
How PHP Releases Are Adopted in the Wild?
Jukka Ruohonen

University of Turku, Finland
Email: juanruo@utu.fi

Ville Leppänen
University of Turku, Finland
Email: ville.leppanen@utu.fi

Abstract—This empirical paper examines the adoption of PHP
releases in the the contemporary world wide web. Motivated by
continuous software engineering practices and software traceabil-
ity improvements for release engineering, the empirical analysis
is based on big data collected by web crawling. According to the
empirical results based on discrete time-homogeneous Markov
chain (DTMC) analysis, (i) adoption of PHP releases has been
relatively uniform across the domains observed, (ii) which tend to
also adopt either old or new PHP releases relatively infrequently.
Although there are outliers, (iii) downgrading of PHP releases is
generally rare. To some extent, (iv) the results vary between the
recent history from 2016 to early 2017 and the long-run evolution
in the 2010s. In addition to these empirical results, the paper
contributes to the software evolution and release engineering
research traditions by elaborating the applied use of DTMCs
for systematic empirical tracing of online software deployments.

Index Terms—release engineering, software evolution, contin-
uous delivery, patching, upgrading, downgrading, web crawling

I. INTRODUCTION

Programming languages evolve like any other software [1].
Like most software, also programming languages require re-
lease engineering, and as with conventional software, users of
a programming language are likely to abandon the language
if it is not properly updated and maintained to meet the
continuously changing requirements [2]. In recent years, dif-
ferent continuous software engineering practices have become
increasingly popular for the development and maintenance of
conventional software. Interestingly, also programming lan-
guages such as PHP have adopted a strategy of continuous
releases scheduled to occur in a fast and fixed release cycle.

This paper investigates the continuous release engineering
of the PHP programming language from a perspective of
deployments using the language to serve some of the most
popular web sites in the current Internet. While the release
engineering practices used by the PHP project establish the
practical motivation, the primary scholarly purpose of the
investigation is to examine the previously unexplored use of
classical DTMCs for studying release engineering. For putting
the elaborated DTMCs into work, large web crawling datasets
are used to analyze the current PHP release adoption patterns.

Markov chains belong to the classical methodology toolbox
in reliability engineering [3], [4]. Discrete time-homogeneous
Markov chains have recently been also adopted for studying
different empirical software engineering problems, including
those related to software evolution [5]. Thus far, however,

empirical applications have been limited in the release en-
gineering domain. In addition to patching this limitation in
the literature, this paper contributes to the release-based ap-
proaches (as opposed to approaches based on version control
and bug tracking systems) for studying software evolution.

There exists a large amount of empirical work using
a release-oriented perspective to study software evolution
in general and release engineering in particular. Backward-
compatibility [6], library dependencies [7], and so-called rapid
releases [8], [9], [10] are good examples of recent ques-
tions examined (for a review of current research challenges
see [11]). Many of these studies deal with upgrading and
downgrading question either explicitly or implicitly. There is
thus plenty of prior work for framing the questions examined.

However, much of the existing empirical work has liter-
ally been release-based, whereas this paper leans towards a
deployment-based approach. In other words, much of the prior
work is on the producer-side, while the consumer-side has
received less attention [12]. While bringing these two sides
closer to each other remains a major research challenge, it is
worthwhile to further note that the release-versus-deployment
distinction applies also to studies examining the evolution
of programming languages. In particular, there is some prior
work examining PHP deployments seen in the wild [13], but
the evolution of the programming language itself—with its
features and flaws—has received more attention [14], [15].
The same applies to PHP source code analysis, which has
mostly concentrated on evaluating “off-the-shelf” PHP appli-
cations (e.g., [16], [17]) without attempting to cover custom
applications seen in the wild. Although source code analysis
is not pursued in this paper, the deployments examined still
cover many custom PHP applications. Due to such applica-
tions, better knowledge about adoption and patching on the
consumer-side is valuable for those on the producer-side. In
other words, it is important to consider continuous tracing of
software deployments in order to improve the feedback loops
required for sound continuous software engineering practices.

The remainder of the paper is structured into four sections.
Section II motivates the research background in more de-
tail and formulates the research questions for the empirical
analysis. Section III outlines the DTMC modeling approach.
Results are presented in Section IV based on large longitu-
dinal datasets compiled from a few third-party web crawling
snapshots. Conclusions and discussion follow in Section V.

