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1 | INTRODUCTION

Recessions are painful periods with a significant and
widespread decline in economic activity. Early warning
signals of recessions would be important for different
kinds of economic agents. Households, firms,
policymakers, and central bankers could all utilize the
information concerning upcoming economic activity in
their decision making. The probability of a recession is
fairly straightforward to interpret and can be easily taken
into consideration in all kinds of economic decision
making.

But what are the indicators that consistently lead
recessions? Since the early work of Estrella and
Mishkin (1998), there has been a large amount of
empirical research concerning the predictive content
of different economic and financial variables (see,
e.g., Liu & Moench, 2016; Nyberg, 2010). The amount of
potential recession indicators is growing rapidly as the
constraints related to data availability and computational

In this paper, a large amount of different financial and macroeconomic
variables are used to predict the U.S. recession periods. We propose a new
cost-sensitive extension to the gradient boosting model, which can take into
account the class imbalance problem of the binary response variable. The class
imbalance, caused by the scarcity of recession periods in our application, is a
problem that is emphasized with high-dimensional datasets. Our empirical
results show that the introduced cost-sensitive extension outperforms the
traditional gradient boosting model in both in-sample and out-of-sample
forecasting. Among the large set of candidate predictors, different types of
interest rate spreads turn out to be the most important predictors when
forecasting U.S. recession periods.
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power keep diminishing. Traditionally used binary logit
and probit models can only handle small predictor sets at
a time, which makes the search for the best predictors
quite difficult.

Recent developments in the machine learning litera-
ture provide a solution to this problem. State of the art
supervised learning algorithm called gradient boosting is
able to do variable selection and model estimation
simultaneously. Nonparametric boosting can handle huge
predictor sets, and the estimated conditional probability
function can take basically any kind of form. The main
objective of this research is to explore how we can
exploit high-dimensional datasets when making recession
forecasts with the gradient boosting model (GBM).

The business cycle consists of positive and negative
fluctuations around the long-run growth rate of the econ-
omy. These fluctuations are also known as expansions
and recessions. The official business cycle chronology for
the United States is published by the National Bureau of
Economic Research (NBER). Recessions are shorter
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events compared with expansion periods leading to quite
heavily imbalanced binary class labels. In our dataset,
less than 14% of the monthly observations are classified
as recessions. This class imbalance and the effects on
classification are well covered in the machine learning
literature (see, e.g., Galar et al. 2012). Surprisingly, the
scarcity of recession periods has not been properly taken
into consideration in previous economic research.

Two approaches are usually considered when dealing
with imbalanced classes: resampling techniques and cost-
sensitive learning methods (see, e.g., He & Garcia, 2009).
Resampling is the easiest and most commonly used
alternative. The dataset could be balanced by drawing a
random sample without replacement from the majority
class, which is called undersampling. In the recession
forecasting setup, the size of the dataset is already
very limited so this could create problems when
estimating the model, especially with high-dimensional
data. In the oversampling approach, the idea is to sample
with replacement from the minority class. He and
Garcia (2009) argue that the duplicate observations from
the minority class can lead to overfitting.

Instead of replicating existing observations from the
minority class, one could learn the characteristics in this
class and create synthetic samples based on feature space
similarities. This synthetic minority oversampling
technique also known as SMOTE is a popular alternative
when dealing with imbalanced data. Blagus and
Lusa (2013) however find that variable selection is
needed before running SMOTE on high-dimensional
datasets.

Cost-sensitive learning methods can take the class
imbalance into account without artificially manipulating
the dataset. In a variety of real-life classification prob-
lems, such as recession forecasting or fraud detection,
misclassifying the minority class can be considered very
costly. The cost-sensitivity can be incorporated into the
model by attaching a higher penalty for misclassifying
the minority class. Several modified versions of the
adaboost algorithm by Freund and Schapire (1996) exist,
where the weight updating rule of the original algorithm
is modified to better account for the class imbalance (see,
e.g., Fan et al. 1999; Sun et al. 2007; Ting, 2000).

This is natural because weight updating is a crucial
part of the adaboost algorithm designed purely for classi-
fication problems. However, this is not the case with the
more general gradient boosting algorithm presented by
Friedman (2001) that can handle variety of problems
beyond classification, and the cost-sensitivity has to be
incorporated otherwise. We propose a cost-sensitive
extension to the GBM by introducing a binary class
weight to each observation in the dataset that reflects the
asymmetric misclassification costs. To the best of our

knowledge, cost-sensitive GBM using class weights has
not been utilized in previous economic research.

The traditional GBM has been utilized in previous
economic research with mixed results. Ng (2014) uses the
GBM with stump regression trees to predict recession
periods in the United States. The dataset used by
Ng (2014) has a fairly large predictor set and is from the
same source as the dataset used in this paper. With this
model setup, Ng (2014) concludes that the GBM is far
from perfect in forecasting recessions.

