CORRELATIONS OF THE VON MANGOLDT AND HIGHER
DIVISOR FUNCTIONS I. LONG SHIFT RANGES
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ABSTRACT. We study asymptotics of sums of the form » y_ oy A(n)A(n +
h), ZX<71§2X di(n)di(n + h), Zx<ngzx A(n)dy(n + h), and > A(n)A(N —
n), where A is the von Mangoldt function, dj, is the k*" divisor function, and
N, X are large. Our main result is that the expected asymptotic for the first
three sums holds for almost all h € [—H, H], provided that X" < H <
X'~¢ for some € > 0, where o = % =0.2424 ..., with an error term saving
on average an arbitrary power of the logarithm over the trivial bound. This
improves upon results of Mikawa and Baier-Browning-Marasingha-Zhao, who
obtained statements of this form with o replaced by % We obtain an analogous
result for the fourth sum for most N in an interval of the form [X, X + H] with
XUJre < H< lea.

Our method starts with a variant of an argument from a paper of Zhan, using
the circle method and some oscillatory integral estimates to reduce matters to
establishing some mean-value estimates for certain Dirichlet polynomials asso-
ciated to “Type d3” and “Type d4” sums (as well as some other sums that are
easier to treat). After applying Holder’s inequality to the Type ds sum, one
is left with two expressions, one of which we can control using a short interval
mean value theorem of Jutila, and the other we can control using exponential
sum estimates of Robert and Sargos. The Type d4 sum is treated similarly using
the classical L? mean value theorem and the classical van der Corput exponential
sum estimates.

In a sequel to this paper we will obtain related results for the correlations
involving dj(n) for much smaller values of H but with weaker bounds.

1. INTRODUCTION

This paper (as well as the sequel [51]) will be concerned with the asymptotic
estimation of correlations of the form

Y. [f(n)g(n+h) (1)

X<n<2X

for various functions f,¢g: Z — C and large X, and for “most” integers h in the
range |h| < H for some H = H(X) growing in X at a moderate rate; in this

paper we will mostly be concerned with the regime where H = X? for some fixed
1
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0 < 0 < 1. We will focus our attention on the particularly well studied correlations

> A(m)A(n+h) (2)

> di(n)dy(n+ h) (3)
> A(n)dy(n+ h) (4)

> AM)AX —n) (5)

for fixed k,l > 2, where A is the von Mangoldt function and

de(n) = > 1

ni--nEp=n

is the k'™ divisor function, adopting the convention that A(n) = di(n) = 0 for
n < 0. Of course, to interpret (5) properly one needs to take X to be an integer,
and then one can split this expression by symmetry into what is essentially twice
a sum of the form (1) with X replaced by X/2, f(n) := A(n), g(n) = A(—n), and
h = —X. One can also work with the range 1 < n < X rather than X <n <2X
for (2), (3), (4) with only minor changes to the arguments below. As is well
known, the von Mangoldt function A behaves similarly in many ways to the divisor
functions dj, for k moderately large, with identities such as the Linnik identity [44]
and the Heath-Brown identity [26] providing an explicit connection between the
two functions. Because of this, we will be able to treat both A and di in a largely
unified fashion.

In the regime when h is fixed and non-zero, and X goes to infinity, we have well
established conjectures for the asymptotic values of each of the above expressions:

Conjecture 1.1. Let h be a fized non-zero integer, and let k,1 > 2 be fixed natural
numbers.
(i) (Hardy-Littlewood prime tuples conjecture [23]) We have'
> Am)A(n+h) = S(h)X + O(X/>He0) (6)
X<n<2X

as X — oo, where the singular series &(h) vanishes if h is odd, and is
equal to

S(h) =21, [] p-1 (7)

when h is even, where Ily =] (1 — ﬁ) is the twin prime constant.

ISee Section 2 for the asymptotic notation used in this paper.
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(ii) (Divisor correlation conjecture [75], [32], [9, Conjecture 3]) We have?

> di(n)dy(n+ h) = Pyya(log X)X + O(X/2e0)) (8)

X<n<2X

as X — 00, for some polynomial Py, of degree k + 1 — 2.
(iii) (Higher order Titchmarsh divisor problem) We have

> Am)di(n+ h) = Qrallog X)X + O(X'/>+W) (9)

X<n<2X

as X — oo, for some polynomial Q. of degree k — 1.
(iv) (Quantitative Goldbach conjecture, see e.g. [36, Ch. 19]) We have

D> AMAX —n) = S(X)X + O(X /) (10)

as X — oo, where &(X) was defined in (7) and X is restricted to be
nteger.

