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Abstract. Early Warning Score (EWS) systems are a common practice
in hospitals. Health-care professionals use them to measure and predict
amelioration or deterioration of patients’ health status. However, it is de-
sired to monitor EWS of many patients in everyday settings and outside
the hospitals as well. For portable EWS devices, which monitor patients
outside a hospital, it is important to have an acceptable level of reliabil-
ity. In an earlier work, we presented a self-aware modified EWS system
that adaptively corrects the EWS in the case of faulty or noisy input
data. In this paper, we propose an enhancement of such data reliabil-
ity validation through deploying a hierarchical agent-based system that
classifies data reliability but using Fuzzy logic instead of conventional
Boolean values. In our experiments, we demonstrate how our reliability
enhancement method can offer a more accurate and more robust EWS
monitoring system.
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1 Introduction

Chronic diseases such as cardiovascular diseases are the leading cause of death
in the world [1]. Such diseases put patients at the risk of sudden health dete-
rioration, which is reflected in patient’s vital signs up to 24 hours in advance.
Early enough health deterioration detection effectively increases the chance of
patient’s survival [2].

In hospitals, particularly in intensive care units, the Early Warning Score
(EWS) is a prevalent manual tool, by which patient’s vital signs are periodically
recorded and the emergency level is interpreted [3]. To this end, a score (0 for
a perfect condition and 3 for the worst condition) is allocated to each vital sign
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according to its value and the predefined limits (see Table 1). The summation
of the obtained scores indicates the degree of health deterioration of the patient
(the higher the EWS, the worse the patient’s health condition). However, there
are two major restrictions in this manual tool. First, unreliable interpretation
might be made due to the presence of inaccuracy and latency in the manual data
collection. Secondly, and the more important restriction from a practical point
of view, this manual tool is not applicable to out-of-hospital situations where no
professional caregiver is available to perform the measurements. Recent advance-
ments in Internet of Things (IoT) technologies can mitigate these restrictions by
providing 24/7 remote health monitoring. In EWS systems based on IoT devices,
patients’ vital signs along with context data are continuously monitored via mo-
bile/wearable sensors, while cloud server performs data analysis and decision
making algorithms for the score determination [4, 5].

Data reliability of such IoT-based EWS systems in remote health monitoring
is of paramount importance. In our previous work [6], we proposed an architec-
ture which exploits self-awareness techniques to adaptively adjust the EWS in the
case of faulty readings from the sensor. We indicated a binary decision-making
technique to determine whether the sensory data is reliable, and if needed we
accordingly adjusted the EWS. However, like many other natural phenomena,
data reliability of the sensory data is a continuous value and treating it in a bi-
nary manner, although simplifying the analysis, can lead to loss of information.
For example, many somewhat reliable sensory data can lead to an unreliable
assessment whereas in a binary assessment they may be interpreted as reliable
(since they may fall closer to a reliable value in the spectrum) and thus create a
wrong assessment.

In this paper, we propose a data reliability validation technique that is based
on Fuzzy logic. The usage of Fuzzy logic instead of Boolean logic to classify
input data as reliable or faulty covers the unsharp (fuzzy) ranges in which vital
signs can indeed be correct or incorrect. In our extensive experiments, we show
how our Self-Aware Early Warning Score (SA-EWS) method can be leveraged
to enhance the reliability and robustness of health monitoring systems.

Table 1. Score classification table of a set of vital signals

Vital Signal Score 3 2 1 0 1 2 3
Heart rate (beats/min) <40 40-51 51-60 60-100 100-110 110-129 >129
Systolic blood pressure (mmHg) <70 70-81 81-101 101-149 149-169 169-179 >179
Respiratory rate (breaths/min) <9 9-14 14-20 20-29 >29
Oxygen saturation (%) <85 85-90 90-95 >95
Body temperature (◦C) <28 28-32 32-35 35-38 38-39.5 >39.5

2 Data Reliability Concepts

Data reliability is an additional meta-data which describes the quality of the
measured data. The reliability consists of accuracy and precision of sensory
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data [7] and grants a higher level of comprehension on the validity of the in-
put data. If a sensor is broken, the monitored vital sign will be most probably
inaccurate and not precise. Whereas the data provided by the sensor can still
be accurate and precise when the sensor is detached from the patient’s body.
However, in both of these cases, an EWS calculated based on their values is
invalid and therefore, unreliable in the given context. Hence, determining the
reliability of the input data can be very challenging, but there exist potential
solutions; consistency and plausibility controls, as well as cross validation are
among them [7]. While the calculation of the EWS is based on the absolute
values of the vital signs, the reliability of the EWS uses additional information
about slopes and inter-correlations of the vital signs.

