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Conducting polymers belong to a class of polymers, which can conduct electricity. This 

ability rises from the conjugated nature of the polymer backbone, which allows charges 

to travel across and along them. Conducting polymers have attracted interest for different 

applications due to their beneficial features, such as high conductivity, sustainability, and 

high mechanical stability. These make them good replacements for metal oxides used as 

conducting materials, for example in touchscreens. 

A touchscreen is a sensor that can sense a touch input on the surface. There are several 

different methods for accomplishing this, resistive and capacitive methods being the most 

used one’s accounting roughly 95 % of all touchscreen applications. 

In this study, vapor phase polymerization was used to manufacture conducting polymer 

thin films from 3,4-ethylenedioxythiophene using iron(III)p-toluenosulfonate as the 

oxidant and pyridine as an inhibitor. The films were then used to construct a prototype of 

a simple surface capacitance touchscreen device. 
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1 Introduction 

1.1 Conducting Polymers 

The modern study of conducting polymers began in 1970s, when Alan J. Heeger, 

Alan G. MacDiarmid and Hideki Shirakawa discovered a new class of electrically 

conducting polymers. This discovery rewarded the Nobel prize in chemistry in 2000 for 

the discovery and development of conducting polymers.1 

However, the first time conducting polymers were prepared was in 1862 by scientist 

Henry Letheby, when he prepared polyaniline via anodic oxidation of aniline. He noted 

that polyaniline was conductive and it had electrochromic properties.1,2 The reaction 

scheme for electro-oxidation process of aniline on carbon electrode was suggested by 

Yasui3 in 1935. The next step in the journey was taken in the in the 1950s by Khomutov 

and Corbachev when they discovered autocatalysis during electro-oxidation of aniline. In 

1962 free radical reaction for polymerization of polyaniline was proposed when David 

M. Mohilner, Ralph N. Adams and William J. Argensinger, Jr.4 performed a 

reinvestigation of anodic oxidation of aniline in aqueous sulfuric acid solution at a 

platinum electrode. 

As the studies continued, different polymers and more attributes of conducting 

polymers were discovered, such as the discovering that doping the polymer increases the 

conductivity of the polymer significantly. This discovery launched a new trend in the 

study of conducting polymers.5,6 

 

 

 

 

 

Figure 1: Examples of different conducting polymers. 

By the end of the 1980s the method of electron transport was mostly understood 

and agreed to happen via electron exchange reaction between neighboring redox sites. 

This happens by the movement of delocalized electrons trough a conjugated system in 

the conducting polymers. Also in the end of the 80s the first applications of the conducting 

polymers in devices FeCl3 also appeared as Heeger made diodes by casting 

polythiophenes from solution onto electrode surface.1  
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1.2 Intrinsic Conductivity 

Materials can be divided into three categories according to their ability to conduct 

electricity: conductors, semiconductors, and insulators. Their properties arise form 

overlapping of the individual molecular electronic sites. These electronic bands are split 

in two bands, valence and conduction band. Material can conduct electricity, if sufficient 

amount of electrons can be excited from the valence band to the conduction band.7  

For conductors such as metals, the orbitals in the bands are continuous, making the 

excitation of the electrons to the higher energy states easy with only small amount of 

energy required. Temperature affects the conductivity, as the thermal energy excites the 

electrons to the higher energy states. Conductors have some electrons at the conduction 

band even at temperature of T=0, and above that there is not any distinction between the 

occupied and unoccupied levels as the thermal energy keeps exciting the electrons to the 

higher conduction band. The conductivity does decrease at some point as the temperature 

rises due to the collisions between atoms and electrons disrupt the charge transport.7,8   

Semiconductors and insulators in contrast have their energy states separated with 

an energy gap called band gap, and at the temperature T=0, their energetically lower 

bands, the valence band, is completely filled, while the higher band, the conduction band, 

is completely empty. As the temperature rises, some of the electrons can make their way 

into the conduction band and make the material conductive. These materials are called 

semiconductors. If however the band gap is large enough, the electrons cannot cross the 

gap to the conduction band and thus the material cannot conduct electricity, making it an 

insulator. 7,8 

Saturated polymers, such as polyethylene, have all their valence electrons used in 

covalent σ-bonds. This results in a very large band gap between valence and conduction 

band and these polymers act as insulators. In conjugated polymers, π-system is formed 

along the polymer backbone, as the carbon atoms (sometimes others, like nitrogen, are 

involved) usually responsible for the backbone form three σ-bonds and the remaining p-

orbitals form the π-system. This conjugated π-system is the main feature for organic 

semiconductors, from small molecular systems to large polymeric systems and a band 

gap of 1.5 – 3 eV. Organic semiconductors also involve ionic molecular states in the 

movement of charges, as elaborated later.8–10 

This electrical conductivity is an intrinsic property of the conducting polymers, 

which means that there is not any conducting filler material in the matrix as the polymer 
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itself conducts electricity. However, in pristine condition, the conjugated polymers do not 

conduct. This means that the polymer must be “doped”, which refers oxidising or 

reducing the polymer backbone either chemically or electrochemically. In doping 

electrons are either introduced or removed from the backbone, where the former 

introduces more electrons into the structure and latter forms a hole in the structure, which 

work as charge transporters. This is called n- and p-type doping respectively. Academic 

interest lies in the p-doping as the positive charge carriers result in more stable products.7,8  

 

 

 

 

 

 

Figure 2: The conductivities of different materials. 

The semiconductor band structure allows for excitation or removal or addition of 

the electrons. When excited thermally or with photons, the electron is moved from the 

valence band to the conducting band, which results in typical excited state behaviour, 

such as photoluminescence. Chemically or electrochemically oxidizing the polymer 

removes electrons from the valence band, which results in presence of charges in the 

polymer structure. The charges are delocalized over several monomer units. The presence 

of charges also allows relaxation of the geometric conformation to more energetically 

favoured conformation. In reduction of the polymer, electrons are added to the conduction 

band. This introduction of charges is called doping, name taken from condensed materials 

physics. 

 

 

 

 

 

 

Figure 3: Some common dopants. 
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The cations or anions that either perform the reduction or oxidation of the polymer 

backbone or that are injected into the structure to balance the charges introduced are 

called dopants. Dopants are usually incorporated into the structure during the synthesis 

of the conducting polymer, but the doping can be performed separately after 

polymerization process.  These dopants also affect the structure of the polymer as they 

can be just simple anions and cations or even small molecules and polymers (Fig. 3).  

