ARTICLE

|dentifying gene targets for brain-related traits

using transcriptomic and methylomic data from
blood

Ting Qi et al.*

Understanding the difference in genetic regulation of gene expression between brain and
blood is important for discovering genes for brain-related traits and disorders. Here, we
estimate the correlation of genetic effects at the top-associated cis-expression or -DNA
methylation (DNAm) quantitative trait loci (cis-eQTLs or cis-mQTLs) between brain and
blood (r,). Using publicly available data, we find that genetic effects at the top cis-eQTLs or
mQTLs are highly correlated between independent brain and blood samples (#, = 0.70 for cis-
eQTLs and 7, = 0.78 for cis-mQTLs). Using meta-analyzed brain cis-eQTL/mQTL data (n =
526 to 1194), we identify 61 genes and 167 DNAm sites associated with four brain-related
phenotypes, most of which are a subset of the discoveries (97 genes and 295 DNAm sites)
using data from blood with larger sample sizes (n =1980 to 14,115). Our results demonstrate
the gain of power in gene discovery for brain-related phenotypes using blood cis-eQTL/mQTL
data with large sample sizes.
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enome-wide association studies (GWAS) have discovered
thousands of genetic variants associated with complex
traits and diseases!~>. Most trait-associated variants reside
in non-coding regions of the genome™®>, suggesting that genetic
variants may affect the trait through regulation of gene
expression®’. With the advances in microarray and sequencing
technologies, genome-wide genotype and gene expression data
available from relatively large samples have been generated to
identify genetic variants affecting transcription abundance®~1°,
i.e., expression quantitative trait loci (eQTLs). Current eQTL
studies are biased toward the most accessible tissues (e.g., blood),
which are often not the most relevant tissues to the traits and
diseases of interest. The Genotype-Tissue Expression (GTEx)
project!!=1® provides a comprehensive resource of data to
investigate the genetic variation of gene expression across a broad
range of tissues and cell types. Recent studies have utilized the
GTEx data to demonstrate that genetic correlation of gene
expression between tissues in local regions (ie., +1Mb of the
transcrilption start site) is much higher than that in distal
regions'%, consistent with the conclusions from the latest GTEx
release!®, and that there is no evidence for the tissue-relevant
eQTLs being enriched for associations with complex traits'>.
For studies that integrate GWAS results with eQTL or DNA
methylation QTL (mQTL) data to identify putative functional
genes and regulatory elements for brain-related phenotypes and
diseases'®!7, the statistical power is limited by the small sample
sizes of the brain eQTL or mQTL data (often in the order of
100s). On the other hand, there are blood eQTL and mQTL data
available from thousands of individuals®® and the sample sizes of
some of the ongoing projects have reached 10,000s (e.g., the
GoDMC and eQTLGen consortia). The questions are to what
extent the cis-genetic effects on gene expression and DNA
methylation (DNAm) in blood differ from those in brain and
whether we can gain power to detect associations of genes (or
DNAm sites) with brain-related traits by using the cis-eQTL (or
cis-mQTL) effects estimated from a large blood sample as proxies
for those in brain. Liu et al.'* extended the stratified linkage
disequilibrium (LD) score regression method to estimate genetic
correlation (rg) of gene expression between tissues at all SNPs in
local or distal regions and showed that the mean estimate of
pairwise 7, at all local SNPs (i.e. cis-genetic correlation) was ~0.75
in 11 GTEx tissues but they did not estimate r, between brain and
blood. In this study, we use a summary-data-based method to
estimate the correlation of effect sizes of the top-associated cis-
eQTLs (or cis-mQTLs) between blood and brain for genes
expressed (or CpG sites methylated) in both tissues, accounting
for errors in their estimated effects. We demonstrate by simula-
tion and analysis of real data the gain of power by using cis-eQTL
or cis-mQTL effects estimated in blood as proxies of those in
brain to identify putative functional genes for brain-related
complex traits and diseases.

Results

Correlation of cis-eQTL effects between brain and blood. To
quantify the similarity of genetic effects at the top-associated cis-
eQTLs (or cis-mQTLs) between two tissues, we used a summary-
data-based approach to estimate the correlation of cis-effects
between two tissues (r,) correcting for errors in the estimated cis-
eQTL (or cis-mQTL) effects and sample overlap (Supplementary
Fig. 1 and Methods). We showed by simulation (Supplementary
Note 1) that r, is a good estimator of correlation of the true values
of cis-genetic effects (Supplementary Fig. 2). Note that the 7,
method is distinct from the Spearman or Pearson correlation
approach!3 because the latter does not account for errors in the
estimated eQTL effects and thereby leads to an underestimation
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of the correlation of true eQTL effects. We applied our method to
estimate 7, at the top cis-eQTLs between different brain regions
and between brain and blood in one data set, and between brain
and blood in two data sets using summary-level data from GTEx
v6 (whole blood and 10 brain regions)!!, the CommonMind
Consortium (CMC; dorsolateral prefrontal cortex)18, the Reli-
gious Orders Study and Memory and Aging Project (ROSMAP)
9 and the Brain eQTL Almanac project (Braineac; 10 brain
regions)zo (Methods and Supplementary Table 1). All eQTL
effects were re-scaled based on the expression level per gene in
standard deviation (SD) units. For the GTEx, CMC and ROS-
MAP data, which are based on RNA sequencing (RNA-Seq), we
matched the data sets by Ensembl Gene IDs. For the Braineac
data that are based on gene expression microarray, we matched
the data sets by gene symbols and removed genes tagged by
multiple gene expression probes to ensure a one-to-one match for
genes between data sets. The main aim of this study is to quantify
the extent to which cis-eQTL data in blood can be used in the
SMR analysis>! (see below) to identify genes associated with
brain-related phenotypes and disorders. If we had selected the
top-associated cis-eQTLs in blood and compared their effects
with those in brain, we would likely suffer a form of winner’s
curse. To avoid the potential ascertainment bias, we selected the
top cis-eQTLs in a reference tissue, i.e., GTEx-muscle (n=361)
or CMC (n =467; independent of GTEx), using a stringent P-
value threshold that is required for the SMR analysis*' (see
below), and estimated r, between brain and blood using these
SNPs (Supplementary Fig. 3). Although this strategy uses only a
quarter of all genes, the estimates of r, should be valid (see
below). Note that the estimates of local and distal 7, at all SNPs!4
would be more informative for other gene-trait association
methods such as TWAS?? and MetaXcan?? that use all SNPs in a
prediction analysis framework. We chose SMR (URLs) because of
one of its features (i.e., the HEIDI test) to filter out associations
due to linkage?®!.