Remark 1.2. The polynomials Py are in principle computable (see [9] for an
explicit formula), but they become quite messy in their lower order terms. For in-
stance, a classical result of Ingham [31] shows that the leading term in the quadratic
polynomial Py () is (7% de é)tQ, but the lower order terms of this polynomial,
computed in [15] (with the sum Y _, .oy replaced with the closely related sum
Y onex), are significantly more complicated. A similar situation occurs for Qrh;
see for instance [17] for an explicit formula for Q2. The top degree terms of
Py n, Qrn are however easy to predict from standard probablistic heuristics: one

should have

tk*l

Pein(t) = = l — ) (H Srip(h ) + Opp (FT73) (11)

and

Qrn(t) = h (H Gk,p(h)> + Opp(t*2)

2In [75] it is conjectured (in the k& = [ case) that the error term is only bounded by
O(x'~1/F+e() "and in [32] it is in fact conjectured that the error term is not better than this;
see also [34] for further discussion. Interestingly, in the function field case (replacing Z by Fy[t])
the error term was bounded by O(g~'/?) times the main term in the large ¢ limit in [1], but
this only gives square root cancellation in the degree 1 case n = 1 and so does not seem to give
strong guidance as to the size of the error term in the large n limit.
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where the local factors Sy ,(h), Sy p(h) are defined by the formulae®
. Edkm(n)dl,p(n + h)

Gk,l,p(h) = Edk,p(n)Ele’(n)
and
Spp(h) = Edyp(n)Ap(n + h)
k,p T Edk’p(n>EAp(n>

where n is a random variable drawn from the profinite integers 7. with uniform
Haar probability measure, dy,(n) = (”P(r;)jlkfl) 18 the local component of di at p
(with the p-valuation v,(n) being the supremum of all j such that p’ divides n),
and Apy(n) = I%lpfn is the local component of A. See [66] for an explanation of
these heuristics and a verification of the asymptotic (11), as well as an explicit

formula for the local factor Sy, ,(h). For comparison, it is easy to see that

EA,(n)A,(n + h)
S = L5, s, m)

for all non-zero integers h, and similarly

_ 17 EA(m)A, (X —n)
&) = H EA,(n)EA,(n)

for all non-zero integers X.

Conjecture 1.1 is considered to be quite difficult, particularly when k& and [
are large, even if one allows the error term to be larger than X/2+°() (but still
smaller than the main term). For instance it is a notorious open problem to
obtain an asymptotic for the divisor correlations in the case £k = [ = 3. The
objective of this paper is to obtain a weaker version of Conjecture 1.1 in which
one has less control on the error terms, and one is content with obtaining the
asymptotics for most h in a given range [hg — H, ho + H]|, rather than for all h.
This is in analogy with our recent work on Chowla and Elliott type conjectures for
bounded multiplicative functions [50], although our methods here are different?.
Our ranges of h will be shorter than those in previous literature on Conjecture 1.1,
although they cannot be made arbitrarily slowly growing with X as was the case
for bounded multiplicative functions in [50]. In particular, the methods in this
paper will certainly be unable to unconditionally handle intervals of length X/6-¢

30ne can simplify these formulae slightly by observing that Edy ,(n) = (1 — %)1_’“ and
EA,(n) = 1.

In particular, the arguments in [50] rely heavily on multiplicativity in small primes, which
is absent in the case of the von Mangoldt function, and in the case of the divisor functions dy
would not be strong enough to give error terms of size O A(log_A x) times the main term. In any
event, the arguments in this paper certainly cannot work for H slower than log X even if one
assumes conjectures such as GLH, GRH, or EH, as the h = 0 term would dominate all of the
averages considered here.
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or shorter for any ¢ > 0, since it is not even known® currently if the prime number

theorem is valid in most intervals of the form [X, X + X'/6~¢], and such a result
would easily follow from an averaging argument (using a well-known calculation of
Gallagher [21]) if we knew the prime tuples conjecture (6) for most h = O(X/6-¢).
However, one can do much better than this if one assumes powerful conjectures
such as the Generalized Lindel6f Hypothesis (GLH), the Generalized Riemann
Hypothesis (GRH), or the Elliott-Halberstam conjecture (EH). We plan to discuss
some of these conditional results in more detail on another occasion.

In the case of the divisor correlation conjecture (8) and the higher order Titch-
marsh divisor problem (9), we can obtain much shorter values of H (but with a
much weaker error term) by a different method related to [48] and [50]. We will
address this question in the sequel [51] to this paper.

1.1. Prior results. We now discuss some partial progress on each of the four parts
to Conjecture 1.1, starting with the prime tuples conjecture (6). The conjecture
(6) is trivial for odd h, so we now restrict attention to even h. In this case, even
the weaker estimate

> Am)A(n+h) =S ()X + o(X) (12)

X<n<2X

is not known to hold for any single choice of h; for instance, the case h = 2 would
imply the twin prime conjecture, which remains open. One can of course still use
sieve theoretic methods (see e.g. [58, Corollary 3.14]) to obtain the upper bound

> Am)A(n+h) < S(h)X

X<n<2X

uniformly for |h| < X (say).

There are a number of results [10], [42], [4], [76], [55], [39] that show that (6)
holds for “most” h with |h| < H, as long as H grows moderately quickly with
X. The best known result in the literature (with respect to the range of H) is by
Mikawa [55], who showed (in our notation) that if X1/3+¢ < H < X'~ for some®
fixed € > 0, then the estimate (12) holds for all but O4.(Hlog™* X) values of h
with |h| < H, for any fixed A; in fact the o(X) error term in (12) can also be taken
to be of the form O, (X log™ X).

Now we turn to the divisor correlation conjecture (8). These correlations have
been studied by many authors [30], [31], [15], [44], [25], [60], [61], [62], [63], [40],
[12], [13], [73], [19], [32], [33], [9], [34], [54], [6], [14], [66]. When k = 2, the

%See [78] for the best known result in this direction.