II. BACKGROUND

The scholarly background can be motivated by considering
the feedback channels that are essential for the contemporary
continuous software engineering practices. After connecting
these practices to the concept of software traceability, research
questions are formulated in relation to the current release
engineering strategy of the PHP programming language.

A. Motivation

Continuous software engineering is an umbrella term cov-
ering multiple contemporary software engineering tools and
methodologies, including but not limited to continuous plan-
ning, continuous budgeting, continuous integration, continuous
delivery, continuous deployment, continuous testing, continu-
ous evolution, continuous maintenance, continuous feedback,
and, ultimately, continuous innovation [18], [19]. These over-
lapping continuous-prefixed concepts are also well-recognized
in the release engineering research domain.

However, much of the existing research has concentrated on
traditional software engineering aspects, such as integration,
build systems, testing, and maintenance. This emphasis is
reflected in the attempts to define the concept of release
engineering. For instance, release engineering has been defined
as “a software engineering discipline concerned with the
development, implementation, and improvement of processes
to deploy high-quality software reliably and predictably” [20].
Although the word improvement appears in the definition, a lit-
tle emphasis is placed on feedback from customers, investors,
and other stakeholders, which is a fundamental element in the
contemporary continuous software engineering practices and
processes [8], [21]. By and large, these feedback mechanisms
have constituted an enduring challenge for empirical software
evolution research in general [22], [23]. This gap in the
literature is noteworthy because the availability of information
about releases has increased substantially in recent years.

Different “telemetry” solutions—including crash reports and
other “call-home” features—are increasingly popular in many
software industry segments. The availability of feedback data
is not limited to features explicitly integrated into software,
however. Social media, review and rating sites, and related el-
ements of the contemporary world wide web provide a wealth
of information for systematic tracing of releases. A major
challenge for modern release engineering relates to integration
of such data into meaningful solutions that help developers and
stakeholders to make informed decisions about the evolution
and patching of software deployments [11]. For summarizing
this key challenge, Fig. 1 depicts a relational map of a few
interconnected continuous software engineering concepts. In
this paper, the focus is at the lower-right corner, which is
labeled as continuous tracing of the continuously engineered
releases that are continuously deployed in the wild.

The concept of continuous tracing can be linked to software
traceability, which “refers to the ability to describe and follow
the life of a requirement”, release, or other software artifact “in
both a forwards and backwards direction” [24]. This definition
can be used to clarify and frame the scope of this paper.

Continuous
software engineering

Continuous
feedback

Continuous
tracing

Continuous deliveries, releases, deployments

Requires Provides

AnalyzesProduces

Fig. 1. A Terminological Map

By appending the word continuous to the traceability term,
it is emphasized that tracing of software artifacts should be
systematic and continuous throughout the life cycles of the
artifacts. In this paper, the software engineering artifacts are
releases of the PHP programming language, but the units of
analysis are deployments using the releases for serving web
pages. The tracing in forward and backward directions is
done by observing upgrading (i.e., roll-forward), downgrading
(i.e., roll-back or reverting), and release adoption (i.e., either
upgrading or downgrading) patterns of PHP deployments.

B. PHP Releases and Research Questions

The first version of the PHP programming language was
announced in 1995. The second, third, fourth, and fifth major
versions followed in 1997, 1998, 2000, 2004, respectively. The
sixth major version was branched for development in 2010.
Instead of evolving into a production-ready major release
branch, the controversies regarding Unicode support resulted
in backporting of features from PHP 6 to the fifth major
branch [25]. Currently, most PHP deployments still run with
PHP 5, while the head of development occurs in the PHP 7
branch, which is not compatible with the previous major
branches due to numerous new language features. For the
programming language developers involved in the project, it is
relevant to know an answer to the following question (RQ1).