Consistency: Signals often have some limits such as maximum rate of change,
these limits can be exploited to assess the reliability of a signal. Consistency is
an aspect that can provide information on whether an observed input signal is
reliable or not based on its history. A signal with a physically impossible slope
indicates a problem which can be evoked by a sensor failure or a detachment
of the sensor from the body. Regardless of the reason, a faulty monitored vital
sign affects the calculation of the EWS negatively and should be avoided. For
example, a change of the body temperature of several degrees per minute is
impossible [8]. Therefore, in such a case the gathered sensory data should be
classified as unreliable and treated accordingly.

Plausibility and Correlation: One aspect of plausibility is the absolute value
of an input signal. For example, the oxygen saturation can only be between 0%
and 100%. An input data that shows values of the oxygen saturation outside of
this boundary must be classified as unreliable.

Another aspect of plausibility is the cross-reliability or co-existence plausibil-
ity. Various efforts have been conducted to indicate correlations between different
vital signs [9, 10, 11]. For instance, considering the possible effect of the body
temperature on the heart rate value, the probability of an increase in heart rate
is high in the case of elevated body temperature [10]. As a second example, we
can consider that a body temperature of -30◦C is implausible in the case of a
living patient, although a deceased person lying in a very cold area can have
such a low body temperature.

3 Fuzzified Reliability Assessment

In contrast to our previous work [6] where the data reliability validation was
based on Boolean logic, we propose here the use of Fuzzy logic. Because of
the lack of complete knowledge of all body functions, determining whether a
vital sign is monitored correctly is a hard task. Fuzzy logic brings the significant
advantage of covering unsharp (fuzzy) ranges in which vital signs cannot be easily
tagged as correctly monitored or not. Thus, a vital sign can have a reliability
value between 0 and 1 (0% and 100%), instead of just being reliable or unreliable.
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Fig. 1. Example for a fuzzy membership func-
tion.
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Fig. 2. System Architecture.

In the proposed system, the first task of reliability module is to analyze two
metrics of a vital sign, the absolute value of the signal and its slope. For this
analysis, fuzzy membership functions (shown in Fig. 1) are needed, each of which
is configured to match the properties of the assigned signal. The result of this
analysis is given by two parameters, the reliability of the absolute value rabs and
that of the signal slope rslo. Subsequently, the reliability of an input signal rsig
is calculated with

rsig = rabs ∧ rslo (1)

where the fuzzy “and” (∧) is equal to a minimum function [12]. The parameter
rsig gives information about the reliability of each signal considered separately
and omits the correlation of the different vital signs (reviewed in Section 2). To
consider the correlation, more highly abstracted information is needed on how
one vital sign can impact another. The cross-validated reliability, rcro, which
exists for each pair of signals is given by

rcro =

{
1 if Svs1 = Svs2

1
pcro|Svs1−Svs2| if Svs1 6= Svs2

(2)

where pcro ∈ (0,∞) denotes a coefficient of the strength of the correlation1

between vital signs vs1 and vs2, and Svs1 as well as Svs2 are the abstracted
scores of these two vital signs.

When all reliability and cross-reliability values are available, the reliability
of the calculated EWS is given by

r = (rsig1 ∧ · · · ∧ rsign) ∧ (rcro12 ∧ rcro13 ∧ · · · ∧ rcromn
) (3)

where the first term conjugates all reliabilities of the various vital signs, and the
second term contains the conjunction of all combinations of cross-reliabilities.
1 The reliability module in our implementation limits the cross-reliability rcro to a
value between 0 to 1, although theoretically, a coefficient less than 1 can lead to a
rcro higher that 1.
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4 Experiments

4.1 Implemented System Architecture

As in our last work [6], a hierarchical agent-based model, implemented in C++,
constitutes the base of the SA-EWS system (Fig. 2). Such an agent-based ap-
proach combined with the usage of mini Observe-Decide-Act (ODA) loops enable
a good modularity and simple implementation. Every agent works according to
an ODA loop; which means that every single agent monitors certain inputs,
decides what to do, and acts accordingly.