We selected the top-associated cis-eQTLs at Peqry, <5 X 1078
for 4257 genes in GTEx-muscle and matched the selected genes
with those in the other data sets (the number of matched genes
ranged from 1113 to 3841) (Supplementary Table 2, ie., up to
90%, with the lower numbers matched representing data sets with
gene expression data for fewer genes). Note that all the matched
genes were expressed in both tissues (i.e., genes which have at
least 10 samples with reads per kilobase };er million mapped reads
(RPKM) > 0.1 and raw read counts >6)'3. It should also be noted
that our analysis below shows that the test-statistic for the
difference in gene expression between tissues was almost
independent of the test-statistic for the difference in SNP effect
on gene expression between tissues, therefore selecting genes by
cis-eQTL P-values would not bias mean gene expression in any
specific tissue. We used the Jackknife approach that removes one
gene at a time to estimate the sampling variance of 7, (Methods)
assuming the estimated top cis-eQTL effects for different genes
are independent. This assumption was approximately met given
the small LD correlations among the 4257 cis-eQTLs and the
subtle difference between the mean Jackknife sampling variance
and the observed sampling variance in simulation (Supplemen-
tary Fig. 4).

Results showed that the effects of the top-associated cis-eQTLs
were highly correlated between all the brain regions in GTEx after
correcting for estimation errors, with a mean 7, of 0.94 (s.e.=
0.004; Fig. 1). These estimates are higher than the Spearman
correlation estimates reported in a previous study'> because the
Spearman correlation does not account for errors in the estimated
SNP effects and therefore underestimates the correlation of true
effects especially when the sample size is small. The two
cerebellum measures (“brain cerebellar hemisphere” and “brain
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Fig. 1 Estimated correlation of genetic effects of cis-eQTLs between tissues. We estimated r, between brain regions, between brain and blood tissues, and
between data sets. The top-associated cis-eQTLs (one for each gene) were selected from GTEx-muscle at Peqr <5 x1078. Shown in each cell is the
estimate of r, with its standard error given in the parentheses (Methods). In the Braineac data, the eQTLs effect sizes were estimated from gene expression

levels averaged across 10 brain regions

cerebellum”) appeared to be outliers. The correlation between
“brain cerebellar hemisphere” and “brain cerebellum” was almost
perfect (7, = 0.99 and s.e. = 0.002), but the correlations between
the two cerebellum regions and the other regions (mean 7, = 0.89
and s.e.=0.006) were significantly smaller than the pairwise
correlations between the other regions (mean 7, = 0.98 and s.e.
=0.003). We performed the same analysis in the Braineac data
and observed similar results as above (Supplementary Fig. 5). The
estimates of r, between brain and blood in GTEx varied from 0.74
to 0.79 across different brain regions with a mean estimate of 0.77
(s.e.=10.010), similar to the mean estimate of local r, between
GTEx-blood and 10 other non-brain GTEx tissues reported in a
previous study'®. The estimate of r, between CMC (brain) and
GTEx-blood was 0.74 (s.e. = 0.014), suggesting that the between-
sample genetic heterogeneity is small, in line with the strong
correlations between CMC and GTEx brain regions (mean 7, =
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0.87 and s.e. = 0.010). The estimates of r, from ROSMAP were
remarkably similar to those from CMC, providing an important
replication of the result. The correlations related to Braineac were
notably lower than those related to CMC (Fig. 1), which is likely
due to the difference in transcriptomics technology between the
two studies (microarray vs. RNA-Seq). It is of note that the results
were robust to scale transformation of the eQTL effects
(Supplementary Fig. 6), the exclusion of cis-eQTLs in or near
the promoter regions (Supplementary Fig. 7), the exclusion of
housekeeping genes*#*> (Supplementary Fig. 8), the inclusion of
secondary cis-eQTLs identified from a conditional analysis*®
(Supplementary Fig. 9), or the adjustment of gene expression
data for confounding (e.g., batch effects) predicted from the data
(Supplementary Fig. 10). In addition, we selected the top-
associated cis-eQTLs at Peqrr, <5 X 1078 from the CMC data, and
found that the estimates of r, among the brain regions and
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Fig. 2 Enrichment of tissue-specific cis-eQTLs in functional annotations. a The distribution of cis-eQTLs across 14 functional categories derived from RMEC
(Methods). b Estimated enrichment of Ty (testing for the difference in cis-eQTL effect between CMC-brain and GTEx-blood) in each functional category
(Methods). Error bars represent 95% confidence intervals around the estimates. The black dash line represents fold enrichment of 1. Different colors in a
and b correspond to 14 functional categories: TssA: active transcription start site, Prom: upstream/downstream TSS promoter, Tx: actively transcribed
state, TxWk: weak transcription, TxEn: transcribed and regulatory Prom/Enh, EnhA: active enhancer, EnhW: weak enhancer, DNase: primary DNase, ZNF/
Rpts: state associated with zinc finger protein genes, Het: constitutive heterochromatin, PromP: poised promoter, PromBiv: bivalent regulatory states,

ReprPC: repressed Polycomb states, and Quies: a quiescent state
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Fig. 3 Correlation of difference in cis-eQTL effect and difference in
expression level. Each dot represents one of the 3569 genes between
GTEx-cerebellum and GTEx-blood. The 3569 genes were ascertained with
at least one cis-eQTL with Peqr <5 % 10~8 in GTEx-muscle and expressed
in GTEx-cerebellum and GTEx-blood (i.e. genes which have at least

