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ABSTRACT

Neutron stars (NSs) in low-mass X-ray binaries rotate at frequencies high enough to significantly deviate from sphericity (ν∗ ∼200–
600 Hz). First, we investigate the effects of rapid rotation on the observational appearance of a NS. We propose analytical formulae
relating gravitational mass and equatorial radius of the rapidly rotating NS to the mass M and radius R of a non-rotating NS of the
same baryonic mass using accurate fully relativistic computations. We assume that the NS surface emission is described by the Planck
function with two different emission patterns: the isotropic intensity and that corresponding to the electron-scattering dominated
atmosphere. For these two cases we compute spectra from an oblate rotating NS observed at different inclination angles using the
modified oblate Schwarzschild (MOS) approximation, where light bending is computed in Schwarzschild metric, but frame dragging
and quadrupole moment of a NS are approximately accounted for in the photon redshift calculations. In particular, we determine the
solid angle at which a rotating NS is seen by a distant observer, the observed colour temperature and the blackbody normalization.
Then, we investigate how rapid rotation affects the results of NS radius determination using the cooling tail method applied to the
X-ray burst spectral evolution. We approximate the local spectra from the NS surface by a diluted blackbody with the luminosity-
dependent dilution factor using previously computed NS atmosphere models. We then generalize the cooling tail method to the case
of a rapidly rotating NS to obtain the most probable values of M and R of the corresponding non-rotating NS with the same baryonic
mass. We show that the NS radius could be overestimated by 3–3.5 km for face-on stars of R ≈ 11 km rotating at ν∗ = 700 Hz if the
version of the cooling tail method for a non-rotating NS is used. We apply the method to an X-ray burst observed from the NS rotating
at ν∗ ≈ 532 Hz in SAX J1810.8−2609. The resulting radius of the non-rotating NS (assuming M = 1.5M�) becomes 11.8 ± 0.5 km
if it is viewed at inclination i = 60◦ and R = 11.2 ± 0.5 km for a face-on view, which are smaller by 0.6 and 1.2 km than the radius
obtained using standard cooling tail method ignoring rotation. The corresponding equatorial radii of these rapidly rotating NSs are
12.3±0.6 km (for i = 60◦) and 11.6±0.6 km (for i = 0◦).

Key words. stars: neutron – stars: atmospheres – methods: numerical – stars: individual (SAX J1810.8−2609) – X-rays: binaries –
X-rays: bursts

1. Introduction

Thermonuclear explosions (flashes) of the freshly accreting mat-
ter on the surface of neutron stars (NSs) in low-mass X-ray
binaries (LMXBs) are observed as type I X-ray bursts (Lewin
et al. 1993; Strohmayer & Bildsten 2006). The most success-
ful X-ray observatory for X-ray burst studies was Rossi X-ray
Timing Explorer (RXTE). The large area and the high time res-
olution of its Proportional Counter Array (PCA) (Jahoda et al.
2006) allowed investigation of the X-ray burst flux variability
with unprecedented accuracy (Galloway et al. 2008). Thanks to
RXTE/PCA, it was also possible to perform accurate measure-
ments of X-ray burst spectral evolution. The burst spectra, usu-
ally well fitted with a blackbody, give a detailed view of the
evolution of the main parameters, such as the blackbody tem-
perature TBB, its normalization K, and the blackbody flux FBB
(see e.g. Galloway et al. 2008). However, local spectra of hot NS
atmospheres are not actually blackbodies, but are rather close
to a diluted blackbody with the surface flux proportional to the

Planck function wπBE(Tc). The colour temperature of the spec-
trum Tc is typically higher than the effective temperature Teff

by the colour-correction factor fc = Tc/Teff > 1. As a result,
the dilution factor w ≈ f −4

c has to be smaller than unity to con-
serve the bolometric flux. The observed blackbody temperature
TBB = Tc/(1 + z) is just a gravitationally redshifted colour tem-
perature. The blackbody normalization K of the observed burst
spectrum is proportional to the dilution factor w characterizing
properties of radiation escaping from the NS surface.

The dilution and colour-correction factors depend on the
NS luminosity relative to the Eddington luminosity, and change
most significantly near the Eddington limit. Therefore, the most
powerful X-ray bursts with luminosities exceeding the Edding-
ton luminosity, so-called photospheric radius expansion (PRE)
bursts, have to demonstrate a significant evolution of the black-
body normalization after the moment when the photosphere set-
tles down at the NS surface (the touchdown point). Indeed, this
kind of evolution has been observed in some X-ray bursts and the
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cooling tail method was designed to obtain the apparent NS size
and the Eddington flux from the data (Suleimanov et al. 2011a;
Poutanen et al. 2014). They were then converted to constraints
on the NS basic parameters such as mass M and radius R. How-
ever, due to a divergence of the Jacobian the resulting distribu-
tion of M and R is biased (Özel & Psaltis 2015). This problem
was avoided by fitting the evolution of the blackbody normaliza-
tion during the cooling tail using M and R as parameters (Nättilä
et al. 2016; Suleimanov et al. 2017b). A more detailed descrip-
tion, the history, and applications of the method are reviewed in
Suleimanov et al. (2016) and Degenaar & Suleimanov (2018).
Further development of the method is the direct fitting of the
observed spectral sequence with the model spectra of hot NS at-
mospheres. It allowed us to obtain NS radii with unprecedented
accuracy of 0.5 km (Nättilä et al. 2017). Such a narrow range
of allowed NS radii already gives interesting constraints on the
equation of state (EoS) of cold dense matter (see the recent re-
view by Lattimer & Prakash 2016).

The studies quoted above assume that the NS is spherical
and its emission is isotropic. However, the discovery by RXTE
of burst oscillations (Strohmayer et al. 1996) and accreting mil-
lisecond pulsars (Wijnands & van der Klis 1998) imply that
NSs in LMXBs are rapidly rotating at a rate in the range ν∗ ≈
200–600 Hz (Watts 2012; Patruno & Watts 2012; Campana &
Di Salvo 2018). Rapid rotation distorts the NS shape and pro-
duces a potentially important systematic effect on the NS radii
determination. Radiation from the approaching side of the NS
becomes Doppler boosted shifting the emission peak to higher
energies as, for example, was extensively discussed in the stud-
ies of pulse profiles from millisecond pulsars using the so-called
Schwarzschild+Doppler (S+D) (Poutanen & Gierliński 2003;
Poutanen & Beloborodov 2006) and oblate Schwarzschild (OS)
approximations (Morsink et al. 2007; Bogdanov et al. 2019). Ro-
tation also affects the value of the local gravitational acceleration
and therefore the value of the flux in Eddington units and as a
consequence the escaping spectrum and the colour correction.

Models for rotating NS have been constructed for a rather
long time, with the current state being presented by Paschalidis
& Stergioulas (2017). The accurate shape of a rotating NS de-
pends on the assumed EoS, but for the astrophysical applications
some approximate rotating NS models as suggested by Morsink
et al. (2007) and AlGendy & Morsink (2014) are sufficient. The
influence of the oblate form of the rotating NSs on the pulse
profiles of millisecond pulsars was considered using accurate
general relativistic ray-tracing in the curved space-time (see e.g.
Cadeau et al. 2007; Nättilä & Pihajoki 2018). The effects of rapid
rotation on the observed spectra and the line profiles were stud-
ied by Bauböck et al. (2013, 2015). In particular, Bauböck et al.
(2015) computed the angle-averaged correction to the measured
NS radius as a function of the rotation frequency assuming local
isotropic blackbody emission of the same temperature. Vincent
et al. (2018), on the other hand, used the local model atmosphere
spectra from Majczyna et al. (2005), but assumed no latitudinal
variation. We note that a modest change in the gravitational ac-
celeration leads to large change in the colour-correction factor,
especially close to the Eddington limit. Thus, we suggest that in
order to compute realistic observed X-ray burst spectra, latitu-
dinal variations of the local atmosphere spectra (e.g. in terms of
variations of the colour-correction factor) should be accounted
for.

In this paper we suggest a new method for computing spec-
tra from rapidly rotating NSs. We base our approach on a slow-
rotation approximation for the NS shape and space-time metric
proposed by AlGendy & Morsink (2014). We introduce the mod-

ified oblate Schwarzschild (MOS) approximation where light
bending is computed in Schwarzschild metric, but for calcu-
lations of the gravitational redshift and Doppler boost we ap-
proximately account for the frame dragging and quadrupole mo-
ment of a NS. In Sect. 2 we propose analytical formulae con-
necting the gravitational mass and equatorial radius of a rotat-
ing NS to the mass and radius of a non-rotating NS of the same
baryonic mass. We then compute the spectra of the blackbody
emitting, rapidly rotating NSs and obtain the colour-correction
and dilution factors as a function of rotation rate. We extend
the direct cooling tail method to rapidly rotating NSs in Sect. 3.
The modified method is applied to the X-ray burst from LMXB
SAX J1810.8−2609 in Sect. 4. We summarize the results in
Sect. 5. Technical details are presented in the Appendices.