Beside its modularity, such hierarchical agent-based architecture has another
essential advantage. The input data with all its semantic content and contextual
information can be abstracted in different layers [13]. As shown in Fig. 2, each
agent of the lower hierarchical level is connected to a sensor. Due to the agent-
based design, the scoring of vital signs and the calculation of the EWS are
performed independently in different locations.

4.2 Functional Description of the System

First, each low-level agent reads the actual value of the vital sign the sensor at-
tached to it provides. Subsequently, it abstracts the raw input data to a vital sign
score S (Table 1) and validates the reliability of the signal, rsig (Eq. 1). Finally,
the low-level agent sends both values (score S and the signal reliability rsig) to
the agent of the higher hierarchical level; the "Body Agent".

Similar to the low-level agents, the body agent starts its task with reading the
input values, although these are coming from the low-level agents and not from
sensors. This high-level agent is responsible for the calculation of the EWS as well
as the reliability of the calculated EWS. While the agent’s binding module sums
up all gathered scores to calculate the EWS, the reliability module calculates
the cross-reliability, rcro, for each pair of vital signs (Eq. 2) followed by the
reliability, r, of the overall EWS (Eq 3). As the last step and before the next
data sets are read, the calculated EWS and its reliability, r, are outputted.

4.3 Experimental Data

All vital signs are collected from a 36 years old male subject with diastolic hyper-
tension. Several sensors and devices are used for data collection. The Bioharness
3 [14] chest strap with a wearable Bluetooth sensor set is used to record the
heart rate and the respiration rate. Blood pressure and blood Oxygen satura-
tion are recorded using iHealth BP5 [15] arm blood pressure monitor and iHealth
PO3 [16] finger grip pulse oximeter which both of them are Bluetooth-enabled
monitoring devices. Body temperature sensor is a DS18b20 [17] digital tempera-
ture sensor connected to ATMEGA328P [18] microcontroller and nRF51822 [19]
Bluetooth low energy module. We used an Android phone to collect data from
all sensors during the experiments with the rate of one sample per second.
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We conditioned the data collection phase to emulate certain faults and er-
rors. These conditions are applied in order to show how the system is able to
detect the changes from normal to the abnormal condition and back from ab-
normal to normal condition. To this end, a change has been applied for around
5 minutes in the middle of a 15-minutes data collection. We note that the con-
ducted experiments are proof-of-concept experiments and more extensive tests
with more patients are planned for the future. The applied abnormal conditions
are: i) The temperature sensor has been detached from the body and brought
to contact with an object at room temperature, ii) The temperature sensor has
been detached from the body and brought to contact with a cold object, iii) The
temperature sensor has been detached from the body and brought to contact
with a hot object, iv) A biceps contraction has happened during the blood pres-
sure measurements, and v) The chest strap for the heart rate and respiration
rate monitor has been loosened.

4.4 Configuration

Several factors influenced the setup of the fuzzy membership functions and the
correlation coefficients. Besides the medical publications [8, 9, 10, 11, 20], ex-
pert’s opinions from various physicians, the accuracy of the sensors used, and
the medical condition of the patient were considered in configuring the system.
To repeat the experiments with other sensors or patients, the setup should be
reconfigured again to reflect such personalization. Although reconfiguration of
these parameters is easy in our system, finding our the right values is a complex
task which requires further research for enabling its automation.

5 Results

Our experiments show that the SA-EWS system works correctly, and the reli-
ability of the calculated EWS coincides with the condition of the measurement
setup. In other words, erroneous input data leads to a lower reliability. Due to
the space limitation, only two of these cases are shown here in this section.

In the first experiment (shown in Fig. 3(a)) at around 350s the body temper-
ature sensor is detached and measures the room temperature until it is again at-
tached (around 700s). Over this period the reliability value decreases drastically.
Whereas the validation of the slope causes the low reliability during the begin-
ning and the ending phase of the period of detachment, the cross-plausibility
validation does this for the rest of this period. Because of the medical condition
(high respiration rate) of the test subject, the correlation between the respira-
tion and the other vital signs was set to weak (decreased from the default value
of 1.5 to 0.6). Nevertheless, during the moments when the respiration frequency
reaches values greater than or equal to 20 (score 2), reliability level decreases
even further.