Berge (2015) uses a smaller predictor set to forecast
U.S. recessions with the GBM. The results show how
boosting outperforms other model selection techniques
such as Bayesian model averaging. Moreover, the results
highlight the importance of nonlinearity in recession
forecasting as boosting with nonlinear smoothing splines
outperforms boosting with a linear final model. Dépke
et al. (2017) successfully forecast German recession
periods with the GBM using regression trees. Unlike
Ng (2014), they build larger trees that allow for potential
interaction terms between predictors. This approach is
used in this study as well.

Our results confirm the finding of Blagus and
Lusa (2017) who note that the performance of a GBM
can be rather poor with high class imbalance, especially
when a high-dimensional dataset is used. The out-
of-sample forecasting ability of the traditional GBM is
quite heavily deteriorated compared with the in-sample
results. The cost-sensitive extension to the GBM using
class weights can take the class imbalance problem into
account and produces strong warning signals for the
U.S. recessions with different forecasting horizons.

The cost-sensitive GBMs estimated using huge
predictor sets rely heavily on different kinds of interest
rate spreads. This is also the case with the short- and
medium-term forecasting horizons although different
variables related to the real economy are also available
in the dataset. The internal model selection capability
of gradient boosting confirms that predictors with
predictive power beyond the term spread are quite
hard to find (see, e.g., Estrella & Mishkin, 1998; Liu &
Moench, 2016).

The results also show how the chosen lag length for a
predictor can vary substantially from the forecasting
horizon considered. A similar observation has been made
by Kauppi and Saikkonen (2008) in the conventional
probit model. The term spread is the dominant predictor
when forecasting recessions 1 year ahead, which is
a common finding in the previous literature (see,
e.g., Dueker, 1997; Estrella & Mishkin, 1998).

The rest of the paper is organized as follows. The
gradient boosting framework and the cost-sensitive
extension to the GBM are introduced in Section 2. The
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dataset and the empirical analysis are presented in
Section 3. Section 4 concludes.

2 | METHODOLOGY
The following theoretical framework for the GBM follows
closely the original work of Friedman (2001).

2.1 | Gradient boosting
Considering two stochastic processes y, and x;_; of which
¥, is a binary dependent variable of form

1, if economy in recession at time ¢
W=

1)

0, if economy in expansion at time ¢

and x, , is a p x 1 vector of predictive variables. The lag
length k of each predictor must satisfy the condition
k > h, where h is the forecasting horizon. If E; ,(-)
and P, (-) denote conditional expectation and condi-
tional probability given the information set available at
time t — k and by assuming the logistic transform A(-),
the conditional probability can be written as

Ei k() =Prk(y;=1)=p, = A(F (X)) (2)

We can model this conditional probability by estimat-
ing the function F(x, _ ;) with the GBM. Exponential loss
and binomial deviance are popular alternatives for the
loss function to be minimized with binary classification
problems. These are second-order equivalent (Friedman
et al. 2000). In this research, the conditional probability
is estimated with the GBM by minimizing the binomial
deviance loss function.

In the general estimation problem, the goal is to find
the function F(x,_;) that minimizes the expected loss of
some predefined loss function

Fx i) = e mi)n E[LyeF (k)] 3)

Even for a simple parametric model, where F(x,_;)
is assumed to be a linear function of the covariates,
numerical optimization techniques are usually needed
for solving the parameter vector that minimizes the
expected loss in Equation (3). Steepest descent optimiza-
tion technique is a simple alternative. The parameter
search using steepest descent can be summarized with
the following equation:

M M
ﬂ* :Zﬂmzz_émgm’ (4)
m=0 m=0

where f, is the initial guess and {f,}V_, are steps
towards the optimal solution. The negative gradient
vector —g,, determines the direction of each step, and §,,
is the stepsize obtained by a line search.

With gradient boosting, the optimization takes place
in the function space instead of the conventional parame-
ter space. Similarly as in the parametric case, numerical
optimization methods are needed when searching for the
optimal function. Some further assumptions are required
in order to make the numerical optimization in the func-
tion space feasible with finite datasets. By restricting the
function search to some parameterized class of functions,
the solution to numerical optimization can be written as

F* (Xik)= me(xtfk) = Zémb(xtfk;yrn)’ (5)

where J,, is the stepsize obtained by line search as in
Equation (4). Now the step “direction” is given by the
function b(x;_k;7,,) also known as the base learner func-
tion. This can be a simple linear function or highly
nonlinear such as splines or regression trees. In this
paper, regression trees are used, and the parameter vector
7,, consists of the splitting variables and splitpoints of the
regression tree. Equation (5) also incorporates the origi-
nal idea of boosting. The possibly very complex final
ensemble F(x,_ ;) with strong predictive ability is a sum
of the fairly simple base learner functions f,,,(X, _ ).

