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Abstract. Longitudinal data is ubiquitous in research, and often com-
plemented by broad collections of static background information. There
is, however, a shortage of general-purpose statistical tools for studying
the temporal dynamics of complex and stochastic dynamical systems
especially when data is scarce, and the underlying mechanisms that gen-
erate the observation are poorly understood. Contemporary microbiome
research provides a topical example, where vast cross-sectional and lon-
gitudinal collections of taxonomic profiling data from the human body
and other environments are now being collected in various research lab-
oratories world-wide. Many classical algorithms rely on long and densely
sampled time series, whereas human microbiome studies typically have
more limited sample sizes, short time spans, sparse sampling intervals,
lack of replicates and high levels of unaccounted technical and biologi-
cal variation. We demonstrate how non-parametric models can help to
quantify key properties of a dynamical system when the actual data-
generating mechanisms are largely unknown. Such properties include
the locations of stable states, resilience of the system, and the levels of
stochastic fluctuations. Moreover, we show how limited data availability
can be compensated by pooling statistical evidence across multiple indi-
viduals or studies, and by incorporating prior information in the models.
In particular, we derive and implement a hierarchical Bayesian variant of
Ornstein-Uhlenbeck driven t-processes. This can be used to characterize
universal dynamics in univariate, unimodal, and mean reversible systems
based on multiple short time series. We validate the model with simu-
lated data and investigate its applicability in characterizing temporal
dynamics of human gut microbiome.
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1 Introduction

Many natural and social systems are complex and cannot be studied in isolation.
The underlying data-generating mechanisms are often largely unknown in such
cases, and the observed dynamics can be characterized only indirectly [8]. Non-
parameteric models that focus on characterizing observed data properties, rather
than modeling the underlying mechanisms, can provide valuable information on
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the system behavior. In the context of human microbiome dynamics, for instance,
such non-parametric models have been used to describe and infer the presence
of alternative ecosystem states [13], periodicity, stochasticity, and chaos [6, 5]. In
many real applications, the data is scarce, and new methods are needed in order
to derive maximal information from limited observations.

Our study is motivated by the analysis of temporal dynamics of human gut
microbiome. This refers to the totality of microbial communities living on skin,
gastrointestinal tract and other body sites. Contemporary human microbiome
research has largely focused on cross-sectional cohorts with limited follow-ups,
providing information on the composition and inter-individual variation of the
microbiome. The dynamics of these systems are yet, however, not well under-
stood despite their clinical importance [1, 10]. As understanding of these systems
is accumulating, the research focus is beginning to shift from general descriptions
towards actionable clinical applications and manipulation.

In this work, we show how key dynamical properties of poorly understood
dynamical systems can be inferred from limited time series by pooling informa-
tion can across multiple individuals. In the present work, we focus specifically
on mean-reversible stochastic processes. Such dynamic behavior is frequently
observed in the human gut microbiome. Many bacterial species in the human
gut ecosystem have been reported to exhibit characteristic abundance levels
around which they tend to fluctuate over time (see e.g. [13]). It has been re-
ported that the average abundance levels of many gut bacteria remain relatively
stable over long time periods but on a shorter (daily) time scale the abundances
can exhibit considerable fluctuations [3]. Mean-reverting stochastic processes,
in particular the Ornstein-Uhlenbeck (OU) process , provide well-established
means to characterize key properties of such systems, including the location and
resilience of the potential wells, speed of mean reversion, and volatility of abun-
dance levels, even when the underlying mechanisms regulating those dynamics
are unknown. Stochastic processes and generative probabilistic models provide
a rigorous framework for the characterization of the observed dynamics in such
cases, with wide applicability across different application domains [9, 11, 16, 18].

We adapt and apply these techniques to model human gut microbiome dy-
namics. A key practical limitation of the existing methods in our application
is that the available implementations of the OU process depend on the avail-
ability of long time series with dozens of time points or more. The currently
available longitudinal data sets in typical human microbiome studies have more
limited sample sizes and time series lengths, or sparse sampling intervals. Com-
bined with high levels of variation and limited knowledge of the data-generating
processes, these limitations form considerable challenges for the application of
previously established stochastic models, such as the the OU process, in con-
temporary human microbiome research. In order to address these limitations,
we derive, implement, and validate a hierarchical extension to the OU process.
This can be used to recover key information of the system dynamics from limited
data by aggregating information across short time series from multiple individ-
uals. Further potential advantages of the probabilistic formulation include the
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opportunities to model individual variation, and to incorporate of prior informa-
tion from the cross-sectional background collections in the model. We validate
the implementation with simulated data, investigate its robustness to varying
modeling assumptions including the numbers, lengths and densities of the time
series, and ranges of parameter values, and finally explore the applicability of
this model on topical human gut microbiome data sets.