The positive or negative charges produced by the dopants are called polarons and 

bipolarons. The naming of the polarons is remnant from the material physics as was the 

case with doping and dopants before. These polarons are delocalised over several 

monomer units in the polymer backbone, giving rise to the conductivity.7,8 

Polarons are local geometric distortions of the ground states. This requires 

distortion energy, which gives rise local distortion. This in turn gives rise of localized 

electronic states in the gap between the conduction and valence band. This distortion 

results in a small local uplift of the valence band and downshift of conduction band 

energetically. From this the polaron can be described as radical cation locally associated 

with a structural distortion in conducting polymers.  

Removal of electron creates a local distortion as described above. When another 

electron is removed from another part of the structure, we have two polarons in the 

structure, a polaron pair. If however, the second electron is removed from the polaron 

itself, it creates a bipolaron. For bipolaron to be generated, larger amount of distortion 

energy is required, which in turn results in a greater sift in the conduction and valence 

bands. Bipolarons are also more stable in extended structures and are delocalized over 

several, usually 6-8, monomer units. This makes bipolarons preferred state over two 

individual polarons. In shorter, oligomeric structures with lower doping levels the polaron 

pairs are energetically more favoured over bipolarons.7,11–13 

1.3 Polythiophenes  

Polythiophenes are a wide variety of conducting polymers which are based on 

thiophene, a five-ring of carbon and sulfur. Since the thiophene-monomer is easily 

modified by attaching sidechains to the carbon atoms in the 3- and 4-positions, the variety 

of different polythiophenes is rather large. The substitution from these positions force the 

polymerization taking place from the 2- and 5-positions. 

Lately polythiophenes have gained more interest in different applications, such as 

in photovoltaics, organic light emitting diodes, and touchscreens, due to their properties 
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suiting these applications. These properties include high stability both in doped and 

undoped state, ease of modification and ease of processibility in solution.14 

  

1.3.1 Poly(3,4-ethylenedioxythiophene), PEDOT 

One of the derivates that is getting more and more attention is poly(3,4-

ethylenedioxythiophene) (PEDOT), as its properties of high conductivity and high 

stability that stems from the structure are highly sought after. The high stability of the 

structure arises from the two oxygen atoms in the structure that act as the balancing for 

the charges.15 

PEDOT was created by the researchers at Bayer Ag in the latter half of the 1980s. 

It boasted lot of good properties including high conductivity, stability and near 

transparency in oxidized form. Initially the undoped, pristine PEDOT-polymer is 

insoluble in water, but doping it for example with poly(styrene sulfonate) (PSS) changes 

the properties of the system creating a water soluble polyelectrolyte system.14  

The hydrophilic nature of PEDOT:PSS can be both good and bad thing. Hydrophilic 

nature makes the manufacturing, transporting, storage, and applying easier. On the 

downside, the finished products, often thin films, are also hydrophilic in nature, making 

them susceptible to moisture. This makes the use of the films in any applications unviable 

in humid conditions.15,16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Structure of EDOT and PEDOT 

To combat this downside, a new dopant p-toluenosulfonate, also called tosylate, has 

been used. The smaller size of the tosylate-ion decreases substantially the hydrophilic 

nature, making the polymer and the finished product more hydrophobic, which in turn 
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makes the polymer more usable even in humid conditions. The smaller size of the 

tosylate-ion also increases the conductivity of the polymer compared to the use of PSS. 

As PSS is longer polymer than PEDOT, it constricts the whole structure, preventing the 

charges from moving properly. The small tosylate being a single molecule allows PEDOT 

to relax and adopt better, more linear orientation, allowing the charges to move with 

ease.16   

1.3.2 Manufacturing of PEDOT 

There are several routes for making PEDOT-polymers, but the two most important 

are the chemical oxidation method and the electrochemical method. Commercially 

produced PEDOT is done via the chemical oxidative method, as it allows manufacturing 

of the polymer in large quantities. Using electrochemical methods only yields small 

quantities at the time, and thus it is used mostly to study the behavior of the polymer. 

Oxidative polymerization is usually done with ionic oxidants, iron(III) preferred 

but other metal ions with suitable high oxidation states, such as magnesium(IV), can also 

be used. The solubility requirements for the oxidants are determined by the solubility of 

the 3,4-ethylenedioxythiophene-monomer (EDOT-monomer) in the solvent used. 

Usually different alcohols are used, as EDOT has limited solubility in water but is 

miscible in alcohols. For this reason, alcohol soluble salts, usually sulfonic acids such as 

p-toluenosulfonic acid, are used. Later modifications were made by adding a base, such 

as imidazole or pyridine, to act as inhibitor and using elevated temperatures. The inhibitor 

has three major roles in the reaction: it reduces reactivity, thus slowing down the reaction 

rate of the polymerization, it promotes formation of higher molecular weight chains, and 

it prevents the polymer from being over-doped. In addition, some form of an adhesion 

layer on the substrate may be needed for the film to stick to the substrates surface.8,17,18 

The classic in situ method for polymerization then begins by mixing the chemicals 

in two steps. In the first step the oxidant and inhibitor are mixed together. In the second 

step the monomer is added to the mixture and immediately after addition the coating of 

the substrate must be done, for example by spin coating. The film is then dried, washed 

with solvent, usually with water, and is then dried again under nitrogen stream.8,15 

The polymerization process takes place in two steps. In the first step oxidative 

polymerization of EDOT occurs, forming neutral, undoped PEDOT-polymer. In the 

second step the pristine undoped PEDOT is doped by the excess of the oxidant still 

present. The polymerization itself happens via radical cation polymerization, where the 
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monomer is first oxidized by the oxidant, forming a radical cation. These radical cations 

then form a charged dimer, which then eliminates a proton to form a neutral dimer. This 

dimer can be then oxidized again, and then it continues the coupling process with other 

charged cations or oligomeric structures. Then the polymer is oxidized once more, 

creating positive charges on roughly every third or fourth monomer sub-unit. The dopants 

then interact with the polymer, thus balancing the charges within.8,19,20  

Films made with this method receives conductivities in the area of 400-600 S/cm, 

though the materials and coating methods will affect the results. Other methods utilizing 

oxidative polymerization can exceed these values, for example using vapor phase 

polymerization (VPP), conductivities of 1000-1200 S/cm. 8 

The process of electropolymerisation of conducting polymers is still bit unclear. 

Currently the most widely accepted, with some modifications, concept was proposed by 

Diaz et al.19, and it bears similarities to radical or ionic polymerization. They used pyrrole 

in their study, and the pyrrole-monomers dimerize at their α-position, creating a double-

charged σ-dimer. To form an aromatic neutral dimer, a proton is eliminated from the 

structure. The dimer is easily oxidized due to its more conjugated structure. After 

oxidation, the dimer then couples with a monomeric radical cation and after coupling, a 

proton is eliminated again to form a neutral trimer.11 

The coupling steps was thought to be the rate determining step, but it seems that it 

is the elimination of the proton from the σ-dimer that determines the rate of the reaction. 