2. Observational appearance of rapidly rotating NSs

One of the goals of the current work is to develop the modified
direct cooling tail method applicable to rapidly rotating NSs. The
final result of the method would be an estimation of the equiva-
lent radius of a non-rotating NS of a given mass using observed
data on the X-ray bursts from the surface of a rapidly rotating
NS. Two additional parameters appearing in this task are the ro-
tational angular velocity Ω∗ = 2πν∗ of the NS and the inclina-
tion angle i between the rotation axis and the line of sight to the
observer. The exact model of the rapidly rotating NS depends
on the assumed EoS in its inner core, which is not well known.
Moreover, constraining it from the observations is one of our
goals. Fortunately, the shape of a rapidly rotating NS depends
on the actual EoS only slightly, if the rotation is not very rapid,
ν∗ < 700 Hz. In this case, a slow-rotation approximation can be
used, and the model of a rapidly rotating NS depends only on its
gravitational mass M, equatorial radius Re, and the angular ve-
locity Ω∗, as discussed by Morsink et al. (2007) and AlGendy &
Morsink (2014). The approach suggested in these works is used
in this paper (see Appendix A for details). We describe now the
effects arising due to rapid rotation.

2.1. Connection between basic parameters of rotating and
non-rotating NSs

The first step in understanding the impact of rapid rotation is to
compute the shape of a NS rotating with a given observed fre-
quency ν∗. The most important input parameter is the equatorial
radius Re (see Appendix A). We would like to find a connection
of the radius R and the mass M of a non-rotating NS with the
equatorial radius Re and gravitational mass M′ of a NS with the
same baryonic mass M̄, rotating at a rate ν∗. Cook et al. (1994)
computed models of rapidly rotating NSs in general relativity
for several EoS and a few values of NS masses, including 1.4M�
and the maximum possible NS mass for a given EoS. The ratio
of Re to the radius of the non-rotating configuration R computed
from these models is shown in Fig. 1 as a function of the relative
rotation frequency ν̄ = ν∗/νcr, where

νcr = 1278 M1/2
1.4

(
10 km

R

)3/2

Hz (1)

is the maximum possible rotation frequency for a given non-
rotating NS mass and radius (Haensel et al. 2009) and we defined
M1.4 = M/1.4M�. The tabulated values can be well represented
by an approximate formula

Re = R
[
0.9766 +

0.025
1.07 − ν̄

+ 0.07 M3/2
1.4 ν̄

2
]
, (2)
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Fig. 1. Dependences of the ratio Re/R on the relative rotational fre-
quency for numerical NS models with various EoS (Cook et al. 1994)
for the maximum possible mass (top panel) and the mass M = 1.4M�
(bottom panel). Red solid curves show the fits with Eq. (2) for the
masses M = 2.5M� (top panel) and 1.4M� (bottom panel). The fitting
curve for M = 1.4M� is shown in the top panel as dashes. The relative
errors of the fits are also shown in the narrow additional panels below
the main panels.

which is shown in Fig. 1 by red curves. The relative fitting errors
are also shown in the additional panels. The maximum errors of
fitting using Eq. (2) are not larger than 5% for the most massive
and rapidly rotating NSs. We note that we use the extreme EoSs
A and L from Cook et al. (1994), which bracket the most prob-
able modern EoS (see e.g. Nättilä et al. 2016), giving us a wider
range of values to test our formulae.

The mass of the rotating configuration is also affected. It
is obvious that the gravitational mass of the NS is not a sim-
ple sum of the baryon masses M̄, but is reduced roughly as
M = M̄ − GM̄2/c2R due to a deep gravitational well. Because
the radius of the rotating NS is larger than that of a non-rotating
NS, the gravitational correction is reduced and the gravitational
mass increases. The ratio of the gravitational mass of a rotating
star M′ to the mass of a non-rotating star M increases with the
rotation rate as shown in Fig. 2 based on calculations of Cook
et al. (1994). The tabulated values can be fitted by a relation (see
red solid curves in Fig. 2)

M′ = M
[
a0 +

a1

1.1 − ν̄
+ a2 ν̄

2
]
, (3)

where the fitting coefficients are a0 = 1−a1/1.1, a1 = 0.001M3/2
1.4 ,

and a2 = 10a1. The accuracy of Eq. (3) is typically better than
1% (see additional panels in Fig. 2). We also note that rela-
tions (2) and (3) are valid for the NSs of fixed baryonic mass
M̄.

Fig. 2. Dependences of ratios M′/M on the relative rotational frequency
for numerical NS models with various EoS (Cook et al. 1994) for the
maximum possible mass (top panel) and the mass M = 1.4M� (bottom
panel). Red solid curves show the fits with Eq. (3) for the masses M =
2.5M� (top panel) and 1.4M� (bottom panel). The fitting curve for M =
1.4M� is shown in the top panel as dashes. The relative errors of the fits
are also shown in the narrow additional panels below the main panels.

2.2. Apparent area of a rotating NS

The centrifugal force deforms the shape of a rapidly rotating NS,
which becomes flattened at the poles and extended at the equa-
tor. This means that the projection area on the sky of a rapidly
rotating NS S (ν∗, i) is different from the visible area of the non-
rotating NS of the same baryonic mass S (ν∗ = 0) = πR2(1 + z)2,
and it depends on the inclination angle i. The apparent area of
the given family of models of the rapidly rotating NSs of the
same baryonic mass is computed via Eq. (B.34) using the spe-
cific intensity and the energy ratio equal to one, and the approach
described further in Appendix B. The relation between the equa-
torial radius Re and the radius of the corresponding non-rotating
NS is given by Eq. (2), while the masses are related via Eq. (3).
The NS shape is described by approximate formulae from Al-
Gendy & Morsink (2014), see Appendix A. The relativistic com-
putations of the ratio S (ν∗, i)/S (ν∗ = 0) for a few inclination an-
gles i are presented in the top panel of Fig. 3. We note that the
apparent area is larger for low inclination and the deformation
is smaller for more compact stars. Because this ratio is greater
than unity, in order to obtain the apparent area of a non-rotating
NS, the observed apparent area has to be reduced by a factor
depending on the assumed or measured ν∗ and i.

The bottom panel of Fig. 3 shows the ratio of the apparent
area of a rotating NS to that of a spherical star of the same
equatorial radius and same gravitational mass (and thus differ-
ent baryonic masses). This ratio is obviously lower than unity.
Bauböck et al. (2012, see their Figs. 5 and 6) also presented sim-
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Fig. 3. Top panel: Ratio of the apparent area of a rapidly rotating NS
to that of the non-rotating star (of the same baryonic mass) as a func-
tion of the rotational frequency for inclination angles i =0◦, 45◦, and
90◦ is shown by black, red, and blue curves, respectively. The mass of a
non-rotating star was assumed M = 1.5M� and two radii R = 14 (solid
curves) and 12 km (dashed curves) are considered. Bottom panel: Ap-
parent area of a rapidly rotating NS for the same family of models as in
the top panels divided by the apparent area of a non-rotating NS of the
same gravitational mass M′ (from Eq. (3)) and the radius equal to equa-
torial radius Re given by Eq. (2). The red and the blue dashed curves
overlap in both panels.

ilar dependences. They used a rather different approach to de-
scribe rapidly rotating NSs, but their results for the case Kerr
+ Obl are similar to ours. For a better comparison we com-
puted the ratio S (ν∗, i)/S (Re(ν∗)) for the model with parame-
ters M′ = 1.8M�, Re = 15 km, ν∗ = 500 Hz (corresponding to
M ≈ 1.79M� and R ≈ 14.13 km) and i = 90◦ and got the value
of 0.963. We note that Bauböck et al. (2012) used another ap-
proximation for the NS shape from Morsink et al. (2007). Using
the same approximation we obtained the value of 0.971, which
is very close to the corresponding value of ≈0.975 in their Fig. 5.

2.3. Emission spectrum of a NS

In the calculations presented in this paper we consider a number
of different cases for the local specific intensity. The simplest
model for the surface emission is that of the blackbody emission,
with the specific intensity measured in the frame associated with
the NS surface being

I′E′ (σ
′) = BE′ (T ), (4)

where BE′ (T ) is the Planck function of local temperature T at
photon energy E′ and σ′ is the zenith angle measured from the
local normal to the NS surface. 1 The corresponding flux in this
1 Here and below the prime denotes the photon energies and the spec-
tral functions measured at the NS surface, whereas the photon energies

case is

F′E′ = 2π
∫ π/2

0
BE′ (T ) cosσ′ sinσ′ dσ′ = πBE′ (T ) (5)

and the bolometric flux corresponding to this case is given by
the Stefan–Boltzmann law Fbol = σSBT 4. Another case for the
angular distribution that we would like to explore is that corre-
sponding to the electron-scattering dominated atmosphere. We
keep the Planck function to describe the energy dependence of
the local specific intensity and approximate the dependence on
the zenith angle by a linear function of cosσ′ (Chandrasekhar &
Breen 1947; Sobolev 1949):

I′E′ (σ
′) = BE′ (T ) (0.421 + 0.868 cosσ′). (6)

The chosen normalization of the angular factor gives the same
emergent flux as a unit constant.