10 samples with RPKM >0.1 and raw read counts >6). In this analysis, we
used cis-eQTL effects in SD units and gene expression levels in log,(RPKM)
units to avoid confounding of the correlation by the mean-variance
relationship in gene expression

between brain and blood in GTEx remained largely unchanged
(Supplementary Fig. 11), suggesting that our results are also
robust to the ascertainment of the cis-eQTLs.

cis-eQTLs with tissue-specific effects. The strong correlation of
cis-eQTL effects between brain and blood (Fig. 1) does not pre-
clude eQTLs with detectable difference in effect size between
tissues. Of the 1388 cis-eQTLs with Peqry, <5 x 10~% in GTEx-
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muscle and available in CMC and GTEx-blood (Supplementary
Table 2), 308 (22%) showed significant difference in effect
between CMC and GTEx-blood after Bonferroni correction for
multiple testing (Pgigrerence < 0.05/1388) (Methods). Note that the
substantial proportion of eQTLs with significant between-tissue
differences in effect does not contradict the large estimate of 1,
above (Fig. 1) because the power to detect a difference in effect
depends on sample size'®> (Supplementary Fig. 12). Previous
studies have indicated that chromatin state at promoters is largely
invariant across diverse cell types whereas enhancers are marked
with highly cell-type-specific histone-modification patterns®’
that functional variants (predicted by chromatin activity data) in
enhancers are less l1kely to be shared across many tissues com-
pared with those in promoters?®, and that cell-type-specific
eQTLs are more dispersedly distributed around the transcription
start site than eQTLs affected expression in multiple cell
types?>30. These results seem to indicate that tissue-specific
eQTLs are enriched in distal regulatory elements (i.e., enhancers).
To address this hypothesis, we computed the statistics to test for
the between-tissue difference in eQTL effect (denoted by Tp) and
tested the inflation (or deflation) of mean Tp of cis-eQTLs in the
functional categories annotated by the Roadmap Epigenomics
Mapping Consortium (REMC)?! (Methods). The result showed
that although cis-eQTLs are enriched in genomic regions of active
chromatin state (e.g., promoters and enhancers) and deflated in
inactive regions, the mean Tp, of cis-eQTLs between CMC and
GTEx-blood was almost evenly distributed across all the func-
tional categories with no evidence of inflation in the enhancer
regions (Fig. 2). The result remained largely unchanged if we
repeated the enrichment analysis based on T, between GTEx-
cerebellum and GTEx-blood (Supplementary Fig. 13). Note that
these results do not contradict the observation from a recent
study that eQTLs detected in specific tissues in GTEx tend to be
most enriched among the variants predicted to be functional in
relevant REMC tissues?®. There were some examples where the
cis-eQTLs with tissue- spec1ﬁc effects in brain and blood were
located in enhancers (Supplementary Fig. 14). These examples,
however, were rare because only 14 of the 308 eQTLs with
Pgifterence < 0.05/1388 were located in enhancers and only 4 of the
14 enhancers appeared to be tissue specific.
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Fig. 4 Similarity and difference in cis-mQTL effects between brain and blood. a Estimated r,, for cis-mQTLs between brain and blood from four independent
data sets. The cis-mQTLs (one for each DNAm probe) were selected at Pt < 1% 10710 using data from the Hannon et al. study. Shown in each cell is the
estimate of r, with its standard error given in the parentheses (Methods). b The distribution of cis-mQTLs across 14 functional categories derived from
RMEC (Methods). ¢ Estimated enrichment of Ty (testing for the difference in cis-mQTL effect between Jaffe-brain and LBC-blood) in each functional
category (Methods). Error bars represent 95% confidence intervals around the estimates. The black dash line represents the fold enrichment of 1

In addition, there are a large number of genes showing
differences in expression level between tissues!!. It is not clear
whether these differences are partly driven by the differences in
eQTL effect. We sought to address this question by examining the
correlation between test-statistic for difference in cis-eQTL effect
(in SD units) and test-statistic for difference in mean expression
level of the corresponding gene (in log,(RPKM) units) between
GTEx-cerebellum and GTEx-blood for the 3569 genes each with a
cis-eQTL at Peqrp <5x% 1078 in GTEx-muscle (Supplementary
Table 2). Note that the cis-eQTL effects were re-scaled based on
the expression level per gene in SD units so that the correlation
was not confounded by the mean-variance relationship in gene
expression. That is, if the difference in eQTL effect and that in
expression level were both computed in RPKM units, genes with
larger differences in mean between tissues are more likely to have
differences in variance because of the mean-variance relationship,
giving rise to differences in eQTL effect even if the eQTL effects
are not different in SD units. We found that the correlation was
marginal (r = 0.003) (Fig. 3). This is analogous to the observation
that there is a large difference in mean height between men and
women but the effects of all autosomal SNPs on height in men are
almost identical to those in women®>33, However, these results
also suggest that an eQTL with identical effect on gene expression
in SD units in different tissues could show different effects in
RPKM units if the variance of gene expression varies across
tissues, which might explain the results from recent studies that
genetic variants in or near genes differentially expressed in a
particular tissue are enriched for associations with a complex
trait>43°,