Using the sample counterpart of the loss function in
Equation (3) and by plugging in the additive form
introduced in Equation (5), the estimation problem can
be written as

min %ZL(yt,Zémb(Xr_k;}'m)) (6)

M
{om:rmtm=r ! =1 m=0

This minimization problem can be approximated
using forward stagewise additive modeling technique.
This is done by adding new base learner functions to the
expansion without altering the functions already
included in the ensemble. At each step m, the base
learner function b(x;_x;y,,) Which best fits the negative
gradient of the loss function is selected and added to the
ensemble. Using least squares as the fitting criterion
while searching for the optimal base learner function
leads to the general gradient boosting algorithm by
Friedman (2001):
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Algorithm 1 Gradient boosting

N
Fo(x;) = arg min < ¥ L(y;, p)
1

) t=
for m < 1toM do:
_}7[ - _ OL(y,,F(X,_)) , t= 1’ ,N
Fe) NP )=F ey (%)

N
Ym = arg min Y, [ — 6b(xi:7)]
Y. t=1

N
pm = arg min Y.L (yi, Fn1(Xi—) + pb(Xi—i; ¥ )
p t=1

Fu(Xi—) = Frno1(X—i) + pmb Xk 7,)
end for

Friedman (2001) suggests a slight modification to
Algorithm 1 when regression trees are used as the base
learner function. Regression trees are a simple yet power-
ful tool that partition the feature space into a set of
J nonoverlapping rectangles and attach a simple constant
to each one. The base learner function of a J-terminal
node regression tree can be written as

~

b(Xt,k; {Cj,Rj}}.Izl) = ZC}'I(X[,}C S R]), (7)
=

where the functional estimate is a constant ¢; in region R;.
According to Friedman (2001), the additive J-terminal
node regression tree in Equation (7) can be seen as a
combination of J separate base learner functions. One base
learner for each terminal node of the regression tree.
Therefore, after estimating the terminal node regions
{Rjm ;:1 at the mth iteration with least squares on Line 4
of the Algorithm 1, the line search step on Line 5 should
produce separate estimates for each terminal node of
the regression tree. This minimization problem can be
written as

N J
{éjm}jzl =arg min ZL <yt,Fm1 (Xi—k) + chl(xt,k € ij)> .

7 i
{Ci}jzl t=1 J=1

(®)
The ensemble update on the last line of Algorithm 1

is then a sum of these J terminal node estimates obtained
in Equation (8)

J
Fy, (Xt—k) =Fpu (Xt—k) + Zéij(Xt—k € ij)~
=1

2.2 | Cost-sensitive gradient boosting
with class weights

With a high class imbalance, there is a risk that the
estimated binary classifier is skewed towards predicting

the majority class well (He & Garcia, 2009). An algorithm
can be made cost-sensitive by weighting the dataspace
according to the misclassification costs (Branco et al.
2016). This weighting approach is sometimes referred to
as rescaling in the previous literature (see, e.g., Zhou &
Liu, 2010). The asymmetric misclassification costs, which
are the building block of cost-sensitive learning, are
incorporated to the GBM by introducing a binary class
weight for each observation in the data. In the traditional
GBM, the sample counterpart of the loss function is the
sample mean, and the minimization problem can be
written as in Equation (6). By introducing a vector of
class weights, we end up minimizing the weighted
average of the sample loss function

min  ——> WL{Yy Y b i57,) | (9)
{8ms¥m b1 ZW t=1 m=1
t

t=1

If the weights w, are equal for each observation, the
weighted average in Equation (9) reduces to the
sample mean.

Elkan (2001) suggests weighting the minority class
observations according to the ratio in misclassification
costs. Suppose c;o denotes the cost when we fail to predict
a recession and c¢y; when we give a false alarm of reces-
sion. The optimal weight for the minority class observa-
tions is then

w* =510 (10)
Co1

In many cases, the exact misclassification costs are
unknown, and we must rely on rules such that
misclassifying the minority class is more costly
(Maloof, 2003). The class weights are basically arbitrary
as they depend on the unknown preferences how harm-
ful different types of misclassification is considered to
be. In this paper, we use the data-based approach by
Zhou (2012) and choose the weights according to the
class imbalance observed in the dataset

_ N ) V=
W[ — Zt:lyl . (11)
1, if y=0

As can be seen from Equation (11), the weights
depend on the ratio of the number of datapoints in both
classes. These binary weights ensure that the sum of
weights is equal in both classes. The aim of choosing
these weights is to force the algorithm to provide a
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TABLE 1 The effect of class

Step
weights on the gradient boosting

algorithm Loss function

Initial value

Gradient

Split criterion

Terminal node estimate

balanced degree of predictive accuracy between the two
classes.

