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Abstract

We investigate the impact of Knightian uncertainty on the optimal timing policy of an am-

biguity averse decision maker in the case where the underlying factor dynamics follow a multidi-

mensional Brownian motion and the exercise payoff depends on either a linear combination of the

factors or the radial part of the driving factor dynamics. We present a general characterization

of the value of the optimal timing policy and the worst case measure in terms of a family of an

explicitly identified excessive functions generating an appropriate class of supermartingales. In

line with previous findings based on linear diffusions, we find that ambiguity accelerates timing

in comparison with the unambiguous setting. Somewhat surprisingly, we find that ambiguity

may result into stationarity in models which typically do not possess stationary behavior. In this

way, our results indicate that ambiguity may act as a stabilizing mechanism.
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1 Introduction

Gaussian processes and, more precisely, Brownian motion plays a prominent role in modeling

factor dynamics in standard financial models considering the optimal timing of irreversible de-

cisions in the presence of uncertainty. In the benchmark setting all the uncertainty affecting the

decision is summarized into a single probability measure describing completely the probabilistic

structure of the underlying intertemporally fluctuating factor dynamics. However, as originally

pointed out in Knight (1921), in reality there are circumstances where a decision maker faces

unmeasurable uncertainty on the plausibility or credibility of a particular probability measure

(so-called Knightian uncertainty). In such a case a decision maker may have to make a decision

based on several or even a continuum of different measures describing the probabilistic structure

of the alternative states of the world.

Ambiguity was first rigorously axiomatized based on the pioneering work by Knight (1921) in

a atemporal multiple priors setting in by Gilboa and Schmeidler (1989) (for further refinements,

see also Bewley (2002), Klibanoff et al. (2005), Maccheroni et al. (2006) and Nishimura and

Ozaki (2006)). The atemproal axiomatization was subsequently extended into an intertemporal

recursive multiple priors setting by, among others, Epstein and Wang (1994), Chen and Epstein

(2002), Epstein and Miao (2003), and Epstein and Schneider (2003). The impact of ambiguity

on optimal timing decisions was originally studied in Nishimura and Ozaki (2004) in a job search

model. They subsequently extended their original analysis in Nishimura and Ozaki (2007) by

considering the impact of Knightian uncertainty on the optimal timing decisions of irreversible

investment opportunities in a continuous time model based on geometric Brownian motion.

Alvarez E. (2007) focused on the impact of Knightian uncertainty on monotone one-sided stopping

problems and expressed the value as well as the optimality conditions for the stopping boundaries

in terms of the minimal excessive mappings of the underlying diffusion under the worst case

measure. Riedel (2009), in turn, analyzed discrete time optimal stopping problems in the presence

of ambiguity aversion and developed a general minmax martingale approach for solving the

considered problems (see also Miao and Wang (2011) for an analysis of the problem for a general

discrete time Feller-continuous Markov processes). The approach developed in Riedel (2009) was

subsequently extended to a continuous time setting in Cheng and Riedel (2013). In Cheng and

Riedel (2013), the value of the optimal policy was proven to be the smallest right continuous

g-martingale dominating the exercise payoff process. Christensen (2013) investigated the optimal

stopping of linear diffusions by ambiguity averse decision makers in the presence of Knightian
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uncertainty and identified explicitly the minimal excessive mappings generating the worst case

measure as well as the appropriate class of supermartingales needed for the characterization of

the value of the optimal policy. Epstein and Ji (2019) investigated optimal learning in the case

where the underlying driving Brownian motion is subject to drift ambiguity. More recently,

Alvarez E. and Christensen (2019) extended the approach developed in Christensen (2013) to a

multidimensional setting and investigated the impact of Knightian uncertainty on the optimal

timing policies of ambiguity averse investors in the case where the exercise payoff is positively

homogeneous and the underlying diffusion is a two-dimensional geometric Brownian motion.

They found that in a multidimensional case, ambiguity does not only affect the optimal policy

by altering the rate at which the underlying processes are expected to grow, it also impacts the

rate at which the problem is discounted.

Given the findings in Alvarez E. and Christensen (2019), our objective in this paper is to

analyze the impact of Knightian uncertainty on the optimal timing policy of an ambiguity averse

decision maker in the case where the underlying follows a multidimensional Brownian motion. We

study the general stopping problem and identify two special cases under which the problem can

be explicitly solved by reducing the dimensionality of the problem and then utilizing the approach

developed in Christensen (2013). We characterize the value and optimal timing policies as the

smallest majorizing element of the exercise payoff in a parameterized function space. Our results

demonstrate that Knightian uncertainty does not only accelerate the optimal timing policy in

comparison with the unambiguous benchmark case, it also may result into stationary behavior

to the controlled system even when the underlying system does not possess a long run stationary

distribution. This observation illustrates how ambiguity may in some cases have a nontrivial

impact on the stochastic dynamics of the underlying processes under the worst case measure.

The contents of this paper are as follows. In Section 2 we present the underlying stochastic

dynamics, state the considered class of optimal stopping problems and state a characterization

of the impact of ambiguity on the optimal timing policy and its value. In Section 3 we focus on

payoffs depending on linear combinations of the driving factors. In Section 4 we then focus on

radially symmetric payoffs. Finally, Section 5 concludes our study.

2 Underlying Dynamics and Problem Setting

Let W be d-dimensional standard Brownian motion under the measure P and assume that d ≥ 2.

As usually in models subject to Knightian uncertainty, let the degree of ambiguity κ > 0 be given
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and denote by Pκ the set of all probability measures, that are equivalent to P with density process

of the form

Mθ
t = e−

∫ t
0
θsdWs− 1

2

∫ t
0
‖θs‖2ds

for a progressively measurable process {θt}t≥0 satisfying the inequality ‖θt‖2 ≤ κ2 for all t ≥ 0.

That is, we assume that the density generator processes satisfy the inequality
∑d
i=1 θ

2
it ≤ κ2 for

all t ≥ 0.

Assume now that Xt = x + Wt denotes the underlying diffusion under the measure P. Our

objective is now to consider the following optimal stopping problem

Vκ(x) = sup
τ∈T

inf
Qθ∈Pκ

EQθ

x

[
e−rτF (Xτ )1{τ<∞}

]
, (2.1)

where F : Rd 7→ R is a measurable function which will be specified below in the two cases

considered in this paper. As usually, we denote by Cκ = {x ∈ Rd : Vκ(x) > F (x)} the

continuation region where stopping is suboptimal and by Γκ = {x ∈ Rd : Vκ(x) = F (x)} the

stopping region. The specification of the considered stopping problem results into the following

lemma characterizing the impact of ambiguity on the optimal stopping policy and its value in a

general setting.