| (2018)9:2282

Correlation of cis-mQTL effects between brain and blood.
Having shown that cis-eQTL effects are highly correlated between
brain and blood, we then turned to estimate the correlation of
genetic effects on DNAm between the two tissues by applying the
1, method to mQTL data. We analyzed summary-level mQTL
data from five studies based on the Illumina HumanMethyla-
tion450K array: fetal brain from Hannon et al. (n = 166), brain
cortical region from ROSMAP (1 = 468)'°, frontal cortex region
from Jaffe et al. (n = 526)’, and peripheral blood from McRae
et al. (LBC: n =1366 and BSGS: n=614)3 (Supplementary
Table 3). All the mQTL effects are in SD units. We matched the
SNPs in common across data sets, selected the top-associated cis-
mQTL at Ppgrr <1 x 10710 for 26,840 DNAm probes in the data
from Hannon et al. (because only SNPs with P,,qr1, <1 X 1010
are available in this data set) and matched the selected probes
with those in the other data sets (the number of matched probes
ranged from 4892 to 6561) (Supplementary Table 4). The cor-
relation of cis-mQTL effects between two brain samples (ROS-
MAP and Jaffe et al.) was very strong (7, = 0.92 and s.e. = 0.002),
similar to that between two blood samples (7, = 0.92 between
BSGS and LBC with s.e. = 0.003) (Fig. 4a). It is of note that both
estimates of r, were smaller than unity, reflecting some degree of
heterogeneity between studies. The mean brain-blood r,, estimate
from two samples was 0.78 (s.e. = 0.006) (Fig. 4a), higher than
that for cis-eQTLs (mean 7, =0.70 and s.e.=0.015) shown
above (Fig. 1). The result remained largely unchanged if the cis-
mQTLs were selected at P,qrp <5 X 10~% in the LBC data
(Supplementary Fig. 15), again showing the robustness of our
results to the choice of reference tissue. In addition, of the 5416
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cis-mQTLs, 1847 (34%) showed significantly different effects
between brain (Jaffe et al.) and blood (LBC) after correcting for
multiple testing (Pgifference < 0.05/5416). We then tested whether
cis-mQTLs in any of the REMC functional categories tend to have
higher Tp, between brain and blood (see above). There were small
but significant enrichments of Tp in enhancer regions (e.g.,
transcribed enhancer, active enhancer and weak enhancer)
(Fig. 4c), and one of them survived multiple-testing correction
(Supplementary Table 5).

Meta-analysis of brain eQTL data from correlated samples. We
know from the r, analysis above that cis-eQTLs are almost per-
fectly correlated in different brain regions. We then sought to
combine data from the brain regions to increase the power of
detecting eQTLs for follow-up analysis (e.g., identification of
putative functional genes for brain-related traits and diseases).
However, if there is sample overlap between two tissues and the
phenotypic correlation is nonzero, the estimation errors of the
SNP effects from the two tissues will be correlated. We imple-
mented in the SMR software package (URLs) a summary-data-
based method, which only requires summary-level data in the cis-
regions to account for sample overlaps, to meta-analyze cis-eQTL
data in correlated samples (MeCS) (Methods). MeCS is very
similar to existing meta-analysis approaches such as MTAG>® or
the Han et al. method*® that account for sample overlaps.
However, there is a small but important distinction. That is,
MeCS uses “null” SNPs (e.g., Peqrr > 0.01) to quantify sampling
correlation of the estimated SNP effects between two data sets (6),
similar to the strategy used in the latest version of METAL
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(method unpublished, URLs), whereas MTAG?® uses 0 estimated
by the intercept of bivariate LD score regression®! that relies on
the assumption of an infinitesimal model which is invalid in cis-
eQTL regions*?. Han et al.*0 suggest the use of the number of
overlapping individuals*> or z-statistics to compute 6 for
summary-data-based analysis. However, a meta-analysis of cis-
eQTL effects from two tissues requires the correlation of
expression level between the tissues (because 6 =r,p with r,
being the correlation of expression level and p being the pro-
portion of sample overlap**) which is not available in summary
data, and 0 estimated by the correlation of z-statistics in the cis-
region could be biased by the strong local genetic correlation!.
We showed by simulations that 6 could be estimated with high
accuracy from summary data of the “null SNPs” in cis-region
using a simple correlation approach (Supplementary Note 1,
Supplementary Figs. 16 and 17), that the MeCS test-statistics were
well calibrated under the null hypothesis (Supplementary Fig. 16),
and that the MeCS estimates of meta-analysis effect sizes were
well estimated under the alternative hypothesis (Supplementary
Fig. 17). We compared MeCS to a univariate analysis of the mean
expression phenotype across tissues and found that the estimates
of effect size and SE from the two approaches were highly con-
sistent (Supplementary Fig. 18). Note that in comparison with the
separate analysis in individual tissues, the gain of power for MeCS
increased with the decrease of correlation in expression pheno-
type between tissues, more so for meta-analysis using individual-
level data (Supplementary Fig. 19).

We applied MeCS to data from 10 brain regions in GTEx (we
referred to the meta-analyzed data as GTEx-brain hereafter).
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Fig. 5 |dentification of genes and DNAm sites associated with four brain-related traits. Genes (DNAm sites) associated with the brain-related traits were
identified by a SMR analysis of GWAS data with eQTL (mQTL) data from brain and blood samples. The four brain-related traits are smoking, IQ, SCZ, and
EduYears. a, ¢ show the number of genes (DNAm sites) with at least one significant SNP at P< 5 x 10~8 in different data sets. b, d show the number of
genes (DNAm sites) associated with traits identified in different data sets. Sample sizes of the brain studies: GTEx-brain (n =-233), CMC (n=467),

ROSMAP (n=494), Brain-eMeta (nes = ~1194), and Jaffe et al. (n=526). Sample sizes of the blood studies: CAGE (n = 2765), eQTLGen (n=14,115),

LBC 4 BSGS (n=1980)

6 NATURE COI\/\MUN\CAT\ONS| (2018)9:2282

| DOI: 10.1038/541467-018-04558-1 |www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