In order to maximize the flexibility we have constructed the implementation
so that the number of observation per time series and the observation times do
not have to be identical. Thus, our implementation of the OU process provides
a rigorous and justified method for modeling dynamics of single potential wells.

2 Preliminaries

This section outlines the statistical model and the relevant technical derivations.

2.1 The Ornstein-Uhlenbeck Process

Many natural processes can be modeled by a combination of deterministic drift
and stochastic fluctuations. These assumptions naturally lead to stochastic dif-
ferential equations, which are commonly encountered in literature in the form:

dXt = f(X, t)dt+ L(X, t)dZt.

Here, Xt is the system state at time t, Z is a stochastic process and f , and L
are called the drift and dispersion terms, respectively. The drift defines the de-
terministic behavior, whereas dispersion characterizes the stochastic component
of the system. Unlike the solutions of ordinary differential equations, the solu-
tions of the stochastic counterparts are non-unique and nowhere differentiable as
they are different for different realizations of the noise term. The deterministic
solution can be recovered by averaging over these solutions.

The Ornstein-Uhlenbeck (OU) process, also known as the Langevin equation
in physics and Vasicek model in finance, is a stochastic process with a wide range
of applications [12]. It is frequently used to model systems that have a steady
state, and a tendency to recover from perturbations by gradually returning, or
drifting, towards the long-term mean value. The OU process is the continuous-
time extension of autoregressive AR(1) model and is defined as the solution
to the stochastic differential equation with drift function f(X, t) = λ(µ − X)
and constant dispersion L(X, t) = σ. The parameters λ ∈ [0, 1], µ ∈ R and
σ ≥ 0 have natural interpretations as mean-reversion rate, long-term mean and
size of stochastic fluctuations, respectively. The OU process can be formulated
as a Gaussian process on the real line GP(µ, K) with a covariance function

K = Cov(Xt1 , Xt2) = σ2

2λe
−λ∆t, and as all diffusion processes, is also a Markov

process [12].
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2.2 The Ornstein-Uhlenbeck Driven t-process

We adopt the Student’s t-process, instead of the traditionally used Wiener pro-
cess as the driving process of the OU process. This choice is more robust to
outliers and short term volatility, with little if any additional computational
cost as the critical analytical equations are available in both cases.

Although the stochastic process in OU process is often modeled as white
noise, requiring Zt to have Gaussian transition density is often a too limiting
assumption for practical purposes as it does not allow large enough fluctuations.
Thus, robustness against outliers is compromised and a more general process
would be preferred [15]. The Student’s t-process is a non-Gaussian alternative
to a prior over functions that allows more flexibility and room for outliers. Using
t-processes is a convenient choice also in the sense that the Gaussian process can
be obtained as a special case by taking the limit ν →∞ [15]. Thus we will adopt
t-processes as the driver of dispersion of the OU process. See Figure 1 for an
example of simulated OU process time series and corresponding parameter esti-
mates. The t-process has recently been studied in e.g. [14, 15] and the following
definition can be found in these references.

Definition 1. A vector ȳ ∈ Rn is multivariate Student-t distributed with ν de-
grees of freedom, mean parameter µ and shape matrix Σ, ȳ ∼ ST n(ν, µ,Σ), if
it has density

p(ȳ) =
Γ (ν+n2 )

((ν − 2)π)
n
2 Γ (ν2 )

|Σ|− 1
2 ×

(
1 +

(ȳ − µ̄)TΣ−1(ȳ − µ̄)

ν − 2

)− ν+n
2

(1)

Definition 2. The process f is a Student-t process, f ∼ ST (ν, µ,Σ), if any
finite set of values is multivariate t-distributed.

The covariance matrix K is related to the shape matrix via Σ = ν−2
ν K.