Furthermore, we consider the case of a diluted blackbody
corresponding to the intensity

I′E′ (σ
′) = wBE′ ( fcTeff), (7)

where w is the dilution factor, fc is the colour-correction factor,
Teff is the effective temperature, and Tc = fcTeff is the colour
temperature. The surface flux is now

F′E′ = wπBE′ ( fcTeff). (8)

Similarly to Eq. (6) we consider a diluted blackbody with a
beamed emission pattern

I′E′ (σ
′) = w BE′ ( fcTeff) (0.421 + 0.868 cosσ′). (9)

The surface flux is also given by Eq. (8). Equation (9) pro-
vides a good approximation to the specific intensity from the
NS atmosphere models computed by Suleimanov et al. (2012,
2017b) for NS luminosities close enough to the Eddington value
(L & 0.1LEdd). These accurate model for the intensity for vari-
ous effective temperatures Teff and gravities geff are also used in
our calculations. They are also fitted by Eq. (9) with free w and
fc, which are tabulated on a grid of Teff and geff and used in the
calculations instead of accurate models for simplicity.

The flux from a bursting NS as observed at Earth can also be
well represented by a diluted blackbody:

FE = K πBE(TBB). (10)

Here the normalization factor K is proportional to the dilution
factor w, while the observed colour temperature TBB is related to
the colour-temperature fcTeff as measured at the NS surface.

2.4. Apparent spectrum of a blackbody emitting rotating NS

The apparent size of the NS on the sky does not fully determine
how the spectral parameters change due to rotation. Let us as-
sume that the NS surface emits locally a blackbody of constant
local temperature T = Tc = Teff with specific intensity given
by Eq. (4). The observed spectrum for a rotating NS deviates
from the blackbody for two reasons. Firstly, the surface gravita-
tional redshift varies over the surface of a rotating NS. Secondly,
Doppler boosting affects the amplitude and energy of the spec-
tral peak. The Doppler boost is insignificant for pole-on sources
and reaches its maximum level at i = 90◦. The change in the

and the spectral functions without prime correspond to the values in the
observer’s frame.
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Fig. 4. Top panels: Colour correction to the observed blackbody temperature compared to a non-rotating NS for a NS of constant local temperature
as a function of the rotational frequency for inclination angles i =0◦, 45◦, and 90◦ is shown by the black, red, and blue curves, respectively.
The left panels correspond to radius of a non-rotating NS R=14 km and the right panels to R=12 km. The mass of the non-rotating NS was
assumed M = 1.5M� and both families of models have the same baryonic mass. The solid curves are for emission pattern corresponding to the
isotropic intensity (4), while the dashed curves are for the electron-scattering dominated atmosphere with the intensity given by Eq. (6). The colour-
correction factor is indistinguishable for the two considered emission patterns. Middle panels: Correction factor to the blackbody normalization
(dilution factor) as a function of the rotational frequency. Bottom panels: The correction to the bolometric flux. Same notations as in the top panels.

spectrum thus depends not only on the NS rotation rate which
affects its shape, but also on the inclination angle i.

Let us construct families of rotating NS models which have
the same baryonic mass, but have different rotational frequen-
cies. We first choose the mass M = 1.5M� and consider two dif-
ferent radii R = 14 km and 12 km for a non-rotating star. Then
for each spin, the values for the rotating NS mass M′ and equa-
torial radius Re were computed using Eqs. (2) and (3). The ob-
served spectrum is computed following the approach described
in Appendix B. The resulting spectrum FE in the frame of the
observer at infinity was fitted in the observed energy range (0.1–
10)kT with the diluted blackbody wπBE( fcT∞) giving the values
of fc and w. Here T∞ = T/(1 + z) is the gravitationally red-
shifted local temperature, where z is the gravitational redshift of
the non-rotating NS, for which fc = 1. The dilution factor w was
then divided by the value obtained for a non-rotating NS.

We plot the corresponding colour-correction factor fc, cor-
rection to the dilution factor w, and the correction to the bolo-
metric flux with the solid curves in Fig. 4. The top panels demon-
strate that the colour temperature decreases with the spin for a
face-on observer (i = 0) because the NS oblateness increases at
higher rotation rates resulting in a corresponding increase in the
gravitational redshift of the polar region. On the other hand, the

edge-on observer sees higher temperature comparing to a non-
rotating star because of the Doppler effect. The effect is greater
for larger NS radii.

The middle panels of Fig. 4 show how the blackbody normal-
ization is affected by rotation. We see that for low inclinations
the normalization increases, which results from an increase in
the apparent area as discussed in Sect. 2.2. However, for high in-
clinations the normalization decreases slightly, which is opposite
to the behaviour of the apparent area. This is a natural conse-
quence of a large increase in fc because of the Doppler effect.
However, the bolometric flux (shown in bottom panels of Fig. 4)
increases a little more slowly than f 4

c resulting in a reduction
of w. The bolometric flux monotonically increases with the in-
clination being highest for an edge-on observer. It follows very
closely the product w f 4

c , with the deviation from that dependence
(i.e. bolometric correction to the blackbody) being negligible for
i = 0◦ and reaching only 1–2% for i = 90◦ at ν∗ = 700 Hz.

In addition to the blackbody, we also considered the case of
an electron-scattering dominated atmosphere, where the inten-
sity given by Eq. (6) is much stronger beamed along the sur-
face normal. The results are shown with dashed curves in Fig. 4.
Interestingly, the colour-correction factor turned out to be iden-
tical to that obtained for isotropic emission. The correction to
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Fig. 5. Images of a NS rotating at 700 Hz. The mass and the radius of a non-rotating NS of the same baryonic mass are M = 1.5M� and R = 14 km.
The white curves and the colours show the contours of constant bolometric intensity. Upper panels: Blackbody case of local isotropic intensity.
Lower panels: Electron-scattering dominated atmosphere. Panels from the left to the right correspond to the inclinations i = 0◦, 45◦, and 90◦. The
lines of constant latitudes (every 10◦) and longitudes (every 15◦) are shown in black. The colour scheme is different for the two rows.

the blackbody normalization, on the other hand, deviates farther
from unity than for the isotropic emission (see middle panels of
Fig. 4). Also in this case, the bolometric flux increases with the
NS spin. For smaller NS radii, R = 12 km (right bottom panel),
its dependence on the inclination angle is similar to the isotropic
case, i.e. it monotonically increases with inclination. However,
for larger radii, R = 14 km, it shows the opposite behaviour,
with the flux being highest for a face-on observer. We note that
the dashed curve below the blue solid curve in the left bottom
panel of Fig. 4 is black and corresponds to i = 0◦. The reason is
a stronger radiation beaming along the normal and greater defor-
mation of the NS surface. The increase in the apparent area for a
face-on observer makes a stronger effect than the increase in the
Doppler boost for an edge-on observer.

At this point we can try to compare our results with those of
Bauböck et al. (2015). However, there is a large difference in our
approaches that complicates direct comparison. Bauböck et al.
(2015) computed the corrections to the colour temperature and
bolometric flux too, but compared the results obtained for a rotat-
ing star with equatorial radius Re to those for a non-rotating star
of the same radius. In this case the overall gravitational redshift
is similar for the two stars, and the colour temperature changes
mostly due to the Doppler effect resulting in a 1% deviation.
However, we fix the mass and radius of a non-rotating star and
consider a family of models as a function of spin. Thus, at high
spin rates, our Re is significantly larger and polar radius is signif-
icantly smaller than the radius R of a non-rotating configuration.
For low inclinations, this results in an effectively higher gravi-
tational redshift leading to a decrease in the colour temperature
(and fc) by 1% compared to a non-rotating case. On the other

hand, at high inclination, the effective gravitational redshift is
much lower resulting in an observed temperature that is higher
by 7% for a rotating star. We also note that corrections to the
metric due to the frame dragging and quadrupole moment play
no role for spins below 500 Hz.

As an illustration we also show in Fig. 5 the images of NSs
rotating at 700 Hz (see also Vincent et al. 2018). The colour-
coding and the white lines are the contours of constant observed
bolometric intensity. It is equal to the product of the intensity
as measured at the NS surface I(σ′) and the fourth power of
the total redshift (i.e. the product of Doppler factor and the sur-
face gravitational redshift, given by Eq. B.35). We consider the
same two cases of an isotropically emitting star (see upper pan-
els of Fig. 5) and an electron-scattering dominated atmosphere
(lower panels of Fig. 5). The results are normalized by the fac-
tor σSBT 4/π. The face-on image of an isotropically emitting star
(left upper panel) shows the minimum at the pole because the
redshift there is highest. The intensity is also low at the equator
because of the transverse Doppler effect. At high inclinations,
the contours of constant intensity nearly follow the lines of con-
stant surface radial (projected) velocity which are nearly straight
vertical lines. The highest and the lowest intensities are reached
at the edges of the image, where the absolute values of the pro-
jected velocities are highest. The stronger beaming of radiation
along the normal to the surface in the second case dominates
over the reduction of intensity due to higher redshift, resulting
in a peak of emission at the pole for a face-on star (left lower
panel). At higher inclinations, the lines of constant intensity are
no longer straight because of the strong influence of beaming.
Along the vertical line the angle σ′ at which we see the sur-
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face element is different, resulting in different local intensity.
Thus, the observed intensity peak is now not at the edge (where
σ′ = π/2), but is reached at the point where the angle of the
line of sight to the local normal is smaller. We note here that our
computation method is very efficient: computing one image of
resolution 70 × 400 in latitude and azimuth on a standard laptop
with idl takes less than 0.3 s, which is about 3000 times faster
than would be needed if an exact ray-tracing code is used (e.g.
Vincent et al. 2018).