There were strong sample overlaps among the ten brain regions
(mean overlap = 70.4%) and the mean correlation in expression
level between pairwise brain regions across all the expressed genes
was moderate (mean 7, = 0.33). The gain of power by the meta-
analysis was demonstrated by the observation that the mean y?
statistic for cis-eQTLs (selected from GTEx-blood at P.qrp <5 X
1078) in GTEx-brain was larger than that in any individual brain
region (Supplementary Fig. 20c). The association test-statistic for
a SNP can be written as y> =1 + ng IZ—qz, where n.g is the
effective sample size and g? is the variance explained by a SNP*°.
We therefore can approximately estimate n.s of GTEx-brain
assuming constant mean g> across brain regions (Supplementary
Note 2). Note that this assumption is justified by the highly
consistent estimates of variance of cis-eQTL effects across genes
in different brain regions (Supplementary Fig. 21) along with a
mean r, estimate of 0.94 between pairwise brain regions for cis-
eQTL effects in SD units. The estimate of n.g¢ of GTEx-brain was
233, approximately 2.6 times larger than the actual sample size of
brain tissue in GTEx (mean n=~89 across 10 brain regions)
(Supplementary Fig. 20d). To further increase the power of
detecting brain eQTLs, we meta-analyzed GTEx-brain, CMC,
and ROSMAP (referred to as Brain-eMeta hereafter). The gain
of power is demonstrated by the increased number of genes
with at least one cis-eQTL with P,y <5 x 1078 in Brain-eMeta
as compared with that in GTEx-brain, CMC, or ROSMAP
(Fig. 5a).

Identifying DNAm and genes for brain-related phenotypes.
With the Brain-eMeta eQTL data (1. = 1194) obtained from the
meta-analysis above, we applied the SMR approach?!° to test for
associations of gene expression levels with four brain-related
phenotypes, i.e., ever-smoked (smoking), fluid intelligence score
(IQ), years of education (EduYears), and schizophrenia (SCZ).
GWAS data were from published meta-analyses for EduYears and
SCZ4748 and from analyses of the full release of the UK Biobank
data for smoking and IQ (Methods and Supplementary Table 6).
LD data required for the HEIDI test?! were estimated from
genotyped/imputed data of the Health and Retirement Study
(HRS)®. LD #? from HRS were strongly correlated with those
from CMC (Supplementary Fi% 22), consistent with the obser-
vation from previous studies 6. For power comparison, we
included in the SMR analysis an additional set of blood eQTL
data from a sample of 14,115 individuals from the eQTLGen
Consortium. Only the genes with at least one cis-eQTL at Peqrr <
5x 1078 (one of the basic assumptions of SMR) in both Brain-
eMeta and eQTLGen were included. We further excluded genes
in the major histocompatibility complex (MHC) region because
of the complexity of this region, leaving 3943 genes for analysis.
We identified 61 genes associated with the traits using the brain
eQTL data, 41 of which (67.2%) were in common with a larger set
of genes (97) identified using the eQTLGen blood eQTL data
(Fig. 5b). Despite the heterogeneity between the two eQTL data
sets (Brain-eMeta was based on RNA-Seq and eQTLGen was
based on microarray), the strong overlap between the two sets of
results is consistent with the strong correlation of eQTL effects
between brain and blood estimated above. For SCZ, 19 out of the
24 genes identified using brain eQTL data were replicated using
blood eQTL data with an additional 27 genes identified only in
the blood data because of its larger sample size (Supplementary
Fig. 23). We repeated the SMR analysis using blood eQTL data
from the Consortium for the Architecture of Gene Expression
(CAGE; n=2765)° and observed similar results (Fig. 5b)
although the power of CAGE was lower than that of eQTLGen
(63 genes identified using CAGE versus 97 genes identified using
eQTLGen).
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We also performed the SMR analysis to detect associations
between DNAm sites and the brain-related phenotypes'® using
brain mQTL data from Jaffe et al. (n = 526) and blood cis-mQTL
data from a meta-analysis of LBC and BSGS (n=1980)
(Methods). We only included in the analysis DNAm probes with
at least one cis-mQTL with P,qrp <5 X 10~8 in both the brain
and blood data sets. We identified 167 DNAm sites associated
with the traits (Pgyr < 1.8 x 1079) using the brain mQTL data,
133 of which (79.6%) were in common with the set of 295 DNAm
sites identified using the blood mQTL data (Fig. 5d and
Supplementary Fig. 24). The brain to blood “replication” rate
slightly decreased when we rejected the associations with Pygyp;
<0.05 (Supplementary Fig. 25), likely because of the HEIDI test
being over-conservative especially as sample size increases?!.
These results further demonstrate the feasibility and gain of
power of using the cis-genetic effects on gene expression or
DNAm estimated in blood to identify putative target genes and
regulatory DNA elements for brain-related phenotypes.

Discussion

We estimated the correlation (7,) of genetic effects at the top-
associated cis-eQTLs/mQTLs between brain and blood. Because
the r, method accounts for estimation errors, 7, can be inter-
preted as an estimate of correlation of true cis-eQTL effects
between brain and blood, as demonstrated by simulations (Sup-
plementary Fig. 2). We applied the method to summary-level
eQTL data from GTEx and found that genetic effects on gene
expression at the top-associated cis-eQTLs were almost perfectly
correlated between different brain regions (mean 7, = 0.94 for
cis-eQTLs), especially between the non-cerebellar regions (mean
7, = 0.98 and s.e. = 0.003), in contrast to the modest phenotypic
correlation in gene expression levels (mean r,=0.33). It is
therefore sensible to run a meta-analysis of the cis-eQTL effects
across brain regions to gain power of detecting eQTLs for the
whole brain (Supplementary Fig. 19). This can be done even if the
brain regions are from different samples. We also found that the
cis-eQTL effects were highly correlated between brain and blood
in GTEx (mean #;, = 0.77 for cis-eQTLs), and the estimate only
slightly decreased using data from different samples (mean
7, = 0.70). These estimates were significantly different from 1,
suggesting there are real genetic differences between tissues. The
genetic differences are partly due to cell-type-specific genetic
effects regardless whether cell composition covariates have been
included in the eQTL analysis or not. This is because adjusting for
cell composition only removes the mean differences in gene
expression level among cell types rather than cell-type-specific
genetic effects. On the other hand, however, the strong between-
tissue correlation in cis-eQTL effects does not contradict the
result that many genes showed differential expression between
brain and blood because the difference in cis-eQTL effect is
almost independent of the mean difference in gene expression
level (Fig. 3). Our results reinforce that very large sample sizes are
needed to generate eQTL data sets in a specific tissue (e.g., blood)
to increase the power of detecting cis-eQTLs regardless of the
relative expression level of the tissue.