60ne can also handle the range X'!7¢ < H < X by the same methods; see [565]. However,
we restrict H to be slightly smaller than X here in order to avoid some minor technicalities
arising from the fact that n 4+ h might have a slightly different magnitude than n, which becomes
relevant when dealing with the d; functions, whose average value depends on the magnitude on
the argument.
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conjecture is known to be true with a somewhat worse error term. For instance in
the case k = [ = 2 the current record is

Z dy(n)dy(n + h) = Pyyp(log X)X + O(X/3+eW)

X<n<2X

as X — oo. This result is due to Deshouillers-Iwaniec [13]. In the cases | > 3, a
power savings

Z dy(n)dy(n + h) = Pyyp(log X)X + O(X 0oy

X<n<2X

for exponents §;, > 0, is known [6], [14], [74]. See [14], [66] for further references
and surveys of the problem. Finally, we remark that a function field analogue of
(8) has been established in [1], but with an error term that is only bounded by
Oy, (q~'/?) times the main term (so the result pertains to the “large ¢ limit” rather
than the “large n limit”).

When £, > 3, no unconditional proof of even the weaker asymptotic

Z dk dl TL + h) Pk,l,h(log X)X + O(X 10gk+l*2 X)

X<n<2X

is known. However, upper and lower bounds of the correct order of magnitude are
available; see for example, [28, 29, 52, 53, 65, 66].

In the case k = [ = 3, the analogue of Mikawa’s results (now with a power
savings in error terms) were recently established by Baier, Browning, Marasingha,
and Zhao [3], who were able to obtain the asymptotic

Z d3 dg n —+ h) P3,3,h(10g X)X + O(Xlié)

X<n<2X

for all but O.(H X %) choices of h with |h| < H, provided that X1/3+¢ < H < X1-¢
for some fixed £ > 0, and § > 0 is a small exponent depending only on .

Next, we turn to the (higher order) Titchmarsh divisor problem (9). This prob-
lem is often expressed in terms of computing an asymptotic for Z <X dp(p + h)
rather than ) _, o A(n)di(n+h), but the two sums can be related to each other
via summation by parts up to negligible error terms, so it is fairly easy to translate
results about one sum to the other. The k& = 2 case of (9) with qualitative error
term was established by Linnik [44]. This result was improved by Fouvry [18] and
Bombieri-Friedlander-Iwaniec [5], who in our notation showed that

Z A(n)dy(n + h) = Qap(log X)X 4+ O4(X log™* X)
X<n<2X

for any A > 0. Recently, Drappeau [14] showed that the error term could be
improved to O(X exp(—cy/log X)) for some ¢ > 0 provided that one added a
correction term in the case of a Siegel zero; under the assumption of GRH, the
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error term could be improved further to O(X*~?) for some absolute constant § > 0.
Fiorilli [17] also established some uniformity of the error term in the parameter h.
A function field analog of (9) was proven (for arbitrary k) in [1], but with an error
term that is Oy (g~'/?) times the main term.

When k > 3 even the weaker estimate

S A(m)di(n+ h) = Quallog X)X +o(X log** X)

X<n<2X

remains open; sieve theoretic methods would only give this asymptotic assuming a
level of distribution of A that is greater than 1 — 1/k, which would follow from EH
but is not known unconditionally for any & > 3, even after the recent breakthrough
of Zhang [80] (see also [7]).

In analogy with the results of Baier, Browning, Marasingha, and Zhao [3], it is
likely that the method of Mikawa [55] can be extended to give an asymptotic of
the form

Z A(n)ds(n+h) = Qs n(log X)X + 04 (X log™" X)

X<n<2X

for all but O 4 .(H log™ X) values of h with |h| < H, for any fixed A, if X/3+ <
H < X'7¢ for some fixed € > 0; however to our knowledge this result has not been
explicitly proven in the literature.

Finally, we discuss some known results on the Goldbach conjecture (10). As with
the prime tuples conjecture, standard sieve methods (e.g. [58, Theorem 3.13]) will
give the upper bound

> AMAX - n) < S(X)X

uniformly in X. There are a number of results [72], [10], [16], [59], [8], [43], [45]
establishing that the left-hand side of (10) is positive for “most” large even integers
X; for instance, in [45] it was shown that this was the case for all but O(X{%™)
of even integers X < Xy, for any large Xy. There are analogous results in shorter
intervals [67], [46], [77], [37], [24], [47]; for instance in [47] it was shown that for
any 1/5 < 6 < 1 the left-hand side of (10) is positive for all but O(X{~°) even
integers X € [Xo, Xo + X{], for some § > 0 depending on 6, while in [24, Chapter

10] it is shown that for % < 60 < 1and A > 0, the left-hand side of (10) is

positive for all but O4(Xolog™ X;) even integers X € [Xo, Xo + XJ]. On the
other hand, if one wants the left-hand side of (10) to not just be positive, but
be close to the main term &(X)X on the right-hand side, the state of the art
requires larger intervals. For instance, in [36, Proposition 19.5] it is shown that
(10) holds (with O4(Xolog™ X;) error term) for all but O4(X,log™* X;) even
integers X in [1, Xo]. In [68], Perelli and Pintz obtained a similar result for the

1
intervals [ X, Xo + X§’+E] for any € > 0.
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1.2. New results. Our main result is as follows: for all four correlations (i)-(iv)
in Conjecture 1.1, we can improve upon the results of Mikawa, Perelli-Pintz, and
Baier-Browning-Marasingha-Zhao by improving the exponent % to the quantity

