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REVIEW ARTICLE

An overview of development and status of fiber-reinforced composites as
dental and medical biomaterials

Pekka K. Vallittu

Department of Biomaterials Science, Turku Clinical Biomaterials Centre – TCBC, Institute of Dentistry, University of Turku, Welfare
Division, Turku, Finland

ABSTRACT
Fibr-reinforced composites (FRC) have been used successfully for decades in many fields of sci-
ence and engineering applications. Benefits of FRCs relate to physical properties of FRCs and ver-
satile production methods, which can be utilized. Conventional hand lamination of prefabricated
FRC prepregs is utilized still most commonly in fabrication of dental FRC devices but CAD-CAM
systems are to be come for use in certain production steps of dental constructions and medical
FRC implants. Although metals, ceramics and particulate filler resin composites have successfully
been used as dental and medical biomaterials for decades, devices made out of these materials
do not meet all clinical requirements. Only little attention has been paid to FRCs as dental mate-
rials and majority of the research in dental field has been focusing on particulate filler resin com-
posites and in medical biomaterial research to biodegradable polymers. This is paradoxical
because FRCs can potentially resolve many of the problems related to traditional isotropic dental
and medical materials. This overview reviews the rationale and status of using biostable glass
FRC in applications from restorative and prosthetic dentistry to cranial surgery. The overview
highlights also the critical material based factors and clinical requirement for the succesfull use
of FRCs in dental reconstructions.
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Introduction

This overview reviews fundamental properties of FRC
materials which explain their suitability for dental and
medical biomaterials. FRC materials is a group of
materials which have been first time tested in 1960s
but more extensively developed and clinically
approved for dental use during the last 30 years and
for the medical implant use during the 15 years [1–6].
Principles behind the development of FRC materials
are in resolving clinical problems of bulk metals, cer-
amics and polymers which are time consuming ex
vivo fabrication steps of ceramics, metal ion and
nanoparticle release from metals and shortcomings
which are related to medical imaging and radiation
therapy, and lack of toughness and strength for load-
bearing dental restorations and surgical implants.
Development of new biomaterials toward clinical use
has to follow regulations which are covering medical
devices and biomaterials in Europe and worldwide.
Risks, which relate to the newly developed biomateri-
als can be controlled by selecting the first applications

to be short-term of use or the device to be removable
in nature as was made in developing the FRCs and
FRC based treatments. Delay in getting FRC for clin-
ical use was due to problems in combining resins sys-
tems with reinforcing fibers, in diffuculties in
handling the FRC technically and in rebuttal of
accepting new type of materials by clinical dental pro-
fession and dental laboratory technicians. However,
development of the FRC resin systems and under-
standing of designing principles behind of construct-
ing devices, and the clinical experience, has lead to
the use of FRCs in variety of disciplines and applica-
tions: in removable prosthodontics [7–11], fixed pros-
thodontics [12–40] restorative dentistry [41–54],
periodontology [54–56], root canal systems [57–67],
orthodontics [68,69], and in repairs of fixed prosthe-
ses [70,71]. Critical evaluation of the available FRC
materials and correct patient selection is of import-
ance for successful use of the material.

Although there are several proven dental materials
and treatment options based on conventional dental
materials, a large number of the partially edentulous
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patients are not treated by fixed dental prostheses to
replace their missing teeth or to repair their damaged
biting function. This is often due to high cost of the
state-of-the-art type of treatments by fixed prostheses
and due to irreversible damage by the treatment
when creating space for metal and ceramic crowns
by cutting enamel and dentin of abutment teeth. An
ideal material for dental restorations should be mold-
able in situ, it should form durable adhesion to the
underlaying tooth substrate and it should provide
high strength and high toughness after being proc-
essed. FRC fullfis these requirements from the mater-
ial science perspective. FRC is a material
combination of polymer matrix and reinforcing
fibers. Fibers of the composite are the reinforcing
phases in the system when the load is applied to the
composite. Load is transferred to the fibers and the
material becomes strong and tough. The reinforcing
fibers can be continuous unidirectional (rovings),
continuous bidirectional (weaves), continuous ran-
dom oriented (mat) or discontinuous oriented of
randon fibers.

