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Abstract

We present a conceptual framework for continuous in-service durability monitoring and assessment of reinforced concrete (RC)
structures. Conventional durability assessments are carried out through laboratory testing of samples taken destructively from the
structures, which are labor intensive, time consuming and costly. By employing internet of things, continuous nondestructive in-
service monitoring of structures can be realized in a cost-effective manner. The availability of long-term monitored data along with
the use of intelligent data analysis enables capturing of the complex nonlinear interaction of durability controlling parameters, mak-
ing the structures’ condition assessment more reliable. The reliability of the assessment results is highly beneficial for stakeholders
to plan proactive maintenance, which in turn extends the service life of the structures.
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1. Introduction

Civil infrastructure, such as buildings, bridges, and dams, are the backbone of the global economy where the ma-
jority of the infrastructure are made of reinforced concrete (RC) structures. These structures contributed 36 trillion
USD to global gross domestic product (GDP) in 2016 [1]. This accounts for about 47% of the total GDP [2]. However,
most of the infrastructure in the industrialized countries suffer from severe level of degradation. For instance, in 2017,
the American Society of Civil Engineers evaluated the performance of the overall US infrastructure and grade it as
D+ (poor, at risk), which is only one step above from the least grading class F (failing/critical, unfit for purpose)[3].
One of the main causes for the degradation is corrosion of reinforcement steel. Several studies revealed that corrosion
related maintenance and repair of RC structures cost multibillion USD per annum globally. The conventional cor-
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rosion condition evaluation method usually involves periodic laboratory testing on samples taken destructively from
the structure. This process is time-consuming, labor intensive, and costly. The maintenance plan is determined based
on the output of empirical model, which uses the laboratory test results as input. The models entails several assump-
tions and simplifications, causing uncertainty in its results. These shortcomings call for reliable, cost-efficient, and
nondestructive in-service corrosion assessment technique. Today, different types of low-cost sensors are available for
continuous nondestructive monitoring of various real-life applications. One relevant example is structural health mon-
itoring [4]. However, the existing structural health monitoring systems concentrate mainly on measuring the response
of the structure to ambient and forced excitation, but not on the durability aspects of the structure.

In this work, the applicability of data-driven smart RC structure concept for durability assessment of RC structures
is explored and conceptual framework is proposed. The framework employs internet of things and intelligent data
analysis technique to monitor the corrosion causing factors and estimate the time to onset of corrosion without the use
of empirical models. By performing intelligent data analysis on the collected long-term data, capturing the concrete’s
microstructure changes caused by time-dependent chemical processes of the cement paste and its interaction with
the environment is achievable. This is beneficial to devise reliable maintenance plan proactively. In addition, the
discovered knowledge on how the concrete microstructure alters with time and exposure conditions assist material
scientists to design concrete that resist corrosion causing factors. The proposed framework enables inexpensive and
convenient corrosion condition assessment without laborious involvement of human. The contributions of this work
are: 1) a review of state-of-the art sensing methodologies for corrosion causing factors, 2) a survey on the use of
intelligent data analysis technique in concrete durability assessment, and 3) a conceptual framework for realizing
data-driven durability assessment.

The paper is organized as follows. In Section 2, conventional corrosion condition assessment methods includ-
ing prediction of corrosion initiation time is discussed. The details of the proposed IoT based corrosion monitoring
method, including sensors, and wireless technologies are presented in Section 3. The power of intelligent data analysis
techniques for prediction of time to onset of corrosion and knowledge discovery are explained in Section 4. The pro-
posed conceptual framework for realizing data-driven smart structure is presented in Section 5. Finally, the conclusion
is provided in Section 6.