8
=—=0.2424.. 13
o= , (13)

for future reference we observe that o lies in the range
1 11 25 7 1
-l =< =< =<0<-. 14
548 108 30 7 1 (14)
(The significance of the other fractions in (14) will become more apparent later in

the paper.) More precisely, we have

Theorem 1.3 (Averaged correlations). Let A >0, 0 < e < 1/2 and k,l > 2 be
fized, and suppose that X°+¢ < H < X'~¢ for some X > 2, where o is defined by
(13). Let 0 < hy < X7,

(i) (Averaged Hardy-Littlewood conjecture) One has
> AM)A(n+h) = S(h)X + 04(Xlog™* X)
X<n<2X

for all but O, (Hlog™* X) walues of h with |h — he| < H.
(ii) (Averaged divisor correlation conjecture) One has

Z dy, (n)dl(n + h) = Pk,l,h(log X)X + OA’gvk,l(X log*A X)
X<n<2X
for all but Oy (Hlog™* X) wvalues of h with |h — ho| < H.
(i) (Averaged higher order Titchmarsh divisor problem) One has
> Am)dr(n+ h) = Qralog X)X + Opcr(Xlog™* X)
X<n<2X

for all but O, x(Hlog™* X) values of h with |h — ho| < H.
(iv) (Averaged Goldbach conjecture) One has

D> AMAN = n) = S(N)N + 04.(X log " X)

for all but OA@(Hlog*A X) integers N in the interval [X, X + H].

In the case of correlations of the divisor functions, our method can be modified to
obtain power-savings in the error terms. However, since we cannot obtain power-
savings in the case of correlations of the von Mangoldt function, in order to keep
our choice of parameters uniform accross the four cases stated in Theorem 1.3 we
have decided to state the result for the divisor function with weaker error terms
(see Remark 1.5 below for more details).

As mentioned previously, the cases H > X 57¢ of the above theorem are essen-
tially in the literature, either being contained in the papers of Mikawa [55] and
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Baier et al. [3], or following from a modification of their methods. We give a
slightly different proof in these cases in this paper. Still another, but related,
proof of the H > X 57¢ cases could be obtained by adapting arguments used pre-
viously for studing Goldbach problem in short intervals, see e.g. [24, Chapter 10]
for such arguments. In the range H > X 51 our argument relies only on standard
mean-value theorems and on a simple bound for the fourth moment of Dirichlet
L-functions (which follows from the mean-value theorem and Poisson summation
formula). To contrast, the approaches in [55, 3] depend in the range H > X'/3+¢
on some non-trivial input, such as either bounds for the sixth moment of the Rie-
mann zeta-function off the half-line (in [3]) or estimates for Kloosterman sums (in
[55]). In fact our approach is entirely independent of results on Kloosterman sums,
even for smaller H (see Remark 1.4 below for more details).

Before we embark on a discussion of the proof, we note that our results do not
appear to have new consequences for moments of the Riemann-zeta function. For
instance for the problem of estimating the sixth moment of the Riemann zeta-
function one needs an estimate for

S° 3 dyn)dsn+ ) (15)

h<H n<X

in the range H = X3, To obtain an improvement over the best-known estimate

2T
/ C(L +it)|Sdt < T4+
T

one would need to show that in the range H = X'/3 the error term in (15) is
< HX?°/67¢_ A naive application of our result, gives a bound of <4 HX (log X)™4
for the error term. As we pointed out earlier in the case of the divisor function,
it is possible to improve the (log X)~4 to X% for some § > 0, however since our
method is optimized for dealing with smaller H, rather than with H = X? we
doubt that there will be new results in this range.

We now briefly summarize the arguments used to prove Theorem 1.3. To follow
the many changes of variable of summation (or integration) in the argument, it is
convenient to refer to the following diagram:

Additive frequency « Multiplicative frequency t
) T
Position n < Logarithmic position u

Initially, the correlations studied in Theorem 1.3 are expressed in terms of the
position variable n (an integer comparable to X), which we have placed in the
bottom left of the above diagram. The first step in analyzing these correlations,
which is standard, is to apply the Hardy-Littlewood circle method (i.e., the Fourier
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transform), which expresses correlations such as (1) as an integral

/Sf(a)Sg(a)e(ah) dov
T
over the unit circle T := R/Z, where Sy, S, are the exponential sums

Si(a):=Y f(n)e(na)

X<n<2X

Sy(a) = Z g(n)e(na).

X<n<2X

The additive frequency «, which is the Fourier-analytic dual to the position vari-
able n, is depicted on the top left of the above diagram. In our applications, f will
be of the form Al(x2x) or dil(x2x], and similarly for g. We then divide T into

X
arcs, which consist of all other «. Here B’ > B > 0 are suitable large constants

(depending on the parameters A, k,1).

The major arcs contribute the main terms &(h) X, Py p(log X)X, Qkn(log X)X,
S(N)N to Theorem 1.3, and the estimation of their contribution is standard; we
do this in Section 4. The main novelty in our arguments lies in the treatment of the
minor arc contribution, which we wish to show is negligible on the average. After
an application of the Cauchy-Schwarz inequality, the main task becomes that of
estimating the integral

. . . Bl .
the major arcs, in which |o — §| < e X for some ¢ < log? X, and the minor

B+1/H
/ﬂ 1Sy(a)[? da (16)

~1/H

for various “minor arc” . To do this, we follow a strategy from a paper of Zhan
[79] and estimate this type of integral in terms of the Dirichlet series

Difl(y +it) = Y I

+

1
nz2

for various “multiplicative frequencies” ¢t. Actually for technical reasons we will
have to twist these Dirichlet series by a Dirichlet character y of small conductor,
but we ignore this complication for this informal discussion. The variable ¢ is
depicted on the top right of the above diagram, and so we will have to return to
the position variable n and then go through the logarithmic position variable wu,
which we will introduce shortly.