RQ1 How widespread has the transition been to PHP 7?
The PHP project follows the semantic versioning strat-

egy conveyed via the “major.minor.maintenance” versioning
scheme. According to this versioning strategy, in essence, a
major release should be reserved for incompatible changes
to the application programming interfaces (APIs); a mi-
nor release should aggregate functionality enhancements that
are backward-compatible; and, finally, maintenance releases
should be reserved for small backward-compatible bug fixes
and reliability improvements [6], [7]. These versioning prin-
ciples have also guided the PHP release process since 2010
when a fixed release cycle was agreed upon. According to
the current strategy, minor releases are scheduled to occur
annually, whereas maintenance versions are released at least
once a month [26]. Backward-compatibility and API stability
are guaranteed within major branches. At the time of writing,
the 5.6, 7.0, and 7.1 minor branches are still supported [27],
which is in accordance with the guarantee of three years of
support (bug and security fixes) for each minor release.

Release year

4.0.4
4.0.3
4.0.1
3.0.18

5.0.3
5.0.2
5.0.1
5.0.0

5.1.1
5.0.5
5.0.4

5.2.0
5.1.6
5.1.5
5.1.4
5.1.3
5.1.2

5.2.5
5.2.4
5.2.3
5.2.2
5.2.1
4.4.7

5.2.8
5.2.6
4.4.9
4.4.8

5.3.1
5.2.12
5.2.11
5.3.0
5.2.10
5.2.9

5.3.4
5.2.16
5.2.15
5.3.3
5.2.14
5.3.2
5.2.13

5.3.8
5.3.7
5.3.6
5.3.5
5.2.17

5.4.10
5.4.9
5.4.8
5.4.7
5.4.6
5.4.5
5.4.4
5.4.3
5.4.2
5.4.1
5.4.0
5.3.20
5.3.19
5.3.18
5.3.17
5.3.16
5.3.15
5.3.14
5.3.13
5.3.12
5.3.11
5.3.10
5.3.9

5.5.7
5.5.6
5.5.5
5.5.4
5.5.3
5.5.2
5.5.1
5.5.0
5.4.23
5.4.22
5.4.21
5.4.20
5.4.19
5.4.18
5.4.17
5.4.16
5.4.15
5.4.14
5.4.13
5.4.12
5.4.11
5.3.28
5.3.27
5.3.26
5.3.25
5.3.24
5.3.23
5.3.22
5.3.21

5.6.4
5.5.20
5.6.3
5.5.19
5.6.2
5.5.18
5.6.1
5.5.17
5.6.0
5.5.16
5.5.15
5.5.14
5.5.13
5.5.12
5.5.11
5.5.10
5.5.9
5.5.8
5.4.36
5.4.35
5.4.34
5.4.33
5.4.32
5.4.31
5.4.30
5.4.29
5.4.28
5.4.27
5.4.26
5.4.25
5.4.24
5.3.29

7.0.2
7.0.1
7.0.0
5.6.16
5.5.30
5.6.15
5.6.14
5.6.13
5.5.29
5.5.28
5.6.12
5.6.11
5.5.27
5.6.10
5.5.26
5.6.9
5.5.25
5.6.8
5.5.24
5.6.7
5.5.23
5.6.6
5.5.22
5.6.5
5.5.21
5.4.45
5.4.44
5.4.43
5.4.42
5.4.41
5.4.40
5.4.39
5.4.38
5.4.37

7.0.14
7.1.0
7.0.13
7.0.12
7.0.11
7.0.10
7.0.9
7.0.8
7.0.7
7.0.6
7.0.5
7.0.4
7.0.3
5.6.29
5.6.28
5.6.27
5.6.26
5.6.25
5.6.24
5.6.23
5.5.37
5.5.36
5.6.22
5.6.21
5.5.35
5.6.20
5.5.34
5.6.19
5.5.33
5.6.18
5.5.32
5.6.17
5.5.31

7.1.1
7.0.15

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

198 deprecated releases

Fig. 2. Documented PHP Release History (unsupported versions as of March 2017, parsed from [28])

For a programming language project, the monthly cycle
for maintenance releases is extremely rapid. On paper, this
cycle is actually faster than those used for the development of
many web browsers, such as Firefox [9]. As is visible from
the illustration in Fig. 2, the strategy of monthly maintenance
releases has also resulted a large amount of versions from
circa 2012 onward. Given the rapid release cycle and the large
amount of releases made in recent years, it is relevant to solicit
an answer to the research question RQ2.