2.3 Hierarchical extension

The model outlined above describes the Ornstein-Uhlenbeck driven t-process as
implemented in [9]. Our novel contribution that we present now is to equip the
model with hierarchical structure and testing the robustness of the extended
implementation. Let X = {X̄i, i ∈ {1, . . . , N}} be a set of OU process values,
with ni observations in each, each i representing e.g. a different measurement
site. We assume a hierarchical structure for the parameters λ, µ and σ,

dXj,t = λj(µj −Xj,t)dt+ σjdZt,

for all j ∈ {1, . . . , ni}. As the OU process is a Markov process the generative
model for the data can be described as in 2. We have implemented the model
using the multivariate t-distribution formulation but it is possible to implement
the model using transition densities between consecutive observations.

Adding a level of hierarchy to the implementation for a single series can be
obtained by modifying the model likelihood in the extended version so that it
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Fig. 1: A A simulated OU driven t-process time series with ν = 7 and parameter
values λ, σ = 0.5, µ = 0. B Posterior estimates of the model parameters. Dashed
lines mark the simulation values used to generate the data.

equals the product of likelihoods of individual series. In addition priors have to be
assumed to follow some distribution. We have used normal distributions for µ and
σ and inverse gamma distribution for λ. Hyperpriors for the hyperparameters φ
were chosen to be uninformative but still strong enough to guide the parameter
estimates to practically reasonable ranges. We can now write the generative
model for the hierarchical OU process with partially pooled estimates

Xi ∼ MVTn(ν, µi, Σi)

µi ∼ N (µµ,i, σµ,i)

σi ∼ N (µσ,i, σσ,i)

λ ∼ Γ−1(αi, βi)

φ ∼ N (φµ, φσ),

(2)

where i = {1, . . . , N} and φ represents all hyperpriors.

The model can also be specified so that both the prior shape and hyper-
parameters are fixed. This version corresponds to no pooling between distinct
observations. It does not share information as it assumes that the differences be-
tween series are too large to be modeled together. The other extreme is complete
pooling in which all data are assumed to be generated by identical parameters.
Partial pooling assumes some, but not full, similarity between time series and
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Fig. 2: Bayesian graph representation of the hierarchical OU process. Hyperpa-
rameters are denoted with φ.

thus represents a compromise between the other two alternatives. These models
are compared in subsection 3.1 below.

For a general and simplified treatment of the OU process we assumed that
our observations are directly generated from the OU process and use uniform
time intervals in the following simulations. The model can, however, incorpo-
rate unequal time intervals and varying numbers of observations per time series.
Alternative models of observation noise represent opportunities for further ex-
tension. In ecological studies that motivate the present work, the observation
noise is often modeled with a Gaussian or Poisson distribution, where the rate
parameter is obtained from the OU process by exponentiation. This so called
stochastic Gompertz model is frequently used in ecological time-series analysis
[4]. For OU process implementation of the Gompertz model in the context of a
single time series, see [9].

3 Model validation

Next, we tested the implementation with simulation experiments. The simula-
tions were motivated by recent human microbiome studies that are introduced
in more detail in section 4. The data sets in these studies have considerable dif-
ferences in sample sizes and in this respect represent the scope of the currently
available human microbiome data.

In the simulations the values for λ, σ and µ were sampled separately for each
series from priors Γ−1(6, 4), N (0, 1) and N (3, 1) respectively. The degrees of
freedom in the multivariate Student’s t-distribution was set to 7. These distri-
butions and parameter values were chosen as they generate values and variation
resembling those encountered in (log-transformed and centered) human gut mi-
crobiome time series. Hyperprior distributions for the model parameters were
chosen to be vague as no prior understanding of these parameters exists in this
context. Normal distributions with relatively large variance were used.

Parameter estimates are obtained by coding the model in rstan [2]. Stan
requires the user to specify data, parameters and model in the corresponding
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code blocks and uses Hamiltonian Monte Carlo and No-U-Turn Sampler tech-
niques to sample from the posterior distribution. To minimize the amount of
divergent transitions in HMC sampling we have used a non-centered parameter-
ization for µ and σ. This is in agreement with [17] where it is mentioned that
hierarchical models often perform better with non-centered parameterizations,
especially when the sample size is limited. Non-centering λ led to additional
divergences so its parameterization was kept centered. We encountered no diver-
gences of other pathologies in the MCMC diagnostics, which yields additional
confirmation for the validity of our implementation. In principle the degrees
of freedom of the multivariate t-distribution could be estimated in addition to
the other model parameters. In our experiments we were, however, unable to
reliably recover this parameter so the implementation assumes it to be fixed
and input to the model. The source code for the Stan model is available at
https://github.com/velait/OU IDA.