Applying the Fourier transform (as was done in Gallagher [20]), we can control
the expression (16) in terms of an expression of the form

/R S fme(pn)P dr.

r<n<z+H
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Actually, it is convenient to smooth the summation appearing here, but we ignore
this technicality for this informal discussion. This returns one to the bottom
left of the above diagram. Next, one makes the logarithmic change of variables
u = logn — log X, or equivalently n = Xe". This transforms the main variable of
interest to a bounded real number u = O(1), and the phase e(fn) that appears
in the above expression now takes the form e(8Xe"). We are now at the bottom
right of the diagram.

Finally, one takes the Fourier transform to convert the expression involving u to
an expression involving ¢, which (up to a harmless factor of 27, as well as a phase
modulation) is the Fourier dual of u. Because the u derivative of the phase S Xe" is
comparable in magnitude to |5|X, one would expect the main contributions in the
integration over ¢ to come from the region where ¢ is comparable to |3|X. This
intuition can be made rigorous using Fourier-analytic tools such as Littlewood-
Paley projections and the method of stationary phase.

At this point, after all the harmonic analytic transformations, we come to the
arithmetic heart of the problem. A precise statement of the estimates needed can
be found in Proposition 5.4; a model problem is to obtain an upper bound on the

quantity
t+\H 2
[ ) o
[t =2 X t—A\H

for % < X\ < log™? X that improves (by a large power of log X) upon the trivial

bound of Ox(\2H2X log?*") X) that one can obtain from the Cauchy-Schwarz
inequality

DIf)(; + i)

t+NH 1 2 t+AH 1
(/ DS + i) dt’) < AH/ DU + it 2 .
t—AH 2 t—A\H 2

The most difficult case occurs when A is large (e.g. A = log % X ); indeed, the case
A < X57¢ of small A is analogous to the prime number theorem in most short
intervals of the form [X, X + X5%¢], and (following [24]) can be treated by such
methods as the Huxley large values estimate and mean value theorems for Dirichlet
polynomials. This is done in Appendix A. (In the case f = d31(x 2x], these bounds
are essentially contained (in somewhat disguised form) in [3, Theorem 1.1].)

For sake of argument let us focus now on the case f = Al(x2x). We proceed
via the usual technique of decomposing A using the Heath-Brown identity [26] and
further dyadic decompositions. Because o lies in the range (14), this leaves us
with “Type II” sums where f is replaced by a Dirichlet convolution « * g with
a supported on [XEQ,X_EQH], as well as “Type d;”, “Type dy”, “Type d3”, and
“Type d4” sums where (roughly speaking) f is replaced by a Dirichlet convolution
that resembles one of the first four divisor functions dy, ds, ds, dy respectively. (See
Proposition 6.1 for a precise statement of the estimates needed.)
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The contribution of the Type II sums can be easily handled by an application
of the Cauchy-Schwarz inequality and L? mean value theorems for Dirichlet poly-
nomials. The Type d; and Type d, sums can be treated by L* moment theorems
[69], [2] for the Riemann zeta function and Dirichlet L-functions. These argu-
ments are already enough to recover the results in [55], [3], which treated the case
H > X'/3*¢; our methods are slightly different from those in [55], [3] due to our
heavier reliance on Dirichlet polynomials. To break the X'/3 barrier we need to
control Type d3 sums, and to go below X/* one must also consider Type d4 sums.
The standard unconditional moment estimates on the Riemann zeta function and
Dirichlet L-functions are inadequate for treating the d3 sums. Instead, after ap-
plying the Cauchy-Schwarz inequality and subdividing the range {t : ¢ < AX}
into intervals of length v/AX, the problem reduces to obtaining two bounds on
Dirichlet polynomials in “typical” short or medium intervals. A model for these
problems would be to establish the bounds

tj-l-\/ﬁ 1 4 )
/ D[l(Xl/s 2X1/3}] (— + it) dt <. XTVIX (17)
tj—VAX 7 2
and
tj+H 1 2 )
/ D[l(X1/3,2X1/3}] (5 + Zt) dt <<g XE H (18)
ti—H

for “typical” j =1,...,r, where t,...,t, is a maximal v/ AX-separated subset of
[AX,2)\X]. (These are oversimplifications; see Proposition 7.4 and Proposition 7.5
for more precise statements of the bounds needed.)

The first estimate (17) turns out to follow readily from a fourth moment estimate
of Jutila [38] for Dirichlet L-functions in medium-sized intervals on average. As for
(18), one can use the Fourier transform to bound the left-hand side by something
that is roughly of the form

H
<E 2

(=0(X1/3/H)

tj m+€

mx=X1/3

The diagonal term ¢ = 0 is easy to treat, so we focus on the non-zero values of ¢.