At the same time the acidity of the dimer decreases as the chain grows as a function of 

the length. The stabilization effect of large conjugated oligomeric structure makes 

elongation of the chain via coupling of the monomeric species unlikely. 

The proton elimination was thought to be a fast reaction in while also being the 

driving force behind the re-aromatizing the system. In reality, the rate of proton 

elimination from the dimeric coupling intermediates can decrease substantially, where 

charged σ-dimers with more than four units in a conjugated system are quite stable. This 

stability means that the proton is eliminated only when the intermediate is oxidized with 

higher charging levels, thus the reactivity of the whole system is increased.11 

Medium sized oligomeric chains cannot grow by coupling with monomeric or 

dimeric species as the intermediates do not eliminate their protons. These oligomeric 

intermediates and the radical cations tend to couple amongst themselves as a part of the 

oligomerization process.21 In studies with donor-substituted thiophenes the 

oligomerization process begins in the solution. During the reaction dimers are first formed 
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and then these form tetramers, then octamers and so on. Additional coupling with larger 

oligomers or radical cations, forming for example trimers, then hexamers and so on, 

similar to dimeric species.22,23 During the initial phase of electropolymerization oligomers 

form in solution and the deposition process depends on the electrodes chemical nature 

and reactivity.11,24 

Anodic electro-synthesis of PEDOT was done the first time in the 1980s. Thiophene 

itself is hard to polymerize using electrochemical methods as its oxidation potential is 

relatively high. To help with the polymerization process, substitution at the 3- and 4- 

positions in the monomer structure can be done, since they prevent α-β- and β-β-couplings 

in the structure. This in turn yields in longer chains with longer conjugation.8,15,25 

At room temperature, PEDOT has an irreversible oxidation peak at 𝐸𝑝𝑒𝑎𝑘
𝑜𝑥  =1.2 V, 

and the reversesweep shows two peaks at negative potentials of -0.2 V and -0.7 V.  These 

peaks correspond to the reduction of the initially deposited polymer. They also act as 

evidence of nucleation process taking place on the electrode. Redox-system of the 

polymer is found around -0.7 to -0.4 V as the polymer is deposited on the electrode by 

repetitively sweeping between positive and negative potentials.  

Monomeric, dimeric, and trimeric EDOT all result in PEDOT without any changes 

to the conjugation length. The anodic polymerization method can be used to form both 

electrode supported and free-standing films. Different methods exists for the 

electrochemical polymerization of PEDOT, including potentiostatic, galvanostatic, and 

repetitive multisweep voltametric methods.25 

Electro-polymerization and different wet chemical behavior studies are used in 

paraller to study the properties of the conducting polymers. One of the advantages of 

using electro-chemical methods is the small amount of material needed for the study, as 

milligram and submilligram quantities of the chemicals are needed. Other advantages are 

the fast speed and the high accuracy of the measurements, and the high precision mean 

that the measurements can be made under the same conditions, helping the comparison 

between different systems.25 

Drawbacks for the electro-polymerization methods include small amounts of the 

product produced and the insolubility of the product. The substrate also needs to be 

conductive, limiting the available materials for substrate usage. For these reasons, electro-

chemical methods are rarely used in the industrial and commercial manufacturing of 

PEDOT or other conducting polymers. The conductivity values mirror those of chemical 

oxidative polymerization, reaching values roughly 400-600 S/cm. 8,25,26   
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The drawbacks of low yields and lower conductivities of electrochemical methods 

were the reasons why vapor phase polymerization (VPP) was chosen as the 

manufacturing method for this study. Also, the requirement for conducting surface for the 

electrochemical process was an obstacle, since one of the aims of the study was to find a 

replacement for the conducting materials used today. 

1.4 Chemical vapor deposition, CVD 

Chemical vapor deposition (CVD) is a deposition method of major use in thin film 

manufacturing. While pure elements can be used in CVD, most of the time they are used 

as compounds. The simplest method used in CVD starts by flowing precursor gas/gases 

into reaction chamber, where they react nearby or on a substrate placed on a heated 

surface. This leads to thin film formation on the substrate. By-products and unreacted 

precursor gas(es) are then vented out from the chamber. 

There is a large variety of different methods for CVD, such as hot wall and cold 

wall processing, using pressures over and under the atmospheric pressures, and the 

temperatures range usually between 200 °C – 1600 °C. These methods can also be 

enhanced using plasma, ions, photons, and lasers. Hot filaments and combustion reactions 

can be used to increase the deposition rate and/or decrease in reaction temperature used.27  

1.4.1 Oxidative Chemical Vapor Deposition, oCVD 

OCVD is a single step deposition method, where both the oxidant and the monomer 

are in gaseous form and are delivered as such on to the substrate´s surface where the 

polymerization reaction takes places, forming a thin film. Since all the precursors are in 

gaseous form, the substrate itself can be practically anything in contrast to solution-based 

deposition methods, where the surface affects the reaction by interacting with the 

solvents. For example, using PEDOT:PSS dissolved in water for manufacturing films on 

a hydrophobic surface will be extremely difficult, whereas using them in gaseous forms 

without solvents circumvents this problem.28 

Usually, when using conducting polymers, the following process is used: The 

substrate is placed inverted on a temperature-controlled stage inside a vacuum chamber. 

The inversion of substrate helps to prevent accumulation of particles on the surface. 

Oxidant, usually solids at room temperature, for example iron(III)chloride (FeIIICl3), is 

heated in a crucible to get it to sublimate. Monomer, usually in liquid form, is also heated 
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to produce monomer vapor. Both of these are then guided to the substrate to react with 

each other and form a conducting polymer thin film.28 

 

 

 

 

 

 

 

Figure 5: Different oCVD-cells. 

1.4.2 Vapor Phase Polymerization, VPP 

In contrast to the single step method oCVD, vapor phase polymerization (VPP) is 

a two-step process. First step is depositing a layer of oxidant, such as FeIIICl3 or iron(III)p-

toluenosulfonic acid (FeIII(Tos)3), on to a substrate. Methods used include for example 

spin coating, dip coating or sputtering and chlorination of a metallic thin film on the 

substrate. In the second step the oxidant covered substrate is placed in a chamber, either 

in ambient conditions or low vacuum pressure, filled with monomer vapor. The monomer 

vapor then reacts with the oxidant, polymerizing and forming a thin film on the 

substrate.28 

After polymerization, the finished product is washed with solvent or solvents, 

usually with alcohols or acetonitrile. This is done to remove any excess of, unreacted 

oxidant, monomer and other byproducts. Other post-treatments can also be applied, for 

example annealing of the film on a hot plate. 