Lemma 2.1. Increased ambiguity accelerates optimal timing by decreasing the value of the op-

timal policy and, thus, shrinking the continuation region where waiting is optimal. Formally, if

κ̂ > κ then Vκ̂(x) ≤ Vκ(x) for all x ∈ Rd and Cκ̂ ⊆ Cκ.

Proof. Assume that κ̂ > κ. Since {θ ∈ Rd : ‖θ‖2 ≤ κ2} ⊂ {θ ∈ Rd : ‖θ‖2 ≤ κ̂2} we notice that

inf
Qθ∈Pκ̂

EQθ

x

[
e−rτF (Xτ )1{τ<∞}

]
≤ inf

Qθ∈Pκ
EQθ

x

[
e−rτF (Xτ )1{τ<∞}

]
implying that Vκ̂(x) ≤ Vκ(x) for all x ∈ Rd. Assume now that x ∈ Cκ̂. Since in that case

Vκ(x) ≥ Vκ̂(x) > F (x) we notice that x ∈ Cκ as well. Consequently, Cκ̂ ⊆ Cκ completing the

proof of our lemma.

Lemma 2.1 shows that the sign of the relationship between the degree of ambiguity and

optimal timing is positive. At the same time, increased ambiguity decreases the value of the

optimal stopping policy showing that the highest value is attained in the absence of ambiguity.

This mechanism is naturally not that surprising since it essentially states that the larger the set

of potentially detrimental outcomes gets, the smaller is the achievable value.

We now notice that under the measure Qθ defined by the likelihood ratio

dQθ

dP
=Mθ

t
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we naturally have that

Xt = x−
∫ t

0

θsds+ Wθ
t ,

where Wθ
t denotes Qθ-Brownian motion. Introduce the differential operator associated with the

underlying processes X under the measure Qθ ∈ Pκ by

Aθ =
1

2

d∑
i=1

∂2

∂x2i
−

d∑
i=1

θi
∂

∂xi
.

For a twice continuously differentiable function u : Rd 7→ R+, the Itô-Döblin theorem yields that

under the measure Qθ ∈ Pκ

e−rtu(Xt) = u(x) +

∫ t

0

e−rs
(
(Aθu)(Xs)− ru(Xs)

)
ds+

∫ t

0

e−rs∇u(Xs) · dWθ
s . (2.2)

Now, minimizing (Aθu)(x) with respect to θ under the condition ‖θ‖2 ≤ κ2 leads to the worst

case density generator

θ∗t = κ
∇u(Xt)

‖∇u(Xt)‖
,

where ‖ · ‖ denotes the standard Euclidean norm. Assume now that there exists a twice contin-

uously differentiable function ū : Rd 7→ R+ satisfying the partial differential equation

1

2
(∆ū)(x)− κ‖∇ū(x)‖ − rū(x) = 0 (2.3)

on some G ⊆ Rd. In that case

e−rT ū(XT ) = ū(x) +

∫ T

0

e−rs (κ‖∇ū(Xs)‖ − θs · ∇ū(Xs)) ds+

∫ T

0

e−rs∇ū(Xs) · dWθ
s

≥ ū(x) +

∫ T

0

e−rs∇ū(Xs) · dWθ
s ,

(2.4)

where T = t ∧ inf{t ≥ 0 : Xt 6∈ A} and A ⊆ G is open with compact closure in G. Taking

expectations result in

EQθ

x

[
e−rT ū(XT )

]
≥ ū(x)

with identity only when θ∗ = θ. Unfortunately, solving the partial differential equation (2.3)

explicitly is typically impossible. Fortunately, there are two cases where dimension reduction

techniques apply and permit the transformation of the original multidimensional problem into a

solvable one-dimensional setting. We will focus on these problems in the following sections.

3 Payoff Depending on a Linear Combination of Factors

Linear combinations of independent normally distributed random variables are normally dis-

tributed. On the other hand, linear combinations of independent Brownian motions are con-
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tinuous martingales and, hence, constitute a time change of Brownian motion. Given these

observations, consider now the case where the exercise payoff reads as

F (x) = F̂
(
aTx

)
= F̂

(
d∑
i=1

aixi

)
, (3.1)

where a ∈ Rd is a constant parameter vector and F̂ : R 7→ R is a measurable function. Focusing

now on functions

u(x) = h
(
aTx

)
results into the worst case prior characterized by the density generator

θ∗ = κ sgn(h′(aTx))
a

‖a‖
.

In this case, solving

(Aθ
∗
u)(x) = ru(x)

results into solving
1

2
‖a‖2h′′(aTx)− κ‖a‖h′(aTx)− rh(aTx) = 0

on {x : h′(aTx) ≥ 0} and

1

2
‖a‖2h′′(aTx) + κ‖a‖h′(aTx)− rh(aTx) = 0

on on {x : h′(aTx) < 0}. Defining now the constants

ψκ =
κ

‖a‖
+

√
κ2

‖a‖2
+

2r

‖a‖2
,

ϕκ =
κ

‖a‖
−

√
κ2

‖a‖2
+

2r

‖a‖2
,

ψ̂κ = −ϕκ, and ϕ̂κ = −ψκ then shows that

h(y) = c1e
ψκy + c2e

ϕκy

on {y : h′(y) ≥ 0} and

h(y) = ĉ1e
ψ̂κy + ĉ2e

ϕ̂κy

on {y : h′(y) < 0}. Given these functions, let c ∈ R be an arbitrary reference point and

define the twice continuously differentiable and strictly convex function Uc : R 7→ R as Uc(y) =

max(h1c(y), h2c(y)), where

h1c(y) =
ψκ

ψκ − ϕκ
eϕκ(y−c) − ϕκ

ψκ − ϕκ
eψκ(y−c)

h2c(y) =
ψ̂κ

ψ̂κ − ϕ̂κ
eϕ̂κ(y−c) − ϕ̂κ

ψ̂κ − ϕ̂κ
eψ̂κ(y−c)
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are two mappings satisfying the conditions h1c(c) = h2c(c) = 1 and h′1c(c) = h′2c(c) = 0. There-

fore, the function Uc constitutes the solution of the boundary value problem

1

2
‖a‖2U ′′c (aTx)− κ sgn(aTx− c)‖a‖U ′c(aTx)− rUc(aTx) = 0

Uc(c) = 1, U ′c(c) = 0.

Analogously, we let U−∞(y) = eψκy and U∞(y) = eϕ̂κy denote the solutions associated with

the extreme cases where c = −∞ or c = ∞. As was demonstrated in Christensen (2013) these

functions generate an useful class of supermartingales for solving optimal stopping problems in

the presence of ambiguity. To see that this is indeed the case in this multidimensional setting as

well, we notice by applying the Itô-Döblin theorem to the function Uc that

e−rTUc(a
TXT ) = Uc

(
aTx

)
+

∫ T

0

e−rt
(
κ sgn(aTXt − c)‖a‖ − aTθt

)
U ′c(a

TXt)dt

+

∫ T

0

e−rtU ′c(a
TXt)a

T dWθ
t .