Our results also provide some guidelines about the use of
discovery-replication paradigm to compare eQTL effects between
tissues (i.e., detecting eQTLs in one tissue at a stringent P-value
threshold and replicating the effects in another tissue after cor-
recting for multiple tests)!>?°. Here, we often saw a low to
moderate replication rate even if there is no genetic difference
between the tissues. This is because the replication rate is a
function of the sample size of the validation set (Supplementary
Fig. 12) and the sample sizes of eQTL studies in non-blood tissues
are often limited. If we apply the discovery-replication paradigm
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to the GTEx data, only ~10.7% of eQTLs discovered in GTEx-
muscle could be replicated in GTEx-hippocampus (although the
estimates from the recent methods®®! based on the
discovery-replication paradigm were much higher) (Supple-
mentary Table 7), which could potentially lead to a wrong con-
clusion that a large proportion of cis-eQTLs are tissue specific
(note that the r;, estimate between the two tissues was 0.81). We
therefore do not recommend the use of the discovery-replication
paradigm to quantify the tissue-specific effects especially in small
samples.

We applied the SMR and HEIDI methods to identify genes and
DNAm sites associated with brain-related phenotypes through
pleiotropy using summary data from GWAS and cis-eQTL/
mQTL studies with large sample sizes (M. =453,693 for
GWAS, 1.« = 14,115 for eQTL and n,,,, = 1980 for mQTL). We
identified a number of genes and DNAm sites that showed
pleiotropic associations with the phenotypes, consistent with a
plausible model that the SNP effects on the phenotypes are
mediated by genetic regulation of expression levels of the target
genes and/or DNAm levels at the CpG sites. We repeated the
analyses using eQTL and mQTL data from brain samples with
much smaller sample sizes (1, = 1194 for eQTL and . =
526 for mQTL). Due to the lower power of the data sets, the
number of genes or DNAm sites detected in the brain sample was
much smaller than that using the blood sample (Fig. 5, Supple-
mentary Figs. 23-25), with at least 50% of genes (DNAm sites) in
common between the two sets. These results provide strong
justification for the use of blood samples to discover genes related
to brain phenotypes and diseases. In practice, we recommend
using a blood data set with large sample size for discovery, and an
additional data set from brain for replication. This paradigm is
certainly applicable to other phenotypes and their related tissues.

We conclude with several caveats. First, our estimation of r,
is based on genes expressed in both brain and blood (i.e., genes
only expressed in one tissue were not included in the estimation).
Therefore, the estimate of r, needs to be interpreted with a
restriction to genes expressed in both tissues. Although only a
quarter (4257) of all genes were selected in our analysis (with at
least one cis-eQTL at Peqry <5 X 10~8 in GTEx-muscle), up to
90% of those selected genes were expressed in both brain and
blood, reflecting the high proportion of all genes expressed in
both tissues. Second, we focused our analyses only on cis-eQTLs
and cis-mQTLs because trans-eQTLs and trans-mQTLs data were
not available in most data sets used in our study. Although most
SNP-based heritability for gene expression levels are attributed to
cis-eQTLs®, trans-eQTLs may also have an important role in
regulating gene expression especially for tissue-specific effects'?,
The methods developed in this study can be applied to trans-
eQTL/mQTL data with minimal modification. Because the var-
iance exglained by individual trans-eQTL/mQTL is small on
average®38, very large sample sizes (e.g., 10,000s) are required to
detect trans-eQTLs to be useful for the SMR analysis®!. Third, the
rp analysis was focused on the correlation at the top-associated
cis-eQTLs/mQTLs with relatively large effects (ie., P <5 x 10~8
in a reference tissue) because the SMR test only uses cis-eQTLs/
mQTLs at P<5x 1078, The estimate of r, was slightly lower for
cis-eQTLs/mQTLs selected at a less stringent threshold (Supple-
mentary Fig. 26), consistent with the observation in simulation
(Supplementary Fig. 27). However, this does not change our
conclusion about the use of the top-associated cis-eQTLs/mQTLs
identified in a large blood sample to identify putative target genes
for brain-related traits. Last but not least, the MeCS method
requires the correlation of errors in the estimated SNP effects
between two samples (6), which is estimated by a simple corre-
lation approach at the null SNPs in the cis-region. This approach,
however, is not applicable to eQTL or mQTL summary data that
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have been ascertained by P-value. It will also be challenging to
estimate 6 if only a small number of cis-SNPs are available in the
summary data. We therefore recommend eQTL and mQTL stu-
dies to make more cis-SNPs available without ascertainment (e.g.,
all the cis-SNPs in +2Mb of a gene or DNAm probe). Despite
these caveats, our findings shed light on the genetic architecture
underlying the regulation of gene expression across tissues and
provide important guidance for studies in the future to identify
functional genes for human complex traits.

Methods

Summary data of cis-eQTL, cis-mQTL, and GWAS. This study is approved by the
University of Queensland Human Research Ethics Committee (approval number:
2011001173). All the analyses of eQTL/mQTL data were performed based on
summary-level data. A summary description of all the data sets can be found in
Supplementary Table 1, Supplementary Table 3, and Supplementary Table 6. All
the samples were of European descent and the summary data available to us were
derived from individual-level data that passed stringent quantify control (QC)
9,11,18-20,36-38 The SNPs in all eQTL/mQTL data sets were from imputation of the
genotyped data to the 1000 Genomes Project (1IKGP) reference panels®2, and only
the SNPs with MAF > 0.01 were included in analyses.