 

 

 

 

 

 

Figure 6: Basic method for VPP.  

One report on VPP when used in manufacturing polymer thin films was in 1986 as 

Ojio et al. used the technique to form poly(vinyl alcohol)-polypyrrole (PVA-PPy) 
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composite film, where PVA film was coated with FeIIICl3 to act as the oxidant and it was 

then exposed to pyrrole vapors. The properties of the resulting film were depended on the 

polymerization time, temperature and the concentration of the oxidant.28 

Another tactic to coat the substrate with oxidant is to thermally evaporate or sputter 

a thin film of metal at the surface of the substrate, the film is then chlorinated to form a 

metal chloride surface that acts as the oxidant. The first time this method was used was 

using copper, which was sputtered on a substrate and then chlorinated. After chlorination, 

the copper chloride film was exposed to pyrrole vapor, forming a polypyrrole thin film. 

Other metal chlorides have been tried in thin film formation, such as gold, palladium, and 

iron. 

First times, when VPP was used for PEDOT, the results were not ideal, as the 

conductivities were mostly below 100 S/cm. These films were made by dip coating 

ormicro-gravure roll coating the substrate with FeIIICl3 dissolved in methanol. The 

substrate was then exposed to the EDOT-monomer vapors at ambient conditions.28 

The results improved drastically when the oxidant was changed to FeIII(Tos)3 with 

pyridine.29 The conductivities of the resulting PEDOT:Tos films exceeded 1000 S/cm. 

Further improvements of the films were made when Levermore et al.30 introduced low 

vacuum pressure chamber to use with the VPP. 

1.5 Touchscreens 

Touchscreens are sensors comprised of a touch sensor and a controlled chip 

designed to drive and interpret the signals from the sensor and send them to the computer. 

Several methods for the sensing of the touch input exists and, in this study, we will focus 

on two of them, resistive and capacitive, since these two methods comprise almost 95% 

of the market of touchscreens and as the final prototype produced uses capacitive 

method.31  

 

1.5.1 Analog Resistive Touchscreen 

Analog resistive touchscreens are the oldest mass-produced touchscreen types, first 

commercialized by a company called Elograpchics in 1971. The first transparent screen 

was made in 1977. Analog resistive touchscreen works as a switch, where the layers need 

to be pushed together to produce a signal. Different variations exist, where the differences 

are mainly in number of wires, layer construction and optics. 
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Three different wiring schemes dominate the construction of analog resistive 

touchscreens, 4-, 5-, and 8-wire systems. The number of wires tells how many 

connections there are from the sensor to the controller. In 4-wire system, the wires are 

attached to bus bars at the edges of the conducting layers, two for X- and two for Y-axis. 

One layer acts as the X-axis and second as Y-axis. When the voltage is applied on the X-

axis, the measurements are made from the Y-axis and when voltage is applied on the Y-

axis, measurement is taken on the X-axis.31 

In the 5-wire system, four wires are attached to four corners of the same conducting 

layer and the one left is attached to the second layer. The second layer acts as a voltage 

probe while the voltage is switched between two points on the first layer to sweep either 

the Y- or X-axis. This allows the screen to be always ready for touch input. 

The biggest difference between the 4- and 5-wire systems is the lifetime of the 

sensor. 4-wire systems are usually rated for ~1 million touches, which equals roughly 

100 000 characters drawn with a stylus. In contrast, 5-wire systems are usually rated for 

~30 million touches, roughly 3 million characters drawn. The difference stems from the 

wiring and sensing method, since on the 5-wire system one layer is only used as a probe, 

not as resistive voltage divider. This allows the conducting layer used as the probe to 

degrade further before it affects the performance of the system. 

8-wire system is constructed the same way as the 4-wire system, only difference 

being that instead of one wire per bus bar, there are two wires connected to the bus bar. 

This allows the voltage to be measured straight from the sensor. This eliminates the effect 

of the impedance arising from the wires connected to the controller, which in turn reduces 

drift during calibration.31 

Advantages of the analog resistive touchscreen include low cost, wide availability, 

they work with any non-sharp objects and are easily sealed to meet IP65 or NEMA-4 

standards. Disadvantages include poor durability, since the soft outer layer usually made 

from PET-film scratches easily, poor optical properties, since up to 20% of the light from 

the screen beneath can be lost to layer reflections, relatively high touch force required and 

lack of multitouch. 
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Figure 7: Structures of the dominating wire schemes. 

Analog multitouch resistive device, AMR-device, was developed as an answer to 

the lack of the multitouch on regular devices. In AMR-device, the conductive layers are 

cut to strips, which are wired separately and positioned on top of each other. Every 

intersecting square acts as independent 4-wire touch sensor. The squares are quite large, 

10-20 mm length on the sides, which prevents the touches to be too close as they will be 

sensed as one touch (Fig. 8). Making the sensor work properly is difficult, it is not much 

cheaper to produce compared to projected capacitive sensor and it still has all the rest of 

the disadvantages of analog resistive touchscreen discussed earlier.  
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Figure 8: Electrode structure of AMR-sensor and iVSM multitouch sensor. 

Stantums iVSM multitouch resistive sensor is slightly better alternative for AMR. 

The squares used are much smaller, 1.5 mm on the side, and they act as simple ON/OFF-

switches instead of individual 4-wire sensors (Fig. 8). Better driver algorithms also 

improve the performance, but it still possesses the same disadvantages that plague AMR 

and basic analog resistive touchscreens.31 

1.5.2 Capacitive Touchscreen 

The basic construction of a surface capacitive touchscreen comprises of hard outer 

coating, usually glass typically 0.55, 0.75 or 1.1 mm thick, and underneath are layers of 

live patterned electrodes, conductive layer, back glass and optionally shielding layer. The 

outer glass makes the screen flush with rest of the surface and can be decoratively printed 

to hide the wiring of the sensor, tough nowadays as the bezels are constantly shrinking, 

the wires are folded beneath the screen. The glass can be chemically treated to increase 

resistance for chipping and breaking. Making the glass thinner leads to increased 

performance and if plastic is used, the thickness needs to be ½ of the thickness of the 

glass to match the performance. Projected capacitive method also allows for curved 

surfaces to be used as touchscreens. These surfaces require more flexible substrates and 

conductive materials, such as PET-substrates and PEDOT as a conducting material.31,32   

In a capacitive touchscreen, AC-current is applied to four corners of the conductive 

layer with exactly the same voltage, phase, and frequency. This creates uniform 

electrostatic field across the conductive layer. When the screen is touched, some of the 
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electrical energy is coupled capacitively from the conductive layer to the finger or stylus, 

which creates small current flowing through the wires. The controller then compares the 

new state to the baseline values. The position is calculated from the amounts of current 

flowing through each wire, which tell the controller how close the touch was to the wires.  