FRC can be isotropic, orthotropic or anisotropic
which means that material properties and dependent
of the direction of the fibers: mechanical, optical, cur-
ing shrinkage and thermal properties of the FRC are
dependent on the fiber quantity and orientation
[72–82]. A high quality glass FRC material with con-
tinuous unidirectional glass fiber quantity of 65 vol%
in well polymerized dimethacrylate thermoset polymer
matrix provide high flexural strength of up to
1250MPa [72]. No significant reduction of flexural
strength and modulus of elasticity by hydrolytic effect
of water even in long term water storage of up to
10 years of glass FRC occurs which demonstrates the
hydrolytic stability of good quality glass fibers and
their silane coupling agent mediated adhesion with
the polymer matrix [74,75].

Clinical use of dental FRCs: removable
dentures

The first clinical applications for using reinforcing
fibers was made with removable dentures which are
known to be prone for denture base fractures due to
fatigue [83–86]. The problem of denture base fractures
has become even higher by the increased use of
implant supported overdentures. Glass fibers were
selected as the most suitable fibers due to their trans-
luency and possibility to achieve chemical bonding
between the fiber and polymer matrix with silane cou-
pling agents [87–89].

The fiber reinforcements in denture bases are div-
ided into two categories. Ladizesky and coworkers
reported a method where fibers were distributed
through entire denture base [7–11]. This approach is
called total fiber reinforcement (TFR). The approach
by Vallittu is based on the concept that only the
weakest part of the denture base (location of fracture
initiation) is reinforced by precisely aligned and posi-
tioned fiber reinforcement. This is called as partial
fiber reinforcement (PFR) [90]. Clinical studies have
been performed with FRC reinforced removable den-
tures, which suggested that PFR offers an effective
and techically easy method to eliminate fractures in
denture base [4,5].

Clinical use of dental FRCs: fixed dental
prostheses

Today it is known that FRCs can be used to produce
definitive fixed dental prostheses (FDPs) although
soon after introduction of FRC FDPs in 1990 s this
was questioned. FDPs made of FRC are classified as
surface retained FDPs, inlay/onlay retained FDPs, full
coverage crown retained FDPs and hybrid FDPs [91].
FRC FDPs can be made directly or indirectly. In the
FRC FDPs, the framework between the abutments is
made of continuous unidirectional fibers. Several
laboratory and clinical studies emphasize the effect of
correct fiber direction, fiber quantity and interfacial
adhesion of veneering resin composites to the FRC
framework on the strength of the FDP construction
[36,92–97].

Surface retained FRC FDPs are typically used in
anterior region of the dental arch. Inlay/onlay
retained FDPs are made by combining the cavities of
the abutments by continuous unidirectional fibers
and they are preferred in the premolar and molar
region. In the premolar and especially in molar
region the requirement for the FRC FPD is adequate
vertical space for connectors and inlays. In the con-
nectors, four millimeters of vertical space is needed
and in the inlays (onlays, crowns) minimum of two
millimeters of occlusal space is required for the FRC
and overlaying veneering resin composite with a
thickness of 1.5mm [38]. Full coverage crown
retained FPDs are made by layering woven FRC and
veneering resin composite on prepared abutments.
Abutments are connected with continuous unidirec-
tional fibers and by having an additional piece FRC
to support cusps of the pontics to eliminate the
delamination of the veneer, which is one of the most
common type of failure of FRC FPDs [98,99]. Other
alternatives to reinforce the pontics are based on
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using high volume FRC framework for FDP [98,99].
Attempts to use prefabricated pontics made of cer-
amic materials and using resin based denture teeth
have been made. Natural tooth crown can also be
used as a pontic for FRC FPD (Figure 1–4). It was
shown that by using glass ceramics and acid etching
and silane priming techniques mechanically stable
and reliable pontics were obtained if the occlusal
thickness of the pontic material was high enough
(4mm) [100–104]. On the other hand, polymer den-
ture teeth provided reliable pontic system even with
2.5mm occlusal thickness of the denture tooth [100].
Use of full coverage crowns as retaining elements of
FDPs does not allow treatment to be according to
the principles of minimal invasiveness like hybrid or
inlay retained FDPs, but can offer a lower cost FDP
alternative [32]. FRCs can also be used a reinforce-
ments of provisional FDPs during fabrication of con-
ventional FDPs [93].