The eQTL summary-level data were from six studies, i.e., the Genotype-Tissue
Expression (GTEx)!! v6, the CommonMind Consortium (CMC)'8, Religious
Orders Study and Memory and Aging Project (ROSMAP)', the Brain eQTL
Almanac project (Braineac)?’, the Architecture of Gene Expression (CAGE)?, and
eQTLGen. In GTEx, ROSMAP, and CMC, gene expression levels were measured
by RNA-Seq. Genes in GTEx and ROSMAP were annotated by GENCODE>? v19
and v14, respectively, and genes in CMC were annotated by Ensembl. We accessed
the GTEx eQTL summary statistics of ~9.3 million SNPs for ~32,000 genes in 44
tissues (including 10 brain regions) through GTEx portal (URLs). The sample sizes
of GTEx tissues ranged from 70 to 361 with an average of 160. We accessed the
CMC summary data from Synapse (accession: syn2759792). The CMC eQTL
summary statistics (ascertained at FDR < 0.2) of ~1.1 million SNPs for 14,366 genes
were derived from individual-level data in dorsolateral prefrontal cortex of
467 subjects, 209 of which were schizophrenia patients. We accessed the ROSMAP
eQTL summary statistics of ~6.4 million SNPs for 12,979 genes, which were
derived from individual-level data in dorsolateral prefrontal cortex of 494 subjects.
We accessed the Braineac eQTL summary statistics of ~6.2 million SNPs for 25,490
genes, which were derived from data in 10 brain regions of 134 subjects free of
neurodegenerative disorders?’. The gene expression levels in Braineac were
measured by Affymetrix Human Exon 1.0 ST Arrays. For blood eQTL data, we
used eQTL summary data from CAGE’ (38,624 gene expression probes and ~8
million SNPs on 2765 subjects) and eQTLGen (44,556 gene expression probes and
~10 million SNPs on 14,115 subjects). Gene expression levels in CAGE and
eQTLGen were measured by Illumina gene expression arrays. We mapped the
probes to genes based on the annotations provided by Illumina. The eQTL
summary data available in GTEx, CAGE, and eQTLGen were from previous
analyses of standardized gene expression levels with mean 0 and variance 1,
whereas expression levels in the other data sets (i.e., CMC, ROSMAP, and
Braineac) were not standardized. To harmonize the units across data sets, we re-
scaled the effect size and standard error (SE) of each eQTL in the CMC, ROSMAP,
and Braineac based on the z-statistic, allele frequency and sample size using the
method described in Zhu et al.2! so that the eQTL effects in all data sets can be
interpreted in standard deviation (SD) units.

mQTL summary statistics were from five data sets: brain cortical region from
ROSMAP study (#inq = 468, probe = 420,103, 1, =5 million)!?; fetal brain from
Hannon et al. (1ing = 166, fprobe = 26,840, ngyp = 0.3 million)3%; frontal cortex
region from Jaffe et al. (11,09 = 526, Mprobe = 138,917, #gy, = 1.5 million)?7; and
peripheral blood from McRae et al.>® (Lothian Birth Cohorts®* (LBC): 1;,q = 1366
and Brisbane Systems Genetics Study55 (BSGS): nj,q = 614). DNAm levels in all
these five studies were based on the Illumina HumanMethylation450K array. We
performed a meta-analysis of LBC and BSGS, resulting in 397,621 DNAm probes
and ~7.7 million SNPs. The DNAm levels of all the five studies were not
standardized. We computed the effect size and SE of each mQTL from their z-
statistics using the method described in Zhu et al.?!

We included in the analysis four brain-related complex traits, i.e., ever-smoked
(smoking), fluid intelligence score (IQ), years of education (EduYears), and
schizophrenia (SCZ). GWAS summary statistics for EduYears (n = 293,723) and
SCZ (36,989 cases and 113,075 controls) were from the latest meta-analyses47’48,
and summary data for smoking (n = 453,693) and IQ (n = 146,819) were from
GWAS analyses of the latest release of the UK Biobank (UKB) data®®. Quality
control and imputation of the UKB data have been detailed elsewhere®. We used
456,426 individuals of European descent and 7,288,503 common SNPs (MAF >
0.01) imputed from the Haplotype Reference Consortium (HRC)>” reference panel
in the analysis. IQ was measured by 13 fluid intelligence questions and detailed
description of the measurement can be found at the UKB website (URLs). We
adjusted IQ (n = 146,819) by age and sex, and standardized the adjusted phenotype
by rank-based inverse-normal transformation. The GWAS analyses were
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performed in BOLT-LMM?® using all 7.3 million SNPs with a subset of 0.7 million
SNPs in common with HapMap3>° used to control for population structure and
polygenic effects. We used self-reported “ever-smoked” as a dichotomous
phenotype for smoking (208,988 cases and 244,705 controls). We analyzed the data
in BOLT-LMM based a linear model with age and sex fitted as covariates, and
transformed the effect size of each SNP on the observed 0-1 scale to odds ratio
(OR) using LMOR® (URLSs).

Correlation of cis-eQTL effects between tissues. Let b be the estimated effect at
the top-associated cis-eQTL for a gene (i.e., one SNP per gene). We can model b as

b=b+e (1)

where b is the true effect and e is the estimation error. We assume that b and e are
random variables when interrogated across genes, i.e., b ~ N(0, var(b)) and

e ~ N(0, var(e)). The covariance of the estimated cis-eQTL effects between tissues i
and j across genes can be partitioned into the covariance of true cis-eQTL effects
and the covariance of estimation errors (if there is a sample overlap), i.e.,

cov(b;, B]) = cov(b;, b;) + cov(e;, ) = cov(by, by) + 1,y [var(e;)var(e;)  (2)

] i
where var(e;) and var(e;) are the variance of the estimation errors across genes in
tissues i and j, respectively, and r, is the correlation of estimation errors across
genes between two tissues, ie., 7, = cor(e;, ¢;) We know from Bulik-Sullivan