Since −κ‖a‖ ≤ −aTθ ≤ κ‖a‖ for admissible density generators satisfying the condition ‖θ‖2 ≤

κ2, we observe that
(
κ sgn(aTx− c)‖a‖ − aTθ

)
U ′c(a

Tx) ≥ 0 for all x ∈ Rd and, therefore, that

e−rTUc(a
TXT ) ≥ Uc

(
aTx

)
+

∫ T

0

e−rtU ′c(a
TXt)a

T dWθ
t

with identity only when θt = θ∗t = κ sgn(aTXt − c). Consequently, we notice that in the present

case

EQθ

x

[
e−rTUc(a

TXT )
]
≥ EQθ∗

x

[
e−rTUc(a

TXT )
]

= Uc
(
aTx

)
for all Qθ ∈ Pκ. Utilizing standard optional sampling arguments show that the process {e−rtUc(aTXt)}t≥0

is actually a positive Qθ∗ -martingale and, therefore, a supermartingale.

It is also at this point worth pointing out that the process Yt = aTXt satisfies the SDE

dYt = aT dXt = −aTθtdt+ aT dWθ
t , Y0 = aTx. (3.2)

Since −κ‖a‖ ≤ −aTθt ≤ κ‖a‖ for admissible density generators satisfying the condition ‖θt‖ ≤ κ

we notice that (3.2) has a unique strong solution. Especially, under Qθ∗ we have

dYt = −κ‖a‖ sgn(Yt − c)dt+ aT dWθ∗

t , Y0 = aTx,

which is a standard Brownian motion with alternating drift. Interestingly, we observe that while

standard Brownian motion does not have a stationary distribution, the controlled process does.
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More precisely, for a fixed reference point c the stationary distribution of the controlled diffusion

reads as (a Laplace-distribution)

p(aTx) =
κ

‖a‖
e−

2κ
‖a‖ |a

Tx−c|

Moreover, the process Yt is positively recurrent meaning that hitting times to constant bound-

aries are almost surely finite.

Having characterized the underlying dynamics and the class of harmonic functions resulting

into the class of supermartingales needed in the characterization of the value, we now observe

that the conditions of Theorem 1 in Christensen (2013) are satisfied and, therefore, that we can

characterize the value in a semiexplicit form as stated in the following.

Theorem 3.1. (A) For all x ∈ Rd we have that

Vκ(x) = inf{λUc(aTx) : c ∈ [−∞,∞], λ ∈ [0,∞], λUc(a
Tx) ≥ F̂ (aTx)} (3.3)

and the infimum with respect the reference point c is a minimum.

(B) A point x ∈ Rd is in the stopping region Γ = {x ∈ Rd : Vκ(x) = F̂ (aTx)} if, and only if,

there exists a c ∈ [−∞,∞] such that

yc ∈ argmax

{
F̂ (y)

Uc(y)

}

and aTx = yc.

Proof. The alleged claims are direct implications of Theorem 1 in Christensen (2013).

Theorem 3.1 extends the findings of Theorem 1 in Christensen (2013) to the present case. The

main reason for the validity of this extension is naturally the fact the even though the process

Xt is multidimensional, the process aTXt is not and we can, therefore, analyze the problem in

terms of the one-dimensional characteristics. The representation (3.3) is naturally useful in the

determination of the value and the associated worst case prior since it essentially reduces the

analysis of the original problem into the analysis of a ratio with known properties without having

to invoke strong smoothness or regularity conditions. In order to illustrate the usefulness of the

finding of Theorem 3.1 we now consider an interesting class of exercise payoffs resulting into an

explicitly solvable symmetric setting within this class of models. Our main findings on these

problems are summarized in the following.
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Theorem 3.2. Assume that the exercise payoff F̂ (x) is even, that is, that F̂ (x) = F̂ (−x) for all

x ≥ 0. Then, the ratio F̂ (x)/U0(x) is even as well and if there exists a unique threshold

x∗ = argmax
x>0

{
F̂ (x)

U0(x)

}
,

so that F̂ (x)/U0(x) is increasing on (0, x∗) and decreasing on (x∗,∞), then the value of the

optimal stopping policy inf{t ≥ 0 : aTXt 6∈ (−x∗, x∗)} reads as

Vκ(x) =


F̂ (aTx), aTx 6∈ (−x∗, x∗),

F̂ (x∗)
U0(x∗)

U0(aTx), aTx ∈ (−x∗, x∗).
(3.4)

Moreover, the optimal density generator resulting into the worst case measure is

θ∗t = κ sgn(aTXt)
a

‖a‖
.

Proof. We first observe utilizing the identities ϕ̂κ = −ψκ and ψ̂κ = −ϕκ that U0(x) = U0(−x)

for all x ≥ 0. Consequently, we notice that the ratio F̂ (x)/U0(x) is even as claimed. Assume

now that there exists a unique maximizer x∗ > 0 of the ratio F̂ (x)/U0(x) so that F̂ (x)/U0(x) is

increasing on (0, x∗) and decreasing on (x∗,∞).

Denote now by τ∗ = inf{t ≥ 0 : aTXt 6∈ (−x∗, x∗)} the first exit time of the process aTXt

from the set (−x∗, x∗) and by V̂κ(x) the proposed value function (3.5). It is clear that since

Qθ∗ ∈ Pκ we have for any admissible stopping time τ ∈ T that

inf
Qθ∈Pκ

EQθ

x

[
e−rτ F̂ (aTXτ )1{τ<∞}

]
≤ EQθ∗

x

[
e−rτ F̂ (aTXτ )1{τ<∞}

]
.

Consequently, we find that

Vκ(x) ≤ sup
τ∈T

EQθ∗

x

[
e−rτ F̂ (aTXτ )1{τ<∞}

]
.

Consider now the process

Mt = e−rtU0(aTXt).

