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Abstract. A k-abelian cube is a word uvw, where u, v, w have the same
factors of length at most k with the same multiplicities. Previously it has
been known that k-abelian cubes are avoidable over a binary alphabet
for k ≥ 5. Here it is proved that this holds for k ≥ 3.
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1 Introduction

The study of repetition-free infinite words (or even the whole area of combina-
torics on words) was begun by Axel Thue [15, 16]. He proved that using three
letters one can construct an infinite word that does not contain a square, that is
a factor of the form uu where u is a non-empty word. Further, using two letters
one can construct an infinite word that does not contain a cube, that is a factor
of the form uuu where u is a non-empty word, or even an overlap, that is a
factor of the form auaua where u is a word and a is a letter. Due to their initial
obscure publication, these results have been rediscovered several times.

The problem of repetition-freeness has been studied from many points of
view. One is to consider fractional powers. This leads to the concept of repeti-
tion threshold and the famous Dejean’s conjecture, which was proved in many
parts. For example, an infinite number of cases were settled in [3], while the last
remaining cases were settled independently in [4] and [14]. Another example is
the repetition-freeness of partial words. It was shown that there exist infinite
ternary words with an infinite number of holes whose factors are not matching
any squares (overlaps) of words of length greater than one [12, 2]. For the abelian
case an alphabet with as low as 5 letters is enough in order to construct an in-
finite word with an infinite number of holes with factors that do not match an
abelian square of any word of length greater than two [1].
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In this paper abelian repetition-freeness is an important concept. An abelian
square is a non-empty word uv, where u and v have the same number of occur-
rences of each symbol. Abelian cubes and nth powers are defined in a similar
way. Erdős [6] raised the question whether abelian squares can be avoided, i.e.,
whether there exist infinite words over a given alphabet that do not contain
two consecutive permutations of the same factor. It is easily seen that abelian
squares cannot be avoided over a three-letter alphabet: Each word of length eight
over three letters contains an abelian square. Dekking [5] proved that over a bi-
nary alphabet there exists a word that avoids abelian fourth powers, and over a
ternary alphabet there exists a word that avoids abelian cubes. The problem of
whether abelian squares can be avoided over a four-letter alphabet was open for
a long time. In [11], using an interesting combination of computer checking and
mathematical reasoning, Keränen proved that abelian squares are avoidable on
four letters.

Recently, several questions have been studied from the point of view of k-
abelian equivalence. For a positive integer k, two words are said to be k-abelian
equivalent if they have the same number of occurrences of every factor of length
at most k. These equivalence relations provide a bridge between abelian equiva-
lence and equality, because 1-abelian equivalence is the same as abelian equiva-
lence, and as k grows, k-abelian equivalence becomes more and more like equality.
The topic of this paper is k-abelian repetition-freeness, but there has also been
research on other topics related to k-abelian equivalence [9, 10].

In [9], the authors show that 2-abelian squares are avoidable only on a four
letter alphabet. For k ≥ 3, the question of avoiding k-abelian squares is open, the
minimal alphabet size being either three or four. Computer experiments would
suggest that there are 3-abelian square-free ternary words, but it is known that
there are no pure morphic k-abelian square-free ternary words for any k [7].

It was conjectured in [9] that for avoiding k-abelian cubes a binary alphabet
suffices whenever k ≥ 2 since computer generated words of length 100000 having
the property have been found. This was proved for k ≥ 8 in [8] and for k ≥ 5 in
[13].

In this work it is proved that 3-abelian cubes can be avoided on a binary
alphabet. The methods used are somewhat similar to those used in [8] and [13]:
A word is constructed by mapping an abelian cube-free ternary word by a mor-
phism. However, there are some crucial differences. Most importantly, the mor-
phisms used in this paper are not uniform, and this makes many parts of the
proofs different and more difficult. The method used in this article is fairly gen-
eral, but using it requires an extensive case analysis, which can only be carried
out with the help of a computer. The 2-abelian case remains open.

2 Preliminaries

We denote by Σ a finite set of symbols called alphabet. For n ≥ 0, the n-
letter alphabet {0, . . . , n − 1} will be denoted by Σn. A word w represents a
concatenation of letters from Σ. By ε we denote the empty word. We denote



by |w| the length of w and by |w|u the number of occurrences of u in w. For a
factorization w = uxv, we say that x is a factor of w, and whenever u is empty
x is a prefix and, respectively, when v is empty x is a suffix of w. The prefix of
w of length k will be denoted by prefk(w) and the suffix of length k by suffk(w).

The powers of a word w are defined recursively, w0 = ε and wn = wwn−1 for
n > 0. We say that w is an nth power if there exists a word u such that w = un.
Second powers are called squares and third powers cubes.