Clinical use of dental FRCs: root canal posts

Endodontically treated tooth with loss of dentin and
enamel may need additional support to anchor the
restoration. The very first reported fiber composite
root canal posts were used in Japan in 1600 century.
The posts of that time were made of wood, which is a
composite of cellulose fibers and lignin polymer

Figure 2. Extracted tooth (A) is cut and veneered from the cutting surface with resin composite (B) to make a pontic (C) for being
attached to the adjacent teeth with continuous unidirectional glass fibers (C).

Figure 3. Natural tooth pontic which was attached to the
adjacent teeth four weeks after treatment.

Figure 1. Use of natural tooth as pontic of FRC FPD. Severely periodontally damaged tooth (A) needs to be extracted (B) and
replaced by minimally invasive FPD immediately after extraction.

46 P. K. VALLITTU



matrix. After starting to use silver posts for retaining
crowns in 1800 s, the material of silver was replaced
soon by dental gold alloys, which became material of
standard for over hundred years of time. Metals posts
are structurally and due to material properties rigid
constructions, which effectively transfer occlusal loads
to the fragile dentin of the root. Repeated stresses
cause fatigue of dentin and can cause vertical fracture
of the root. By adding so-called extraradicular metal
ferrule of width of 1.5 to 2.0 to the crown, the root
fractures can to large extent be eliminated. However,
the present era of nonmetallic crowns of glass ceram-
ics and resin composites do not have metal ferrule
and thus, the root fracture elimination have to be
done intraradicularly. So-called modulus compensa-
tion is method to lower the magnitude of local stress
and prevalence of root fractures in root dentin [32].
The modulus compensation is achieved by selection
of post material and post design, which match to the
modulus of elasticity of root. Glass FRCs fulfills the
requirement of isoelasticity with dentin. The use of
FRC in root-canal posts to anchore cores and crowns
has rapidly increased although the use of post systems
have decreased in general along the development of
adhesive techniques and materials, e.g. by introduc-
tion of so-called endocrown systems [58–60,65,66].
FRC can be used in root canal as prefabricated
solid posts and individually formed posts, the
latter representing the most optimal post design
(Figure 5) [64,65].

The prefabricated FRC posts are made of reinforc-
ing fibers (carbon/graphite, glass, quartz) and finally
polymerized resin matrix between the fibers which

form a solid post of a predetermined diameter.
Individually formed posts are made of non-polymer-
ized fiber-resin prepregs, consisting of glass fibers and
light-curing resin matrix. The rationale of the indi-
vidually formed FRC post is to fill the entire space of
the root canal by FRC material [64,68]. The increased
fiber quantity, especially in the coronal part of the
root canal increases load-bearing capacity of the sys-
tem. Biomechanical behavior of restored tooth can
also better be simulated because the fibers are located
closer to the dentin walls, where the highest stresses
exist. FRC close to dentin walls inside the root canal
functions as ‘an intraradicular ferrule’. A tooth
restored with individually formed root canal posts sys-
tem withstands cyclic loading of high magnitude for a
long period of time without catastrophic failure or
marginal breakdown of the crown, which can predis-
pose to the secondary caries. For transferring the
occlusal loads from crown to the individually formed

Figure 4. Cross sections of teeth with individually formed FRC post (A) and prefabricated FRC post (B). In the individually formed
FRC post system the reinforcing fibers are located closer to the highest stress are of tooth, i.e. surface of the root and the fibers
provides better support for the crown than the prefabricated post.

Figure 5. Light microscopic image of discontionuos glass FRC
which is used in bilayered direct resin composite restorations.
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FRC post, dentin and periodontium, good bonding
between the luting cements, core build-up composites,
post and dentin are essential. Adequate bonding of
resin composite luting cements and core build-up
resin composites to the post can clinically be achieved
by using FRC post system where the polymer matrix
is composed of interpenetrating polymer network
(IPN) resin system which allows monomers of the
cement to dissolve the surface of the post
[58,105,106]. Cross-linked polymer matrix of all pre-
sent prefabricated FRC posts does not enable bonding
of luting cements or core build-up resin composites
to the post and therefore additional mechanical reten-
tion of posts and long posts should be used.