3.1 Model comparison

To demonstrate the differences between the three basic model variants avail-
able for multiple observation units (complete, partial and no pooling) we now
compare the estimates they provide. We use a single simulated test set with
sample size similar to [7]: 30 time series, 30 samples each with 3 time units be-
tween observations. The parameter values were sampled from prior distributions
individually for each series and parameter.

Maximum a posteriori (MAP) estimates for the parameter λ from each model
as well as their distance to simulation values and widths of the 50% interquartile
ranges are displayed in 3. The MAP estimates of the partially pooled model are
on average closer to the simulation values, although some individual estimates are
farther as they get shrunk towards the estimate from completely pooled model
(dashed line). The IQRs are shorter compared to the model with no pooling,
which yields additional confirmation for the models improved accuracy. Similar
results were obtained for the other parameters.

One of the advantages of a hierarchical model with partially pooled parame-
ters is that the prior distributions can be estimated as well. This provides infor-
mation on the parameters’ population level variation. In Figure 4 the simulation
and estimated priors are compared. Prior of µ is recovered best and lambda on a
relatively satisfactory level as well. The prior of the variation parameter σ, how-
ever, is not very well estimated as the mode and variance are clearly different
from the target. The reason for less than ideal estimates may lie in the low num-
ber of values simulated in the first place, as only 30 values are drawn from each
distribution. Thus there is plenty of room for stochastic variation. Additional
uncertainties may arise due to possibly challenging regions in the (λ, σ) space.
As these parameters are intertwined it is possible that certain combinations (e.g.
small λ, large σ) pose challenges beyond the capabilities of our implementation.
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Fig. 3: A MAP estimates from different model variants. Dashed line marks the
completely pooled estimate and solid line the simulation values, sorted in in-
creasing order. B Distribution of estimates error, defined as difference between
MAP and simulation value. C Distribution of 50% IQR widths.
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4 Application to human microbiome time series

Next, we demonstrate the use of these models in analyzing the dynamics of
microbial ecosystems in the human body.
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In the first case study, two healthy volunteers were followed over a year and
provided hundreds of stool samples [3]. During the study the gut ecosystem of
one of the individuals experienced a dramatic change in composition due to a
Salmonella infection. This perturbation is beyond the capacities of the OU pro-
cess model and for this reason we have limited our analysis to the samples prior
to the infection, leaving 125 samples covering 4.5 moths for a closer analysis. The
sample size in this study is large in the human gut microbiome context, consist-
ing of nearly daily samples from two individuals over several months. In total
387 different genus level taxonomic units were observed out of which we chose to
focus on the symmetric and unimodal abundance types as their observed dynam-
ics roughly corresponds to the model assumptions. For demonstration purposes,
we limit the analysis to a single genus-level taxonomic unit, Bacteroides, which
is highly abundant and prevalent in human gut at least in the Western popu-
lations. We explored the estimates given by our implementation with the first
120 samples and subsets of these to assess how many samples are required for
estimates close to the full sample size. Figure 5A displays the MAP estimates for
various samples sizes, where values on the x-axis correspond the first n samples
of the full 120 time points. The estimates level after sufficient amounts of time
points suggesting that a there is little increase in accuracy after enough samples.
We also experimented with randomly removing observations and discovered that
roughly half of the samples can be removed without significant loss of accuracy
compared to the full sample size, see B.
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Fig. 5: MAP estimates for parameter λ against length of time series A and
proportion of randomly removed samples B.

We also carried out preliminary analyses on the HITChip Atlas data set [13],
which has considerably shorter time series but from a larger number of individ-
uals. The HITChip Atlas data set consists of stool samples from 1006 healthy
western adults. Multiple (2-5) follow-up samples were available from 78 subjects
with weeks or months between samples. We performed preliminary experiments
on this data and data simulated with similar abundance, variation and sparsity
profiles but recovered only unreliable and inaccurate results. The posterior esti-
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mates had high levels of uncertainty, the model inference had convergence issues,
and the results were sensitive to initialization and changes in the data, indicating
that the 2-5 sparse time points will not suffice to distinguish the effects of the
mean reversion and stochastic drift parameters in the hierarchical OU model.