Simple surface capacitive touchscreen is not well suited for mobile use since the 

controller needs stable ground connection to measure the baseline properly. For mobile 

use, projected capacitance is mostly used.31 

Projected capacitance, p-cap, touchscreens were commercialized in 1985 by 

MicroTouch Systems, but the big break in commercial use for p-cap technology came in 

2007, when Apple unveiled their new phone, the iPhone, which used p-cap touchscreen, 

effectively popularizing the technology use in mobile applications. In p-cap touchscreen, 

the conductive layer consists of individual electrodes patterned on the surface rather than 

uniform conductive layer. These electrodes are all wired separately.  

There are two measurement tactics to measure the change in capacitance: mutual 

and self-capacitance. In self capacitance approach, the controller measures one electrode 

in contrast to the ground. In mutual approach, the controller measures capacitance 

between two adjacent electrodes.31 

 

  

 

 

 

 

 

 

 

Figure 9: Electrode measurement tactics, A: Self capacitance, B: Mutual capacitance. 

In the self capacitance approach the electrodes are measured individually, for 

example in X-Y-matrix first all the X-axis electrodes and then all the Y-axis electrodes 

are scanned and measured in sequence. When the screen is touched, nearest X- and Y-

electrodes are measured to have maximum capacitance and the coordinates can be 

calculated. If the screen touched with two fingers positioned diagonally, multiple maxima 

are recorded, leading to “ghost” images appearing positionally related to the real touches 
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(Fig. 10). This can be ignored at software level by focusing on the movement of the 

fingers, as the movement is identical between the real and ghost images.31 

 

 

 

 

 

 

 

 

 

 

Figure 10: A: Real touches (white circles) and ghost touches (gray circles) on a self-capacitive surface, 

B: Real touches (white circles) without ghost touches on a mutual capacitive surface31 

In mutual capacitance every intersection between the electrodes is measured 

individually. For example, one of the X-axis is driven first and every Y-axis electrode is 

measured before moving on to the second X-axis electrode, where the whole sequence is 

repeated. This approach allows identification of every touch point on the surface without 

any ghost images present. This make sa proper multitouch sensor and is better suited for 

mobile use.31 

These electrodes are patterned to make efficient use of the space available on the 

surface of the sensor. The original iPhone had one of the simplest patterns with 10 

columns of 1 mm wide ITO on one side and on the other side 15 rows of 1 mm wide ITO. 

These rows and columns were 5 mm apart from each other. This 5 mm gap between the 

electrodes on the surface was filled with unconnected, “floating” ITO to preserve uniform 

optical properties across the screen.32 

Since then, the usual pattern used is rows of interlocking diamonds connected to 

each other. This is made by connecting squares in 45° angle to each other. The size of 

these diamonds varies with manufacturer, but the usual size is around 4-8 mm. The rows 

and columns are usually divided by an insulating layer, but some screens use one sided 

structure, where in the intersections, an insulating coating is applied between the 

electrodes.32 
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Figure 11: Interlocking diamond electrode pattern. 

 

2 Experimental 

2.1 Materials 

Iron(III) p-toluenosulfonate hexahydrate (Fe(TOS)3 • 6 H2O) (technical grade) was 

purchased from Sigma-Aldrich and 3,4-ethylenedioxythiophene (EDOT) (>98 %) was 

purchased from TCI. Pyridine (AR-grade) was obtained from Lab-scan analytical, and n-

butanol (HPLC-grade) was purchased from Sigma-Aldrich. Acetonitrile (HPLC-grade) 

was obtained from Sigma-Aldrich. All reagents were used as such without any further 

purification. 

2.2 Synthesis and Optimization 

2.2.1 Small PET-substrates 

In the original protocol33 used in the VPP process for the small samples the 

polymerization was performed in a heated glass cell heated to 75°C using water heater 

and a pump to circulate water inside the cell walls. Heated metal block made from copper 

same size as the substrates was heated to 65 °C. The PET-substrates (biaxially stretched, 

thickness of 125 µm) were cut to shape (2.8 cm x 3.6 cm, half of a microscope slide) 

using scissors. The substrates were then cleaned first by ultrasonicating them in water, 

acetone, and ethanol for 5 minutes per solvent. After drying under ambient conditions, 

they were plasma cleaned for 5 minutes and immediately transported to the spin coater 

for oxidant coating. 
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The oxidant solution was prepared using iron(III) p-toluenesulfonate hexahydrate 

(Fe(Tos)) and pyridine in n-butanol with concentrations of 0.236 M and 0.141 M 

respectively. 60 µl of the oxidant was used in spin coating of the substrates at a spin speed 

of 2400 rpm. After spin coating the substrate was dried on a hot plate at 90 °C for 90 s.33  

When the glass cell had reached the desired temperature, 30-50 µl of EDOT-

monomer was pipetted on the cell bottom. It was then let to vaporize and fill the cell with 

monomer vapor. The dried substrate was then placed into the cell with the oxidant covered 

side poiting downwards and the cell was covered with a glass lid for 90 s. The lid was 

then removed and a heated metal block, at 65°C, was placed on the substrate for 90 s. 

After that, the block was removed. and the glass lid was placed back for 60 s. Following 

the polymerization, the film was annealed on a hot plate at 90 °C for 90 s and washed 

with acetonitrile and dried under dry nitrogen gas stream. For multi-layered films, the 

process was repeated from spin coating onwards.33 

The first results with the PET-substrates were not great, as the sheet resistances of 

the films produced were around 2000 Ω/□. At first the reagents were thought to be faulty, 

and test runs with glass microscope slides suggested some problems were due to the 

reagents, as when a new bottle of the monomer was opened for use, the results got better. 

Rest of the reagents used were tested by UV-vis spectrophotometry, and the results 

showed no other problems and were consistent with tests done with the glass slides. 

The physical shape of the substrates was also under study, as the substrates were 

cut from a larger roll, resulting them to be slightly curved along either side of the 

rectangle. This made the substrates slightly curved, which in turn could affect the oxidant 

coverage during spin coating as the solution could either pool in the convex area or fling 

off before evenly covering the whole substrate in the more concave orientation. 