Words u and v are abelian equivalent if |u|a = |v|a for all letters a ∈ Σ. For
a word u ∈ Σ∗

n, let Pu = (|u|0, . . . , |u|n−1) be the Parikh vector of u. Words
u, v ∈ Σ∗

n are abelian equivalent if and only if Pu = Pv.
Two words u and v are k-abelian equivalent if |u|t = |v|t for every word

t of length at most k. Obviously, 1-abelian equivalence is the same as abelian
equivalence, and words of length less than k − 1 (or, in fact, words of length
less than 2k) are k-abelian equivalent only if they are equal. For words u and
v of length at least k − 1, another equivalent definition can be given: u and v
are k-abelian equivalent if |u|t = |v|t for every word t of length k, prefk−1(u) =
prefk−1(v) and suffk−1(u) = suffk−1(v). This latter definition is actually the one
used in the proofs of this article.

A k-abelian nth power is a word u1u2 . . . un, where u1, u2 . . . , un are k-abelian
equivalent. For k = 1 this gives the definition of an abelian nth power.

A mapping f : A∗ → B∗ is a morphism if f(xy) = f(x)f(y) for any words
x, y ∈ A∗, and is completely determined by the images f(a) for all a ∈ A.

If no non-empty square is a factor of a word w, then it is said that w is
square-free, or that w avoids squares. If there exists an infinite square-free word
over an alphabet Σ, then it is said that squares are avoidable on Σ. Of course
the only thing that matters here is the size of Σ. Similar definitions can be given
for cubes and higher powers, as well as for k-abelian powers.

Unlike ordinary cubes, abelian cubes are not avoidable on a binary alpha-
bet, and unlike ordinary squares, abelian squares are not avoidable on a ternary
alphabet. However, Dekking showed in [5] that two letters are sufficient for avoid-
ing abelian fourth powers, and three letters suffice for avoiding abelian cubes.
An extension of the latter result is stated in the following theorem. It is proved
that the word of Dekking avoids also many other factors in addition to abelian
cubes.

Theorem 1. Let w = σω(0) be a fixed point of the morphism σ : Σ∗
3 → Σ∗

3

defined by
σ(0) = 0012, σ(1) = 112, σ(2) = 022.

Then w is abelian cube-free and contains no factor apbqcrd where a, b, c, d are
letters and one of the following conditions is satisfied:

1. abcd = 0112 and Pp = Pq = Pr,
2. abcd = 0210 and Pp = Pq − (1,−1, 1) = Pr − (0,−1, 1),
3. abcd = 0211 and Pp = Pq − (1,−1, 1) = Pr − (1,−2, 1),
4. abcd = 0220 and Pp = Pq − (1,−1, 1) = Pr − (0, 0, 0),
5. abcd = 0221 and Pp = Pq − (1,−1, 1) = Pr − (1,−1, 0),



6. abcd = 1001 and Pp = Pq = Pr,
7. abcd = 1002 and Pp = Pq = Pr,

Proof. The word w was shown to be abelian cube-free in [5]. Similar ideas can
be used to show that w avoids the factors apbqcrd. Case 1 was proved in [13].
Case 2 is proved here. Cases 3–6 are similar to the first two, so their proofs are
omitted. Case 7 is more difficult, so it is proved here.

Let f : Σ∗ → Z7 be the morphism defined by

f(0) = 1, f(1) = 2, f(2) = 3

(here Z7 is the additive group of integers modulo 7). Then f(σ(x)) = 0 for all
x ∈ Σ. If apbqcrd is a factor of w, then there are u, s, t such that σ(u) = sapbqcrdt
and u is a factor of w. Consider the values

f(s), f(sa), f(sap), f(sapb), f(sapbq), f(sapbqc), f(sapbqcr), f(sapbqcrd). (1)

These elements are of the form f(σ(u′)v′) = f(v′), where v′ is a prefix of one of
0012, 112, 022. The possible values for f(v′) are 0, 1, 2 and 4.

Consider Case 2. Let abcd = 0210. If Pp = Pq − (1,−1, 1) = Pr − (0,−1, 1),
then f(p) = f(q)−2 = f(r)−1. If we denote i = f(s), j = f(p), then the values
for (1) are

i, i + 1, i + j + 1, i + j + 4, i + 2j + 6, i + 2j + 1, i + 3j + 2, i + 3j + 3.