As was shown earlier,Mt is a positive Qθ∗ -martingale. Moreover, since the process characterized

by the SDE

dYt = −κ‖a‖ sgn(Yt)dt+ aT dWθ∗

t , Y0 = aTx,

is positively recurrent we know that the first exit time τ∗ = inf{t ≥ 0 : Yt 6∈ (−x∗, x∗)} = inf{t ≥

0 : aTXt 6∈ (−x∗, x∗)} is Qθ∗ -almost surely finite. Consequently, the assumed maximality of the

ratio F̂ (x∗)/U0(x∗) = F̂ (−x∗)/U0(−x∗) guarantees that Theorem 4 of Beibel and Lerche (1997)
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applies and we find that (see also Lerche and Urusov (2007), Christensen and Irle (2011), and

Gapeev and Lerche (2011))

V̂κ(x) = sup
τ∈T

EQθ∗

x

[
e−rτ F̂ (aTXτ )1{τ<∞}

]
proving that Vκ(x) ≤ V̂κ(x) for all x ∈ Rd. In order to reverse this inequality we first observe

that if x ∈ {x ∈ Rd : aTx ∈ (−x∗, x∗)} then we naturally have that

Vκ(x) ≥ inf
Qθ∈Pκ

EQθ

x

[
e−rτ

∗ F̂ (aTXτ∗)

U0(aTXτ∗)
U0(aTXτ∗)1{τ∗<∞}

]

≥

(
F̂ (−x∗)
U0(−x∗)

∧ F̂ (x∗)

U0(x∗)

)
inf

Qθ∈Pκ
EQθ

x

[
e−rτ

∗
U0(aTXτ∗)1{τ∗<∞}

]
=

F̂ (x∗)

U0(x∗)
EQθ∗

x

[
e−rτ

∗
U0(aTXτ∗)1{τ∗<∞}

]
=

F̂ (x∗)

U0(x∗)
U0(aTx) = V̂κ(x)

proving that V̂κ(x) = Vκ(x) for all x ∈ {x ∈ Rd : aTx ∈ (−x∗, x∗)} and that Vκ(x) = F̂ (aTx)

for x ∈ {x ∈ Rd : aTx = −x∗or aTx = x∗}. Finally, if x ∈ {x ∈ Rd : aTx 6∈ (−x∗, x∗)}, then

τ∗ = 0 Qθ-almost surely and

Vκ(x) ≥ inf
Qθ∈Pκ

EQθ

x

[
e−rτ

∗
F̂ (aTXτ∗)1{τ∗<∞}

]
= F̂ (aTx) = V̂κ(x)

completing the proof of our theorem.

Remark 3.1. It is worth pointing out that the positive homogeneity of degree −1 of the constants

ψκ, ϕκ, ψ̂κ, ϕ̂κ as functions of the parameter vector a guarantees that the function Uc remains

unchanged for parameter vectors of equal Euclidean length, that is, for vectors satisfying the con-

dition ‖a1‖ = ‖a2‖. Consequently, solving the stopping problem with respect one a1 ∈ Rd results

into an optimal policy and value for an entire class of problems constrained by the requirement

that ‖a1‖ = ‖a2‖.

It is furthermore interesting to note that already in dimension d = 1 the underlying process

under the worst case measure is a Brownian motion with broken drift as studied in Mordecki

and Salminen (2019). Therefore, in the class of problems studied in this paper, optimal stopping

problems with broken drift naturally arise. Here, however, the breaking point always lies in the

continuation set.

Theorem 3.2 characterizes the optimal timing policy in the symmetric case where the exer-

cise payoff is even and the ratio F̂ (y)/U0(y) attains a unique global maximum on R+ (and by

symmetry also on R−). The findings of Theorem 3.2 clearly indicate that in the present setting

9



symmetry is useful in the characterization of the value and the worst case measure. To see that

this is indeed the case, we now present a general observation valid for symmetric periodic payoffs.

Theorem 3.3. Assume that the exercise payoff F̂ (x) satisfies the following conditions

(A) The function F̂ (x) is periodic with period length P > 0;

(B) There exists a threshold x1 ∈ R so that F̂ (x1) ≥ F̂ (x) ≥ F̂ (x0), where x0 = x1 − P/2, for

all x ∈ R;

(C) The function F̂ (x) satisfies the symmetry condition F̂ (x0 − x) = F̂ (x0 + x) for all x ∈

[0, P/2].

Assume also that there exists a unique interior threshold

x∗ = argmax
x∈[x0,x1]

{
F̂ (x)

Ux0
(x)

}
,

so that F̂ (x)/Ux0
(x) is increasing on (x0, x

∗) and decreasing on (x∗, x1). Then, the value of the

optimal stopping policy inf{t ≥ 0 : aTXt 6∈ ∪n∈Z(y∗n, z
∗
n)} reads as

Vκ(x) =


F̂ (aTx), aTx 6∈ ∪n∈Z(y∗n, z

∗
n),

F̂ (x∗)
Ux0 (x

∗)Ux0
(aTx), aTx ∈ ∪n∈Z(y∗n, z

∗
n),

(3.5)

where y∗n = 2x0 − x∗ + nP and z∗n = x∗ + nP , n ∈ Z. Moreover, the optimal density generator

resulting into the worst case measure is

θ∗t =


−κ a
‖a‖ , aTXt ∈ ∪n∈Z[x0 + nP, x1 + nP ]

κ a
‖a‖ , aTXt ∈ ∪n∈Z[x1 + nP, x0 + (n+ 1)P ]

Proof. The assumed periodicity and symmetry of the exercise payoff F̂ implies that we can focus

on the behavior of the ratio F̂ (y)/Ux0
(y) on [x1 − P, x1] (from a maximum to the next). It is

clear that since ψ̂κ = −ϕκ and ϕ̂κ = −ψκ we have

Ux0
(x0 − x) =

ψ̂κ

ψ̂κ − ϕ̂κ
e−ϕ̂κx − ϕ̂κ

ψ̂κ − ϕ̂κ
e−ψ̂κx

=
ψκ

ψκ − ϕκ
eϕκx − ϕκ

ψκ − ϕκ
eψκx = Ux0

(x0 + x)

for x ∈ [0, P/2]. Consequently, assumption (C) guarantees that

F̂ (x0 + x)

Ux0
(x0 + x)

=
F̂ (x0 − x)

Ux0
(x0 − x)

for all x ∈ [0, P/2]. On the other hand, our assumption on the existence of an interior maximizing

threshold x∗ and the symmetry of F̂ guarantees that

2x0 − x∗ = argmax
x∈[x1−P,x0]

{
F̂ (x)

Ux0(x)

}
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and

F̂ (x∗)

Ux0
(x∗)

=
F̂ (2x0 − x∗)
Ux0

(2x0 − x∗)
.

Combining this result with the assumed periodicity of the payoff then shows that

z∗n = x∗ + nP = argmax
x∈[x0+nP,x1+nP ]

{
F̂ (x)

Ux0+nP (x)

}

y∗n = 2x0 − x∗ + nP = argmax
x∈[x1+(n−1)P,x0+nP ]

{
F̂ (x)

Ux0+nP (x)

}
.

The alleged optimality and characterization of the optimal density generator is now identical

with the proof of our Theorem 3.2.

3.1 Discontinuous Asymmetric Digital Option

In order to illustrate our general findings, we now focus on the discontinuous asymmetric digital

option case, where F̂ (x) = (k2x + k3)1{x≥0} − k1x1{x<0}, where k1, k2, k3 ∈ R+ are known

positive constants. In the present setting it suffices to investigate the behavior of the functions

Π1(x) = (k2x + k3)/h1c(x) and Π2(x) = −k1x/h2c(x). Standard differentiation yields Π′1(x) =

f1(x)/h21c(x) and Π′2(x) = k1f2(x)/h22c(x), where

f1(x) = k2h1c(x)− h′1c(x)(k2x+ k3)

f2(x) = h′2c(x)x− h2c(x).