3. Modified direct cooling tail method

3.1. Non-rotating X-ray bursting neutron stars

The direct cooling method (Suleimanov et al. 2017b) assumes
that the investigated NS with given mass M and radius R rotates
slowly, its shape is spherical, and the surface has a uniform ef-
fective temperature Teff . In this case a single model atmosphere
with the given Teff , the surface gravity g = GM(1+z)/R2 and the
chemical composition is enough to describe the spectrum of the
whole NS. The gravitational redshift factor is related to the NS
Schwarzschild radius RS = 2GM/c2 as 1 + z = (1 − RS/R)−1/2.
Therefore, we can connect the local atmosphere parameter Teff

with the whole observed NS luminosity L = 4πR2 σSBT 4
eff
/(1 +

z)2, and use the relative NS luminosity ` = L/LEdd instead of
Teff . Here

LEdd =
4πGMc
κe(1 + z)

(11)

is the NS Eddington luminosity, κe = 0.2(1 + X) cm2 g−1 is the
Thomson opacity, and X is the hydrogen mass fraction in the
atmosphere.

It is well known (London et al. 1986; Lapidus et al. 1986)
that the local spectra of hot NS model atmospheres F′E′ are well
described with a diluted blackbody (8), where the dilution and
the colour-correction factors approximately follow the relation
w ≈ f −4

c and fc > 1. This explains why the observed spectra of
X-ray bursting NSs are usually very well fitted with a blackbody
given by Eq. (10) (see e.g. Galloway et al. 2008), where TBB =
fcTeff/(1 + z) is the observed colour temperature. As a result, the
blackbody normalization parameter K used in the fits depends
on the dilution factor w (see details in Suleimanov et al. 2011a)

K = wΩ, (12)

where D is the distance to the source and

Ω =

[
R(1 + z)

D

]2

(13)

is a geometrical dilution factor proportional to the solid angle
occupied by the NS on the sky.

The parameters w and fc are found by fitting the emergent
model spectra of hot NS atmospheres in the energy band of some
X-ray instruments, like RXTE/PCA, blueshifted to the NS sur-
face. The values of these parameters depend mainly on the rel-
ative luminosity `, although they depend on the surface gravity
g and the chemical composition as well. We have computed an
extended grid of models (Suleimanov et al. 2011b, 2012; Nättilä
et al. 2015) for a range of log g from 13.7 to 14.9 with the step
0.15 and for various atmosphere chemical compositions (pure
hydrogen, pure helium, solar abundance, solar H/He mix with re-
duced and increased heavy element abundances, and pure iron).
The model spectra were fitted with a blackbody resulting in de-
pendences w − ` and fc − `.

Fig. 6. Qualitative difference between the shapes of the extended pho-
tospheres (dashed contours) at the touch-down point for two different
hypothesis on the latitudinal distribution of the radiation flux over the
surface of a rapidly rotating NS, CRF case (top panel) and CAF case
(bottom panel).

The direct cooling tail method is based on the results of these
computations. It is possible to demonstrate (Suleimanov et al.
2017b) that the observed dependence K − FBB during the ther-
monuclear burst cooling tail has to be fitted with the model de-
pendence w−w f 4

c ` computed for each pair of parameters (M,R)
and the actual chemical composition of the atmosphere.2 For-
mally, there are two fitting parameters Ω and the observed Ed-
dington flux

FEdd,∞ =
LEdd

4πD2 =
GMc

κeD2 (1 + z)
, (14)

but actually for every pair (M,R) they both depend on the dis-
tance to the source D alone because the z value is known. The
fitting procedure provides a χ2 map, which can be used to esti-
mate the most probable values for the NS mass and radius (see
examples in Suleimanov et al. 2017a,b).

3.2. Spectra of bursting rapidly rotating NSs

Once we understand the observational appearance of the black-
body emitting NS as discussed in Sect. 2, we can discuss the
emission of a bursting rotating NS. One of the effects that needs
to be accounted for is the change in the effective gravity along the
latitude. The effective gravity can be presented approximately as
geff = g−Ω2

∗R(θ) sin2 θ, where R(θ) is the NS radius at co-latitude
θ. The approximate expressions of the effective surface gravity

2 The model closely fits the data only for the bursts taking place dur-
ing hard spectral persistent states of LMXBs (Suleimanov et al. 2011a;
Poutanen et al. 2014; Kajava et al. 2014) because of the strong influence
of accretion during the soft states.
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using relativistic computations were suggested by AlGendy &
Morsink (2014) (see also Appendix A). It is clear that the effec-
tive surface gravity at the poles is stronger than at the equator.
It means that the value of the local Eddington flux depends on
latitude. This also implies that it is not possible to unambigu-
ously determine the touch-down point in PRE bursts because it
is not known a priori how the actual radiation flux is distributed
over the NS surface. We can only make some suggestions. We
consider two cases. The first option is that the bolometric flux
in units of the local Eddington flux FEdd = c geff/κe is constant
over the NS surface (i.e. F(θ)/FEdd(θ) = `). In this constant rel-
ative flux (CRF) case the photosphere of the extended envelope
touches the NS surface simultaneously and we observe this mo-
ment as a touch-down point in the X-ray burst light curve. The
second case assumes constant absolute flux (CAF), F(θ) = const,
at every co-latitude equal to the flux of a non-rotating NS with a
given relative luminosity `. In this case, the photosphere touches
the NS surface at the poles first and we can associate the touch-
down point with this moment (see Fig. 6). The real latitudinal
flux distribution is not known, and we can only guess that it
lies between the two limiting cases considered above. In this
work we consider both possibilities as equiprobable and estimate
the effect of rapid rotation on the observed spectra and derived
NS parameters for both cases. We note here that constant sur-
face flux does not mean same spectrum of the emitted radiation,
because the real atmosphere spectrum depends not only on the
effective temperature, but also on local gravity (i.e. the colour-
correction factor varies along the latitude). Thus, even this prob-
lem cannot be reduced directly to the case of a blackbody emit-
ting NS considered in Sect. 2.4.

Now let us discuss the appearance of the bursting rotating
NS to a distant observer at inclination i for a given relative lu-
minosity `. The details of the method to compute the observed
spectrum are presented in Appendix B. The local specific inten-
sity is either taken from the atmosphere models computed by
Suleimanov et al. (2012, 2017b) for the given Teff(θ) and geff(θ)
or approximated by a diluted blackbody given by Eq. (9); the
dilution factor w and the colour-correction factor fc are found
by interpolation in the existing grid of the precomputed values
(see Suleimanov et al. 2017b). The accuracy of this approximate
method is demonstrated in Fig. 7 where the results of the accu-
rate computations taking real atmosphere models (solid curves)
are compared with the approximate ones (dashed curves) for two
relative luminosities (` = 0.9 and 0.1), two inclination angles,
i = 0◦ and 90◦, and for two models of the flux distribution over
the NS surface. The errors in the bolometric fluxes are typically
below 0.5% and 1.5% for the high- and low-luminosity models,
respectively. They are not significant for the following discus-
sion.

The final stage is the approximation of the observed spec-
trum from a rapidly rotating NS by a diluted blackbody
w′πBE( f ′c Teff,∞) in the observed energy range 3–20 keV, where
Teff,∞ is the redshifted effective temperature of the corresponding
non-rotating NS with the relative luminosity ¯̀, which is an inde-
pendent input parameter of the problem. The observed bolomet-
ric luminosity of the rotating NS model L(ν∗, i) can also be com-
puted, together with the relative luminosity `′ = L(ν∗, i)/LEdd(0),
where LEdd(0) is the observed Eddington luminosity of the corre-
sponding non-rotating NS of mass M. Repeating this procedure
at a grid of ¯̀ we obtain the model dependences w′−`′ and f ′c −`

′,
which are shown in Figs. 8 and 9. The dependence w′ − `′ has to
be compared with an observed dependence K−FBB for some ap-
propriate X-ray bursting NS. We chose the mass and the radius of
a non-rotating NS to provide the surface gravity log g = 14.15.

Fig. 7. Spectra of the rotating NS with the parameters M′ = 1.519 M�,
Re = 15.48 km, and ν∗ = 700 Hz computed for two inclination angles
i = 0◦ (blue solid curve) and i = 90◦ (red solid curves), and for two
relative luminosities (same over the surface) ` = 0.9 (top panel) and
` = 0.1 (bottom panel). The solid curves represent spectra computed
taking accurate local spectra for atmosphere models from Suleimanov
et al. (2012). The dashed curves correspond to the diluted blackbody
approximation of the local spectra. Solar chemical composition of the
atmosphere is assumed.

