN OPENSSL 46

– ENGINE_set_DH()

1 i n t c r e a t e_socke t (i n t po r t) ;

2

3 i n t c l o s e_socke t (i n t sock) ;

4

5 /∗∗

6 ∗ Bind the eng i n e to OpenSSL l i b r a r y , r e g i s t e r a l l the eng i n e

7 ∗ f u n c t i o n s .

8 ∗

9 ∗ Retu rns 1 on succe s s , 0 on f a i l u r e .

10 ∗/

11 i n t QKD_engine_bind (ENGINE ∗ eng ine , con s t cha r ∗ eng ine_id ,

12 con s t cha r ∗engine_name , i n t (∗ generate_key) (DH ∗) ,

13 i n t (∗ compute_key) (uns i gned char ∗key ,

14 con s t BIGNUM ∗pub_key , DH ∗dh))

Listing 4.3: Function signatures of the util engine’s main functions

4.6 QKD + OpenSSL Workflow

The previous section describes the structure of my project, and the

implementation choices for the OpenSSL engine. The whole project is composed

by two parts: the ETSI emulator implemented by UPM to obtain the QKD key,

and my own implementation of an OpenSSL engine to use the QKD key as

pre-shared key to encrypt the communication between two parties. In order to

combine the two processes, I had to "abuse" the existing-based extension

mechanism for Diffie-Hellman, as described in Section 4.5.

As first step to run the project is necessary to run the OpenSSL server through

the bash script start_server.sh. If the server started successfully we get the

message: Starting server in background... OK (PID <server_pid>). The

CHAPTER 4. QKD IN OPENSSL 47

file server.out contains debug messages, and output messages, in order to check

the server engine workflow. An example is shown in Figure 4.8.

Figure 4.8: Example of server.out file. In the first line we can notice that the

server started successfully, and the following lines show the server engine has been

loaded in the OpenSSL library

After started the OpenSSL server, we can run the OpenSSL client, which will

connect to the server, through the bash script run_client.sh. In the meanwhile,

in another shell, we can run the ETSI emulator through the python scrypt

send_key.py. The latter is responsible to run the QKD controller, the QKD

nodes, and the QKD apps to retrieve the QKD key. The file client.out contains

debug messages, and output messages, in order to check the client engine

workflow. The Figure 4.9 shows the client connected to the server successfully, and

the initialization of the TLS handshake. It is interesting to notice that the

client_generate_key() function is computed after the client has received the

ServerHelloDone message.

At this point of the TLS handshake, the ClientKeyExchange message should

be sent by the client. The callback function client_compute_key() is performed

before the latter step is performed, therefore, a listening socket is created, which

waits to receive the QKD key from the QKD app of the ETSI emulator. In the

Figure 4.10 we can see the shared secret (the QKD key) obtained by the ETSI

emulator; keep in mind that this is only a prototype, the choice of a socket to make

the ETSI emulator and OpenSSL communicate is not the most valuable solution

according to security reasons, however, for demonstration purposes is enough to

show the proof of concept.

CHAPTER 4. QKD IN OPENSSL 48

Figure 4.9: Example of client.out file. The first lines shows the client successfully

connected to the server, and the client engine has been loaded in the OpenSSL

library. Moreover the first steps of the TLS handshake are shown

Figure 4.10: The client_compute_key() function has been performed: the

OpenSSL client has received the QKD key from the QKD app of the ETSI emulator

Once the client has received the QKD key and the ClientKeyExchange message

is sent, the callback function server_compute_key() is computed. As previously,

a listening socket is created to wait the QKD key from the ETSI emulator. The

Figure 4.11 shows an example of the server receiving the QKD key, and computing

the server_compute_key() function successfully.

Figure 4.11: The server_compute_key() function has been performed: the

OpenSSL server has received the QKD key from the QKD app of the ETSI emulator

CHAPTER 4. QKD IN OPENSSL 49

Finally, the last phases of the handshake are performed. The Figure 4.12

represents a successful communication between the OpenSSL server and the

OpenSSL client, using as shared secret the QKD key obtained from the ETSI

emulator.