Since f1(c) = k2 > 0, f2(c) = −1 < 0

f ′1(x) = −h′′1c(x)(k2x+ k3)

f ′2(x) = h′′2c(x)x

limx→∞ f1(x) = −∞, and limx→−∞ f2(x) = ∞ we notice that there exists two thresholds

x∗1(c) > c∨−k3/k2 and x∗2(c) < c∧0 so that the first order conditions f1(x∗1(c)) = 0, f2(x∗2(c)) = 0

are satisfied. Moreover, the thresholds x∗1(c), x∗2(c) are increasing as functions of the reference

point c and satisfy the limiting conditions limc→−∞ x∗1(c) = −k3/k2 + 1/ψκ, limc→−∞ x∗2(c) =

−∞, limc→∞ x∗1(c) = ∞, and limc→∞ x∗2(c) = 1/ϕ̂κ. Thus, we notice by utilizing our results

above that limc→−∞Π1(x∗1(c)) = 0, limc→∞Π1(x∗1(c)) = ∞, limc→−∞Π2(x∗2(c)) = ∞, and

limc→∞Π2(x∗2(c)) = 0. Consequently, we notice that there is a unique ĉ such that Π1(x∗1(ĉ)) =

Π2(x∗2(ĉ)) is met. Two cases arise. If x∗1(ĉ) ≥ 0, then c∗ = ĉ is the optimal state at which the

density generator switches from one extreme to another and the value of the optimal policy reads

11



as

Vκ(x) =


k2a

Tx + k3, aTx ≥ x∗1(c∗),

Π1(x∗1(c∗))Uc∗(a
Tx), x∗2(c∗) < aTx < x∗1(c∗),

−k1aTx, aTx ≤ x∗2(c∗).

Especially, the value satisfies the smooth-fit condition at the optimal boundaries x∗1(c∗) and

x∗2(c∗). This case is illustrated in Figure 1 under the assumptions that ‖a‖ = 0.1, r = 0.02, k1 =

1, k2 = 0.5, and k3 = 0.35 (implying that c∗ = −0.0941818, x∗2 = −0.616587, and x∗1 = 0.205943)

-2. -1.5 -1. -0.5 0.5 1. 1.5 2.

x

0.5

1.

1.5

2.

Figure 1: The value function (uniform) and exercise payoff (dashed)

However, if x∗1(ĉ) < 0 then the situation changes since in that case 0 becomes an optimal

stopping boundary at which the value coincides with the payoff in a nondifferentiable way. In

that case the value reads as

Vκ(x) =


k2a

Tx + k3, aTx ≥ 0,

Π2(x∗2(c∗))Uc∗(a
Tx), x∗2(c∗) < aTx < 0,

−k1aTx, aTx ≤ x∗2(c∗),

where the optimal boundary and the critical switching state are the unique roots of the equations

h′2c∗(x
∗
2(c∗))x∗2(c∗) = h2c∗(x

∗
2(c∗))

− k1x
∗
2(c∗)

h2c∗(x∗2(c∗))
=

k3
h1c∗(0)

.
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This case is illustrated in Figure 2 under the assumptions that ‖a‖ = 0.1, r = 0.02, k1 = 1, k2 =

0.5, and k3 = 0.7 (implying that c∗ = −0.348597, x∗2 = −0.739769, and x∗1 = 0)

-2. -1.5 -1. -0.5 0.5 1. 1.5 2.

x

0.5

1.

1.5

2.

Figure 2: The value function (uniform) and exercise payoff (dashed)

It is at this point worth pointing out that in the case where k3 = 0 and k1 = k2 the exercise

payoff is continuous and even and the findings of Theorem 3.2 applies. In that case, the optimal

boundaries can be solved from the optimality condition ψκe
ψκx

∗
(1−ϕκx∗) = ϕκe

ϕκx
∗
(1−ψκx∗).

3.2 Periodic and Even Payoff

In order to illustrate how the approach applies in the periodic setting resulting into multiple

boundaries, consider the periodic payoff F̂ (x) = cos(x). Since the payoff is even, attains its

maxima at the points yn = 2nπ, its minima at the points xn = (2n+ 1)π, and is symmetric on

the sets [2nπ, 2(n + 1)π], n ∈ Z, we notice that we can extend the findings of Theorem 3.2 and

make an ansatz that the optimal reference point is c∗n = xn. To see that this is indeed the case, we

first observe that if y ∈ [yn, xn] then Πxn(xn + y) = Πxn(xn− y), since cos(xn− y) = cos(xn + y)

and

Uxn(xn − y) =
ψ̂κ

ψ̂κ − ϕ̂κ
e−ϕ̂κy − ϕ̂κ

ψ̂κ − ϕ̂κ
e−ψ̂κy

= − ϕκ
ψκ − ϕκ

eψκy +
ψκ

ψκ − ϕκ
eϕκy = Uxn(xn + y)
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for all y ∈ R and n ∈ Z. Consequently, it is sufficient to investigate the ratio Πxn(y) on [xn, yn+1].

Standard differentiation yields Π′xn(y) = un(y)/U2
xn(y), where

un(y) =
ϕκ

ψκ − ϕκ
eψκ(y−xn)(sin(y) + ψκ cos(y))− ψκ

ψκ − ϕκ
eϕκ(y−xn)(sin(y) + ϕκ cos(y)).

Noticing now that un(xn) = 0,

un(yn+1) =
ψκϕκ
ψκ − ϕκ

(
eψκπ − eϕκπ

)
< 0,

and

u′n(y) =
(
ϕκ(ψ2

κ + 1)eψκ(y−xn) − ψκ(ϕ2
κ + 1)eϕκ(y−xn)

) cos(y)

ψκ − ϕκ

we notice that equation un(y) = 0 has a unique root z∗n ∈ (xn + π
2 , yn+1) such that

z∗n = argmax
y∈[xn,yn+1]

Πxn(y).

It is now clear that the value of the optimal stopping policy reads as

Vκ(x) =


Πxn(z∗n)Uxn(aTx), aTx ∈ ∪n∈Z(xn − z∗n, xn + z∗n),

cos(aTx), aTx 6∈ ∪n∈Z(xn − z∗n, xn + z∗n).

This value and the optimal policies are illustrated for y ∈ [−2π, 2π] in Figure 3 under the

assumptions that κ = 0.02, r = 0.03, and σ = 0.1 (implying that the optimal thresholds are

−5.07233,−1.21086, 1.21086, 5.07233). It is worth noticing that the worst case prior is induced

-6 -4 -2 2 4 6

x

-1.