RQ2 How prevalent has the adoption of PHP releases been?
The question about release adoption includes both upgrad-

ing and downgrading of PHP versions. From a release engi-
neering perspective, particularly interesting are cases whereby
a deployment downgrades its PHP version. For instance: if
a web site used a version 5.5.0 at some point in time
but then later adopted a version 5.4.0, perhaps there were
difficulties in adopting the new release. If such downgrading
is common, it might be worthwhile to revisit the supportive
activities [29] associated with release engineering. Actual bug
fixes notwithstanding, these activities include sufficient release
notes, good and up-to-date documentation, user support, easy
installation procedures, pre-install checks, sane defaults, mi-
gration instructions, and related release engineering aspects.
Given this reasoning, the question (RQ3) is worth asking.

RQ3 How common is downgrading of PHP deployments?
At a more abstract level of thought, it is relevant to know

how consistent or uniform release adoption has generally
been in recent history. By uniformity, it is meant that most
deployments follow the semantic versioning strategy in their
upgrades, moving within a major or minor branch in a rel-
atively logical manner. When planning for new releases or
supportive activities thereto, it is less relevant to try to support
deployments that adopt releases in a chaotic manner. For
instance: if a site upgraded from 5.4.0 to 7.1.1 but then

moved to 5.5.0 while using a version 5.3.1 in-between,
there are likely problems in the maintenance of the site, which
cannot be addressed by the means of release engineering. If
such chaotic patterns are widespread, on the other hand, it
may be relevant to reconsider the appropriateness of a release
strategy. Thus, the following question (RQ4) is justified.

RQ4 How uniform has the adoption PHP releases been?
Finally, the following atheoretical assertion can be placed

for controlling the answers to the research questions outlined.
RQ5 Do the answer to RQ1, RQ2, RQ3, and RQ4 vary between

the recent short-run history and the long-run evolution?
The concepts of prevalence, uniformity, short-run, and long-

run are further elaborated in the subsequent sections that
introduce the Markov chain framework and the empirical data.

III. APPROACH

A few remarks about the fundamental properties of DTMCs
are required to outline the research approach. After these
remarks, computation and operationalization are discussed.

A. DTMCs in Brief

A first-order discrete time Markov chain is a finite se-
quence of random variables X1, X2, . . . , Xt, . . ., satisfying
the fundamental Markov property according to which the
probability distribution of a forthcoming Xt+1 depends on the
immediately preceding Xt but not on Xt−1, Xt−2, . . . , X1.
If S = {s1, . . . , sn} denotes a set of all possible values of
the random variables, the Markov property implies that the
probability of moving to a next state in the state space S is

Pr(Xt+1 = st+1| X1 = s1, X2 = s2, . . . , Xt = st) (1)
= Pr(Xt+1 = st+1 | Xt = st).

This first-order Markov property implies a “memoryless”
model, meaning that predicting a future state depends only on

the current state. In addition to (a) assuming that (1) holds,
(b) the chains observed are assumed to be time-homogeneous.
The latter condition means that a transition probability

pij = Pr(Xt+1 = sj | Xt = si) (2)

from a state si ∈ S to state sj ∈ S is independent from t,

Pr(Xt+1 = sj | Xt = si) = Pr(Xt = sj | Xt−1 = si). (3)

In other words, the transition probabilities do not change
as time passes. This assumption can be further accompanied
by emphasizing that (c) only discrete chains are considered
without explicit linkage to continuous calendar-time. This
further restriction implies that the transition probability in (2)
does not depend on the calendar-time lag between sj and si,
irrespective whether the lag is measured in months or years.

Finally, (d) the state changes associated with two distinct
(exogenous) sequences, X1, X2, . . . , and Y1, Y2, . . ., are as-
sumed to be independent from each other, such that

Pr(Xt+1 = sj | Xt = si, Y1 = s1, . . . , Yt = sk), (4)
= Pr(Xt+1 = sj | Xt = si).

In other words, the cross-sectional empirical analysis is con-
ducted without considering any potential dependencies be-
tween individual sequences and their state changes.

B. Computation

The empirical setup is based on a sample of m domains:

X
(1)
1 , X

(1)
2 , . . . , X(1)

r1 (5)
...