5 Discussion

The main objective of this work has been to propose new general-purpose meth-
ods to characterize key properties of poorly understood dynamical systems based
on scarce longitudinal data, and demonstrate their applicability in the topical
research area of human microbiome studies.

We have extended the previously proposed Ornstein-Uhlenbeck (OU) driven
t-process by deriving hierarchical version, which allows the pooling of informa-
tion across multiple time series and parameter inference of the shared stochastic
process. This is specifically motivated by topical problems in human microbiome
research, where time series are often as short as 2-3 time points per individual,
but available for a potentially large number of individuals. In such case, the
traditional variants of the OU process are not applicable, and a hierarchical
extension can potentially help to aggregate information across multiple experi-
ments. We have implemented this model by adding a new level of hierarchy to
the standard OU driven t-process [9]. Importantly, we designed the model so
that the number of samples and observation times in each time series is flexible,
allowing efficient utilization of real time series where the number and timings
of the observations may differ across the available time series. This removes the
need to impute missing values, or force synchronized observation times, thus
facilitating application in many real-life scenarios. Following the work by [9],
our model takes advantage of the Student’s t-process based version of the OU
process, rather than the Wiener process which is more common in the OU pro-
cess literature, in order to increase robustness for outliers. This comes with little
additional computational cost.

In simulation experiments we have demonstrated the advantage of partially
pooling the parameters over the variants with complete and no pooling. In addi-
tion to increased accuracy the hierarchical OU process model offers information
on the population level variation of the model parameters as it learns the prior
distribution by estimating the hyperpriors. The model performance was satis-
factory when tested on a simulated data set with moderate amounts of samples
and series but failed to produce reliable estimates for very sparse and short time
series. We anticipate that this failure could be explained by the narrow width of
observation intervals compared to the simulated dynamics. Naturally observa-
tions need to be sufficiently dense and cover a large enough interval to be able
to capture dynamics at of a particular scale. We also demonstrated the use of
this model on longitudinal time series from human gut microbiome [3]. These
experiments clearly demonstrate how the model parameters converge towards
a saturation point with increasing time series lengths and densities. Regarding
technicalities of he model fitting, the MCMC sampling converged well, also sup-
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porting the validity of the implementation. For a more complete view on the
robustness of parameter inference, a more extensive probing of the parameter
ranges, alternative priors, observation noise and data with uneven and sparse
sampling intervals should be undertaken. Alternative parameterizations should
be tested to see if some perform better with higher sample sizes.

The hierarchical OU process provides several promising opportunities for fu-
ture extensions that are directly applicable to microbial ecological time series.
In particular, the standard OU process, which assumes unimodal and symmetri-
cally distributed data, could be generalized to model other abundance types [13]
of the human-associated microbial taxa abundance distributions. In particular,
the analysis of alternative community states of dynamical systems, frequently
observed the human vaginal microbiome[7], for instance, provides interesting
challenges for further research and model extensions. Our current implemen-
tation of the hierarchical OU process currently only handles time series with
unimodal density profiles. Moreover, generalizations of the hierarchical model to
the multivariate setting would be valuable. These depend on the development
of computationally more efficient implementations, for instance based on vari-
ational learning of simulation-based methods. Apart from [9] we are not aware
of applications of these models, in particular its hierarchical extension that we
develop here, in the context of human microbiome studies.

Whereas the focus in our current analysis is limited to investigating the
applicability of the model to readily available real observations from a single
taxonomic group, further studies could provide a systematic comparison of the
stochastic, mean and drift parameters across different taxonomic units in order
to characterize differences in the dynamical variation in the abundance level
of various gut bacteria. By classifying the individuals to larger groups based on
health status, life style factors, age or other meta data, clinically and biologically
interesting connection could be learned. The methodology and the challenges of
overcoming the limitations of scarce, noisy, and poorly understood observations
that these models help to solve are very generic, and the potential applications
naturally reach beyond population dynamics.
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