Notice that TLS 1.2 was used for this simulation, further information on this

implementation choice is given in the next section.

Figure 4.12: Final phases of the TLS handshake, terminated successfully. Both the

client and the server has received the QKD key.

4.7 Encountered Challenges and Limitations

Implementing an engine to introduce QKD in OpenSSL was really challenging for

several reasons. The first reason is related to the complexity of the library. OpenSSL

library is really huge, and hard to understand, in particular, it is not so obvious to

comprehend how to introduce third parties in order to extend it. The GitHub

repository of the Hackathon organized by RIPE labs helped me a lot to get the first

track, however, I found the implementation process very difficult because I had to

CHAPTER 4. QKD IN OPENSSL 50

go through the documentation of the library to understand which callback functions

should I have used, and how to code an engine to extend the library. It took me

almost 2 months to fully understand how to develop the process, and how to design

the project.

Another challenge was related to the combination of the ETSI emulator,

implemented by Universidad Politécnica de Madrid, and the OpenSSL engine that

I created. The first one is written in Python code, instead for the latter, I had the

constraint to implement it in C code since it is the main language of the whole

OpenSSL library. I have never had experience in making two different

programming languages communicate, and the most plausible solution for me was

to implement a socket on which the QKD key is passed. This kind of solution

cannot be considered an optimal solution and it has security issues, however, my

goal was not to implement a go-to-market project. A demonstration of the actual

possibility of introducing the QKD technology in a widely used library such as

OpenSSL, was my target.

The last aspect that needs to be considered is the compatibility of the project

that I implemented. The current solution works successfully with TLS 1.2, and

OpenSSL 1.1.1, which are both stable versions. However, OpenSSL is currently

working on a new version of the library, and most of the methods that I used, even

the engine mechanism, are considered deprecated in the new implementation. The

version has not yet obtained a stable state, and the majority of applications are still

based on version 1.1.1. However, an upgrade of my project with the new version of

the OpenSSL library, and with TLS 1.3 should be taken into consideration in the

future.

5 Conclusion

This thesis describes a demonstrative approach to integrate QKD technology into

the OpenSSL library. The first part of the thesis presents the general problem to

the reader: the quantum threat. In particular, Chapter 2 presents the current

state of cryptography, defining asymmetric cryptography as one of the main

cryptographic techniques used by communications and systems. Subsequently, I

explain quantum cryptography and the reasons why it is considered a risk to

classical cryptography. Chapter 2 concludes by presenting two possible

technologies that might be able to address quantum attacks: Post-Quantum

Cryptography and Quantum Key Distribution.

Chapter 3 focuses on the Quantum Key Distribution protocol which is introduced

by Section 2.4. Chapter 3 aims to give general information about the protocol

in order to comprehend the entire context and the technologies involved in my

internship activity. Despite the benefits of Quantum Key Distribution, which seems

to offer unhackable systems and communications, Chapter 3 concludes by presenting

some security issues of Quantum Key Distribution. The security issues presented

make unhackable communications still out of reach.

The first part of the thesis is composed by Chapter 2 and Chapter 3. The second

part of the thesis consists of Chapter 4, which describes my activity internship at

Cefriel. Chapter 4 begins by describing the challenge to be solved and the goals of

my internship. Then, I present my solution to integrate QKD technology into the

CHAPTER 5. CONCLUSION 52

OpenSSL library. Firstly, I describe all the technologies involved in my project in

order to fully understand the context, then I present the different implementation

choices, explaining the reasons made to develop the project. A full description of the

project’s workflow is offered as a practical demonstration of my solution. The final

result is not a go-to-market product, however, it aims to demonstrate the feasibility

of integrating QKD technology into a widely used library such as OpenSSL.

Finally, I conclude Chapter 4 by describing the main challenges that I

encountered during the implementation of the project, and the limitations of the

final result. The limitations presented give ideas for possible future works.

5.1 Future works

Section 4.7 concludes Chapter 4 by describing the limitations of my work to integrate

QKD technology into OpenSSL. These limitations from another perspective can be

seen as ideas for possible future works.