Using pressure from books pressing down on the substrates for 11 days before 

cutting them into shape and using them in experiments did not work and the film was as 

curved as before the treatment. This also had high chance of scratching the substrates, 

even with some protection. Using the hot plate at 90 °C and keeping the small substrates 

on it for few seconds made them more malleable and this made them to straighten out. 

The heating did not affect the quality of the films as the results were similar when using 

the heat-treated substrates compared to the non-heat-treated substrates. This also suggests 

that the concave nature of the substrates did not affect the finished films. 

However, when switching the substrate back to the PET-films, the results were the 

same as before. This showed that the protocol used does not work properly with PET-
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film, as the protocol was originally optimized for glass slides, meaning that it may not 

function properly with different substrate. 

This meant that the protocol needed to be optimized for the new PET-substrates and 

the first parameter to change the time used in the polymerization. This was done by 

increasing the time with same ratio as used in the original protocol, which was roughly 

3:3:2, and this translates to +45 s, +45 s, and +30 s per stage when using 2 min intervals. 

2 min intervals were chosen as they give frequent enough measuring points while still 

being easily implemented and calculated.  

The experiments began with 2 min polymerization time and continued until 16 min, 

increasing the time in 2 min intervals. The results for these tests show parabolic shape for 

the sheet resistances of the films. The sheet resistances start from 4000 Ω/□ of the 2 min 

films and decreases steadily until 14 min films and after which it increased again. Thus 

polymerization time was chosen to be 14 min for the rest of the experiments (Fig. 12: A). 

After the polymerization time was optimized, other aspects of the protocol were 

tested. From the time tests a window between 12 and 16 min was chosen for these tests, 

as they produced the best results for the films. First, using only the glass lid for the whole 

polymerization time without using the heated metal block was tested. This resulted either 

in the same or slightly worse results than the original. After that, using the heated metal 

block on top of the substrate for the whole time was tested and the results were better than 

the results when using the original protocol. 

With these results 14 min polymerization time and using the heated metal block for 

the whole time was selected for preparation of the samples. This does result in a thicker 

film produced, and this is not always a good thing. This is discussed later in the results 

and discussion, but still the procedure produced films with low enough sheet resistances 

for further experiments. 
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Figure 12: The results of optimization of the polymerization time, A: initial values, B: values after 

weekend. “Metal + glass” is the same as “Original protocol”. 

This was the plan to move forward until the next day in the laboratory when new 

set of substrates were cut from the roll. When these substrates were used in the 

polymerization for 14 min with only the heated metal block, the resulting films had 

several kilo-ohms of sheet resistances and the films themselves were tinted green, 

suggesting over-doping (Fig. 12: B). 

Because of this, the polymerization time tests had to be redone, and this time the 

change in the sheet resistances was almost linear and the best results were at the 2- and 

4-min polymerization time and the earlier results for the times were no longer applicable. 

The usage of the metal block for the whole time resulted in the same results as earlier. 

The reason for this shift lays most likely in the substrates themselves as all the other 

factors were investigated. The reagents were tested again with glass-slide as a substrate, 

and the results were identical with previous ones. If the reagents were faulty one way or 

another, there would not be any proper film formation regardless of the substrate, and as 

seen on Fig. 12: B, a film was formed on the substrate, clearing their involvement in the 

shift. The temperature in the laboratory and in the fumehood were also stable and the 

temperatures of the cell and the block were always checked before any attempt, and they 

were stable too. Air moisture can affect the film formation34, but it also was checked and 

found to be stable. All these results point to the substrate being the culprit, as the change 

occurred when a new batch of them was cut from the larger roll, proving the importance 

of checking the substrates before experiments. 
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The final set of samples was done using 2- and 4-min polymerization time with the 

heated metal block on top for the whole polymerization time. With this protocol, 1-, 2-, 

and 3-layered films were prepared. 

2.2.2 Large PET-substrates for the Prototype 

The large PET-substrates were prepared by first cutting them into 18x18 cm 

squares, which were then ultrasonicated in a solution of 1:1:1 ratio of water, ethanol and 

acetone for 10 minutes and were left to dry under ambient conditions. After drying, just 

before spin coating the substrates were cleaned by a plasma cleaner for 5 minutes. 

The oxidant was prepared the same way as with the smaller samples. The proper 

amount of the solution needed was determined by spin coating clean substrates with the 

oxidant and increasing the amount dispensed. The minimum required volume of the 

oxidant solution needed for an even coverage was determined to be 1.4 ml and a slight 

excess was then used to ensure proper coverage. After spin coating, the substrate was 

dried on a hot plate at 90 °C for 90 s and the moved to the VPP-chamber.  

As the dispensing of the oxidant was done manually with either syringe or pipette, 

there was a high chance of a “hole” appearing in the middle of the film. This was a result 

from too fast dispensing or too aggressive final push of the syringe or pipette, causing the 

oxidant to blow away from the centre.  

The polymerization process was similar to the final optimized method used with 

the smaller substrates, as the cleaning and spin coating was done the same way and the 

larger setup did not allow for switching between the lid and the heated metal block. 

However, the polymerization time was increased from the 2 and 4 min used with smaller 

substrates up to 10 min with 2 min intervals starting from 6 min. 

After the polymerization, the films were annealed on a hot plate at 90 °C for 90 s 

and washed with acetonitrile and dried under dry nitrogen gas stream. After drying the 

sheet resistances were measured. 

2.3 Characterization 

The optical characterization of the films was done using Cary 60 UV-Vis-

spectrophotometer. With this, the absorbance was measured between 320 nm and 1100 

nm. Below 320 nm the absorbance of the PET-substrate itself starts to dominate, so it was 

left out. Transmittances of the films were calculated from the absorbance at 550 nm using 

equation 1 
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                                             𝐴 = 2 −  log10 %𝑇      (1) 

where A is absorbance and %T is transmittance. The wavelength of 550 nm was chosen 

for the transmittance calculations as it is the wavelength that human eye is the most 

sensitive for. For a device to be used on top of a screen for viewing, this is crucial area to 

be as transparent as possible. 

The sheet resistances of the films were measured after the washing step with a four-

point probe. Same probe was used in the bending tests to monitor the changes in the films 

to see if they suffer any adverse effects from the bending. 

The bending tests were conducted by hand, where the films were secured on a stand 

and then they were bent manually roughly to 100° angle while the polymer film was 

facing inwards the bend. The films were bent 500 times each and the sheet resistance was 

monitored with the four-point probe. 

The Veeco diCaliber AFM was used in measuring the thickness of the films and in 

checking of the bent films to see if they were cracked at the bend-line. Tapping mode and 

autotune of the cantilever was used as the settings for the measurements. 