By Taylor expansion, the phase zt—jr log z—fﬁ is approximately equal to the monomial
ir—j%. If one were to actually replace e(;—jr log 244 by e(;—jﬁ), then it turns out that

one can obtain a very favorable estimate by using the fourth moment bounds of
Robert and Sargos [71] for exponential sums with monomial phases. Unfortunately,
the Taylor expansion does contain an additional lower order term of ;—;% which
complicates the analysis, but it turns out that (at the cost of some inefficiency) one
can still apply the bounds of Robert and Sargos to obtain a satisfactory estimate
for the indicated value (13) of o.

In the range (14) one must also treat the Type d4 sums. Here we use a cruder
version of the Type d3 analysis. The analogue of Jutila’s estimate (which would
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now require control of sixth moments) is not known unconditionally, so we use
the classical L? mean value theorem in its place. The estimates of Robert and
Sargos are now unfavorable, so we instead estimate the analogue of (19) using the
classical van der Corput exponent pair (1/14,2/7), which turns out to work even
for o as small as 7/30 (see (14)). Hence dy sums turn out to be easier than dsz in
our range of H.

Remark 1.4. [t is interesting to note that our work does not depend at all on
estimates for Kloosterman sums. While the work of Mikawa for H > X'/3t¢
depends on the Weil bound for Kloosterman sums, our result in the same range
only uses a bound for the fourth moment of Dirichlet L-functions. The latter
follows from the approximate functional equation and a mean-value theorem. In the
smaller ranges of H we use in addition estimates for short moments of Dirichlet
L-functions (due to Jutila, see Proposition 2.13 below and also Corollary 2.14)
that are of the same strength as those that one obtains from using Kloosterman
sums (due to Twaniec, see [35]) and yet whose proof is independent of input from
algebraic geometry or spectral theory.

Remark 1.5. As usual, the results involving A will have the implied constant
depend in an ineffective fashion on the parameter A, due to our reliance on Siegel’s
theorem. It may be possible to eliminate this ineffectivity (possibly after excluding
some “bad” scales X =< Xo) by introducing a separate argument (in the spirit of
[27]) to handle the case of a Siegel zero, but we do not pursue this matter here. In
the proof of Theorem 1.3(ii), we do not need to invoke Siegel’s theorem, and it is
likely that (as in [3]) we can improve the logarithmic savings log™* X to a power
savings X for some absolute constant ¢ > 0 (and with effective constants) by
a refinement of the argument. However, we do not do this here in order to be able
to treat all four estimates in a unified fashion.
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2. NOTATION AND PRELIMINARIES

All sums and products will be over integers unless otherwise specified, with the
exception of sums and products over the variable p (or pq, pe, p/, etc.) which will
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be over primes. To accommodate this convention, we adopt the further convention
that all functions on the natural numbers are automatically extended by zero to
the rest of the integers, e.g. A(n) =0 for n < 0.

We use A = O(B), A < B, or B > A to denote the bound |A] < CB for
some constant C. If we permit C' to depend on additional parameters then we will
indicate this by subscripts, thus for instance A = Oy .(B) or A <, . B denotes the
bound |A| < Cy B for some Cj . depending on k,e. If A, B both depend on some
large parameter X, we say that A = o(B) as X — oo if one has |A| < ¢(X)B
for some function ¢(X) of X (as well as further “fixed” parameters not depending
on X), which goes to zero as X — oo (holding all “fixed” parameters constant).
We also write A < B for A < B < A, with the same subscripting conventions as
before.

We use T := R/Z to denote the unit circle, and e : T — C to denote the
fundamental character

e(z) = e*™*.

We use 1g to denote the indicator of a set E, thus 1g(n) = 1 when n € E and
1g(n) = 0 otherwise. Similarly, if S is a statement, we let 15 denote the number
1 when S is true and 0 when S is false, thus for instance 1g(n) = l,cp. If F is a
finite set, we use #F to denote its cardinality.

We use (a,b) and [a, b] for the greatest common divisor and least common mul-
tiple of natural numbers a,b respectively, and write a|b if a divides b. We also
write a = b (q) if @ and b have the same residue modulo g.

Given a sequence f : X — C on a set X, we define the ¢¥ norm || f| of f for
any 1 < p < oo as

1/p
[fller = <Z If(n)\p>

neX

and similarly define the £*° norm
[fllewe := sup [f(n)].
neX

Given two arithmetic functions f, g : N — C, the Dirichlet convolution f * g is

defined by
frgn) =Y f(d)g (g) :

dn

2.1. Summation by parts and exponential sums. If one has an asymp-
totic of the form Yy _vng(n) ~ [ h(z) dr for all X < X” < X', then
one can use summation by parts to then obtain approximations of the form
Y xenex f(n)g(n) = f;fﬁ f(x)h(zx) dx for sufficiently “slowly varying” amplitude
functions f : [X, X'] — C. The following lemma formalizes this intuition:
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Lemma 2.1 (Summation by parts). Let X < X', and let f : [X,X'] — C be
a smooth function. Then for any function g : N — C and absolutely integrable
h:[X,X'] = C, we have

Y. fgln) = [ f@)h(x) de < |F(X)|E(X) +/ [f(XT)EXT) dX"

X<n<X' X X
where f' is the derivative of f and E(X") is the quantity

X//

> gln) - / h(z) dz|.