Then we took the rotation frequency to be equal 700 Hz, and
computed the curves w′ − `′ and f ′c − `

′ for three inclination
angles, 0◦, 45◦, and 90◦ assuming solar chemical compositions
with heavy element abundances reduced 100 times. The curves
were computed for both limiting cases of the flux distribution
over the surface, CRF (Fig. 8) and CAF (Fig. 9). In the second
case, the maximum luminosities that can be reached correspond
to the local Eddington limit at the NS equator.

The qualitative behaviour of the colour-correction factor f ′c
and the dilution factor w′ is similar to those shown in Fig. 4. The
colour correction shows a greater increase for highly inclined
NSs (i = 90◦), whereas the greater increase in the dilution fac-
tor occurs for the face-on NS (i = 0◦). The results for the CAF
case and the relatively low luminosity (L/LEdd ∼ 0.1) are very
close quantitatively to the results shown in Fig. 4 (R = 14 km,
the electron scattering case). In this case, the local diluted black-
bodies at different latitudes are very close to each other. At the
higher relative luminosities the local blackbodies differ more as
the relative flux F(θ)/FEdd(θ) near the equator approaches the
local Eddington limit.

3.3. Influence of NS rotation on determination of basic
parameters

Using computed dependences w′−`′ we can estimate the effect of
rapid rotation on determination of the NS radius. Let us assume
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Fig. 8. Dependences of f ′c and w′ on the relative luminosity for a
rapidly rotating NS for three inclination angles. The corresponding de-
pendences for a non-rotating NS with the surface gravity log g0 = 14.15
are shown with the dashed curves. Here chemical composition is solar
with the heavy element abundances reduced by 100 times. The constant
relative flux distribution over the NS surface is assumed (CRF case).

that the computed dependence w − ` for a non-rotating NS (see
the dashed curves in the bottom panels of Figs. 8 and 9) closely
fits the observed dependence K − FBB for some X-ray burst oc-
curring at the surface of a rapidly rotating NS with ν∗ = 700 Hz.
Let us also suggest that the fitting parameters (see Sect. 3.1) are
FEdd,∞ = 6.76×10−8 erg s−1 cm−2 and Ω = 1261 (km/10 kpc)2.
They can be combined to obtain a distance-independent quan-
tity, the observed Eddington temperature, which corresponds to
the dashed curve at the M − R plane in the bottom panels of
Figs. 10 and 11.

It is possible to fit the dependence w−` with the dependences
w′− `′ computed for the rapidly rotating NS (see upper panels in
Figs. 10 and 11) and to obtain the correction factors AF and AR
to the fitting parameters FEdd,∞ and Ω. This means that the new
parameters, which should actually be used to determine M and
R of the non-rotating NS, are F′Edd,∞ = AFFEdd,∞ and Ω′ = ARΩ.
The new parameter F′Edd,∞ is larger than the old one (AF > 1)
for all inclination angles because the critical Eddington limit is
reached at a rotating NS at a lower luminosity. The new observed
solid angle Ω′ maybe smaller or larger than Ω depending on the
inclination: AR > 1 for large inclination angles and AR < 1 for
a face-on rotating NS (see Figs. 8 and 9, bottom panels). The
value of AR depends on two factors. It depends first on the ap-
parent area, which is always larger for a rotating NS (see Fig. 3),
which would make AR smaller than unity. In addition, the dilu-
tion factor depends on the colour temperature of the spectrum
of a rotating NS. The higher the ratio of the colour to the lo-
cal effective temperatures, the smaller the dilution factor w′. For
highly inclined rapidly rotating NSs, the colour temperature is

Fig. 9. Same as Fig. 8, but computed with constant absolute flux distri-
bution over the NS surface (CAF case).

higher due to the Doppler boosting (see Fig. 4), and its influence
is more important than the increase in the apparent area resulting
in AR > 1.

As a result the solutions at the M − R plane for the different
inclination angles are shifted (see Figs. 10 and 11, bottom pan-
els). The interpretation of these shifts is as follows. If we use the
non-rotating NS model curve w − `, we obtain an incorrect so-
lution presented by the dashed curve instead of the correct one
shown by the solid curves for different inclination angles. For ex-
ample, if we treat a face-on rapidly rotating (with ν∗ = 700 Hz)
NS as a non-rotating NS, we obtain that the NS radius R is 3–
3.5 km larger than that obtained using the method that accounts
for rotation. For an edge-on system, the radius is nearly the same
within 0.5–1 km. We note here once more that the equatorial ra-
dius of the rapidly rotating NS is larger than the radius of the
non-rotating NS with the same baryonic mass. For instance, a
non-rotating NS with R = 12 km and M = 1.5M�, will have
the equatorial radius Re ≈ 13 km if it rotates at ν∗ = 700 Hz.
Because there is an observational bias which restricts the incli-
nation for real observed NSs in LMXBs to be i < 70◦, treating
NSs of unknown inclination as non-rotating will always result in
an overestimate of the radius. We finally note that the two models
for the flux distribution over the NS surfaces give similar radius
values, within 0.5 km (compare Figs. 10 and 11), but the CAF
model systematically gives a smaller radius.

3.4. Essentials of the method

Now we describe the method for obtaining NS parameters from
the data, using the models for rotating NSs. We need to have a
reasonable estimate of the rotation frequency ν∗, the inclination,
and the chemical composition of the atmosphere. Let us choose a
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Fig. 10. Top panel: Results of fitting the w − ` dependence with w′ − `′
dependences computed for different inclination angles i and assum-
ing constant relative flux over the NS surface (CRF case, see Fig. 8).
The corresponding correction factors are (AF, AR) = (1.053, 0.856) for
i = 0◦, (1.1, 0.972) for 45◦, and (1.15, 1.12) for 90◦. Bottom panel:
Corresponding solutions at the (M,R) plane obtained assuming a non-
rotating NS (dashed curve) and using additional correction factors AF
and AR for different inclination angles.

pair of mass and radius (M,R) of the corresponding non-rotating
NS, and compute the model curve w′ − `′ using the method de-
scribed above. Then we fit the observed K − FBB dependence
with this model curve using the same fitting parameters FEdd,∞
and Ω as for a non-rotating star. The corrections for the rapid ro-
tation are accounted for by differences between the model curve
w′−`′ and the corresponding model curve w−` for a non-rotating
NS. Both fitting parameters depend on the distance to the source
D, which is actually the only fitting parameter for the given pair
(M,R).

We repeat the fitting procedure at a grid (M,R) obtaining the
χ2 map which determines the most probable values of M and
R of a non-rotating NS and corresponding confidence intervals.
This map thus depends on the assumed values of the inclination
angle i, the rotational frequency ν∗, and the chemical composi-
tion of the atmosphere.

4. Application of modified cooling tail method to
X-ray bursts from rapidly rotating NSs

SAX J1810.8−2609 was used as a key source for NS radius de-
termination in two works (Nättilä et al. 2016; Suleimanov et al.
2017b), where we found the radius to be in the range 11.0–12.5
km assuming M = 1.5M� and that the NS rotates slowly. Unfor-
tunately, there is only one X-ray burst that could be used for the
cooling tail method. Recently, Bilous et al. (2018) using archival

Fig. 11. Same as Fig. 10, but for constant absolute flux over the NS
surface (CAF case, see Fig. 9). The corresponding correction factors are
(AF, AR) = (1.12, 0.85) for i = 0◦, (1.16, 0.97) for 45◦, and (1.2, 1.12)
for 90◦.

RXTE observations discovered in that source burst oscillation at
frequency ν∗ = 531.8 Hz. Such a high rotation rate may affect the
radius determination significantly, and we can use it as a test bed
for our new modified cooling tail method.

The burst that we use for our study has Obs ID 93044-02-04-
00, and it was observed on 2007 August 13. The details about the
burst, the data reduction, and blackbody fitting can be found in
Nättilä et al. (2016). The results of the application of the modi-
fied cooling tail method are shown in Fig. 12. We consider three
different cases. First of all, in order to test the new method and
compare it with the previous results, we assumed that the NS is
non-rotating, ν∗ = 0 Hz, but used the new method modified for
rapid rotation. The resulting χ2 map, presented in Fig. 12 with
solid black curves, is identical to the map produced with the di-
rect cooling tail method for a non-rotating NS shown in Fig. 5 in
Suleimanov et al. (2017b).