-0.5

0.5

1.

Figure 3: The value function (uniform) and exercise payoff (dashed) in the periodic case
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in the present case by the density generator

θ∗ =


κ a
‖a‖ , (2n+ 1)π ≤ aTx ≤ 2(n+ 1)π,

−κ a
‖a‖ , 2nπ ≤ aTx ≤ (2n+ 1)π,

for all n ∈ Z. Essentially, the optimal density generator tends to drive the dynamics of the

underlying diffusion towards the minim points xn of the exercise payoff.

4 Radially Symmetric Payoff

It is well-known from the literature on linear diffusions that the radial part of a multidimensional

Brownian motion constitutes a Bessel process. Our objective is now to exploit this connection

by focusing on exercise payoffs which are radially symmetric. More precisely, we now assume

that the payoff is of the form

F (x) = F̂
(
‖x‖2

)
= F̂

(
d∑
i=1

x2i

)
, (4.1)

where F̂ : R+ 7→ R is a known measurable function. We now make an ansatz and focus on

functions which are radially symmetric, that is, on functions of the form

u(x) = h
(
‖x‖2

)
= h

(
d∑
i=1

x2i

)
,

where h : R+ 7→ R+ is assumed to be twice continuously differentiable on R+. In this case, a

short calculation yields that the worst case prior becomes

θ∗ = κ sgn(h′(‖x‖2))
x

‖x‖
,

so that the worst case drift points towards the origin or away from it, resp. In this case, solving

(Aθ
∗
u)(x) = ru(x)

results into solving

2(‖x‖2)h′′(‖x‖2) + (d− 2κ‖x‖)h′(‖x‖2) = rh(‖x‖2)

on {x ∈ Rd : h′(‖x‖2) ≥ 0} and

2(‖x‖2)h′′(‖x‖2) + (d+ 2κ‖x‖)h′(‖x‖2) = rh(‖x‖2)

15



on on {x ∈ Rd : h′(‖x‖2) ≤ 0}. Denote now by Ma,b and by Wa,b the Whittaker functions

of the first and second type, respectively, and define the functions ψ1(y) = uκ(
√
y), ϕ1(y) =

vκ(
√
y), ψ2(y) = u−κ(

√
y), and ϕ2(y) = v−κ(

√
y), where

uκ(y) = y
1−d
2 eκyMaκ,b

(
2
√

2r + κ2y
)

vκ(y) = y
1−d
2 eκyWaκ,b

(
2
√

2r + κ2y
)
,

b = d/2− 1, and

aκ =
κ(d− 1)

2
√
κ2 + 2r

.

Making the substitution h(‖x‖2) = v(‖x‖) show that the solutions of these ODEs read as (cf.

Linetsky (2004))

h
(
‖x‖2

)
= c1ψ1(‖x‖2) + c2ϕ1(‖x‖2)

on {x ∈ Rd : h′(‖x‖2) ≥ 0} and as

h
(
‖x‖2

)
= ĉ1ψ2(‖x‖2) + ĉ2ϕ2(‖x‖2)

on {x ∈ Rd : h′(‖x‖2) ≤ 0}. As in the previous subsection, we now let c ∈ R+ be an arbitrary

reference point and define the twice continuously differentiable function Uc as the solution of the

boundary value problem

2(‖x‖2)U ′′c (‖x‖2) +
(
d− 2κ‖x‖ sgn(‖x‖2 − c)

)
U ′c(‖x‖2)− rUc(‖x‖2) = 0

Uc(c) = 1, U ′c(c) = 0.
(4.2)

We again find that Uc(‖x‖2) = max(ĥ1c(‖x‖2), ĥ2c(‖x‖2)), where

ĥ1c(‖x‖2) = B−11

(
ψ′1(c)

S′1(c)
ϕ1(‖x‖2)− ϕ′1(c)

S′1(c)
ψ1(‖x‖2)

)
,

ĥ2c(‖x‖2) = B−12

(
ψ′2(c)

S′2(c)
ϕ2(‖x‖2)− ϕ′2(c)

S′2(c)
ψ2(‖x‖2)

)
,

B1 =

√
2r + κ2Γ(d− 1)

Γ
(
d−1
2 − aκ

) ,

B2 =

√
2r + κ2Γ(d− 1)

Γ
(
d−1
2 − a−κ

) ,

S′1(y) = e2κ
√
yy−

d
2 , and S′2(y) = e−2κ

√
yy−

d
2 . As in the case of the previous subsection, we define

the two cases associated with the extreme reference points by

U0(y) = ψ1(y) = (2
√
κ2 + 2r)

d−1
2 e(κ−

√
κ2+2r)

√
yM̃

(
(d− 1)

2

(
1− κ√

κ2 + 2r

)
, d− 1, 2

√
κ2 + 2r

√
y

)
U∞(y) = ϕ2(y) = (2

√
κ2 + 2r)

d−1
2 e−(

√
κ2+2r+κ)

√
yŨ

(
(d− 1)

2

(
1 +

κ√
κ2 + 2r

)
, d− 1, 2

√
κ2 + 2r

√
y

)
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where M̃ and Ũ denote the confluent hypergeometric functions of the first and second type,

respectively. It is worth noticing that since the lower boundary is entrance for the underlying

diffusion process we have that (cf. p. 19 in Borodin and Salminen (2015))

lim
y→0+

ĥic(y) =∞

lim
y→0+

ĥ′ic(y)

S′i(y)
= B−1i

ψ′i(c)

S′i(c)
lim
y→0+

ϕ′i(y)

S′i(y)
> −∞

when c ∈ (0,∞). The upper boundary is, in turn, natural for the underlying diffusion process

and, hence, we have that (cf. p. 19 in Borodin and Salminen (2015))

lim
y→∞

ĥic(y) = +∞

lim
y→∞

ĥ′ic(y)

S′i(y)
= +∞

when c ∈ (0,∞). However, in contrast with natural boundary behavior, we now notice that in

the extreme case

lim
y→0+

ψ1(y) = (2
√
κ2 + 2r)

d−1
2 .

Again, we observe that the function Uc is convex.

Lemma 4.1. The function Uc(y) is strictly convex on R+.

Proof. Uc(y) is nonnegative and decreasing on (0, c]. Consequently, we notice by invoking (4.2)

that

2yU ′′c (y) = rUc(y)− (d+ 2κ
√
y)U ′c(y) > 0

demonstrating that Uc(y) is strictly convex on (0, c]. On the other hand, (4.2) also implies that

on (c,∞) we have

2yU ′′c (y)

S′1(y)
=
r(Uc(y)− yU ′c(y))

S′1(y)
− (d− 2κ

√
y − ry)

U ′c(y)

S′1(y)
.