This project is composed by two different processes: (i) the ETSI emulator,

implemented with Python language, (ii) and my OpenSSL engine, implemented

with C language. The usage of different programming languages made it hard

combining the two technologies. In order to make the two processes communicate,

I implemented a socket communication, which is used to send the QKD key

retrieved from the emulator. This implementation choice lacks security, however,

this project is just a prototype to demonstrate the feasibility of integrating QKD

technology into TLS communications. Moreover, this limitation is linked to the

challenge presented in Section 3.4: the lack of an adequate security interface

between the end users/applications and the quantum nodes. Thus, finding a

solution to transmit the key from the ETSI emulator to the OpenSSL engine,

means finding a solution for one of the biggest issues in Quantum Key Distribution

networks. Section 2.4.1 mentions Post-Quantum Cryptography: this technology

CHAPTER 5. CONCLUSION 53

can be considered to transmit the key from the quantum nodes to the end

users/applications.

Finally, the solution described here is compatible with TLS 1.2 version, and

OpenSSL 1.1.1 version. Currently, the OpenSSL developers’ community is

implementing version 3 of the library, which supports TLS 1.3 version. TLS 1.2

and OpenSSL 1.1.1 are both stable versions and are used in many services and

communications. The newest version of OpenSSL is not declared stable yet,

therefore, I decided to rely on the most recent stable version of the library.

However, a migration to the latest library version should be considered once

OpenSSL version 3 will be declared stable.

5.2 Future Collaborations

On September 27th, I presented the results obtained in this work to my

supervisors Enrico Frumento, and Francesco Morano from Cefriel. Moreover, at

the final presentation partecipated also Paolo Comi, Fabrizio Bianchi and Maurizio

Barbaro from Italtel.

Italtel has implemented a Software-Defined Networking (SDN) QKD

framework, which abstracts the internal architecture of a QKD system providing a

common standardized middleware. The SDN QKD framework provides a Local

Key Management System and standard interfaces to allow communications

between QKD systems and end applications.

At the end of the presentation, Italtel showed their interest in the project I

presented, and they intend to continue this project by integrating my solution with

the SDN QKD framework, implemented by them, at the beginning of the new year.

I am really satisfied with the results achieved, I knew it was a hard work that

required a lot of effort, but receiving a lot of interest for a project that I implemented

individually paid all the fatigue.

References

[1] M. E. Hellman, “An overview of public key cryptography”, IEEE

Communications Magazine, vol. 40, no. 5, pp. 42–49, 2002.

[2] S. Wolf, “Unconditional security in cryptography”, in Lectures on Data

Security: Modern Cryptology in Theory and Practice, Springer, 1999,

pp. 217–250.

[3] D. E. Denning, “Is quantum computing a cybersecurity threat? although

quantum computers currently don’t have enough processing power to break

encryption keys, future versions might”, American Scientist, vol. 107, no. 2,

pp. 83–86, 2019.

[4] S. Wiesner, “Conjugate coding”, SIGACT News, vol. 15, no. 1, pp. 78–88, 1983.

[5] B. Gilles, “Brief history of quantum cryptography: A personal perspective”,

IEEE Information Theory Workshop on Theory and Practice in Information-

Theoretic Security, 2005., pp. 19–23, 2005.

[6] B. Gilles, “Relativized cryptography”, Proceedings of the 20th Annual

Symposium on Foundations of Computer Science, pp. 383–391, 1979.

[7] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin,

“Experimental quantum cryptography”, Journal of Cryptology, vol. 5, no. 1,

pp. 3–28, 1992.

REFERENCES 55

[8] C. H. Bennett, G. Brassard, and A. K. Ekert, “Quantum cryptography”,

Scientific American, vol. 267, no. 4, pp. 50–57, 1992.

[9] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key

distribution and coin tossing”, Proceedings of IEEE International Conference

on Computers, Systems, and Signal Processing, pp. 175–179, 1984.

[10] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and

factoring”, Proceedings 35th annual symposium on foundations of computer

science, pp. 124–134, 1994.

[11] D. Mermin, “Breaking rsa encryption with a quantum computer: Shor’s

factoring algorithm”, Lecture notes on Quantum computation, pp. 481–681,

2006.