Then we computed χ2 maps taking the actually observed ro-
tational frequency and assuming two inclination angles, i = 0◦
and 60◦. We considered two limiting cases for the flux distribu-
tion over the NS surface as described in Sect. 2.4: the constant
relative flux (CRF, Fig. 12, left panel) and the constant absolute
flux (CAF, Fig. 12, right panel). In both cases the assumption
about the face-on inclination gives the NS radius that is approx-
imately 1 km smaller than that assuming a non-rotating NS. The
best estimate of the NS radius is 11.2±0.5 km at M = 1.5M�,
and the corresponding equatorial radius Re is 11.6±0.6 km. Tak-
ing a higher inclination of 60◦ leads to the χ2 maps closer to the
map assuming no rotation and the NS radius of 11.8±0.5 km at
M = 1.5M�. In this case the corresponding equatorial radius,
12.3±0.6 km, is close to the radius of the NS determined under
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Fig. 12. Confidence regions at the M–R plane for SAX J1810.8−2609 obtained from the χ2 map using the cooling tail method modified for
rapid rotation. The solid, dashed, and dotted curves indicate the 68%, 90%, and 99% regions, respectively. The red contours correspond to the
inclination i=60◦, while the blue contours are for the face-on NS. The black contours give the constraints assuming a non-rotating NS. (a) CRF
case, i.e. constant relative flux. (b) CAF case, i.e. constant absolute flux. The triple dot-dashed curves are the contours of the constant distance of
4.0 and 4.5 kpc (distance is the only free parameter for a given pair of M and R).

assumption that it is non-rotating. We note that the CRF case
gives smaller χ2 values than the CAF model, and also a smaller
χ2 is achieved at higher inclination (i = 60◦). However, the sta-
tistical significance of the improvement is below 3σ.

We recall that the only free parameter in the direct cooling
tail method (in addition to the mass and radius) is the distance,
which therefore can be estimated. The solutions that correspond
to the distances of 4.0 and 4.5 kpc are shown by the triple dot-
dashed lines in Fig. 12. There is only one estimation for the dis-
tance to SAX J1810.8−2609 (Natalucci et al. 2000), but it cannot
be considered as an independent one, as they used the maximum
fluxes of type I X-ray bursts assuming that they correspond to
the Eddington flux for a NS with M = 1.4M�. Nevertheless,
their estimation of 4.9 ± 0.3 kpc is close to ours.

Another X-ray bursting source where rapid rotation should
be accounted for is 4U 1608−52, which rotates at ν∗ = 620 Hz
(Muno et al. 2002). The cooling tail method applied to this
source assuming no rotation gave the NS radius in the range 13–
16 km depending on the selected data points for M = 1.5M�
(Poutanen et al. 2014). We found that the rapid rotation with
ν∗ = 700 Hz can increase the visible NS radius by 2–3 km for
face-on systems and by 1 km for edge-on systems. Thus, ac-
counting for the rotation, the NS radius in 4U 1608−52 will be
in range 10–13 km for low inclination and 12–15 km for an in-
clination around 70◦. This is consistent with the current best
limits on the NS radii 10.5–13.5 km coming from other sources
and observables (Steiner et al. 2013; Nättilä et al. 2016, 2017;
Suleimanov et al. 2017a; Abbott et al. 2018).

5. Summary

We have presented a new version of the cooling tail method,
modified for rapid rotation, for determining NS parameters from
X-ray bursts. The aim of the method is to find the most proba-
ble values for the mass and radius of a non-rotating NS, whose
rotating model describes the observed spectral evolution of X-
ray bursts taking place on the surface of a rapidly rotating NS.
The rotation frequency ν∗, the inclination angle of the NS ro-

tation axis to the line of sight i, and the atmospheric chemical
composition are the input parameters of the model.

First, we developed a model that transforms a non-rotating
NS with given M and R to the approximate model of a rapidly
rotating NS with the same baryonic mass of the increased equa-
torial radius Re and the slightly increased gravitational mass M′.
We derived the approximate relations between R and Re, and be-
tween M and M′ using the models of rapidly rotating NSs com-
puted by Cook et al. (1994) for various EoS.

At the next step we computed the emergent spectra of the
obtained rotating NS models for different relative luminosities
` of the non-rotating NS with the given M and R. As the effec-
tive temperature distribution over the rotating NS surface at any
burst moment is not known a priori, we considered two limit-
ing cases: CRF (i.e. the same ratio ` of the bolometric flux to
the local Eddington flux) and CAF (i.e. the same absolute bolo-
metric flux at each latitude, the same as for the non-rotating NS
with a given `). We note that the local Eddington flux depends
on the effective gravity which includes the centrifugal force. We
showed that approximating NS atmosphere spectra by a diluted
blackbody gives a good description of the observed spectra from
a rotating NS. Therefore, for further modelling we used a diluted
blackbody approximation for the local spectra. The parameters
of these spectra, the dilution factor w and the colour-correction
factor fc, are found by interpolating in the precomputed set of
models at a grid of the effective temperatures, effective surface
gravities, and chemical compositions of the atmosphere from
Suleimanov et al. (2012, 2017b).

We used the universal (independent of EoS) slow-rotation
approximations for description of the shape of the rotating
NS and the effective surface gravity distribution suggested by
Morsink et al. (2007) and AlGendy & Morsink (2014). To com-
pute the observed spectra and integrate over the visible surface
of a rapidly rotating NS, we used a simplified approach comput-
ing approximately the total redshift factor using a metric of the
rotating NS in a slow-rotation approximation and making cor-
rections for the oblate shape (see Morsink et al. 2007; Nättilä
& Pihajoki 2018; Salmi et al. 2018). The light bending angle
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and the lensing factor were computed using accurate analytical
formulae from Poutanen (2019), which allowed us to speed up
calculations by orders of magnitude.

The computed spectra are then fitted with the diluted black-
body model. The fitting parameters, the dilution factor w′, and
the colour-correction factor f ′c , are found from comparison with
the fiducial spectrum, which was the blackbody spectrum with
the effective temperature of a non-rotating NS with the same
relative luminosity `. We thus obtained the model dependence
w′ − L(ν∗, i)/LEdd(0), where LEdd(0) is the Eddington luminosity
of a non-rotating NS. This model curve can then be compared
to the observed dependence K − FBB using the distance to the
source as the only fitting parameter, in addition to M and R of a
non-rotating NS. As a result we get a χ2-map at the M−R plane,
which allows us to determine the most probable values and the
confidence region for M and R of the corresponding non-rotating
NSs. These constraints depend on the assumed inclination i, ro-
tation rate ν∗, and chemical composition.

We applied our method to an X-ray burst observed from
SAX J1810.8−2609 and investigated earlier by Nättilä et al.
(2016) and Suleimanov et al. (2017b), who assumed no NS rota-
tion. We revised the NS radius determination using our modified
cooling tail method accounting for rapid rotation of this NS with
ν∗ = 531.8 Hz (Bilous et al. 2018). We found that the NS radius
is smaller by ≈1 km (11.2±0.5 km instead of 12.2±0.5 km as-
suming no rotation) for the face-on inclination and M = 1.5M�.
The corresponding equatorial radius Re of this rapidly rotating
NS, 11.6±0.6 km, is still slightly smaller than the radius of the
NS obtained assuming no rotation. At high inclination the effect
of rapid rotation is small.
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Appendix A: Shape and gravity of a rotating
neutron star

Let us consider a rotating NS with the gravitational mass M′,
equatorial radius Re, and observed angular velocity Ω∗ = 2πν∗.
For completeness, we present here the whole collection of for-
mulae from AlGendy & Morsink (2014) that we use to define the
NS shape and gravity. They demonstrate that basic properties of
the rotating NS model can be represented using two dimension-
less parameters

x =
GM′

c2 Re
, Ω̄ = Ω∗

(
R3

e

GM′

)1/2

. (A.1)

The metric of a stationary axisymmetric rotating NS is usually
written in the form (Butterworth & Ipser 1976)

ds2 = −e2ν c2dt2 + r̄2 sin2 θ B2 e−2ν(dφ −$ dt)2

+ e2ζ−2ν(dr̄2 + r̄2 dθ2), (A.2)

where metric coefficients depend on coordinates r̄ and co-
latitude θ. The circumferential radius is related to r̄ by (Friedman
et al. 1986)

r = B e−ν r̄. (A.3)

The metric coefficients for a non-rotating stationary NS are
known as the isotropic Schwarzschild metric coefficients

ν0 = ln
1 − ū

2

1 + ū
2

,

B0 =

(
1 −

ū
2

) (
1 +

ū
2

)
, (A.4)

ζ0 = ln B0,

where

ū =
GM′

c2r̄
. (A.5)

A well-known relation exists between the circumferential r and
isotropic Schwarzschild radial coordinate r̄:

r = B0e−ν0 r̄ = r̄
(
1 +

ū
2

)2
. (A.6)

The metric coefficients in Eq. (A.2) can be expanded in powers
of Ω̄ up to order 2 (AlGendy & Morsink 2014)

ν = ν0 +

(
b
3
− q P2(cos θ)

)
ū3,

B = B0 + bū2, (A.7)

ζ = ζ0 + b
(

4
3

P2(cos θ) −
1
3

)
ū2,

where P2 is the Legendre polynomial of order 2, and b and q are
the dimensionless coefficients

b = 0.4454 Ω̄2 x, (A.8)

q = −0.11
Ω̄2

x2 . (A.9)

For a given NS described by parameters x and Ω̄, for given cir-
cumferential radius r and angle θ, the metric coefficients are
computed using Eqs. (A.3), (A.4), (A.7), and (A.5) via iterations.
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Fig. A.1. Top panel: Shape of the rotating NS computed with two dif-
ferent approximations. The solid curves correspond to Eq. (A.13), while
the dashed curves to Eqs. (8)–(10) in Morsink et al. (2007). Bottom
panel: Effective surface gravity distributions. The solid curves corre-
spond to Eq. (A.14), while the dashed curves to Eq. (50) in AlGendy &
Morsink (2014). The red curves correspond to a relatively slow rotat-
ing NS with Ω̄ = 0.3 (ν∗ = 842 Hz, M′ = 1.8M�, Re = 13.6 km). The
blue curves are for a faster rotating NS with Ω̄ = 0.6 (ν∗ = 1084 Hz,
M′ = 1.99M�, Re = 15.1 km).