2. Conventional corrosion assessment approach

Corrosion of reinforcement steel in concrete is mainly initiated due to the penetration of carbon dioxide and/or
chloride ions into the concrete pore solutions. Structures are susceptible to chloride attack if they are exposed to
marine environment or deicing salt containing chloride. Carbonation'- and chloride-induced corrosion may result in
considerable depletion in the load-bearing capacity of the structure by diminishing the cross-sectional area of the
reinforcement steel, degrading its elongation capacity and causing severe cracking to the concrete. Cracked concrete
exacerbate the corrosion further by allowing additional entry of oxygen, moisture, CO, and chloride ions into the
concrete, affecting considerably the strength, safety and serviceability of the structure.

The corrosion process is normally divided into two stages: initiation and propagation. The corrosion initiation stage
due to carbonation corresponds to the time required for the carbonation front to reach at the surface of reinforcement
steel. In case of chloride, the corrosion initiation stage corresponds to the period for the chloride ions concentration
to reach at a certain threshold level that triggers corrosion. The corrosion initiation period is often utilized to define
the service life of RC structures [5, 6]. Periodic measurement of carbonation depth and/or chloride profile is vital for
early corrosion detection and making well-informed decision regarding maintenance plan.

Conventional methods for measuring the carbonation depth and chloride profile of concrete involves chemical or
physical laboratory techniques by extracting samples from in-service structures. These methods are often destructive
and incur high costs (direct and indirect). For example, traditional in-service inspection and maintenance programs of
highway structures cause traffic delay, which accounts for 15% to 40% of the construction costs [7]. After determining
the carbonation depth and chloride profile from the samples, the remaining service life of the structure is evaluated

! Natural physicochemical process caused by the ingression of carbon dioxide (CO) from the neighboring environment into the concrete through
pores in the matrix where the CO; reacts with hydrated cement.
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using empirical models. These models are based on Fick’s second law of diffusion and entails several simplifications
and assumptions, causing substantial uncertainty in determining time to corrosion initiation [8]. This uncertainty
could have severe impact on planning of inspection and maintenance, which may affect the service life of the structure
adversely and increases the associated life-cycle costs. These shortcomings of the conventional carbonation depth
and chloride ions concentration measurement methods call for cost-effective and nondestructive monitoring systems.
Reliable assessment methods are also vital for making effective maintenance plan.

3. IoT based corrosion monitoring system

The blend of digital technology that comprises IoT based systems and advanced data analysis techniques with
physical civil infrastructure has already given rise to the concept of structural health monitoring. Sensory data that are
collected from multiple networks of distributed sensors can be analyzed, interpreted and delivered as reliable, robust
and meaningful information to infrastructure providers, who can then perform well-informed decisions regarding the
structural health and maintenance of their assets. The existing implementations of IoT based structural health monitor-
ing systems target only load related physical impacts on the structure. But the structural health can also be deteriorated
due to chemical attacks (e.g. carbonation and chloride ion penetration). Monitoring of the chemical attacks, especially
for structures which are exposed to aggressive environment, is important for early deterioration detection.

As in structural health monitoring systems, IoT based monitoring of corrosion causing chemicals is beneficial. IoT
based corrosion monitoring systems can be deployed in structures by embedding relevant sensors in the concrete in
order to continuously measure the parameters that cause/accelerate corrosion of reinforcement steel. Measuring such
parameters continuously using sensors will provide up to date knowledge about the status of the structure. The moni-
tored data are communicated to the remote infrastructure service provider using appropriate wireless communication
technologies.