The cost-sensitive gradient boosting algorithm with
class weights follows the steps described in Algorithm 1,
but the binary class weights can have an effect on each
step of the algorithm. Table 1 illustrates how the class
weights alter different parts of the gradient boosting
algorithm, when J-terminal node regression trees are
used as the base learner functions and the loss function
to be minimized is the binomial deviance.

Note that the values for each step of the ordinary
GBM can be obtained from Table 1 by setting all the
weights equal to one. The cost-sensitive and the tradi-
tional gradient boosting algorithms differ starting from
the initial values. As the first gradient vector is based on
the initial value, the gradients are also different. The
biggest differences between these two algorithms how-
ever are related to the estimation of the regression tree
base learners at each iteration m of the algorithm. Blagus
and Lusa (2017) argue that the class imbalance problem
of the GBM with high-dimensional data is related to the
inappropriately defined terminal regions R;.

Next we will consider how class weights can have an
effect on both the estimated terminal node regions and
the terminal node estimates of the regression tree base
learner. When J-terminal node regression tree is used as
the base learner function, the J — 1 recursive binary
splits into regions R; and R, dividing the predictor space
into J nonoverlapping terminal node regions {Rj}j:1 are
obtained by maximizing the least-squares improvement
criterion. These splits are based on a slightly different
criterion if class weights are used. For this reason, the
estimated terminal node regions and the terminal node
estimates can be different between the two algorithms.

From Table 1, we can see how the split criterion is
based on two parts. The first part 2%« jllustrates how

Wi+w,
each split into regions R; and R, in cost-sensitive gradient

Value

N
_ZZr—1W‘ [ F (%-k)—log(1+€"¥-k))]

w,
=1t

N
Wy
Fo(xi) =log (ﬁ)

Yim =Yt —DPe» where 1

= 1 +e*Fm 1(%e-k)
Wi = le,k e Wt

1 ~
8 :Wlet,keR,Wty‘m

P

g = —\2
lZ(Rler) :%(gl 7gr) )

o D e 0P
D DN )

boosting is based on the sum of weights in these two
categories instead of the number of observations. The
latter part of the split criterion (g —g,)> shows that
instead of the average gradient, we compare the weighted
average of the gradient in the regions, when searching
for the optimal split point. From the last row in Table 1,
one can note how the terminal node estimates are
functions of both the terminal node regions and the class
weights itself, and hence, the final estimates can be
different between the two algorithms.

2.3 | Regularization parameters in
gradient boosting

Friedman (2001, 2002) introduces several add-on
reqularization techniques to reduce the risk of overfitting
or to improve the overall performance of the gradient
boosting algorithm. The parameters related to these
techniques are often called tuning parameters because it
is up to the user to fine-tune the parameter values for the
particular problem at hand. Tuning parameters with the
gradient boosting technique can be divided into two cate-
gories: parameters related to the overall algorithm and
parameters related to the chosen base learner function.

Friedman (2001) incorporates a simple shrinkage
strategy to slow down the learning process. In this
strategy, each update of the algorithm is scaled down by
a constant called learning rate. The ensemble update on
the last line of Algorithm 1 can then be written as

Fm(xl7k> :mel(xlfk) +Upmb(Xt7k;7m),

where 0 < v <1 is the learning rate. Learning rate is a
crucial part of the gradient boosting algorithm as it
controls the speed of the learning process by shrinking
each gradient descent step towards zero. Friedman (2001)
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suggests to set the learning rate small enough for better
generalization ability. Bithlmann and Yu (2010) reach a
similar conclusion.

Breiman (1996) notes that introducing randomness
when building each tree in an ensemble can lead to
substantial gains in prediction accuracy. On the basis of
these findings, Friedman (2002) develops stochastic gra-
dient boosting in which subsampling is used to enhance
the generalization ability of the GBM. At each round of
the algorithm, a random subsample of datapoints is
drawn without replacement, and the new base learner
function is fitted using this random subsample. Simula-
tion studies show that subsampling fraction around one
half seems to work best in most cases (Friedman, 2002).

The total amount of iterations M needed however
moves in the opposite direction to learning rate and
subsampling. Gradient boosting is a flexible technique
that can approximate basically any kind of functional
form with sufficient amount of data. This flexibility can
also come with a cost. Overfitting the training data is a
risk that must be taken into consideration as it can lead
to decreased generalization ability of the model. The
optimal amount of iterations is usually chosen with early
stopping methods such as using an independent test set
or cross-validation.

When the amount of observations is scarce, K-fold
cross-validation is often the only alternative because we
cannot afford to set aside an independent test set. K-fold
cross-validation is based on splitting the data into
K nonoverlapping folds. Each of these folds is used as a
test set once while the model is estimated using the
remaining K —1 folds. To reduce the effect of
randomness, the K-fold cross-validation process can be
repeated R times (Kim, 2009). In the repeated K-fold
cross-validation approach, the estimate for the optimal
stopping point is based on the average validation error
produced by the K-folds at each of these R repeats.