Since

d

dy

Uc(y)− yU ′c(y)

S′1(y)
= (d− 2κ

√
y − ry)Uc(y)m′1(y),

where m′1(y) = 1/(2yS′1(y)), we notice by integrating from c to y that

r
Uc(y)− yU ′c(y)

S′1(y)
=

r

S′1(c)
+ r

∫ y

c

(
d− 2κ

√
t− rt

)
Uc(t)m

′
1(t)dt.

On the other hand, since

U ′c(y)

S′1(y)
= r

∫ y

c

Uc(t)m
′
1(t)dt

17



we finally find that

2yU ′′c (y)

S′1(y)
=

r

S′1(c)
+ r

∫ y

c

(
2κ(
√
y −
√
t) + r(y − t)

)
Uc(t)m

′
1(t)dt > 0

proving that Uc(y) is strictly convex on (c,∞) as well.

Utilizing the Itô-Döblin theorem now shows that the process Yt = ‖Xt‖2 satisfies the SDE

dYt =
(
d− 2κ

√
Yt sgn(Yt − c)

)
dt+ 2

√
YtdW̃

θc
t , Y0 = ‖x‖2, (4.3)

where W̃ θc
t is a Brownian motion under the measure Qθc characterized by the density generator

θct = κ sgn(‖Xt‖2 − c)
Xt

‖Xt‖
.

Hence, we again observe that the controlled process has a stationary distribution for a fixed

reference point c. In the present case it reads as

pc(y) =
m′c(y)

mc(0,∞)

where

m′c(y) =
1

2
y
d
2−1e−2κ|

√
y−
√
c|

and

mc(0,∞) =
1

2
(2κ)−d

(
e2κ
√
cΓ(d, 2κ

√
c) + e−2κ

√
c

∫ 2κ
√
c

0

td−1etdt

)
.

It is also worth noticing that utilizing the Itô-Döblin theorem to the process Zt :=
√
Yt = ‖Xt‖

results into the SDE

dZt =

(
d− 1

2Zt
− κ sgn(Zt −

√
c)

)
dt+ dW̃ θc

t , Z0 = ‖x‖,

which constitutes a Bessel process of order d/2− 1 with an alternating drift.

A modified characterization of the representation presented in Theorem 3.1 is naturally valid

in this case as well, since in the present case the set of admissible reference points is [0,∞].

It is also worth noticing that the function Uc(y) is no longer symmetric and, hence, similar

representations with the ones developed in Theorem 3.2 and in Theorem 3 are no longer possible.

Moreover, since the lower boundary is entrance for the underlying process, policies which are

radically different from the case considered in the previous section may appear. We will illustrate

this point explicitly in the following subsection.
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4.1 Nonlinear Straddle Option

In order to illustrate the peculiarities associated with the present case, let us consider the non-

linear straddle option case F̂ (y) = |√y − K|, where K > 0 is an exogenously set fixed strike

price. Consider first the behavior of the function

(Lψ1
F̂ )(y) = (

√
y −K)

ψ′1(y)

S′1(y)
− 1

2
√
y

ψ1(y)

S′1(y)
.

We notice that (Lψ1
F̂ )(0+) = 0 and

(Lψ1
F̂ )′(y) =

(
r(
√
y −K) + κ− d− 1

2
√
y

)
ψ1(y)m′1(y)

demonstrating that

(Lψ1
F̂ )(y) =

∫ y

0

(
r(
√
t−K) + κ− d− 1

2
√
t

)
ψ1(t)m′1(t)dt.

Since r(
√
y − K) + κ − (d − 1)/(2

√
y) is monotonically increasing and satisfies the inequality

r(
√
y −K) + κ− (d− 1)/(2

√
y) T 0 for y T ỹ0, where ỹ0 is the unique root of r(

√
y −K) + κ−

(d− 1)/(2
√
y) = 0, we find that for y > ŷ > ỹ0 we have that

(Lψ1
F̂ )(y) = (Lψ1

F̂ )(ŷ) +

∫ y

ŷ

(
r(
√
t−K) + κ− d− 1

2
√
t

)
ψ1(t)m′1(t)dt

≥ (Lψ1
F̂ )(ŷ) +

(
r(
√
ŷ −K) + κ− d− 1

2
√
ŷ

)∫ y

ŷ

ψ1(t)m′1(t)dt

= (Lψ1
F̂ )(ŷ) +

(
r(
√
ŷ −K) + κ− d− 1

2
√
ŷ

)
1

r

(
ψ′1(y)

S′1(y)
− ψ′1(ŷ)

S′1(ŷ)

)
.

Hence, limy→∞(Lψ1
F̂ )(y) = ∞ demonstrating that there is a unique y∗K > ỹ0 satisfying the

condition (Lψ1 F̂ )(y∗K) = 0. Noticing that

d

dy

√
y −K
ψ1(y)

= −S
′
1(y)

ψ2
1(y)

(Lψ1 F̂ )(y)

in turn demonstrates that y∗K > K2 is the unique threshold at which the ratio

Π0(y) =

√
y −K
ψ1(y)

is maximized. Moreover, ∂y∗K/∂K > 0, limK→∞ y∗K =∞, and limK→0+ y
∗
K = y∗0 > 0, where the

threshold y∗0 ∈ R+ is the unique root of the first order optimality condition

ψ1(y∗0) = 2ψ′1(y∗0)y∗0 .

Define now the monotonically increasing and continuously differentiable function Ṽκ : R+ 7→ R+

as

Ṽκ(y) = ψ1(y) sup
x≥y

{√
x−K
ψ1(x)

}
=


√
y −K, y ∈ [y∗K ,∞),

Π0(y∗K)ψ1(y), y ∈ (0, y∗K).
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Since Ṽκ(y) is nonnegative and dominates
√
y − K for all y ∈ R+ it dominates (

√
y − K)+ as

well. Hence, we observe by utilizing similar arguments as in the proof of Theorem 3.2 that

Ṽκ(y) = sup
τ∈T

EQθ0

y

[
e−rτ

(√
Yτ −K

)+]
.

Given this function we immediately notice that if condition

lim
y→0+

Π0(y∗K)ψ1(y) = Π0(y∗K)(2
√
κ2 + 2r)

d−1
2 ≥ K

is met, then Ṽκ(y) dominates the exercise payoff |√y −K| for all y ∈ R+ as well. Therefore, we

notice that in that case

Ṽκ(y) = sup
τ∈T

EQθ0

y

[
e−rτ |

√
Yτ −K|

]
.

However, if

lim
y→0+

Π0(y∗K)ψ1(y) = Π0(y∗K)(2
√
κ2 + 2r)

d−1
2 < K (4.4)

then the optimal policy is no longer a standard single boundary policy. To see that this is indeed

the case consider the behavior of the ratio

Π̂c(y) =
|√y −K|
Uc(y)

for all c ∈ (0,∞) and y ∈ R+. Define now for an arbitrary state y ∈ R+ the continuous difference

D : R+ 7→ R as

D(c) = sup
w≥y

Π̂c(w)− sup
w≤y

Π̂c(w).