 

3 Results and Discussion 

3.1 Sheet Resistance 

The sheet resistances were measured from 5 different parts of the surface of the 

finished small sized films after washing to see if the film was uniform. According to the 

results, the films were quite uniform in nature. From these results, the average was 

calculated to be used in comparison to each other and to be used later in the calculations.  

For 4 min polymerization time, one layer of film had a sheet resistances of 415, 451 

and 424 Ω/□, which are good and slightly below desired 500 Ω/□35, though this value was 

given for a resistive touchscreen device. Second layer added dropped the sheet resistance 

roughly in half to 188 and 167 Ω/□, with one outlier of 480 Ω/□. Third layer did see even 

more decrease down to 109, 107 and 182 Ω/□, but it was not as large drop compared to 

the drop from one to two layers (Table 1). 

Films prepared with 2 min polymerization time follow almost the same pattern, 

where the one-layer film has the highest values with 319-339 Ω/□ and adding layers drops 

these values. The big difference compared to the films made with 4 min polymerization 
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time is that the two layered films have lower sheet resistances than the three-layered films, 

as they had sheet resistances below 150 Ω/□ whereas the three-layered had resistances of 

167-203 Ω/□ (Table 1). 

For the large samples, the sheet resistance measurements were taken from 13 

different spots on the film, giving an accurate result for the whole film. While the first 6 

min film had sheet resistances of 6000-7000 Ω/□, rest of the samples had sheet resistance 

values between 190-400 Ω/□. These values are in the desired range and are quite uniform 

across the films (Table 2). 

The values of sheet resistance drop slightly from the 250 Ω/□ of the 6 min film to 

around 218-276 Ω/□ of the 8 min film and then rises again back to the around 250 Ω/□ 

of the 10 min film (Table 2). This is likely due to the longer polymerization time resulting 

in a thicker film where the slight defects can accumulate and decrease conductivity and 

rise the sheet resistance. 

Table 1: Measured sheet resistances and transmittances of the small, layered samples, averages taken 

from the measurements. 

  Sheet resistance, Ω/□ Transmittance, % 

Polymerization 

time, min 

Layers Samples Samples 

1 2 3 1 2 3 

2 1 322 339 319 85.6 88.7 90.0 

2 135 141 141 79.1 78.3 77.2 

3 167 203 195 67.9 65.6 67.0 

4 1 415 451 424 83.9 89.7 89.3 

2 480 188 169 75.4 78.1 77.8 

3 109 107 182 63.4 66.6 69.4 

 

 

All the sheet resistance values are good for use in the manufacture of the prototype, 

and the optimal thickness would be two layers done with the protocol, as the third layer 

does not decrease the sheet resistance as much as the addition of the second layer. The 

optical measurements need to be considered as well as the final product needs as high 

optical transmittance as possible. 
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Table 2: Measured sheet resistances and transmittances of the large samples, averages taken from the 

measurements. 

 Sheet resistance, Ω/□ Transmittance, % 

Sample/polymerization time 6 min 8 min  10 min 6 min 8 min 10 min 

1 7060 218 249 91.7 87.9 90.4 

2 249 403 254 91.6 91.4 87.7 

3  276   91.7  

4  226   90.5  

 

 

3.2 Optical Characterization 

The UV-Vis absorbance spectra of the films shows that as the layers are added, the 

absorbance increases constantly with every new layer, which suggests that the layers are 

almost of identical thickness. This is expected, as the layers are done by the same 

protocol, which should result in identical layers. Similar thickness is also shown in the 

transmittance values, as every layer drops the values roughly 10-15% (Fig. 13). 

 

 

 

 

 

 

 

 

 

Figure 13: Absorbances of the small sized films manufactured. A: 2 min polymerization time, B: 4 min 

polymerization time 

The absorbance spectra also shows that the films are in a doped state as the peaks 

are located in the higher wavelengths in the infrared area. If the films were in a pristine, 

undoped state, the peak would be in the lower wavelengths closer to the ultraviolet area. 

The 2 min films are similar to each other with every layer added, as the absorbance spectra 

for them overlap the whole range from 320 nm to 1100 nm. In contrast, the absorbance 

spectra for the 4 min films are more separate from each other, especially the three-layered 
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films diverge from each other more. This divergence begins at 320 nm and above 600 nm 

it gets greater. The spectra for each layer are closer to each other between 320 nm and 

500 nm, from where they start to diverge from each other higher the wavelength becomes. 

The lower divergence of the samples of each layer in 2 min films shows that they are 

more uniform batch to batch compared to the 4 min films. The same separation is seen in 

the transmittance values, as the three-layered 2 min films are within 2.3 % apart from 

each other whereas the three-layered 4 min films are within 6 % apart from each other 

(Fig. 13).  

The polymerization time does not show any drastic change in the absorbance 

spectra as the peaks of films prepared with both 2 and 4 min have roughly same intensities 

of 5.5, 3.5 and 1.5 for three, two and one layered films, respectively. Transmittance on 

the other hand shows some slight difference as the films with 4 min polymerization have 

up to 5% lower transmittances compared to the films with 2 min polymerization time 

(Fig. 14). 

The transmittance values decrease simultaneously with the increase of the thickness 

of the films with every layer added. This decrease is the same amount with every layer 

added, 10-15% per layer, which shows that every layer is similar. The trend is similar 

between the polymerization times, difference being that the initial values of the first 

samples 4 min polymerization time films are slightly lower due to them already being 

slightly thicker than films made with 2 min polymerization time (Table 1). Rest of the 

values are in line with the 2 min films with practically same transmittance values. 

 

 

 

 

 

 

 

 

Figure 14: Transmittance of the small films manufactured. A: 2 min polymerization time, B: 4 min 

polymerization time 
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The optical measurements show, in paraller with the sheet resistance values and the 

AFM measurements, that the addition of the third layer is not optimal for later use in 

touchscreen devices, since the transmittance is needed to be as high as possible, and it 

decreases below 70% when the third layer is added. The 80% transmittance of the two-

layered films would be optimal with the sheet resistance values in use in the prototype.  

The UV-Vis measurements taken from the larger samples show similar pattern with 

the smaller ones as they also have minima around 400-450 nm and from there the 

absorbance steadily rises reaching maxima at around 1000 nm. This shows that the films 

are in the oxidized state (Fig. 15). 