[12] J. Preskill, “Quantum computing in the nisq era and beyond”, Quantum, vol. 2,

p. 79, 2018.

[13] E. Gibney, “The quantum gold rush”, Nature, vol. 574, no. 7776, pp. 22–24,

2019.

[14] N. A. R. C. Frank Tavares. (Oct. 23, 2019). “Google and nasa achieve quantum

supremacy”, [Online]. Available: https://www.nasa.gov/feature/ames/qua

ntum-supremacy.

[15] L. Gyongyosi and S. Imre, “A survey on quantum computing technology”,

Computer Science Review, vol. 31, pp. 51–71, 2019.

[16] M. J. Nene and G. Upadhyay, “Shor’s algorithm for quantum factoring”, in

Advanced Computing and Communication Technologies, Springer, 2016,

pp. 325–331.

[17] V. Bhatia and K. Ramkumar, “An efficient quantum computing technique for

cracking rsa using shor’s algorithm”, 2020 IEEE 5th International Conference

on Computing Communication and Automation (ICCCA), pp. 89–94, 2020.

https://www.nasa.gov/feature/ames/quantum-supremacy
https://www.nasa.gov/feature/ames/quantum-supremacy

REFERENCES 56

[18] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, “Applying

grover’s algorithm to aes: Quantum resource estimates”, in Post-Quantum

Cryptography, Springer, 2016, pp. 29–43.

[19] Enrico Frumento, Nadia Fabrizio, Paolo Maria Comi. (Jan. 25, 2021). “Il

progetto quantum-secure net: Sviluppo di un prodotto europeo di quantum

key distribution”, [Online]. Available: https://www.difesaonline.it/evide

nza/cyber/il-progetto-quantum-secure-net-parte-13-la-minaccia-q

uantum-alla-crittografia-moderna.

[20] D. D. Maria Korolov, “What is quantum cryptography? it’s no silver bullet,

but could improve security”, CSO Insiders, 2019. [Online]. Available: https:

//www.csoonline.com/article/3235970/what-is-quantum-%20cryptogra

phy-it-s-no-silver-bullet-but-could-improve-security.html.

[21] G. Mone. (Jul. 1, 2020). “The quantum threat”, [Online]. Available: https://c

acm.acm.org/magazines/2020/7/245691-the-quantum-threat/fulltext.

[22] É. Kelly. (). “Germany to invest €2b in quantum technologies”, [Online].

Available: 2021-05-11.

[23] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K.

Liu, C. Miller, D. Moody, R. Peralta, et al., “Status report on the second

round of the nist post-quantum cryptography standardization process”, US

Department of Commerce, NIST, 2020.

[24] T. Laarhoven, M. Mosca, and J. Van De Pol, “Solving the shortest vector

problem in lattices faster using quantum search”, in International Workshop

on Post-Quantum Cryptography, Springer, 2013, pp. 83–101.

[25] O. Regev, “Quantum computation and lattice problems”, SIAM Journal on

Computing, vol. 33, no. 3, pp. 738–760, 2004.

https://www.difesaonline.it/evidenza/cyber/il-progetto-quantum-secure-net-parte-13-la-minaccia-quantum-alla-crittografia-moderna
https://www.difesaonline.it/evidenza/cyber/il-progetto-quantum-secure-net-parte-13-la-minaccia-quantum-alla-crittografia-moderna
https://www.difesaonline.it/evidenza/cyber/il-progetto-quantum-secure-net-parte-13-la-minaccia-quantum-alla-crittografia-moderna
https://www.csoonline.com/article/3235970/what-is-quantum-%20cryptography-it-s-no-silver-bullet-but-could-improve-security.html
https://www.csoonline.com/article/3235970/what-is-quantum-%20cryptography-it-s-no-silver-bullet-but-could-improve-security.html
https://www.csoonline.com/article/3235970/what-is-quantum-%20cryptography-it-s-no-silver-bullet-but-could-improve-security.html
https://cacm.acm.org/magazines/2020/7/245691-the-quantum-threat/fulltext
https://cacm.acm.org/magazines/2020/7/245691-the-quantum-threat/fulltext
2021-05-11

REFERENCES 57

[26] Research Institute. (Apr. 16, 2019). “A guide to post-quantum cryptography”,

[Online]. Available: https://medium.com/hackernoon/a-guide-to-post-q

uantum-cryptography-d785a70ea04b.