Instead of the traditional repeated K-fold, we use a
more conservative cross-validation approach because the
risk of overfitting the data in the high-dimensional setup
is fairly high. In this conservative approach, only the
validation error produced by the fold, which first reaches
its minimum and therefore first starts to show signs of
overfitting, is selected out of the K-folds at each
repetition. By denoting the found “weakest” fold in
repetition r as k,*, the number of observations in this fold
as Ni- and the model estimated without this fold as
F (x;—k) the conservative cross-validation estimate for
the prediction error can be written as

Nys

ZNk ZL(y,, C ), (12)

where binomial deviance is used as the loss function L(-).
The final estimate for the amount of iterations is the
point where the estimated prediction error in (12)
reaches its minimum. To the best of our knowledge, this
simple conservative approach has not been used in the
previous academic research.

The complexity of the regression tree base learners is
controlled by the number of terminal nodes J in each
regression tree. The amount of inner nodes (J — 1) in the
regression tree limits the potential amount of interaction
between predictors as shown with the analysis of
variance (ANOVA) expansion of a function

Xt k § ’j x} + E ’jk xjyxk + E ’]kl xjyxk’xl

Jok,1
(13)

The simplest regression tree with just two terminal
nodes can only capture the first term in Equation (13).
Higher-order interactions are needed to be able to
capture the latter terms, which are functions of more
than one variable. These higher-order interactions
require deeper trees. Hastie et al. (2009) argue that trees
with more than 10 terminal nodes are seldom needed
with boosting.

3 | RESULTS

3.1 | Data and model setup

The dataset used in the empirical analysis is the
FRED-MD monthly dataset. The selected timespan covers
the period from January 1962 to June 2017. After
dropping out variables that are not available for the full
period, the FRED-MD dataset consists of 130 different
economic and financial variables related to different parts
of the economy.! Three different forecasting horizons
h are studied in the empirical analysis: short (h=3),
medium (h =6), and long (h =12).

All the available lag lengths k of the predictors up
to 24 months are considered as potential predictors
(assuming k > h). The total amount of predictors in the
dataset takes the value of 2860, 2470, or 1690 depending
on the length of the forecasting horizon. For example,
the total amount of predictors with the shortest forecast-
ing horizon is 2860, which includes 22 different lags of

'All ISM-series (The Institute for Supply management) have been
removed from the FRED-MD dataset starting from June 2016. These
series have been re-obtained using Macrobond. For more general
information about the dataset, see https://research.stlouisfed.org/econ/
mccracken/fred-databases/.
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these 130 variables. See Christiansen et al. (2014) for a
similar study where each lag is considered as a separate
predictor.

The term spread has been noted as the best single
predictor of recessions and economic growth in general
in the United States (see, e.g., Dueker, 1997; Estrella &
Mishkin, 1998; Wheelock & Wohar, 2009). To see if it is
actually worthwhile to go through these huge predictor
sets with the GBMs, we use a simple logit model with the
term spread as a bm. Kauppi and Saikkonen (2008) note
that setting the lag length k equal to the forecasting
horizon h may not be optimal in all cases. To take this
into account, we introduce the six nearest lag lengths of
the term spread as additional predictors. The term spread
is measured as the interest rate spread between the
10-year government bonds and the effective federal funds
rate as this is included in the FRED-MD dataset.

The estimated conditional probabilities for different
models are evaluated using the receiver operating
characteristic curve (ROC). The area under the ROC
curve (AUC) measures the overall classification ability of
the model without restricting to a certain probability
threshold. AUC values closer to one indicate better
classification ability, whereas values close to one half are
no better than a simple coin toss. For a more comprehen-
sive review of the AUC measure in economics context,
see, for example, Berge and Jorda (2011) and Nyberg and
Ponki (2016).

The GBM involves internal model selection as the
regression trees selected at each step of the algorithm
may be functions of different predictors. Some predictors
are chosen more often than others and can be considered
more important. Breiman et al. (1984) introduce a
measure for the relevance of a predictor x, in a single
J-terminal node regression tree T

J-1

L(1)=Y_#1(v;=p), (14)

j=

where v; is the splitting variable of inner node j and ijz is
the empirical improvement in squared error as a result of
this split. The least squares improvement criterion was
introduced in Table 1.

The measure in Equation (14) is based on a single
tree, but it can be generalized to additive tree expansions
as well (Friedman, 2001). The relative influence of a
variable x, for the entire gradient boosting ensemble is
simply an average over all the trees {T,}»_, in the
ensemble

o 13,
IP:A—/IZle(Tm). (15)
m=

The relative influence measure in Equation (15) is
used to illustrate the most important recession indicators
with the GBM. The relevance of a predictor x, inA 2the
recursive out-of-sample forecasting is the average I, of
the estimated models.