The angular velocity of the local zero angular momentum ob-
server with respect to an observer at rest at infinity $ can also
be expanded with the same accuracy

$ =
2GJ
c2 r̄3 (1 − 3ū), (A.10)

where J = IΩ∗ is the NS angular momentum, I(M′,Ω∗) =
Ī M′R2

e is the moment of inertia and

Ī = x1/2 (1.136 − 2.53 x + 5.6 x2). (A.11)

Eq. (A.10) can be written in dimensionless form as

$̄ = $

(
R3

e

GM′

)1/2

= 2
ū3(1 − 3ū)

x2 Ī Ω̄. (A.12)

Following AlGendy & Morsink (2014) we use the approx-
imation for the circumferential radius of a rapidly rotating NS

R(θ) = Re

[
1 − Ω̄2(0.788 − 1.03 x) cos2 θ

]
, (A.13)
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and for the effective gravity in a slow-rotation approximation

g(θ) = g0

(
1 + ceΩ̄

2 sin2 θ + cpΩ̄2 cos2 θ
)
, (A.14)

where

g0 =
GM′

R2
e

(1 − 2x)−1/2 (A.15)

is the surface gravity for a spherical NS with mass M′ and radius
Re, and

ce = 0.776 x − 0.791, cp = 1.138 − 1.431 x. (A.16)

We note that the approximate fitting formulae for the effec-
tive surface gravity (A.14) and the rapidly rotating NS shape
(A.13) are not self-consistent as they are independent approx-
imations to the accurately computed values. Slightly different
approximations for the gravity and for the shape are given by
Eq. (50) in AlGendy & Morsink (2014) and Eqs. (8)–(10) in
Morsink et al. (2007), respectively. A comparison of these ap-
proximations to those given by Eqs. (A.14) and (A.13) for two
rotating NSs is shown in Fig. A.1. The approximation to the NS
shape derived by Morsink et al. (2007) (dashed curves) gives a
less oblate NS shape. The difference in the effective gravity ap-
proximations is insignificant for slowly rotating NSs. We also
compared the shape with the models published by Cook et al.
(1994). For example, for M′ = 1.4103M�, Re = 11.71 km, and
Ω = 5033.6 s−1 (ν∗ = 801.12 Hz), Cook et al. (1994, see their
Table 15) give the eccentricity ε = 0.488, while Eq. (A.13) gives
ε = 0.495, which is about 2% accurate. We conclude that we can
use approximations (A.13) and (A.14) for slowly rotating NSs
with Ω̄ < 0.3.

Appendix B: Radiation observed from a rotating
neutron star

Accurate computations of the observed radiation from a rapidly
rotating NS are rather complicated. The main reason is a com-
plex form of geodesics in the vicinity of the star, which requires
using the full ray tracing approach (see e.g. Bauböck et al. 2012;
Nättilä & Pihajoki 2018). This is a time-consuming approach
that is not appropriate for the extensive computations presented
in this work. A simplified approach was proposed by Morsink
et al. (2007). They considered a local Schwarzschild metric at
every surface point of an oblate NS. They computed gravita-
tional redshift and the light bending effect as for a non-rotating
NS adding the Doppler boosting factor that accounts for rotation
(oblate Schwarzschild or OS approach). This approach gives ac-
ceptable results for slowly rotating NSs with ν∗ < 700 Hz. How-
ever, we believe that it is possible to account for the main effects
introduced by the metric of the rapidly rotating NS without sig-
nificant complication of the OS approach cited above. Nättilä &
Pihajoki (2018) showed that it is important to have an accurate
treatment of the redshift effect (i.e. the ratio of the observed to
the emitted photon energy E/E′), which is affected both by the
non-zero quadrupole momentum and by the frame dragging im-
pact on the Doppler boosting factor. Thus, we introduce here a
new modified OS (MOS) approximation, using the metric of a
rapidly rotating NS instead of the local Schwarzschild metric for
the photon energy change, but keeping simplified Schwarzschild
description for the light bending, which is the main simplifica-
tion comparing to the exact treatment.

Let us start with discussing the emission of a rapidly rotating
spherical NS in Schwarzschild metric. Then we consider the cor-
rection coming from the shape of the NS. Finally, the correction
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Fig. B.1. Geometry of the problem.

to the redshift due to the non-zero quadrupole momentum and
by the frame dragging is discussed.

Appendix B.1: Rapidly rotating spherical star

The flux observed by an observer can be computed in two dif-
ferent ways. We can integrate over the spherical surface in the
non-rotating frame, or make integration over the surface in the
co-rotating frame of the NS. Both approaches should produce
the same result.

Let us start from the first approach. We introduce a spherical
coordinate system with the polar axis along the NS rotation axis.
An observer is situated at distance D in the direction given by the
unit vector k̂ = (sin i, 0, cos i), with i being the inclination (see
Fig. B.1). A surface element in the static frame can be defined in
terms of co-latitude θ and azimuthal angle φ with the unit vector
of its position being r̂ = (sin θ cos φ, sin θ sin φ, cos θ). Its area is
dS = R2d cos θ dφ. The solid angle of this element as observed
at distance D is

dΩobs =
b̄db̄ dϕ

D2 , (B.1)

where the impact parameter b̄ and the polar angle ϕ are defined
using polar coordinates on the image plane centred to the ob-
served NS centre. The impact parameter is related to the emis-
sion angle α, the angle between the radial direction r̂, and the
unit vector along photon momentum k̂0 close to the NS surface
as (see e.g. Beloborodov 2002)

b̄ =
R

√
1 − u

sinα, (B.2)

where u = RS/R is the NS compactness with RS = 2GM/c2 be-
ing the Schwarzschild radius. Substituting Eq. (B.2) to Eq. (B.1)
and given that the element area can also be written as dS =
R2d cosψ dϕ, with ψ being the angle between the local radius-
vector r̂ at the NS surface and the line-of-sight k̂ in flat space-
time,

cosψ = r̂ · k̂ = cos θ cos i + sin θ sin i cos φ, (B.3)

we get (Beloborodov 2002; Poutanen & Beloborodov 2006)

dΩobs = D cosα
dS
D2 (B.4)

with the lensing factor

D =
1

1 − u
d cosα
d cosψ

. (B.5)
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The relation between α and ψ is given by the integral (Misner
et al. 1973; Pechenick et al. 1983; Beloborodov 2002)

ψ =

∫ ∞

R

dr
r2

[
1
b̄2
−

1
r2

(
1 −

RS

r

)]−1/2

. (B.6)

It can be computed using an accurate numerical procedure (e.g.
as is given in the Appendix of Salmi et al. 2018), but here we use
for simplicity an approximate formula suggested by Poutanen
(2019)

cosα ≈ 1 − y (1 − u) G(y, u), (B.7)

where y = 1 − cosψ, and

G(y, u) = 1 +
u2 y2

112
−

e
100

u y
[
ln

(
1 −

y

2

)
+
y

2

]
. (B.8)

This formula is an improvement over the analytical approxima-
tion suggested by Beloborodov (2002) and is 0.05% accurate
over the whole range of angles of interest and for any realistic
NS compactness. Using this relation we obtain the expression
for the lensing factor

D = 1 +
3u2 y2

112
−

e
100

u y
[
2 ln

(
1 −

y

2

)
+ y

1 − 3y/4
1 − y/2

]
. (B.9)

The unit vector along photon momentum close to NS surface can
be found from

k̂0 =
sinα k̂ + sin(ψ − α) r̂

sinψ
. (B.10)

The observed flux at energy E from the element will be

dFE = IEdΩobs. (B.11)

The observed specific intensity can be related to the intensity
measured in the co-rotating frame as

IE =

( E
E′

)3

I′E′ (α
′, θ), (B.12)

where the ratio of energies combines gravitational redshift and
the Doppler effect

E
E′

= δ eν0 = δ
√

1 − u, (B.13)

and in principle we can consider the possibility that the local
intensity also depends on co-latitude θ and the zenith angle α′
measured in the corotating frame of the element. The Doppler
factor

δ =
1

γ(1 − β cos ξ)
(B.14)

depends on the NS velocity at this latitude relative to the external
non-rotating frame,

β(θ) =
RΩ∗

c
√

1 − u
sin θ, (B.15)

and the Lorentz factor is

γ(θ) =
1√

1 − β2(θ)
. (B.16)

The angle ξ between the photon momentum and the spot veloc-
ity vector β = β(− sin φ, cos φ, 0) in the external static frame can

be expressed as (Poutanen & Gierliński 2003; Poutanen & Be-
loborodov 2006)

cos ξ = β̂ · k̂0 = −
sinα
sinψ

sin i sin φ. (B.17)

The angle α′ in Eq. (B.12) the photon momentum makes to the
radial direction as measured in the co-rotating frame of the spot
is related to the similar angle measured in the static frame as

cosα′ = δ cosα. (B.18)

We finally obtain the total observed flux by integrating
Eq. (B.11) over the whole visible stellar surface

FE =

∫
cosα>0

( E
E′

)3

IE′ (α′, θ) dΩobs (B.19)

=
R2

D2

∫
d cos θ

∫
dφ cosαD

(
δ
√

1 − u
)3

I′E′ (α
′, θ).