X
(m)
1 , X

(m)
2 , . . . , X(m)

rm

that are exogenous with respect to each other, such that (4)
holds for any pair of sequences and their state changes.

Due to practical reasons stemming from data collection, the
length of the sequences and state changes are both allowed to
vary across domains. For instance the length of the sequence
for the k:th domain, denoted by rk, may differ from another
sequence length rk+1. These varying sequence lengths corre-
spond with the times each domain is observed empirically.

As described later in Section IV-A1, the maximum sequence
lengths are 14 and 6 for all domains in the short-run and long-
run examinations, respectively. In addition, a constraint rk ≥ 2
is imposed for all m domains to ensure that state changes
are possible to begin with. Even when the k:th domain is
observed fourteen times, however, the length of the state space
may equal one in case the domain in question never changed
the PHP version of its deployment. In contrast, the maximum
value rk for |Sk| is attained by a domain that has changed its
PHP version each time the domain is observed.

The transition probabilities are estimated by

p̂
(k)
ij =

{
0 if f (k)

i. = 0,

f
(k)
ij / f

(k)
i. if f (k)

i. 6= 0,
(6)

where f
(k)
ij denotes the frequency of (Xt = si, Xt+1 = sj)

PHP version sequences for the k:th domain and

f
(k)
i. =

|Sk|∑
j=1

f
(k)
ij . (7)

The special case f
(k)
i. = 0 occurs when the last observed

state denotes a previously unseen PHP version, meaning that
there is not enough data to estimate the transition probabil-
ity for this state. This additional, context-specific alteration
notwithstanding, the equation (6) conveys a conventional max-
imum likelihood estimator (MLE) for a transition probability
from the i:th to the j:th state [30], [31]. While a small custom
implementation is used for the MLE computations, the results
were further verified with an existing R implementation [32].

0.75

0.86

1.00

0.25
0.14

5.4.39

5.6.20

5.6.28

www.vraymaterials.co.uk

{5.4.39,
 5.4.39,
 5.4.39,
 5.4.39,
 5.6.20,
 5.6.20,
 5.6.20,
 5.6.20,
 5.6.20,
 5.6.20,
 5.6.20,
 5.6.28,
 5.6.28,
 5.6.28}

Fig. 3. An Example DTMC for PHP Release Adoption

To illustrate the computation in practice, consider the ex-
ample in Fig. 3. A full sequence of fourteen observations
is available for this domain, while the state space contains
three unique PHP versions. The first state corresponds with
the PHP version 5.4.39. Because the domain used the same
deployment also during the three subsequent observations, the
probability of upgrading from this version to 5.6.20 was
1/4 = 0.25. The probability of subsequently upgrading the
deployment from 5.6.20 to 5.6.28 is even lower, given
the seven times the domain www.vraymaterials.co.uk
stayed with its 5.6.20 deployment. Thus, the prevalence of
release adoption has been modest for this particular domain in
the short-run. For evaluating the prevalence among hundreds
of thousands of web sites, a few custom metrics can be derived.

C. Metrics
The research question about prevalence (RQ2) can be

answered with a metric based on the estimated transition
probabilities. Thus, let Pk denote a |Sk| × |Sk| matrix of
estimated transition probabilities for the k:th domain. For
instance, the 3 × 3 transition probability matrix underneath
the illustration in Fig. 3 is defined by 0.75 0.25 0.00

0.00 0.86 0.14
0.00 0.00 1.00

︸ ︷︷ ︸
5.4.39 5.6.20 5.6.28

5.4.39,

5.6.20,

5.6.28,

(8)

which can be read as an adjacency matrix for a weighted
and directed graph. The trace of this matrix (that is, the sum
of the diagonal elements) provides a simple measure for the
persistence of a DTMC phenomenon [31]. For answering to
the first research question RQ2, this simple but powerful idea
allows to operationalize the concept of prevalence with

δk =
1

|Sk|

|Sk|∑
i=1

(
1− p̂

(k)
ii

)
, (9)

where δk ∈ [0, 1] for all k. In other words, the closer a δk is to
unity, the more prevalent has the adoption of releases been. If
δk = 0, the k:th web site never changed its PHP deployment.
Collecting the scalars to a vector δ = [δ1, δ2, . . . , δm] allows
evaluating the prevalence among the m domains observed.