[27] C. E. Shannon, “Communication theory of secrecy systems”, The Bell system

technical journal, vol. 28, no. 4, pp. 656–715, 1949.

[28] W. Diffie and M. Hellman, “New directions in cryptography”, IEEE

transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[29] D. Mayers, “Unconditional security in quantum cryptography”, Journal of the

ACM (JACM), vol. 48, no. 3, pp. 351–406, 2001.

[30] P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key

distribution protocol”, Physical review letters, vol. 85, no. 2, p. 441, 2000.

[31] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin,

M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, et al., “Using quantum

key distribution for cryptographic purposes: A survey”, Theoretical Computer

Science, vol. 560, pp. 62–81, 2014.

[32] Tsai, Chia-Wei and Yang, Chun-Wei and Lin, Jason and Chang, Yao-Chung

and Chang, Ruay-Shiung, “Quantum key distribution networks: Challenges

and future research issues in security”, Applied Sciences, vol. 11, no. 9, p. 3767,

2021.

[33] C. Elliott and H. Yeh, “DARPA quantum network testbed”, BBN Technologies

Cambridge: New York, Tech. Rep., 2007. [Online]. Available: https://apps

.dtic.mil/sti/pdfs/ADA471450.pdf.

[34] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner,

T. Debuisschert, E. Diamanti, M. Dianati, J. Dynes, et al., “The SECOQC

quantum key distribution network in Vienna”, New Journal of Physics,

vol. 11, no. 7, p. 075 001, 2009.

https://medium.com/hackernoon/a-guide-to-post-quantum-cryptography-d785a70ea04b
https://medium.com/hackernoon/a-guide-to-post-quantum-cryptography-d785a70ea04b
https://apps.dtic.mil/sti/pdfs/ADA471450.pdf
https://apps.dtic.mil/sti/pdfs/ADA471450.pdf

REFERENCES 58

[35] Maria Korolov, Doug Drinkwater. (Mar. 12, 2019). “What is quantum

cryptography? it’s no silver bullet, but could improve security”, [Online].

Available:

https://www.csoonline.com/article/3235970/what-is-quantum-crypto

graphy-it-s-no-silver-bullet-but-could-improve-security.html.

[36] ETSI, “Quantum Key Distribution (QKD); Application Interface”, ETSI,

Tech. Rep., 2020. [Online]. Available: https://www.etsi.org/deliver/etsi

_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf.

https://www.csoonline.com/article/3235970/what-is-quantum-cryptography-it-s-no-silver-bullet-but-could-improve-security.html
https://www.csoonline.com/article/3235970/what-is-quantum-cryptography-it-s-no-silver-bullet-but-could-improve-security.html
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf

	Introduction
	Motivation
	Contributions
	Overview

	The Quantum Threat
	The current state of cryptography
	Brief History of Quantum Cryptography
	Why quantum cryptography is a threat to classical cryptography
	Quantum threat solution
	Post-Quantum Cryptography

	Quantum Key Distribution
	Quantum computing and symmetric cryptography
	What is Quantum Key Distribution
	Quantum Key Distribution networks
	The limits of Quantum Key Distribution

	QKD in OpenSSL
	TLS/SSL
	Workflow

	OpenSSL
	The ETSI QKD API
	QKD Application Interface Specification Description
	QKD Application Interface API Specification

	Implementing QKD in OpenSSL
	Approaches to add QKD support to OpenSSL

	Hacking the OpenSSL Diffie-Hellman engine to add QKD
	The qkd_engine_client.c file
	The qkd_engine_server.c file
	The qkd_engine_utils.c file

	QKD + OpenSSL Workflow
	Encountered Challenges and Limitations

	Conclusion
	Future works
	Future Collaborations

	References