X<n<X" X

E(X") =

Proof. From the fundamental theorem of calculus we have
X/
> g = FX) Y g [ ( > g<n>) FX) dX" (20)
X<n<X! X<n<X/ X \x<n<x”
and similarly

) de = g00) [ by e [ (

X X X X

X//
/ h(x) dx) (X" dx".
Subtracting the two identities and applying the triangle inequality and Minkowski’s

integral inequality, we obtain the claim. 0

The following variant of Lemma 2.1 will also be useful. Following Robert and
Sargos [71], define the maximal sum [}, _x, g(n)[* to be the expression

Z g(n) Z g(n)|.

X<n<X! X1<n< X2

Lemma 2.2 (Summation by parts, II). Let X < X', let f : [X,X'] — C be
smooth, and let g : N — C be a sequence. Then

S fem)| <| S gt (sup @)+ (X~ X) sup |f’<x>|).

Xmex! X<z<X' X<a<X'
Proof. Our task is to show that

Y. )

*

(21)

= sup
X<X<Xo<X/

ES

<| 3 gw] (s lf@l+00-%) s (7))

X1<n<Xo X<n<X/ X<z<X' X<z<X'
for all X < X; < Xy < X', The claim then follows from (20) (replacing X, X’ by
Xi, X3) and the triangle inequality and Minkowski’s integral inequality. 0

To estimate maximal exponential sums, we will use the following estimates,
contained in the work of Robert and Sargos [71]:



16 KAISA MATOMAKI, MAKSYM RADZIWILL, AND TERENCE TAO

Lemma 2.3. Let M > 2 be a natural number, and let X > 2 be a real number.

(i) Let o(1),...,0(M) be real numbers, let ay,...,ay be complex numbers of
modulus at most one, and let 2 <Y < X. Then

/0 ( ) dt<<$/0 (;e(w(m))‘) dt.

(i) Let 0 # 0,1 be a real number, let ¢ > 0, and let ayy, ..., azp be complex
numbers of modulus at most one. Then

X
J
(iii) Suppose that M < X < M?. Let ¢ : R — R be a smooth function obeying

the derivative estimates | (z)| < X/M7 for j = 1,2,3,4 and v < M.

> ame(to(m))

2M

3" ame (t (%)3 ‘) dt <g. (X + M) (M* + M2X).

m=

Then
2M * M *
D elp(m)| < Xz D elgt(0)| + M
m=M <L
for some L < <X where ¢*(t) = @(u(t)) — tu(t) is the (negative) Legendre
M

transform of @, u is the inverse of the function ¢, and e = £1 denotes the
sign of ¢'(x) in the range x < M.

Proof. Part (i) follows from the p = 2 case of [71, Lemma 3]. Part (ii) follows from
[71, Lemma 7] when X < M? and the remaining case X > M? then follows from
part (i). Finally, part (iii) follows from applying the van der Corput B-process
(and Lemma 2.2), see e.g. [22, Lemma 3.6] or [36, Theorem 8.16], replacing ¢ with
— if necessary to normalize the second derivative ¢” to be positive. 0

2.2. Divisor-bounded arithmetic functions. Let us call an arithmetic func-
tion a : N — C k-divisor-bounded for some k > 0 if one has the pointwise bound

a(n) <y dj(n)log"(2 + n)
for all n. From the elementary mean value estimate

Z di(n)* <y mloglk*l(Q + ), (22)
1<n<zx
valid for any k£ > 0,1 > 2, and x > 1 (see e.g., [36, formula (1.80)]), we see that a
k-divisor-bounded function obeys the ¢? bounds

Z a(n)? <, £1og?* W (2 + 1) (23)

n<x
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for any > 1. Applying (23) with « replaced by a large power of «, we conclude
in particular the > bound
sup a(n) < x° (24)

n<x

for any € > 0.

2.3. Dirichlet polynomials. Given any function f : N — C supported on a
finite set, we may form the Dirichlet polynomial

)=y I (25)

for any complex s; if f has infinite support but is bounded, we can still define D|f]
in the region Res > 1. We will use a normalization in which we mostly evaluate
Dirichlet polynomials on the critical line {% +it : t € R}, but one could easily run
the argument using other normalizations, for instance by evaluating all Dirichlet
polynomials on the line {1 + it : ¢t € R} instead.

We have the following standard estimate:

Lemma 2.4 (Truncated Perron formula). Let f : N — C, let T, X > 2, and let
1< < X.

(i) If f is k-divisor-bounded for some k > 0, and T < X'7¢, then for any
0<o0<1-—2¢ one has

fn) 1 /T T X1 10g% (T X)
U~ | pija t dt+ Oy, .
Z n® 2w J_p I +10gX+Z)1—(7—|-log1X—i-it %o, T

n<x

(i) If f : N — C is supported on [X/C,CX] for some C > 1, then

2+zt ' X
27‘(/ D +Zt dt+OC Z|f |m1n (1,m) .

n<x
(26)
In particular, if we estimate f(n) pointwise by || f|e, we have
gatit Xlog(2+T
/ D[f +zt 1 dt + O¢ ||f||gooL . (27)
n<:p 27T 5 it T

Proof. For (i), apply [58, Corollary 5.3] with a,, = M and 0g =1 — o + @,

as well as (22). For (ii), apply [58, Corollary 5.3] instead with a, = f(n) and

0o = % [

As one technical consequence of this lemma, we can estimate the effect of trun-
cating an arithmetic function f on its Dirichlet series:



18 KAISA MATOMAKI, MAKSYM RADZIWILL, AND TERENCE TAO

Corollary 2.5 (Truncating a Dirichlet series). Suppose that f : N — C is sup-
ported on [X/C,CX] for some X > 1 and C > 1. Let T > 1. Then for any
interval [X1, Xo] and any t € R, we have the pointwise bound

I T r du X2log(2 + T)
DU tosxallg + i) e [ DU + it + i)l + e

Because the weight ﬁ integrates to O(log(2 + 7)) on [—T,T], this corollary
is morally asserting that the Dirichlet polynomial of f1;x, x,) is controlled by that
of f up to logarithmic factors. As such factors will be harmless in our applica-
tions, this corollary effectively allows one to dispose of truncations such as 1jx, x,)

appearing in a Dirichlet polynomial whenever desired.