Clinical use of dental FRCs: filling resin
composites

Although amalgam has shown its many benefits as
dental restorative material its use is ending due to
environmental reasons. Treatment of damaged tooth
structure involves direct resin composite restorations
on the population level allowing high cost-effect ratio
for the treatment outcome. Particulate filler resin
composites have fulfilled direct application require-
ments in terms of material cost but often failed in
terms of longevity of restorations made by general
practitioners. One reason for the limited longevity of
restorations is low mechanical strength of the particu-
late filler resin composite as material and inadequately
adjusted occlusion, which can cause high local stress
concentrations and damage the restoration. Resin
composite restorations, like ceramic restorations, do
not become adjusted to the occlusion like amalgam
restorations did during long lasting setting reaction.
Adjustment of occlusion of the resin composite and
ceramic restorations must be made by the dentist with
high precision.

Utilization of reinforcing fibers in filling compo-
sites to toughen the material has been tested for years
but not until recently, the reinforcing effect by fibers
has been proved [41–54,106]. Reasons for the poor
success of previous FRC filling materials have been of
selecting of too short discontinuous fibers, which were
not even in theory able to increase strength and
toughness of the resin composite. The current concept
of using FRC in fillings is based on the bilayered
composite system in which FRC base is made of dis-
continous fibers with length of the fibers exceeding
the critical fiber length in the dimethacrylate polymer
matrix (Figure 6). Fibers in the FRC increase tough-
ness and other physical properties of the material
compared to regular filling composites [44–54].

Although it is known that protein and microbal adhe-
sion of glass FRC does not considerably differ from
that of particulate filler resin composites, the occlusal
surface of the FRC is covered with more polishable
and wear resistant particulate filler resin composite.
The function of the FRC base for filling composites is
to provide a crack propagation prevention layer for
the restoration. The bilayered resin composite struc-
ture is considered as a biomimetic restoration system
by mimicking the fibrous structure of dentin-enamel
complex [106].

Facial prostheses and FRC

In the development of facial prostheses many different
materials have been tested. Currently silicone elasto-
mers are the most commonly used material combined
with base material of polymethyl methacrylate.
Polymethylmethacrylate base of the facial prostheses if
heavy and rigid, and edges of the prostheses do not
always lie tightly against the skin during facial expers-
sions and jaw movements. To overcome these prob-
lems skeleton of glass FRC was introduced [107–111].
Veneering silicone is bonded to the glass FRC skel-
eton by help of priming compounds [107] and during
the use of the prostheses the edges of the prostheses
and slightly compressing the skin keeping it in tight
contact with the soft tissues. Compression of the skin
by the FRC skeleton has not been shown to affect the
microcirculation of the facial skin [112].

Surgical applications for FRC

Durable and tough FRC materials have proven their
suitability to surgical applications of implantology.
The use of FRC in combination of bioactive modifiers
like bioactive glass eliminates several shortcomings of
bulk material made implants of metals, ceramics and

Figure 6. Computer tomography reconstruction of large cra-
nial defect due to car accident (Courtesy by Professor Willy
Serlo, Oulu University Hospital, Finland).
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polymers [113,114]. To improve osteoconductivity
and osteoinductivity of the FRC material, particles of
bioactive glass (BG) have been added to the surface or
inner space of FRC implants [115]. Because radiopa-
city of glass FRC corresponds to that of cortical bone,
there are no artifacts in the diagnostic images but the
implant can be seen in the x-rays, CTs and MRIs.
Radiation therapy can also be given in the presence of
FRC implant. The need for skull reconstructions is
increasing mainly due to an increase in decompressive
craniectomies, a life-saving maneuver to relieve intra-
cranial pressure resulting from swelling of the brain
due to e.g. trauma or cerebrovascular accidents [114].