3.1. Sensors

As carbonation decreases the alkalinity” of the concrete pore solution, measuring the pH allows to detect whether
carbonation took place or not. Sensors that are able to measure pH and chloride content in the concrete can provide
information regarding the condition of the embedded reinforcement steel, and thus it can be used as early warning
system. Sensing technologies for monitoring the pH of concrete pore solutions and the amount of chloride ions in it
are found in the literature [9, 10, 11, 12, 13, 14, 15]. The relevant sensing devices that are developed in the past 10
years can be classified into two main categories: potentiometric and fiber optic. Though a number of potentiometric
electrodes exist in the area of analytical chemistry for examining ionic concentration, electrodes that are targeted
for concrete environments are limited. Ag/AgCl electrodes are the most widely used one [16, 17]. In case of pH
monitoring, Ir/IrO,, Ag/Ag>0, Ti/IrO, and metallic oxide are the commonly used potentiometric electrodes. Two
fiber optic based chloride ion sensing devices in concrete environment are found in the literature. One is based on
suspended-core optical fiber [18] and the other one uses chloride ion sensitive fluorescence indicator dye [19]. The
fiber optic pH sensing device based on pH sensitive optic fluorescence polymer has been proposed by Nguyen et al.
[15]. The performance of all the sensors have been evaluated in various test environments (simulated concrete pore
solution, mortar and concrete) for up to the period of two years. Almost all the studies concluded that the sensors are
sufficiently accurate and stable. As the lifetime of RC structures spans about 50 to 80 years, the embedded sensors
should be durable for much longer than two years, and easily replaceable, whenever necessary. In Table 1, the relevant
details of the sensors that are tested for more than 6 months are presented.

3.2. Low-power wireless communication technologies

The communication method of the embedded sensors has impact on the flexibility and cost of the IoT based
corrosion monitoring system. The sensors presented in the above subsection were mainly intended for sensing and

2 Reduction of alkalinity results in depletion of the passive oxide layer of reinforcement steel, which eventually initiate corrosion.
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Table 1. pH and chloride ion sensors for concrete structures.

Ref Sensed parameter Sensor category Test environment Exposure time
[9] Chloride ion Potentiometric (Ag/AgCl) Simulated concrete pore solution > 6 months
[10] Chloride ion Potentiometric (Ag/AgCl) Concrete 12 months
[11] Chloride ion Potentiometric (Ag/AgClI) Simulated concrete pore solution 24 months
[12] pH Potentiometric (IrOy) Concrete 24 months
[13] pH* Potentiometric (metallic oxide) Cement paste 12 months
[13] Chloride ion* Potentiometric (Ag/AgCl) Cement paste 12 months
[14] pH* Potentiometric (T'i/IrO5) Concrete 7.5 months
[14] Chloride ion* Potentiometric (Ag/AgCl) Concrete 7.5 months
[15] pH Fiber optic (fluorescence polymer) Concrete 20 months

* Integrated with other sensors.

transferring the measurement to datalogger through cables. The wired connection incurs high cost for installing and
maintaining the monitoring system, especially to install it in spatially dispersed concrete elements. It is also inflex-
ible and unattractive aesthetically. There have been few attempts for monitoring chloride ions with potentiometeric
electrodes wirelessly [20, 21]. However, the proposed approaches were limited to very short distance communication
(inductive coupling and RFID), requiring close range readings and thus are not suitable for continuous long-term
durability monitoring of concrete structures.

Various low-power wireless communication technologies for IoT applications are available [23, 22, 25, 27, 28]
and their practical use was demonstrated in several application test-beds. These technologies often differ in their
characteristics, such as communication range, power consumption, data rate, and latency. They can be classified either
based on their communication range (short- vs long-range) or the spectrum type (licensed vs unlicensed). Short-range
wireless communication technologies, such as ZigBee [22], Bluetooth Low Energy (BLE) [23], and WirelessHART
[24], require multi-hop mesh networking to cover a larger area. Most of these technologies operate in the 2.4GHz
unlicensed ISM band, which often exhibit high loss and congestion.

Long-range low-power wireless communication technologies (e.g. LoORaWAN [25], Sigfox [28], and Narrowband
IoT [26]) are often configured in star topology and form low-power wide area networks (LPWANSs). Currently, LP-
WANSs are gaining more attentions from the research community due to their ability to offer low-cost and massive
connectivity over a wide geographical area. Most of these technologies use unlicensed sub-GHz band, which offers
robust and reliable communication at low power budgets. The sub-GHz band faces less attenuation, mulitpath fading,
and congestion compared to the 2.4GHz. These technologies often employ robust modulation and spread spectrum
techniques to achieve reliable, low-power, and interference resistant communication.