The following results are obtained using the R pro-
gramming environment for statistical computing (R Core
Team, 2017). The GBM-package (Ridgeway, 2017) with
bernoulli loss function is used to estimate the GBMs.
With such huge predictor sets, it is likely that there are
interactions between some predictors. For this reason,
the maximum tree depth is set to 8 leading to regression
trees with nine terminal nodes. Dopke et al. (2017)
use 6-terminal node regression trees while predicting
recessions in Germany with a much smaller predictor set.

The minimum number of observations required in
each terminal node of a regression tree is set to 1 allowing
the tree building process to be as flexible as possible.
Similar results are obtained when setting the minimum
number of observations to 5 as is used by Dd&pke
et al. (2017).” Learning rate is set to a low value of 0.005,
and the default value of 0.5 is used as the subsampling
fraction. The conservative cross-validation approach
presented in Equation (12) is conducted using 5 folds and
5 repeats throughout this research to find the optimal
amount of iterations. In order to keep the computational
time feasible, the maximum amount of iterations is set
to 800.

3.2 | In-sample results

Three different models are compared in the in-sample
analysis using the full dataset. The benchmark model
(bm) is a simple logit model with seven lags of the term
spread as predictors. GBM is the ordinary gradient
boosting model and wGBM stands for the cost-sensitive
gradient boosting model with class weights. The class
weights are formed according to Equation (11). The
binary response variable for each model is the business
cycle chronology provided by the NBER.

Table 2 summarizes the in-sample performance as
measured with the AUC of these three models for all the
different forecasting horizons. The rows of the table
present the different models, and the columns stand for
the forecasting horizons considered. The validation AUCs
from the five-fold cross-validation repeated five times are
reported in parenthesis.

As expected, the nonlinear GBMs do a better job
forecasting recessions in-sample. The larger information

2The results with this alternative parameter setting can be found in the
Internet Appendix A.2.
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TABLE 2 In-sample AUC (January 1962-June 2017)
Forecast horizon, months
Model specification 3 6 12
Benchmark 0.890 (0.881) 0.910 (0.902) 0.914 (0.897)
GBM 1.000 (0.985) 1.000 (0.980) 1.000 (0.956)
wGBM 1.000 (0.987) 1.000 (0.981) 1.000 (0.961)

Abbreviations: AUC, area under the ROC curve; GBM, gradient boosting model; wGBM, cost-sensitive gradient boosting model with class weights.

set and the more flexible functional form of the GBM
models allow for a more detailed in-sample fit. The
perfect in-sample AUCs for the GBM models can raise
questions of overfitting. As a result of using these
moderate sized regression trees as base learner functions,
the GBM models achieve nearly perfect classification
ability after only a few iterations. This can be confirmed
by training a shallow single decision tree to the full
dataset. The single decision tree alone is sufficient to
produce very high in-sample AUCs, even after restricting
the predictor space to consider only the eight different
interest rate spreads (and their lag lengths).®> Thereby, it
is not completely surprising that an ensemble of trees
yield a perfect in-sample fit as measured with AUC. For
example, the cost-sensitive GBM model with the shortest
forecasting horizon reaches an AUC value of 0.997 after
just five iterations. However, it should be noted that the
estimated conditional probabilites at this point range
between 0.488 and 0.512, values that are only slightly
different from the initial value of one half because of the
shrinkage strategy described in Section 2.3. It could be
argued that the AUC may not be the most suitable
criterion when evaluating the in-sample performance in
this setup. But because the main emphasis is on the
out-of-sample performance of the models, the AUCs are
reported here for comparison.

The validation AUCs reported in Table 2 provide
additional insight into the potential overfitting problem
because large deviations between the in-sample and
validation performance are typically seen as a sign of
overfitting. The validation AUCs for the GBM models
are of similar magnitude as the in-sample AUCs and
therefore do not indicate overfitting. Dopke et al. (2017)
also report validation AUCs close to one when

*The additional in-sample results presented in the Internet Appendix
A.1 show that the AUCs with a single decision tree are close to or well
above 0.95 depending on the forecasting horizon. On the other hand,
restricting the GBM-models by considering only the simplest stump
regression trees and / or only the interest rate spreads as predictors are
not sufficient as models produce in-sample AUCs of one or really close
to it. Detailed results can be found in the Internet Appendix A.1.

forecasting recessions in Germany with the GBM. The
validity of the traditional random sampling techniques
used in cross-validation with such a highly autocorrelated
binary response variable should be further examined.
This however is beyond the scope of this research.