For the second experiment shown here (Fig. 3(b)), we tampered with the
measurement of the blood pressure. The gathered input data shows a high blood
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0 Time HR BR T Time SYS

1 7.6.17 6:25 PM 83 20,5 35,69 107 127

2 7.6.17 6:26 PM 83 20,5 35,69 320 141

3 7.6.17 6:26 PM 82 19,7 35,69 510 128

4 7.6.17 6:26 PM 80 19,7 35,69 654 122

5 7.6.17 6:26 PM 79 18,6 35,65 860 119

6 7.6.17 6:26 PM 79 18,6 35,66

7 7.6.17 6:26 PM 78 17,6 35,69

8 7.6.17 6:26 PM 77 17,6 35,67 Time SPO2

9 7.6.17 6:26 PM 80 16,8 35,63 0 99

10 7.6.17 6:26 PM 80 16,8 35,63 5 95

11 7.6.17 6:26 PM 78 16 35,63 8 98

12 7.6.17 6:26 PM 80 16 35,63 10 99

13 7.6.17 6:26 PM 84 15,3 35,63 107 98

14 7.6.17 6:26 PM 84 15,3 35,63 113 99

15 7.6.17 6:26 PM 81 14,7 35,63 160 98

16 7.6.17 6:26 PM 81 14,7 35,63 165 99

17 7.6.17 6:26 PM 81 14,4 35,63 250 98

18 7.6.17 6:26 PM 80 14,4 35,59 258 99

19 7.6.17 6:26 PM 82 14,2 35,56 290 98

20 7.6.17 6:26 PM 83 14,2 35,56 296 97

21 7.6.17 6:26 PM 83 14,3 35,56 320 98

22 7.6.17 6:26 PM 83 14,3 35,56 340 99

23 7.6.17 6:26 PM 82 14,6 35,56 400 98

24 7.6.17 6:26 PM 80 14,6 35,56 450 99

25 7.6.17 6:26 PM 79 15 35,56 510 98

26 7.6.17 6:26 PM 78 15 35,56 515 99

27 7.6.17 6:26 PM 78 15,3 35,56 825 98

28 7.6.17 6:26 PM 79 15,3 35,56 890 99

29 7.6.17 6:26 PM 81 15,5 35,56 962 99

30 7.6.17 6:26 PM 83 15,5 35,56

31 7.6.17 6:26 PM 84 15,8 35,56

32 7.6.17 6:26 PM 84 15,8 35,56

33 7.6.17 6:26 PM 85 16,3 35,54

34 7.6.17 6:26 PM 85 16,3 35,51

35 7.6.17 6:26 PM 87 16,5 35,56

36 7.6.17 6:26 PM 87 16,5 35,56

37 7.6.17 6:26 PM 86 16,6 35,51

38 7.6.17 6:26 PM 87 16,6 35,5

39 7.6.17 6:26 PM 87 17 35,5

40 7.6.17 6:26 PM 85 17 35,5

41 7.6.17 6:26 PM 85 17,1 35,5

42 7.6.17 6:26 PM 85 17,1 35,5

43 7.6.17 6:26 PM 84 17,2 35,5

44 7.6.17 6:26 PM 84 17,2 35,5

45 7.6.17 6:26 PM 85 17,6 35,5

46 7.6.17 6:26 PM 86 17,6 35,5

47 7.6.17 6:26 PM 88 17,6 35,5

48 7.6.17 6:26 PM 87 17,6 35,5

49 7.6.17 6:26 PM 84 18 35,5

50 7.6.17 6:26 PM 83 18 35,5

51 7.6.17 6:26 PM 83 18,3 35,5

52 7.6.17 6:26 PM 82 18,3 35,5
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(a) Detached temperature sensor