Answering to the research questions RQ3 and RQ4 is better
done with the version sequences in (5) rather than with
the transition probabilities within the state spaces. Thus, for
evaluating how uniform PHP release adoption has generally
been among the m domains observed (RQ4), a simple metric
is available by counting the unique version sequences, scaling
the resulting amount by m. Although this metric approaches
zero as m → ∞, it still gives a good overall sense about the
uniformity of typical PHP release adoption patterns.

Although calendar-time records can be used for comparing
release orderings [7], a metric for downgrading (RQ3) can be
also computed directly from the PHP version sequences. For
all domains with |Sk| ≥ 2, downgrading can occur via three
different scenarios: (a) when majori+1 < majori, that is, when
the major version number of a current deployment is larger
than the major version number of a subsequent deployment;
(b) when majori+1 = majori but minori+1 < minori; or (c)
when both the major and minor version numbers remain the
same but the maintenance version number of the i:th state is
larger than the number of the subsequent state. Given these
three distinct cases, all m version sequences are processed by
comparing (rk − 1) times the i:th version to the (i + 1):th
version, recording the number of downgrades at each step.
If dk denotes the number of downgrades recorded for the
k:th domain, a vector φ = [d1 / r1 − 1, . . . , dm / rm − 1]
defines a simple metric for evaluating how common PHP
downgrading has generally been. Analogous to (9), values
close to unity indicate frequent downgrading. In theory, also
different weights could be used for the three different down-
grading scenarios, but this simple counting scheme is sufficient
because downgrading should be relatively rare in the context
of popular web sites.

The transition matrices P1, . . . ,Pm offer another viewpoint
to downgrading: whenever states si and sj communicate (such
that there is a transition from si to sj and from sj to si), there
is also downgrading of PHP versions. Given this reasoning,
a further metric can be computed by counting the number of
communicating state pairs and scaling the result appropriately:

γk =
1

rk − 1

|Sk|∑
i=1

|Sk|∑
j=i

I
(
p̂
(k)
ij

)
I
(
p̂
(k)
ji

)
(10)

where I(·) is an indicator function outputting

I(x) =

{
0 if x = 0,

1 if x > 0.
(11)

0.50

0.50

0.40
0.20

0.20
0.20

0.50

0.50

0.50

0.50

0.50

0.50

5.5.10

5.5.16

5.5.17

5.6.11

5.6.7

b14.nakanohito.jp

{5.5.16,
 5.5.10,
 5.5.16,
 5.6.11,
 5.6.7,
 5.5.10,
 5.5.17,
 5.6.11,
 5.5.16,
 5.6.7,
 5.5.16,
 5.5.17,
 5.5.16,
 5.5.10}

Fig. 4. Another Example DTMC for PHP Release Adoption

As an example, consider the quite messy real-world release
adoption pattern visualized in Fig. 4. This particular domain
downgraded its PHP deployment as many as seven times dur-
ing 2016 and early 2017. Therefore, φk = 7 / (14−1) ' 0.54
and γk = 4 / 13 ' 0.31, given the four communicating
pairs. Both values are rather high, which indicates that the two
downgrading metrics can be used also for probing outlying
domains that may have problems with maintenance of their
PHP deployments.

IV. EXPERIMENTAL RESULTS

The empirical results are disseminated by first introducing
the data used for the DTMC computation. The metrics elabo-
rated in the previous Section III-C are subsequently used for
summarizing the empirical findings.

A. Data

Two datasets are used for the empirical analysis: one
for observing short-run release adoption and the other for
proxying the long-run evolution of PHP deployments seen in
the wild. While calendar-time is not explicitly observed with
the DTMCs computed, the definitions for short-run and long-
run are still based on calendar-time: with one exception, the
short-run dataset covers a period from January 2016 to March
2017 under a monthly sampling frequency, while the long-
run dataset is based on annual records in a period between
January 2012 and February 2017. Given the PHP release
lineage illustrated in Fig. 2, a truly long-run analysis should
start already from the year 2000—or even earlier, but the
historical periods used are imposed by the source of empirical
data. This data source should be also elaborated in more detail.