There are some variations in the measured spectra, as the results do not line up with 

the polymerization time used as the longest polymerization time, in this case 10 min, 

should yield thickest film and thus the highest absorbance. However, only one of the 10 

min films (olive green, Fig. 15) is on the top with highest while the other one (greyish 

blue, Fig. 15) is in between of the 8 min films. Also, one of the 8 min films has the lowest 

absorbance instead of the 6 min films, which were the thinnest ones. This suggests some 

uniformity issues, as only a small sample was taken from the films to be measured.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Absorbance of the large films manufactured. 

The transmittance values were calculated from the absorbance spectra at 550 nm 

the same way described earlier with the smaller samples. The results range between 88 % 

and 92 %. The 6 min film has transmittance of 91.7 % and as the polymerization time 

was increased to 8 min, the transmittance drops to around 90-91 %, as the thickness 
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increases. One of the 8 min films has a lower transmittance at 87.9 % and second one has 

almost 91.7 %, showing the uniformity issues discussed earlier. The increase in 

polymerization time to 10 min does not show dramatic drop in transmittance, as one of 

the films has the transmittance of about 90 %. The second one has the lowest value of 

87.6 %, only slightly below the 87.9 % of the lowest 8 min film (Table 2 and Fig. 16). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Transmittance of the large films manufactures. 

 

3.3 Bend Tests 

The bend tests were conducted using a stand crafted in the laboratory for these tests. 

The smaller films were attached to the stand with double-sided tape from the backside of 

the film on the clean PET-surface to prevent any damage done to the PEDOT-film by the 

tape and stand itself. Bending of the films was done manually by bending the film into 

90°-100° angle while the PEDOT-film being inwards. The damage done to the film was 

monitored by measuring the sheet resistance with the four-point probe and the 

measurements were taken at 0, 10, 25 and 50 bends and from that onwards every 50 bends 

until 500 bends.  

If there would be any damage done to the film, it would show as an increase in the 

sheet resistance values. The one and two layered films with 4 min of polymerization time 

had the highest rise in the sheet resistance values in the end with +6.9% and +11.1% 

respectively. On the contrary, the three-layered film did not have any change in the sheet 
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resistance values as the change in the end after 500 bends was -0.5%. For some reason, 

the three-layered film done with 2 min polymerization time had change of -6.7%, which 

is probably due some sort of error in the measurements (Fig. 17). 

 

 

 

 

 

 

 

Figure 17: Graphs showing the change in the sheet resistance during bend tests. 

The surface was later measured with atomic force microscopy to see if there was 

any damage done to the polymer film by the bending (Fig. 18). The measurements were 

taken from the area, where the films were bent. These measurements did not show any 

damage on the surface, confirming the results of sheet resistance measurements, which 

showed only a little change in the film. Only some irregularities and dust are visible in 

the pictures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: AFM pictures of bended films. 2 min films: A: one layer, B: two layers, C: three layers. 4 min 

films: D: one layer, E: two layers, F: three layers. 
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3.4 AFM and Conductivity 

Atomic force microscopy was used to measure the thickness of the films and to see 

if there was any damage done to the films during the bend tests. The thickness values 

were obtained with Gwyddion-software by first selecting the area in question, then using 

the software to level the terraces and then measuring from the graph the difference 

between these terraces. The edges of these terraces can be seen as a dark line in the middle 

of the pictures in Figure 19. 

The images show that the layers made are almost the same in thickness, with slight 

variations and the third layer of the 2 min polymerization time is thinner than the rest with 

roughly 30 nm thickness compared to the two preceding ones having roughly 50 nm 

thickness. 4 min polymerization time results in a slightly thicker and more consistent 

layers with thickness of roughly 60 nm per layer (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: AFM-pictures of films, A-C made with 2 min polymerization time, D-F made with 4 min 

polymerization time. A: one layer, B: two layers, C: three layers, D: one layer, E: two layers, F: three 

layers. On the left of the picture is the clear PET-surface and moving right the PEDOT-layers begin.   
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The conductivities of the films were calculated using the thickness of the layers and 

sheet resistance of the same films using the equations 2 and 3 

 

           𝑅ℎ𝑜 = 𝑅𝑠  ∗  𝑡    (2) 

                                                 𝜎 =
1

𝑅ℎ𝑜
=

1

𝑅𝑠 ∗ 𝑡
    (3) 

  

where Rho is resistivity, t is thickness, Rs is the sheet resistance and 𝜎 is conductivity. 

The conductivities show that making thicker films is not always better (Table 3), as 

the second layer increased the conductivities significantly by 117 S/cm for 2 min and 137 

S/cm for 4 min polymerization time while the third layer either does nothing compared 

to the second layer added in the 4 min films or even decreases the values in half in the 2 

min polymerization time. All the conductivities obtained are in the border between 

semiconducting and metallic materials (Fig.2), although the line between them more of a 

gradual change. This is in line with earlier results as the conductivities of doped 

conducting polymers are in the region starting from semiconducting and moving to 

metallic conductivities (Fig. 2). 

Table 3: Thickness and conductivity of the samples. 

 

3.5 Making of the Prototype 

The prototype consisted of a film of conducting polymer connected to the controller 

via four wires form the corners of the film. The larger film was prepared using 8 min of 

polymerization time in with the process for the larger substrates, and was used as simple, 

surface capacitive touchscreen. Unfortunately, the process of building of the prototype 

Polymerization 

time, min 

Layers Thickness, nm Conductivity, 

S/cm 

2 1 52 605 

2 2 99 722 

2 3 130 461 

4 1 63 352 

4 2 121 489 

4 3 195 484 
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was interrupted and delayed because of myriad of technical difficulties, mostly centered 

on the controller itself. Signal was received from the film and the controller, but it was 

not significant enough for proper function of a touchscreen device. This problem was not 

resolved in time for including any results to this study. 

 

 

 

 

 

 

Figure 20: Simplified scheme of the prototype meant to be produced. 

 

4 Conclusions 

In conclusion, the preparation of conducting PEDOT-polymer thin films for a 

prototype of a touchscreen device using vapor phase polymerization was a success as the 

films produced were thin, 50 nm per layer, with conductivities of up to 720 S/cm. The 

films were also transparent, with transmittances of 88 % - 92 %, which made them usable 

in touch screen devices. Largest problems encountered where technical difficulties arising 

from the computer side of the project, which was out of writer’s expertise on the subject. 

This hindered the project from being completed in the time frame given for the project.  

For future continuation of this project, acquiring a better suited controller chip for 

the finished prototype for it to function and receive signal properly. Some optimizations 

could be done with the polymerization process in order to have better conductance and 

uniformity on the films. With the optimizations, patterning the film to form an electrode 

pattern on the surface similar to commercial touch screens could also be done. Several 

methods, printing, stamping, masking etc., exists and could be used in patterning the 

films. 
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