Table 2 shows how the cost-sensitive GBM model
outperforms the other two models as measured with the
validation AUC, although the difference between the
two GBM models is small. The gap in validation AUCs
between the benchmark and GBM models decreases
slightly as the forecasting horizon grows. Graphical illus-
trations are an important part of recession forecasting
because these can give a better picture of the false alarms
and other potential problems related to the models. The
estimated conditional probabilities that the economy is in
recession h-months from now are calculated according to
Equation (2). These in-sample estimated conditional
probabilites are illustrated in Figure 1 for each of the
three models and forecasting horizons.

The conditional probabilities for both GBM models
can be seen to mimic the shaded recession periods quite
nicely. The in-sample fits for the two GBM models have a
rather similar shape without any major differences,
which is in line with the results in Table 2. However, the
recession signals produced by the cost-sensitive GBM
model are constantly stronger compared with the other
two models with all the forecasting horizons. It is also
noteworthy how the benchmark logit model produces a
lot weaker signals for the last three recessions compared
with the GBM models. Figure 1 also shows how the
estimated conditional probabilities for the GBM models
are not exactly zero or one and the in-sample fit is not
perfect in probability terms. Using forecast performance
evaluation criterion other than AUC, such as the bino-
mial deviance or the quadratic probability score, would
not indicate perfect in-sample fit.

3.3 | Out-of-sample results

Good in-sample results may not always reflect the out-of-
sample predictive ability of the model. An expanding
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TABLE 3 Out-of-sample AUC q
P Forecast horizon, months
(December 1988-June 2017)
Model specification 3 6 12
Benchmark 0.748 0.811 0.919
GBM 0.841 0.816 0.867
wGBM 0.915 0.861 0.928

Abbreviations: AUC, area under the ROC curve; GBM, gradient boosting model; wGBM, cost-sensitive
gradient boosting model with class weights.

window forecasting procedure is used to examine the
true predictive ability of the models. Both Berge (2015)
and Ng (2014) use rolling window when forecasting
U.S. recessions. To ensure the maximum sample size for
the estimation of each model, an expanding window
approach is used in this study.

The out-of-sample evaluation period covers the period
starting from December 1988 to June 2017. Because of
high computational cost, the GBM models are
reestimated only once a year in December. The class
weights are updated according to Equation (11) as the
proportion of zeros and ones change for the binary
response. The business cycle recession and expansion
periods are not available in real time. The publication lag

of the NBER business cycle chronology is thus assumed
to be 12 months.

The results from the recursive out-of-sample forecast-
ing procedure are reported in Table 3. The out-of-sample
performance as measured with the AUC is illustrated
for the different models at each of the three forecasting
horizons.

The out-of-sample AUCs show that the cost-sensitive
GBM model outperforms the other two models with all
the forecasting horizons. The difference in AUCs
between the traditional and cost-sensitive GBMs is quite
similar with all the forecasting horizons. The average
difference of the AUCs between the two GBM models
is 0.06.
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The out-of-sample performance for the traditional
GBM model is quite heavily deteriorated when compared
with the in-sample AUCs reported in Table 2. The
standard GBM model can outperform the bm only at
the shortest forecasting horizon. This diminished
out-of-sample forecasting ability of the traditional GBM
model could indicate problems related to the class
imbalance of the response. Blagus and Lusa (2017) note
that the traditional GBM model can perform poorly on
high-dimensional data with class imbalance. Figure 2
illustrates the out-of-sample estimated conditional
probabilities calculated according to Equation (2) for all
the different forecasting horizons and models.

Figure 2 shows how the recession probabilities for
each of the models with the short- and medium-term
forecasting horizons spike just before the actual recession
period in the early 90s. Although these spikes are consid-
ered as false alarms and decrease the out-of-sample
performance of the models, this heightened risk of an
upcoming recession could have considerable practical
importance.

Figure 2 also illustrates the problems related to the
diminished out-of-sample performance of the traditional
GBM model. The traditional GBM model provides several

false alarms, especially at the short- and medium-term
forecasting horizons. With the longest forecasting
horizon, the traditional GBM model gives a rather weak
signal of the upcoming recession period in the early 90s
when compared with the other two models.

The cost-sensitive GBM model on the other hand
provides clear warnings of the upcoming recession
periods in the short and medium term without any major
false alarms. Although the recession signal for the second
recession period with the shortest forecasting horizon is
quite modest. It should be noted that the magnitude of
the recession signals is diminished for each of the three
models when compared with the in-sample probabilities
in Figure 1.

With the 12-month forecasting horizon, the cost-
sensitive GBM model provides strong warning signals for
each of the three recessions. The estimated recession
probabilities of the cost-sensitive GBM model bears a
close resemblance to the bm. This also includes the two
false alarms that are typical when predicting recessions
with the term spread (see, e.g., Kauppi & Saikkonen,
2008; Nyberg, 2010).