1) Snapshots: Both datasets are compiled from a few large
web crawling snapshots that contain data on hypertext transfer
protocol (HTTP) headers used for identifying PHP versions.
These open data snapshots are provided by the HTTP Archive
web crawling project [33], which has also been used in

previous research [13] alongside analogous archives [34], [35].
In total, fourteen crawling snapshots are used for compiling the
short-run dataset (see Table I). Due to data availability issues,
the long-run dataset is compiled only from six snapshots (see
Table II), the earliest of which dates to January 2012.

TABLE I
CHARACTERISTICS OF THE SHORT-RUN DATASET [33]a

Start of crawling User-agent Size (GB)b PHP domainsc

1. March 1, 2017 Chrome ' 47 206,739
2. February 1, 2017 Chrome ' 45 202,772
3. December 2, 2016 Chrome ' 51 216,362
4. November 1, 2016 Chrome ' 49 220,871
5. October 1, 2016 Chrome ' 51 222,645
7. September 1, 2016 Chrome ' 49 222,051
7. August 1, 2016 Chrome ' 48 227,757
8. July 1, 2016 Chrome ' 48 225,623
9. June 1, 2016 Chrome ' 56 226,797
10. May 1, 2016 Chrome ' 52 217,592
11. April 1, 2016 Chrome ' 50 219,564
12. March 1, 2016 Chrome ' 57 230,028
13. February 1, 2016 Chrome ' 52 226,859
14. January 1, 2016 Chrome ' 50 225,362
a Note that the January 1 snapshot from 2017 was empty and had to be thus
excluded. Due to this omission, there is a two month calendar-time delay between
the second and the third snapshot. b The size refers to the unpacked snapshots.
c See Section IV-A2 for a definition of a “PHP domain”.

TABLE II
CHARACTERISTICS OF THE LONG-RUN DATASET [33]a

Start of crawling User-agent Size (GB)b PHP domainsc

1. February 1, 2017 Chrome ' 45 202,772
2. January 1, 2016 Chrome ' 50 225,362
3. January 1, 2015 IEd ' 41 247,568
4. January 1, 2014 IEd ' 24 158,775
5. January 1, 2013 IEd ' 22 165,741
6. January 1, 2012 IEd ' 3.7 31,445
a,b,c See the notes in Table I. d The abbreviation stands for Internet Explorer.

As shown in the two tables, the raw snapshots used are
quite large. Because the crawls are seeded from Alexa’s list
of top-million busiest web sites [36], which is updated daily,
the snapshot sizes also vary from a crawl to another. Moreover,
it should be emphasized that the dates shown are only tentative
regarding individual HTTP requests and responses: due to the
large seeding list, crawling can take a relatively long amount
of time [35]. Already because calendar-time is not explicitly
observed, the issue is a minor concern for this paper, however.

The long-run dataset is affected by a change in the forged
user-agent [37] used for making the requests. Although user-
agents can have a substantial empirical effect for measuring
web sites due to specific responses for specific browsers [38],
the consequences should be small in this paper because it
seems unlikely that PHP version strings in the HTTP response
headers would vary according to a user-agent specified in
the HTTP request headers. Therefore, it is more important to
further remark that the long-run dataset is affected by changes
made to the seeding of the web crawls, which is reflected in
the smaller amount of PHP domains between 2012 and 2014.

In contrast, each snapshot in the short-run dataset contains
roughly the same amount of domains. Finally, it should be
emphasized that the total amount of PHP-powered domains
observed is substantially larger than reported in Tables I and II
because the snapshots are “pooled” to include all domains that
are present in at least two snapshots.

2) Pre-processing: The snapshots were pre-processed from
the packaged archives delivered as CSV (comma-seperated
value) files. Although the files are provided as open data, a
couple of remarks should be made to ensure replicability of the
datasets. First and foremost, the presence of PHP is identified
via s simple (Python) regular expression of the following form:
“PHP/[0-9]{1}\.[0-9]{1}\.[0-9]{1,}”, where the
quotation marks are not part of the expression. Notice that the
expression excludes “invalid” versions such as PHP/3.100.

Second, unique domains are identified by extracting the
network location from the uniform resource locators (URLs)
crawled. Because multiple web pages may be crawled for each
domain, duplicates are excluded by omitting the parsing of
URLs for domains that have already been identified to run
with PHP. It should be remarked that the concept of domain is
inexplicit in the sense that no attempts are made to lookup the
domains via the domain name system. Therefore, in theory,
the domains may refer to actual domain names as well as
Internet protocol addresses. For the purposes of this paper,
the distinction is irrelevant, however.