Now let us consider an alternative derivation when we inte-
grate over the NS surface in the co-rotating frame. Let us define
an element on the NS surface at co-latitude θ and azimuthal an-
gle φ′ in the frame corotating with the NS, with the extent given
by dθ and dφ′. The area of this element is dS ′ = γR2d cos θ dφ′,
where the Lorentz factor γ appears because the area expressed in
angular coordinates is measured by co-moving observers (Nät-
tilä & Pihajoki 2018; Lo et al. 2018; Bogdanov et al. 2019).
The solid angle dS ′ occupies on the observer’s sky is given by
Eq. (B.4) with the only difference that cosα dS should be substi-
tuted by cosα′ dS ′, so that we obtain

dΩobs = D cosα
δ γ R2d cos θ dφ′

D2 . (B.20)

The observed flux is thus (Poutanen & Beloborodov 2006)

dFE(φobs) =
R2

D2 d cos θ dφ′ cosαD
(
δ
√

1 − u
)3
δ γI′E′ (α

′, θ).

(B.21)

We note here that it is important to distinguish between the emis-
sion phase φ (i.e. position of the element when photons were
emitted as measured by external static observer) and the arrival
(observed) phase φobs when the flux from this element is actually
observed. Their differentials are simply related by the standard
time contraction formula as (Rybicki & Lightman 1979)

dφobs = (1 − β cos ξ)dφ. (B.22)

Now averaging the flux given by Eq. (B.21) over the observed
phase and changing the integration variable to the emitted phase
using Eq. (B.22) we obtain

〈dFE〉 =
1

2π

∫ 2π

0
dFE(φobs) dφobs (B.23)

=
R2

D2 d cos θ
dφ′

2π

∫ 2π

0
dφ cosαD

(
δ
√

1 − u
)3

I′E′ (α
′, θ).

We now notice that the factor γ(1−β cos ξ) has cancelled out with
one of δ. Further integration over φ′ reduces to just removing
the factor 1/2π because the flux does not depend on the choice
of φ′. Thus, for the total flux observed from a star we arrive at
Eq. (B.19).
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Appendix B.2: Rapidly rotating oblate star

For the oblate star with the radius depending on co-latitude as
R(θ), we need to make small modifications to the formulae pre-
sented in the previous section (Morsink et al. 2007; Salmi et al.
2018). Now the local normal n̂ does not coincide with the radial
direction, and the angle between them η (see Fig. B.1) can be
expressed as

cos η = n̂ · r̂ =
1√

1 + f 2(θ)
, sin η =

f (θ)√
1 + f 2(θ)

, (B.24)

where

f (θ) =
1

√
1 − u(θ)

1
R(θ)

dR(θ)
dθ

, (B.25)

u(θ) =
2GM′

c2R(θ)
, (B.26)

and the derivative of the circumferential radius could be found
from Eq. (A.13):

dR(θ)
dθ

= 2ReΩ̄
2(0.788 − 1.03x) sin θ cos θ. (B.27)

The area of the surface element (as measured in the static frame)
is

dS =
1

cos η
R2(θ)d cos θ dφ, (B.28)

where the factor cos η accounts for deviation of the stellar sur-
face from the spherical surface.

The local atmosphere of a rotating oblate NS is axisymmetric
relative to the local normal. Therefore, we have to transform the
angle α measured relative a local radius-vector to the angle σ
measured relative to a local normal. This angle can be found
from the spherical law of cosines

cosσ = cos η cosα + sin η sinα cos χ, (B.29)

where

cos χ =
cos i − cos θ cosψ

sin θ sinψ
, (B.30)

and thus

cosσ = cos η cosα

+
sinα
sinψ

sin η (cos i sin θ − sin i cos θ cos φ). (B.31)

Similarly to the spherical case correcting for relativistic aberra-
tion, we obtain the emission zenith angle in the frame comoving
with the surface

cosσ′ = δ cosσ. (B.32)

Thus, we arrive at a modified expression for the solid angle

dΩobs = D
cosσ
cos η

R2(θ) d cos θ dφ
D2 . (B.33)

If we know the local specific emergent radiation intensity
IE′ (σ′, θ) at the surface of a rotating NS as a function of en-
ergy E′, co-latitude θ, and the angle σ′ between the emergent

ray and the surface local normal, we can compute the total ob-
served spectrum FE from the whole surface

FE =

∫
cosσ>0

( E
E′

)3

I′E′ (σ
′, θ) dΩobs. (B.34)

We note here in the formulae for the light bending angle (B.7)
and the lensing factor (B.9), both u and R are now latitude-
dependent. In the calculations presented in this paper we con-
sidered different cases for the local specific intensity I′E′ (σ

′, θ)
as described in Sect. 2.3. The total photon energy change now
can be expressed as

E
E′

= δ eν(1 + β′ cos ξ). (B.35)

The three terms in this expression correspond to the Doppler
factor δ, a pure gravitational redshift eν (which accounts for
quadrupole moment, see Eq. A.7), and a phenomenological fac-
tor with

β′ =
R(θ)$

c
e−ν sin θ (B.36)

being the frame dragging dimensionless velocity. The expression
for $ is given by Eq. (A.10). In the formulae for the Lorentz
(B.16) and Doppler factors (B.14), instead of surface velocity
given by Eq. (B.15) we use the velocity relative to a zero angular
momentum observer:

β(θ) =
R(θ)

c
e−ν (Ω∗ −$) sin θ. (B.37)

These ad hoc formulae nevertheless give accurate values of
the total energy redshift 1 + z ≡ E′/E at the pole and for the
maximum and minimum values at the equator for an observer
at i = 90◦. For example, for a NS model published in Table 15
of Cook et al. (1994) with M′ = 1.4103M�, Re = 11.71 km,
and Ω = 5033.6 s−1 (i.e. ν∗ = 801.12 Hz), our redshift at the pole
zp = 0.2796 is lower by just 0.1% than the value zp = 0.280 given
there. Our maximum and minimum redshifts at the equator (for
i = 90◦), zb = 0.6094 and zf = −0.0244, are very close to those
computed by Cook et al. (1994), zb = 0.606 and zf = −0.025.

We also computed the observed profiles of a narrow emission
line emitted by a rapidly rotating NS. In particular, we repro-
duced fig. 5 from Nättilä & Pihajoki (2018), where M′ = 1.4M�,
Re = 10 km, ν∗ = 700 Hz, and i = 20◦ were assumed. They com-
puted the line profile using four different set-ups: the exact solu-
tion, the exact solution with the quadrupole moment artificially
increased by four times, an oblate NS in local Schwarzschild
metric, and a spherical rotating NS (R = Re) in Schwarzschild
metric with Doppler boosting taken into account. As intrinsic
surface emission we took a Gaussian line at unit energy with the
standard deviation σ = 0.002. Our results presented in Fig. B.2
demonstrate that our approach allows us to reproduce the main
features of the correct solution. The line profiles computed at dif-
ferent inclination angles are shown in Fig. B.3 for M′ = 1.5M�,
Re = 14 km, and ν∗ = 600 Hz. The results closely reproduce the
main features of the line profiles shown in fig. 6 of Nättilä &
Pihajoki (2018).
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Fig. B.2. Line profiles from a NS with M′ = 1.4M�, Re = 10 km rotat-
ing at 700 Hz, and seen by a distant observer at inclination i = 20◦.
The line profiles for a spherical NS with R = Re and for an oblate
NS shape both with Schwarzschild exterior metric are shown by the
black and blue curves, respectively. Accounting for frame dragging and
quadrupole moment gives the profile shown by the red curve. The line
obtained with a quadrupole moment artificially increased by a factor
of 4 above that given by Eq. (A.9) is shown by the dashed red curve.
Compare to fig. 5 in Nättilä & Pihajoki (2018).
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Fig. B.3. Line profiles observed at different inclination angles, i = 90◦
(black), 60◦ (orange), 40◦ (violet), 20◦ (magenta), 10◦ (blue), and 5◦
(red). The adopted NS parameters are M′ = 1.5M�, Re = 14 km, ν∗ =
600 Hz. The energy range is shifted by the redshift factor

√
1 − RS/Re.

Compare to fig. 6 in Nättilä & Pihajoki (2018).
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