To further consider the composition of the estimated
cost-sensitive GBM models, Table 4 presents the 10 most
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6mth - FFrate_4 5.464 6mth - FFrate_6 8.722 10yr - FFrate_12 18.051
10yr - FFrate_9 4.920 10yr - FFrate_9 4.979 Syr - FFrate_15 6.347
6mth - FFrate_6 4.744 5yr - FFrate_15 4.026 5yr - FFrate_14 3.634
6mth - FFrate 5 4.581 lyr - FFrate_6 3.941 10yr - FFrate_13 2.778
6mth - FFrate_7 3.103 6mth - FFrate_7 3.739 Syr - FFrate_16 2.466
Syr - FFrate_15 2.988 3mth - FFrate_6 3.570 10yr - FFrate_14 2.400
10yr - FFrate_8 2.757 10yr - FFrate_8 3.111 Syr - FFrate_13 1.808
3mth - FFrate_6 2.337 lyr - FFrate_7 2.512 AAA - FFrate_12 1.787
1yr - FFrate_6 2.310 6mth - FFrate_8 2.175 Syr - FFrate_12 1.688
lyr - FFrate_7 2.254 10yr - FFrate_11 2.048 PERMITS_15 1.496

Abbreviation: wWGBM, cost-sensitive gradient boosting model with class weights.

important out-of-sample predictors according to the
relative influence measure presented in Equation (15).

The cost-sensitive GBM models rely heavily on
different kinds of interest rate spreads as can be seen in
Table 4. The only noninterest rate-based predictor is the
15th lag of the new private housing permits variable
(PERMITS_15) with the longest forecasting horizon. This
is a bit surprising at the short- and medium-term
forecasting horizons because variables describing the
real economy are often found useful when predicting
recessions with these forecasting horizons (see,
e.g., Berge, 2015). The heavy usage of interest rate
spreads confirms that predictors with forecasting ability
beyond the term spread are quite hard to find (see,
e.g., Bstrella & Mishkin, 1998; Liu & Moench, 2016).

Models based on different kinds of interest rate
spreads can be affected by the problems related to the
predictive power of the term spread noted in the previous
literature. Several studies show how the term spread
forecast U.S. output growth less accurately after the
mid 1980s (see e.g., Estrella et al. 2003; Stock & Watson,
2003). The slightly lower out-of-sample AUCs reported in
Table 3 for each of the three models, including the bm,
are in line with this finding.

Table 4 shows how the interest rate spread between
the 6-month treasury bill and the effective federal funds
rate with the fourth lag (6mth - FFrate 4) is the most
important predictor when predicting recessions 3 months
ahead. The same predictor with the sixth lag is the most
important predictor with the medium-term forecasting
horizon. The composition of the top-10 out-of-sample
predictors are quite similar between the short- and
medium-term horizons.

The chosen lag lengths of the predictors with the
short- and medium-term horizons can deviate quite

substantially from the length of the forecasting horizon.
For example, the spread between the 5-year treasury
bond and the effective federal funds rate with the 15th
lag (5yr - FFrate_15) is an important predictor with
both of these horizons. Similar observation can be
made with the spread between the 10-year treasury bond
and the effective federal funds rate with the ninth lag
(10yr - FFrate_9). With the longest forecasting horizon,
the term spread with lag length equal to 12 (10yr -
FFrate_12) has a very strong impact on the models as
measured with the relative influence. Such dominance
of a single predictor is not found with the short- and
medium-term horizons.

4 | CONCLUSIONS

This paper introduces a new cost-sensitive GBM, which
can take into account the class imbalance of the binary
response variable. The cost-sensitive GBM is applied
to predicting binary U.S. recession periods with a high-
dimensional dataset of financial and macroeconomic
variables. The internal model selection of the cost-
sensitive gradient boosting algorithm provides important
information about the most useful recession indicators
and chosen lag lengths with different forecasting
horizons.

The empirical results show how the cost-sensitive
extension to the GBM produces stronger and more stable
recession forecasts for the United States with each
forecasting horizon compared with the traditional GBM.
A logit model based on the term spread is used as a bm
to see if the more complex GBMs provide predictive
power beyond the best known simple model. The
cost-sensitive model outperforms the bm with each
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forecasting horizon, whereas the traditional GBM is able
to outperform the benchmark only at the shortest
forecasting horizon. Different kinds of interest rate
spreads are the most important predictors, even with the
short- and medium-term forecasting horizons. The term
spread is the dominant predictor when forecasting reces-
sions 1 year ahead.

The current research can be extended in several ways.
First of all, the binary values for the class weights were
chosen so that both the minority and the majority class
receive similar attention in the learning process. Different
choices for the class weights could be further examined,
especially in cases where the class imbalance is even
more radical. The cost-sensitive approach could also be
extended to multinomial classification problems, where
different types of class imbalance problems can emerge.
There could be for example more than one minority class
with a multinomial response variable. Introducing model
dynamics is another potential area for future research.
This would allow iterative forecasts to be used instead of
the forecast horizon-specific forecasts as in this study.
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