\/W measures the sample overlap
L)

etal*! and Zhu et al.** that r, ~ TP, where p =

with N; and N; being the sample sizes in tissues i and j, respectively, and N, being
the number of overlapping individuals, and 7, is the correlation of gene expression
levels between two tissues in the overlapping sample. If i =j, then r,=1 and

var(b;) = var(l}i) — var(e;), where var(b;) is the variance of true cis-eQTL effects
across genes in tissue i. We therefore can estimate the correlation of true cis-eQTL
effect sizes across genes between tissues i and j as

- C;O\V(b”bj) _ var(ev)var(ej) o

\/Var(b,')‘Ta\r(bj) \/{@@,) - @(ei)] {@'(i’) 7@(%)}

where var(b;) and var(b ;) (ie., the estimates of var(b b;) and var(b ;) are the

observed sample variances of b,- and b/’ respectively, in a set of genes, and
&if(l;,-, ilj) is the observed sample covariance between i)i and izj in the set of genes.

However, vat(e;), var(e;) and 7, are not observable. We know that SE2 of b of a
SNP is an estimate of the variance of e over repeated experiments for a gene. We
therefore can approximate var(e) by the average of SE? across genes (one SNP per
gene). We also know from Eq. (2) that if b; = b;=0,

cov(éi,l;) = 1, /var(e;)var(e;). Hence, 7, = olbb) __colbb)

N R O0)

c/\or(bi,}; ) for null SNPs, where cn:)r(b,7 bj) is the observed sample correlation

between b,- and bj in the set of genes. In practice, we computed 7, for each gene
using “null” SNPs (P.qry, > 0.01) in the cis-region by a simple correlation approach
and took the average across genes.

The sampling variance of 7, over repeated experiments can be computed via
Jackknife approach leaving one gene out at a time.

2

m771 Zt: [;ber) - ?bm} )

where #,_y is the estimate with the #-th gene left out and #, ) = iy Py(—p)- The
method is derived based on eQTL data but can be applied to data frbm genetic
studies of different types of molecular phenotypes (e.g., DNAm and histone
modification).

V() jacknite=

Enrichment of tissue-specific eQTLs in functional categories. We used chro-
matin state data from 23 blood samples (T-cell, B-cell, and hematopoietic stem
cells) and 10 brain samples generated by the NIH Roadmap Epigenomics Mapping
Consortium (REMC)?!. There were 25 chromatin states predicted by
ChromHMM?®! based on the imputed data of 12 histone-modification marks®!. We
classified the 25 chromatin states into 14 main functional categories by combining
functionally relevant annotations®?. We tested the difference in eQTL effect for a
gene between two tissues (i and j) using the method below. Let

d=b,—b (5)

The sampling variance of d over repeated experiments can be written as

V(&) = V(l;[) + V(izj) — 20, /V(i),-)V(Bj) (6)
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where Bi and Bj are the estimated effect sizes of the top-associated cis-eQTL for a
gene in two tissues i and j, V(b;) and V(b ) are the sampling variances of b; and b,,
respectively, over repeated experiments, and 6 is sampling correlation between b
and b; for the gene over re[}eated experiments. In practice, V(b ) and V(b ) can be
estimated by SE? of b, and b;, and 0 can be approximated by the sample correlation
between Zz,- and izj across the “null” SNPs (e.g., Peqrr, > 0.01) in the cis-region for the
gene. The significance of d can therefore be assessed by a Wald test, i.e.,
T, — & 2

b Var(d) Xi-

To test the enrichment of Tp, statistics in functional annotations, we allocated

the cis-eQTLs to the 14 functional categories described above by physical position,
and calculated the mean Tp, of each category. We assessed the enrichment using the

inflation factor A = ; &

, where TD( is the mean Tp, of the cis-eQTLs in a category i,

and TD is the mean Tp, of all the cis-eQTLs. We then used the Jackknife approach
(leaving one gene out at a time) described above to compute the variability of A.

Note that although we described the enrichment test method above based on cis-
eQTLs, the method can be applied to data from genetic studies of different types of
molecular phenotypes (e.g., DNAm and histone modification).

Meta-analysis of cis-eQTL data from correlated samples. We know from Eq.
(1) that the estimated effect of a cis-eQTL for a gene can be partitioned into two
components, i.e., the true effect size (b) and the estimation error (e). For multiple
tissues, the joint distribution of the estimates can be written as

b ~ N(1b,9) (7)

where b = [by, b, ... , b, N is the sampling (co)variance matrix of b over repeated
experiments with S; = C(b;,b;). S; = 0;5;S; when i # j, where 6;; is sampling
correlation between b and b flor the gene over repeated experlments $? and S?are
the sampling variance of b and b respectively, over repeated experiments. If i = j,
then 6; =1 and §; = =S In practlce, 0, can be approximated by the sample
correlation of the estimated SNP effects between a pair of tissues across the “null”
SNPs (e.g., Peqrr. > 0.01) in the cis-region for each gene. Similar to the summary-
data-based meta-analysis methods that account for correlated estimation
errors>40:63, we can estimate combined effect as

b=(178"1) 178 ®)

V(6) = s o)

The significance of b can be assessed by a Wald test, i.e., #zh) ~

URLs. For MeCS, see http://cnsgenomics.com/software/smr/#MeCS. For SMR, see
http://cnsgenomics.com/software/smr. For LMOR, see http://cnsgenomics.com/
shiny/LMOR/. For UK Biobank, see http://biobank.ctsu.ox.ac.uk/. For METAL, see
https://genome.sph.umich.edu/wiki/METAL. For GTEx Portal, see http://www.
gtexportal.org/. For CMC data, see https://www.synapse.org/CMC. For Braineac
data, see http://www.braineac.org/.

Data availability. Brain-eMeta eQTL summary data are available at http://
cnsgenomics.com/software/smr/#Download. The eQTLGen summary data are
available through application to the eQTLGen consortium. All the other data sets
used in this study are from the public domain. The software tools are available at
the URLs above.
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