Presently, the most commonly used fibers in med-
ical FRC are made of glass of specific composition but
carbon/graphite fibers have also been tested as spinal
fusion cages. Glass fibers used in the implants differ
from those most commonly used in dental reconstruc-
tions. Surgically used glass fibers are referred as S-
glass and they are basically free of leaching ions in
physiologically moist environment like in living tis-
sues with presence of extracellular liquid. Use of car-
bon/graphite fibers has been limited due to risk of
release of micro and nanometer scale carbon wear
debris to tissues. Glass fibers of diameter 15–17
micrometers are used in implants as continuous fibers
which have been woven to textile form before impreg-
nating and coupling with resin, and therefore release
of wear debris has not found to be a problem. In the
presently used designs of FRC implants, both woven
textile form of fibers and unidirectional continuous
fibers are used in the implant construction. The role
of continuous unidirectional fibers is to connect the
outer and inner surface laminates together for

providing high strength to the implant [108]. Special
features of the FRC cranial implant construction are
mesh-like surface laminates and presence of free space
between the outer and inner laminates, which is
loaded with particles of bioactive glass (Figure 7)
[114].

Long-term durability of the cranioplasty implant is
important because according to the present best
knowledge, the cranial defects need years of time to
be closed by new forming bone even the presence of
osteoinductive implant materials [114]. This is the
reason why any of the biodegradable polymers or
composites cannot be used for repairs of large bone
defects in the cranium [116]. Biodegradable polymer
based materials degrade and loose the mechanical
strength too fast in relation to the bone regeneration.
With regard to degradable metal alloys of magnesium,
there are problems in tissue healing due to release of
hydrogen gas during degradation process [117].

Thermoset copolymer and the silanized glass fibers
form a durable composite for fabrication of patient
specific and standard shaped implants [118].
Biocompatibility of FRC implants is the biocompati-
bility of its components [118–124]. Presence of BG on
the implant surface or inside the implant enhance cell
maturation of differentiated bone forming cells. In
many of the FRC implant studies, there have been BG
(S53P4) particles in the FRC implant [120–124]. BGs
are synthetic dissolving biocompatible osteoconduc-
tive-osteoinductive bone substitutes. Some composi-
tions (S53P4) of BGs have clinically been used
because of antibacterial and angiogenesis-promoting
properties [125–137]. Antimicrobial efficiency has
been shown for more than 20 microbe species,

Figure 7. Computer aided design of patient specific FRC-BG implant for reconstructing the defect area (A) and computer tomog-
raphy reconstruction (B) of the FRC-BG implant after cranioplasty operation (Courtesy by Professor Willy Serlo, Oulu University
Hospital, Finland).
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including Staphylococcus aureus and Staphylococcus
epidermis, which are the most common pathogens in
periprosthetic infections. Clinical studies with cranial
FRC-BG implants have been for improving osteogen-
esis, angiogenesis and antimicrobial properties and
long term protection of brain tissues [115,138,139].

In the biological environment ions of calcium and
phosphorus are released from the BG and they biomi-
neralize on the material surface, like the surface of
glass FRC-BG implant [130]. For cells, at the early
stage of osteogenesis, released ions from the BG and
slightly increased pH due to ion exchange reactions
are inducing differentiation of mesenchymal stem cells
to cell lines for bone formation. This, in conjunction
with biomineralization promotes bone growth. With
regard to osseointegration, i.e. bonding between the
BG of the implant and bone tissue, a series of reac-
tions starting at the glass surface followed by a series
of biological reactions are occurring. The different
reaction steps taking place at the glass surface depend
mainly on the glass composition but also on the sur-
face topography, surface area of glass, and flow of the
interstistial fluid in the microenvironment close to the
glass surfaces. In the subsequent steps, calcium and
phosphate from the solution, and migrating from the
bulk glass, form first amorphous hydroxyapatite and
then crystallize at carbonate substituted hydroxyapa-
tite layer (HA) at the glass surface. This HA layer is
compatible with the biological apatite and provides an
interfacial bonding between the material and tissue
[114]. The present design of FRC-BG cranial implant
was approved for clinical use as patient-specific
implant and standard shaped implant in Europe in
2014.

Future aspects for the research of FRCs

Use of FRCs in dentistry and medicine has now taken
the first steps and the use is increasing rapidly. New
applications are tested due to versatile properties of
FRC in terms of biomechanics, possibility to add bio-
logically active compounds to the medical device
structure and into the polymer matrix. The limitations
of biodegradable implants and stem cell based tissue
engineering approaches in cranial bone repair can be
overcome by using glass FRC-BG implants [140–148].
New applications for FRC will be found from ortho-
pedic and trauma surgery and spine surgery and in
more specific dental fields including dental
implantology.
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