Depending on the area of the structure, either short-range or LPWAN technologies can be employed in the dura-
bility monitoring IoT systems. In fact, LPWANSs are a more natural choice for IoT based monitoring of RC structures
because it can cover large area of the structures easily without the need for relay nodes. They are also aesthetically
preferable as the number of nodes will be fewer compared to short-range ones. Most of these technologies achieve
10 years of battery lifetime, this is beneficial as it decreases the required number of battery changes throughout the
service life time of the structures. Some of the important features of the most popular LPWAN technologies are listed
in Table 2.

Table 2. Features of selected LPWAN technologies.

Features NB-IoT LoRaWAN Sigfox

Band Licensed sub-GHz Unlicensed sub-GHz Unlicensed sub-GHz
Max Range (km) 15 15 10

Peak data rate (kbps) 250(UL), 170 (DL) 27 1

Security Yes Yes Yes

Link budget (dB) 164 164 N/A

Battery lifetime (Years) 10 10 5
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4. Intelligent data analysis for concrete durability assessment

Adoption of intelligent data analysis technique in various science and engineering disciplines for capturing complex
interrelationships among data pairs of input and output, which are nonlinear, unknown or complex to formulate is
becoming a common practice. The penetration of CO, and chloride ions into concrete involves a complex physical
and chemical process that combines various transport mechanisms. The penetration are also controlled by other several
factors, including concrete ingredient material properties, mix proportion of ingredients, curing conditions, and the
macro- and micro-environment to which the concrete structure is exposed. Developing mathematical models that
describe the penetration of the aggressive substances (CO, and chloride) into concrete, which take into account the
influence of all the controlling parameters, is a challenging task. The advancement of miniaturized sensing devices
and IoT technologies make it possible to collect continuous in-service data of various parameters that controls the
penetration of CO, and chloride ions into the concrete pores. By applying intelligent data analysis technique on the
measured long-term data, it is possible to learn the complex interrelation among prominent parameters that controls
the penetration of the aggressive substances and construct a prediction model (that predict the time to onset corrosion
of reinforcement steel) without assuming a predetermined equation as a model. With the availability of more and
more data, the accuracy of prediction improves as it can capture the concrete microstructure changes caused by
time-dependent chemical processes of the cement paste and its interaction with the environment. In addition, useful
knowledge can be discovered from the data by exploiting intelligent data analysis techniques.

Though employing intelligent data analysis technique is becoming popular in several fields of engineering, its use
in durability and service-life assessment of concrete structures is limited. Indeed, in the past few years, there are few
attempts on application of machine learning for concrete durability assessments [29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40] using mainly historical data gathered from experimental field and laboratory tests but not from in-service
monitoring systems. The majority of these works were based on short-term tests (few data size) and failed to include
some of the important parameters that controls the penetration of carbon dioxide and chloride ions into the concrete.
These works are listed in Table 3. As can be seen from Table 3, there is no model that predict the chloride ions
concentration but the model were applied to characterize the chloride permeability of the concrete.

Table 3. Machine learning based models applied to characterize carbonation depth and chloride ions penetration in concrete.

Work Problem type Learning algorithm Exposure environment Number of parameters
[29] Carbonation depth Neural network Field 6
[30] Carbonation depth Neural network Lab 5
[31] Carbonation depth Adaptive neuro-fuzzy inference system Field 6
[32] Carbonation depth Neural network Lab 3
[33] Carbonation depth Decision tree Lab 15
[34] Carbonation depth Multiple algorithms ¥ Field 25
[35] Permeability Neural network Lab 5
[36] Permeability Neural network Lab 6
[37] Permeability Support vector regression Lab 7
[38] Permeability Multiple algorithms* Lab 4
[39] Permeability Neural network Field and lab 6
[40] Knowledge discovery* Bagged decision tree Field 32

 Neural network, decision tree, bagged decision tree and boosted decision tree.
* Neural network and adaptive neuro-fuzzy inference system.

* Determining the influential parameters controlling chloride ions penetration.