0 Time HR BR T Time SYS

1 7.6.17 7:20 PM 85 11 35,56 87 119

2 7.6.17 7:20 PM 85 11,1 35,56 354 124

3 7.6.17 7:20 PM 86 11,1 35,56 543 151

4 7.6.17 7:20 PM 85 11,5 35,56 723 163

5 7.6.17 7:20 PM 84 11,5 35,61 887 125

6 7.6.17 7:20 PM 83 12,1 35,63

7 7.6.17 7:20 PM 82 12,1 35,63

8 7.6.17 7:20 PM 83 12,7 35,63 Time SPO2

9 7.6.17 7:20 PM 84 12,7 35,63 1 98

10 7.6.17 7:20 PM 86 12,9 35,63 33 98

11 7.6.17 7:20 PM 89 12,9 35,63 87 97

12 7.6.17 7:20 PM 90 13,4 35,63 148 98

13 7.6.17 7:20 PM 89 13,4 35,63 187 99

14 7.6.17 7:20 PM 87 13,6 35,63 288 97

15 7.6.17 7:20 PM 83 13,6 35,63 289 98

16 7.6.17 7:20 PM 79 13,4 35,63 453 97

17 7.6.17 7:20 PM 78 13,4 35,63 523 99

18 7.6.17 7:20 PM 77 13,3 35,66 548 98

19 7.6.17 7:20 PM 77 13,3 35,66 580 97

20 7.6.17 7:20 PM 79 13,2 35,63 589 99

21 7.6.17 7:20 PM 82 13,2 35,65 607 98

22 7.6.17 7:20 PM 83 13,3 35,68 615 99

23 7.6.17 7:20 PM 84 13,3 35,64 687 98

24 7.6.17 7:20 PM 82 13,5 35,69 691 99

25 7.6.17 7:20 PM 82 13,5 35,69 693 98

26 7.6.17 7:20 PM 81 13,7 35,69 755 99

27 7.6.17 7:20 PM 82 13,7 35,69 822 98

28 7.6.17 7:20 PM 83 13,8 35,69 877 99

29 7.6.17 7:20 PM 87 13,8 35,69 885 98

30 7.6.17 7:20 PM 88 14,2 35,69 898 97

31 7.6.17 7:20 PM 88 14,2 35,69 932 99

32 7.6.17 7:20 PM 87 14,3 35,69 972 99

33 7.6.17 7:20 PM 86 14,3 35,69

34 7.6.17 7:20 PM 83 14,7 35,69

35 7.6.17 7:20 PM 81 14,7 35,69

36 7.6.17 7:20 PM 83 15 35,69

37 7.6.17 7:20 PM 84 15 35,69

38 7.6.17 7:20 PM 86 15,3 35,69

39 7.6.17 7:20 PM 83 15,3 35,69

40 7.6.17 7:20 PM 80 15,9 35,69

41 7.6.17 7:20 PM 78 15,9 35,69

42 7.6.17 7:20 PM 79 16,4 35,69

43 7.6.17 7:20 PM 79 16,4 35,69

44 7.6.17 7:20 PM 79 16,5 35,69

45 7.6.17 7:20 PM 78 16,5 35,69

46 7.6.17 7:20 PM 78 16,7 35,69

47 7.6.17 7:20 PM 77 16,7 35,69

48 7.6.17 7:20 PM 79 16,8 35,69

49 7.6.17 7:20 PM 81 16,8 35,69

50 7.6.17 7:20 PM 82 16,9 35,74

51 7.6.17 7:20 PM 85 16,9 35,71

52 7.6.17 7:20 PM 86 17,3 35,69
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Fig. 3. The monitored vital signs, the EWS and its reliability. (a) the body temperature
sensor is detached from the patient and temporarily measures the room temperature
(b) a contraction of the biceps interferes with the blood pressure measurement.

pressure value because the patient tensed his biceps during two of the samples
(around 550s and 700s). Since there is a strong correlation between heart rate
and blood pressure [9], the correlation coefficient pcro was increased from 1.5 to
2.5. As the heart rate was more or less constant while the blood pressure was
increased, the cross-reliability led to a low reliability. As in the first experiment,
the temporary breathing rate with a score of 2 or higher leads to short periods
of slightly reduced reliability at around 200s and 400s.

6 Conclusion and Future Work

In this paper, we presented an SA-EWS system with a fuzzified reliability val-
idation which recognizes erroneous vital signs caused by various measurement
artifacts such as loose sensors, detached sensors or other interferences. In our
experiments, the proposed system was successful in detecting such events and
decreased the data reliability during such events. This observation shows that
self-awareness techniques such as the one proposed and used here can provide
more robust EWS calculations. We note that deciding the value of parameters
such as possible absolute values, signal slopes, and correlations among various
vital signs demands domain knowledge. As the human body is an extremely
complex system, not every phenomenon is already known. Therefore, although
domain knowledge can be helpful for general cases, it does not replace personal-
ized assessment which experts can provide each patient with. For this reason, we
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plan to add a learning module to the SA-EWS system which should learn about
the patient’s body functions and its basic health condition. In addition, more
metrics should be generated and used, such as the derivation or the variability
of a vital sign.
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