For all values of i and j, one is not 0, 1, 2 or 4. This is a contradiction.
Consider Case 7. Let abcd = 1002. Let apbqcrd be the shortest factor of w

satisfying the conditions of Case 7. Then Pp = Pq = Pr and f(p) = f(q) = f(r).
If we denote i = f(s), j = f(p), then the values for (1) are

i, i + 2, i + j + 2, i + j + 3, i + 2j + 3, i + 2j + 4, i + 3j + 4, i + 3j.

It must be i = 0 and j = 6, because otherwise one of the values is not 0, 1, 2 or
4. There are letters a′, b′, c′, d′ and words s′, p′, q′, r′, t′, s2, p1, p2, q1, q2, r1, r2, t1
such that

u = s′a′p′b′q′c′r′d′t′ s = σ(s′)s2

s21p1 = σ(a′) p = p1σ(p′)p2

p20q1 = σ(b′) q = q1σ(q′)q2

q20r1 = σ(c′) r = r1σ(r′)r2

r22t1 = σ(d′) t = t1σ(t′),

i.e. the situation is like in the following diagram:

s 1 p 0 q 0 r 2 t
s2 p1 p2 q1 q2 r1 r2 t1

σ(s′) σ(a′) σ(p′) σ(b′) σ(q′) σ(c′) σ(r′) σ(d′) σ(t′)



Because i = 0, s2 = ε. Then σ(a′) begins with 1, so a′ = 1 and p1 = 12. Thus
p = 12σ(p′)p2. It must be f(p2) = f(p) − f(σ(p′)) − f(12) = j − 0 − 5 = 1,
so p2 = 0. Then σ(b′) begins with 00, so b′ = 0 and q1 = 12. Like above, it
can be concluded that q = 12σ(q′)0, and similarly also r = 12σ(r′)0. But then
1p′0q′0r′2 is a factor of w. If

M =

|σ(0)|0 |σ(1)|0 |σ(2)|0
|σ(0)|1 |σ(1)|1 |σ(2)|1
|σ(0)|2 |σ(1)|2 |σ(2)|2

 =

2 1 1
0 2 1
1 0 2


and Parikh vectors are interpreted as column vectors, then

MPp′ = Pσ(p′), MPq′ = Pσ(q′), MPr′ = Pσ(r′).

Because M is invertible and σ(p′), σ(q′), σ(r′) are abelian equivalent, also p′, q′, r′

are abelian equivalent. Because 1p′0q′0r′2 is shorter than 1p0q0r2, this contra-
dicts the minimality of 1p0q0r2. ut

If abelian cubes are avoidable on some alphabet, then so are k-abelian cubes.
This means that k-abelian cubes are avoidable on a ternary alphabet for all k.
But for which k are they avoidable on a binary alphabet? In [8] it was proved
that this holds for k ≥ 8, and conjectured that it holds for k ≥ 2. In [13] it was
proved that this holds for k ≥ 5. In this article it is proved that this holds for
k ≥ 3. The case when k = 2 remains open.

3 3-abelian cube-freeness

Let w ∈ Σω
m. The following remarks will be used in the case where m = 3, n = 2,

w is abelian cube-free and k = 4 or k = 3, but they hold also more generally.
For a word v ∈ Σ∗

n, let Qv = (|v|t0 , . . . , |v|tN−1), where t0, . . . , tN−1 are the
words of Σk

n in lexicographic order. When doing matrix calculations, all vectors
Pu and Qv will be interpreted as column vectors.

Let h : Σ∗
m → Σ∗

n be a morphism. It needs to be assumed that h satisfies
three conditions:

– There is a word s ∈ Σk−1
m that is a prefix of h(a) for every a ∈ Σm.

– The matrix M whose columns are Qh(0)s, . . . , Qh(m−1)s has rank m.
– There are no k-abelian equivalent words v1, v2, v3 of length less than

2 max {h(a) | a ∈ Σm}

such that v1v2v3 is a factor of h(w).

Let M+ be the Moore-Penrose pseudoinverse of M . The only properties of M+

needed in this article are that it exists and can be efficiently computed, and that
since the columns of M are linearly independent, M+M is the m ×m identity
matrix. For any word u ∈ Σ∗, Qh(u)s = MPu.



Lemma 2. If the word h(w) has a factor v1v2v3, where v1, v2, v3 are k-abelian
equivalent, then there are letters a0, a1, a2, a3, b2, b3 ∈ Σm, words u1, u2, u3 ∈ Σ∗

m

and indices

i0 ∈ {0, . . . , |h(a0)| − 1},
i1 ∈ {k − 1, . . . , |h(a1)|+ k − 2},
i2 ∈ {k − 1, . . . , |h(a2)|+ k − 2},
i3 ∈ {k − 1, . . . , |h(a3)|+ k − 2}

(2)

such that a0u1a1b2u2a2b3u3a3 is a factor of w and vi = xih(ui)yi for i ∈ {1, 2, 3},
where

x1 = suff |h(a0)|−i0(h(a0)) y1 = prefi1(h(a1b2)),
x2 = suff |h(a1b2)|−i1(h(a1b2)) y2 = prefi2(h(a2b3)), (3)
x3 = suff |h(a2b3)|−i2(h(a2b3)) y3 = prefi3(h(a3)s).