Consider first the extreme case D(0). It is clear from our analysis on the single boundary

case treated above that Π̂0(y) is monotonically decreasing on (0,K2) ∪ (y∗K ,∞), monotonically

increasing on (K2, y∗K), and satisfies the limiting conditions limy→∞ Π̂0(y) = 0 and

lim
y→0

Π̂0(y) = (2
√
κ2 + 2r)

1−d
2 K > Π0(y∗K)

by assumption (4.4). Combining these observations show that Π̂0(0) > Π̂0(y) for all y ∈ R+

and, consequently, that D(0) < 0. Consider now, in turn, the other extreme setting D(∞).

Utilizing now completely analogous arguments as before, we notice that Π̂∞(y) is monotonically

increasing on (K2,∞), bounded for y ∈ (0,∞), and satisfies the limiting conditions Π̂∞(0) = 0

and limy→∞ Π̂∞(y) =∞. Consequently, we notice that for y ∈ (0,∞) we have supw≤y Π̂∞(w) <

∞,

sup
w≥y

Π̂∞(w) =∞
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and, therefore, that limc→∞D(c) = ∞. Combining these results with the continuity of the

difference D(c) proves that there is at least one c∗ ∈ R+ such that D(c∗) = 0 implying that

sup
w≥y

Π̂c∗(w) = sup
w≤y

Π̂c∗(w).

Moreover, the optimal thresholds y∗i , i = 1, 2 satisfy the ordinary first order optimality conditions

hic∗(y
∗
i )

2
√
y∗i

= h′ic∗(y
∗
i )(
√
y∗i −K), i = 1, 2.

In this case the value reads as

Vκ(y) =



√
y −K, y ≥ y∗1

Π̂c∗(y
∗
1)h1c∗(y), y∗2 < y < y∗1

K −√y, y ≤ y∗2 .

Naturally, the set (0, y∗2) ∪ (y∗1 ,∞) constitutes the stopping set in the present example.

In order to illustrate our findings numerically, we now assume that r = 0.1, κ = 0.02, and d = 5

(implying that the critical cost below which the problem becomes a single boundary problem is

K ≈ 0.975222). The two boundary setting is illustrated in Figure 4 under the assumption that

K = 4 (implying that y∗2 = 3.85108, y∗1 = 63.4344, and c∗ = 9.07278). The single boundary

20 40 60 80
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Figure 4: The value (uniform) and exercise payoff (dashed)

setting is, in turn, illustrated in Figure 5 under the assumption that K = 0.85 (implying that

y∗0.85 = 4.7294).
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Figure 5: The value (uniform) and exercise payoff (dashed)

4.2 A truly two-dimensional modification

The explicit solvability of the problem described before is based on the dimension reduction due

to the symmetry of the situation. Even when slightly breaking this symmetry, there is usually

no hope to find such explicit solutions anymore. In the rest of this section, we will illustrate this

by an example and show how these more general problems may be treated. We consider again

the radially symmetric payoffs (4.1), but instead of assuming ‖θt‖2 ≤ κ2 for the density process,

we now assume that

‖θt‖∞ ≤ κ, i.e., max{|θ1t|, |θ2t|} ≤ κ

and denote the set of all corresponding probability measures by P̂κ. We note that this ambiguity

structure has been considered in Alvarez E. and Christensen (2019). We write

V̂κ(x) = sup
τ∈T

inf
Qθ∈P̂κ

EQθ

x

[
e−rτF (Xτ )1{τ<∞}

]
and Ĉκ for the corresponding continuation set. As 1√

d
‖ · ‖ ≤ ‖ · ‖∞ ≤ ‖ · ‖, it is clear that for all

x

Vκ
√
d(x) ≤ V̂κ(x) ≤ Vκ(x)

and therefore

Cκ
√
d ⊆ Ĉκ ⊆ Cκ.

For the sake of simplicity, we now restrict our attention to the case d = 2 and F (y) = y. In this

case, it is – using the results of this section – easily seen that Cκ
√
d and Cκ are circles around 0.
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Although there is little hope for finding V̂κ and Ĉκ explicitly, it is easy to infer the structure of

the solution: The worst case measure is characterized by the density generator

θ̂∗ = (κ sgn(x1), κ sgn(x2)).

Due to symmetry of the situation, the optimal stopping problem to be solved can be written as

V̂κ(x) = sup
τ∈T

Eθ̂
∗

x

[
e−rτF (Xτ )1{τ<∞}

]
,

for x is in the upper quadrant R2
+, where X is a Brownian motion with drift (−κ,−κ) and

(orthogonal) reflection on the boundaries of R2
+. Note that reflected Brownian motion in the

quadrant were studied extensively, see Harrison and Reiman (1981); Williams (1985) to mention

just two. Recently, the Green kernel has been found semi-explicitly (in the transient case), see

Franceschi (2019). This opens the door to characterize the unknown optimal stopping boundary

using integral equation techniques, see Peskir and Shiryaev (2006) for the general theory and

Christensen et al. (2019) for a specific setting quite close to this one.

5 Conclusions

We analyzed the impact of Knightian uncertainty on the optimal timing policy of an ambiguity

averse decision maker in the case where the underlying follows a multidimensional Brownian

motion. We identified two special cases under which the problem can be explicitly solved and

illustrated our findings in explicitly parameterized examples. Our results indicate that Knightian

uncertainty does not only accelerate the optimal timing policy in comparison with the unambigu-

ous benchmark case, it also may add stability to the dynamics of the underlying under the worst

case measure. More precisely, even thought the underlying multidimensional Brownian motion

does not converge in a long run to a stationary distribution, the controlled process does. This

observation shows that ambiguity may in some circumstances have a profound and nontrivial

impact on the underlying dynamics.

This study modeled the underlying random factor dynamics as a multidimensional Brownian

motion and focused on two functional forms permitting the utilization of dimension reduction

techniques and in that way resulting into stopping problems of linear diffusions. There is at

least three natural directions towards which our chosen modeling framework could be attempted

to be extended. First, even though most standard factor models rely on linear combinations

of the driving factors, it would naturally be of interest to analyze how potential nonlinearities

would affect the optimal timing decision in the presence of ambiguity. Especially, introducing
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state-dependent factors would cast light on the mechanisms how nonlinearities in factor dynamics

affect the decisions of ambiguity averse decision makers. Second, carrying out a thorough analysis

of the truly two-dimensional modification presented in subsection 4.2 would provide valuable

information on the difference between the problems allowing dimensionality reduction and the

problems which do not. Third, adding Bayesian learning to the considered class of problems

would also be an interesting direction towards which our analysis could be extended. All these

extensions are extremely challenging and at the present outside the scope of the this study.
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