Proof. Applying Lemma 2.4(ii) with f replaced by n — f(n)/n", we have for any
x that

fln) 1 /T 1 gt Xlog(2+1T)
— == Dif|(5 +it du + O B
2w = ar | PVIG it duk Oc (1= =
and hence by the triangle inequality
f(n) 1/2 /T r .. du Xlog(2+4T)
— D[f](= + it o= T )
> T <ea' [ DG +i Fil e + 11l .

n<x
The claim now follows from Lemma 2.1 (with A = 0, g(n) replaced by f(n)/n®,
and f(z) replaced by x7/2). O

2.4. Arithmetic functions with good cancellation. Let a: N — C be k-
divisor-bounded function. From (23) and Cauchy-Schwarz, we see that

Z a(n) < 1% 1ogW g (28)

1 .
5tit

n<zin=a (q)

forany t € R, ¢ > 1, and a € Z. We will say that a k-divisor-bounded function «
has good cancellation if one has the improved bound

Z % <papp v/ log (29)
n<z:n=a (q) n>t

forany A,B,B' >0,z >2, q <logPz, a € Z, and t € R with log? z < t] <z,

provided that B’ is sufficiently large depending on A, B, k.

It is clear that if « is a k-divisor-bounded function with good cancellation, then
so is its restriction alpx, x, to any interval [Xi, X5]. The property of being k-
divisor-bounded with good cancellation is also basically preserved under Dirichlet
convolution:
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Lemma 2.6. Let o, 8 be k-divisor-bounded functions. Then a x 5 is a (2k + 1)-
divisor-bounded function. Furthemore, if a and B both have good cancellation, then
so does a x [3.

If, in addition, there is an N for which « is supported on [N?,+oo| and (3 is
supported on [1, N|, then one can omit the hypothesis that § has good cancellation
in the previous claim.

Proof. Using the elementary inequality d’;l * d§2 < d§1+k2+1, we see a x (3 is 2k + 1-
divisor-bounded. Next, suppose that o and g have good cancellation, and let
AB,B >0,2>2 q<log?X aecZ and t € R with log? z < |t| < &,
with B’ is sufficiently large depending on A, B, k. To show that « * 5 has good
cancellation, it suffices by dyadic decomposition to show that

Z Lﬁ(?) <papp tV/*log . (30)

na"’
z<n<2z:n=a (q)

By decomposing « into aly 7 and al( z ;) and similarly for 3, we may assume
from the triangle inequality that at least one of «, 3 is supported on (y/x, +00);
by symmetry we may assume that « is so supported. The left-hand side of (30)
may thus be written as

Z Z ’ (1n:z‘)t Z O‘%( :—lz)t ‘

b=ac (q) m</z:m=c (q) z/m<n<2z/m:mn=a (q) n

Let A’ > 0 be a quantity depending on A, B, k to be chosen later. As a has good
cancellation, we may bound this (for B’ sufficiently large depending on k, A, B)
using the triangle inequality by

<y S B0 (1 fm),

b=ac (q) m<y/z:m=c (q)

as 3 is k-divisor-bounded and ¢ < log? z, we may apply (22) and bound this by

—A'+B+O,(1
<L.A.B,5 Tlog +B+0k() 4

Choosing A’ sufficiently large depending on A, B, k, we obtain (30). The final
claim of the lemma is proven similarly, noting that the left-hand side of (30)
vanishes unless > N2, and hence from the support of 5 we may already restrict
« to the region (c\/x,+00) for some absolute constant ¢ > 0 without invoking
symmetry. 0

We have three basic examples of functions with good cancellation:

Lemma 2.7. The constant function 1, the logarithm function L : n +— logn and
the Mobius function p are 1-divisor-bounded with good cancellation.

From this lemma and Lemma 2.6, we also see that A and dj; have good cancel-
lation for any fixed k.
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Proof. For the functions 1, L this follows from standard van der Corput exponential
sum estimates for | Y5 e(—5-log(qn+a))|* (e.g. [36, Lemma 8.10]) and Lemma
2.2, normalizing a to be in the range 0 < a < ¢q. Now we consider the function pu.
By using multiplicativity (and increasing A as necessary) we may assume that a
is coprime to ¢. By decomposition into Dirichlet characters (and again increasing
A as necessary) it suffices to show that

) w <kapp v log (31)
n<x

for any Dirichlet character x of period q.

This estimate is certainly known to the experts, but as we did not find it in this
form in the literature, we prove it here. The Vinogradov-Korobov zero-free region
[57, 89.5] implies that L(s, x) has no zeroes in the region

. CB.B’
o+t 0< || < |t|+2%0>1— ’ }
{ 7] <l log”" ] log g |a])

for some cp g > 0 depending only on B, B'. Applyi