5. Data-driven smart RC structures

Recently, smart environments including smart infrastructure based on IoTs and intelligent data analysis techniques
have gained attention from both scientific communities and industries with the aim of solving societal problems. But
so far, the main focus in case of smart infrastructure is on structural responses due to load. Durability of concrete
structures is not only affected by load but also by corrosion of reinforcement steel, which is caused by penetration of
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aggressive substances into the concrete pores. The IoT based monitoring system proposed above is one-step towards
realizing data-driven durability assessment of concrete structures.

With the advancement of sensing technology, the availability of miniaturized, stable and inexpensive sensors for
monitoring durability of concrete structures may increase over the next few years. These sensors can be deployed
in new and existing RC structures to monitor corrosion causing factors, even in locations where performing routine
inspection is challenging. The monitored data will be communicated to remote user using appropriate wireless com-
munication technologies. The collected data will be analyzed using intelligent data analysis techniques in order to
autonomously assess the condition of the structures remotely. Hence, the implementation of IoT based system and
advanced data analysis methods will form a primary component in the inspection, assessment and management of
future RC structures. Ultimately, realizing data-driven smart RC structures.

The conceptual architecture of the envisioned data-driven smart RC structure is shown in Figure 1. Various types
of sensors that are deployed in the structure will continuously measure parameters that cause or accelerate corrosion
of reinforcement bar and/or other deterioration mechanisms. Measuring such parameters continuously using sensors
will provide more reliable data compared to performing periodic sample testing. This approach also leads to cost
savings in the long run, taking into an account the labor cost, the users cost, and their safety. The measured data
will be sent to cloud storage through gateways. Realistic condition assessment of the structures can be performed
autonomously using sophisticated data analysis on the data stored in the cloud and deliver the results to the facility
managers, infrastructure owners and other stockholders. The accessibility of short- and long-term data with spatial and
temporal resolution from the monitoring system is a critical underlying necessity for efficient durability assessment of
RC structures and detection of deterioration at an early stage. This enables the stakeholders to perform condition-based
maintenance measures in time, which in turn mitigates maintenance related costs considerably.
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Fig. 1. Architecture of data-driven smart RC structure.

In the proposed architecture, data of several parameters can be shared to other parties, such as data scientists,
material scientists, and concrete researchers. Using the data, they can contribute to a better scientific comprehension
regarding the complex corrosion, other and combined deterioration mechanisms. Using the conventional approach,
measuring the influence of the combined degradation mechanisms in laboratory and translating the results to an actual
structure is impractical. Traditionally, corrosion related durability assessment is carried out by evaluating carbona-
tion and chloride ions penetration separately. In reality, these two deterioration mechanisms along with others affect
the concrete performance simultaneously. The synergic effect is faster and more severe than the effect of their single
action. The proposed data-driven smart RC structure will have the ability to learn the synergistic effect of the degra-
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dation mechanisms by utilizing the collected long-term data and intelligent data analysis, enabling discovery of new
knowledge. The discovered knowledge will assist scientists and practitioners to devise optimal solutions that improve
the durability of the concrete structure as well as to establish proactive maintenance plan.

6. Conclusions

Conceptual framework for autonomous in-service durability monitoring and assessment of RC structures is formu-
lated in this work. The conventional durability assessment results are unreliable due to the limitations in the employed
empirical models. It also involves laboratory tests of samples taken destructively from structures, which is time con-
suming, labor intensive and expensive. The proposed conceptual framework tackles the limitations of the conventional
methods by exploiting IoT and advancement in intelligent data analysis techniques. Through the deployment of IoT
system in the structure, continuous monitoring and long-term data collection can be ensured. By applying intelligent
data analysis technique on the collected data, complex nonlinear interaction of corrosion controlling parameters can
be captured, resulting in reliable assessment and discovery of new knowledge. This facilitates timely formulation of
appropriate measures for extending the service life of the structure. All these leads to cost-effective management of the
RC structures. Moreover, the discovered knowledge will assist material scientists to innovate deterioration resistant
concrete mix.
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