Proof. It was assumed that h(w) does not contain short k-abelian cubes, and a
longer k-abelian cube v1v2v3 must be of the form specified in the claim. ut

Because s is a prefix of h(ui) and yi, it follows that Qvi
= Qxis+Qh(ui)s+Qyi

.
The idea is to iterate over all values of a0, a1, a2, a3, b2, b3 and i0, i1, i2, i3 and

in each case try to deduce that one of the following holds:

– There are no u1, u2, u3 such that the words vi = xih(ui)yi are k-abelian
equivalent.

– If vi = xih(ui)yi are k-abelian equivalent, then a0u1a1b2u2a2b3u3a3 contains
an abelian cube or a factor of the form mentioned in Theorem 1.

If we succeed, then there are words w such that h(w) is k-abelian cube-free. The
following lemmas will be useful.

Lemma 3. Let a0, a1, a2, a3, b2, b3 ∈ Σm, indices i0, i1, i2, i3 be as in (2) and
words x1, x2, x3, y1, y2, y3 be as in (3). Let the following condition be satisfied:

prefk−1(x1s),prefk−1(x2),prefk−1(x3) are not equal or
suffk−1(y1), suffk−1(y2), suffk−1(y3) are not equal.

(C1)

Then there are no u1, u2, u3 such that the three words vi = xih(ui)yi would be
k-abelian equivalent.

Proof. If the prefixes or suffixes of v1, v2, v3 of length k − 1 are not equal, then
v1, v2, v3 cannot be k-abelian equivalent. ut
Lemma 4. Let a0, a1, a2, a3, b2, b3 ∈ Σm, indices i0, i1, i2, i3 be as in (2) and
words x1, x2, x3, y1, y2, y3 be as in (3). Let Ri = Qxis +Qyi for i ∈ {1, 2, 3}. Let
the following condition be satisfied:

M+(R1 −Ri) is not an integer vector or

MM+(R1 −Ri) + Ri are not equal for i ∈ {1, 2, 3}.
(C2)

Then there are no u1, u2, u3 such that the three words vi = xih(ui)yi would be
k-abelian equivalent.



Proof. If vi = xih(ui)yi, then Qvi
= Qh(ui)s + Ri = MPui

+ Ri. If Qv1 = Qv2 =
Qv3 , then Pui−Pu1 = M+(R1−Ri). This must be an integer vector. The vectors
Qvi −MPu1 = MM+(R1 −Ri) + Ri must be equal for i ∈ {1, 2, 3}. ut

Lemma 5. Let a0, a1, a2, a3, b2, b3 ∈ Σm, indices i0, i1, i2, i3 be as in (2) and
words x1, x2, x3, y1, y2, y3 be as in (3). Let Ri = Qxis +Qyi

for i ∈ {1, 2, 3}. Let
the following condition be satisfied:

For i ∈ {0, 1, 2, 3} there are ci, di ∈ {ai, ε} such that cidi = ai and

M+(R1 −R1) + Pd0c1

= M+(R1 −R2) + Pd1b2c2

= M+(R1 −R3) + Pd2b3c3 .

(C3)

If a0u1a1b2u2a2b3u3a3 is abelian cube-free, then the three words vi = xih(ui)yi

cannot be k-abelian equivalent.

Proof. Like in the proof of Lemma 4, the k-abelian equivalence of v1, v2, v3 im-
plies Pui

− Pu1 = M+(R1 −Ri). From this and (C3) it follows that

Pu1 + Pd0c1 = Pu2 + Pd1b2c2 = Pu3 + Pd2b3c3 ,

so d0u1c1, d1b2u2c2, d2b3u3c3 are abelian equivalent. This contradicts the abelian
cube-freeness of a0u1a1b2u2a2b3u3a3. ut

Lemma 6. Let a0, a1, a2, a3, b2, b3 ∈ Σm, indices i0, i1, i2, i3 be as in (2) and
words x1, x2, x3, y1, y2, y3 be as in (3). Let Ri = Qxis + Qyi for i ∈ {1, 2, 3} and
Si = M+(R1 −Ri) + Pbi

for i ∈ {2, 3}. Let the following condition be satisfied:

(0 = S2 = S3 and a0a1a2a3 = 0112) or
(0 = S2 − (1,−1, 1) = S3 − (0,−1, 1) and a0a1a2a3 = 0210) or
(0 = S2 − (1,−1, 1) = S3 − (1,−2, 1) and a0a1a2a3 = 0211) or
(0 = S2 − (1,−1, 1) = S3 − (0, 0, 0) and a0a1a2a3 = 0220) or (C4)
(0 = S2 − (1,−1, 1) = S3 − (1,−1, 0) and a0a1a2a3 = 0221) or
(0 = S2 = S3 and a0a1a2a3 = 1001) or
(0 = S2 = S3 and a0a1a2a3 = 1002).

If a0u1a1b2u2a2b3u3a3 is not of the form apbqcrd specified in Theorem 1, then
the three words vi = xih(ui)yi cannot be k-abelian equivalent.

Proof. Like in the proof of Lemma 4, the k-abelian equivalence of v1, v2, v3 im-
plies Pui

− Pu1 = M+(R1 − Ri). From this and the first row of (C4) it follows
that

Pu1 = Pu2 + Pb2 = Pu3 + Pb3 ,

so u1, b2u2, b3u3 are abelian equivalent, which is a contradiction. The other rows
lead to a contradiction in a similar way. ut



We can iterate over all values of a0, a1, a2, a3, b2, b3 and i0, i1, i2, i3. If in all
cases one of Conditions C1, C2, C3 is true, then h maps all abelian cube-free
words to k-abelian cube-free words. If in all cases one of Conditions C1, C2, C3,
C4 is true, then h maps the word of Theorem 1 to a k-abelian cube-free word.
In this way we obtain Theorems 7 and 8.

Concerning the actual implementation of the above algorithm, there are some
optimizations that can be made. First, if i1 and i2 are such that b1 and b2 do
not affect the definition of x1, x2, x3, y1, y2, y3 in (3), then instead of iterating
over all values of b1 and b2, they can be combined with u2 and u3. Second, in
most of the cases Condition C1 is true, and these cases can be handled easily.
In the following theorems, there are a couple of thousand nontrivial cases, i.e.
cases where Condition C1 is false. A Python file used for proving Theorems 7
and 8 is available on the Internet3.

Theorem 7. The morphism defined by

0 7→ 10110100110, 1 7→ 101101001001, 2 7→ 1011001100100,

maps every abelian cube-free ternary word to a 4-abelian cube-free word.

Proof. The morphism satisfies all conditions stated at the beginning of this sec-
tion:

– The images of 0, 1 and 2 have the common prefix 101.
– The rows of M corresponding to the factors 0010, 0101 and 1100 are (0, 1, 2),

(1, 0, 1) and (0, 0, 2), respectively. These are linearly independent, so the rank
of M is 3.

– It can be checked that the image of any abelian cube-free word does not
contain 4-abelian cubes of words shorter than 26.

Thus it suffices to check all cases as in the algorithm described above. Observe
that here Condition C4 is not needed. ut

Theorem 8. The morphism defined by

0 7→ 01010, 1 7→ 0110010, 2 7→ 0110110,

maps the word w of Theorem 1 to a 3-abelian cube-free word.

Proof. The morphism satisfies all conditions stated at the beginning of this sec-
tion:

– The images of 0, 1 and 2 have the common prefix 01.
– The rows of M corresponding to the factors 010, 011 and 101 are (2, 1, 0),

(0, 1, 2) and (1, 0, 1), respectively. These are linearly independent, so the rank
of M is 3.

– It can be checked that the image of w does not contain 3-abelian cubes of
words shorter than 14.

3 http://users.utu.fi/amsaar/en/code.htm



Thus it suffices to check all cases as in the algorithm described above. ut

We end this work with some remarks regarding how the search of these
morphisms was performed. A first observation is that in order to avoid short
cubes and given the fact that we want the obtained images to have the same
prefix of length k−1, we can only look at morphisms obtained by concatenation of
elements from the set {ab, aab, abb, aabb}. Moreover, when investigating infinite
words obtained by application of some morphism to the Dekking word, we note
that not only all the images but also their concatenation with themselves must be
k-abelian cube-free. Hence, one can generate all words up to some length, say 30,
and check for which of these both them and their squares occur among factors.
Next, using some backtracking one can check if any triple made of these words
would in fact be fit for application on the Dekking word. One final observation is
that in order to ensure that any of these triples constitute good candidates, one
must check the k-abelian cube-freeness property for factors up to length 10,000,
as it happened that the first occurrence of a 3-abelian cube of length over 1,000
started after position 7,000 of the generated word.
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