B. Results

The dissemination of the results can be started by noting a
few characteristics of the two datasets compiled from the web
crawling snapshots. First and foremost, according to the num-
bers shown in Table III, about 451 and 220 hundred thousand
domains were identified as running with PHP according to
the simple pre-processing routines. By implication, well over
half a million transition probabilities were estimated via (6).
Second, on average, about a half of the maximum lengths of
the version sequences are realized in the two datasets, although
the standard deviations are large. In other words, a typical
domain is observed a little over six times in the short-run and
about three times in the long-run. The reason for not reaching
the maximum lengths is simple: because the snapshots are not
crawled from a fixed domain set, not all of the PHP domains
observed are present across all snapshots. Third, the average
size of the state space, 1

m

∑m
k=1 |Sk|, is less than two in both

datasets. Thus, for many domains, the transition probabilities
are represented by the value one supplied via a 1× 1 matrix.
While there is still a sufficient amount of variance for analysis,
already this observation allows to conclude that the prevalence
of PHP release adoption has been at a modest level. Before
continuing to the actual prevalence metric, a remark should be
made about the most common PHP releases in the datasets.

According to the datasets, it is clear that the PHP 5 release
branch has been the most popular deployment choice from the
early 2000s onward. As shown in Fig. 5, the clear majority of
the versions observed in the long-run are part of the PHP 5
branch. While there has also been few domains using the

TABLE III
SAMPLE CHARACTERISTICS

Short-run Long-run

Number of domains (m) 451,340 220,293

Number of versions (r) Mean 6.5 2.9
Std. dev. 4.0 1.1

Size of state space (|S|) Mean 1.5 1.8
Std. dev. 1.2 0.8

TABLE IV
UNIFORM PHP VERSION SEQUENCES

Subset Short-run Long-run

Number of unique sequences |Sk| = 1 2,470 568
|Sk| > 1 62,376 43,585

Share of unique sequences (%) |Sk| = 1 0.55 0.26
|Sk| > 1 13.8 19.8

2
4

6
8

10
12

631729 versions

%
of

all
 ve

rsi
on

s

5.3
.3

5.2
.17

5.3
.29

5.3
.10

5.4
.45 5.5
.9

5.3
.28 5.2
.6

5.3
.27 5.1
.6

5.3
.2

5.4
.35 5.3
.8

5.4
.4

5.2
.9

5.3
.6

5.5
.30

5.2
.14

5.4
.16

5.2
.10

5.4
.36

5.3
.19

5.3
.26

5.3
.18

5.4
.34

5.2
.13

5.3
.13

5.3
.17 5.3
.5

5.3
.23

30 most frequent versions

0 1 2 3 4 5 6 7

Major version

0
40

80

% all

Fig. 5. Most Frequent PHP Releases in the Long-Run

2
4

6
8

10
12

2920838 versions

%
of

all
 ve

rsi
on

s

5.4
.45 5.3
.3

5.3
.29 5.5
.9

5.2
.17

5.3
.10

5.4
.16

5.5
.30

5.3
.28

5.5
.38

5.4
.43

5.6
.24

5.6
.16

5.4
.41

5.6
.21

5.5
.31

5.6
.22

5.3
.27

5.6
.30 5.2
.6

5.1
.6

5.6
.20

5.4
.36

5.5
.32

5.6
.17

5.5
.35

5.5
.34

5.6
.25

5.6
.23

5.4
.39

30 most frequent versions

0 1 2 3 4 5 6 7

Major version

0
40

80

% all

Fig. 6. Most Frequent PHP Releases in the Short-Run

PHP 4 branch, the use of other major branches has been
negligible in the long-run. The fifth major version has also
retained its popularity in 2016 and 2017, as can be concluded
from the subsequent Fig. 6. Adoption of PHP 7 has been
modest (RQ1). This conclusion does not change when only
the last versions in the sequences are used to proxy popularity;
in this case, only about 1.7 % of the domains have used a
PHP 7 deployment in the short-run

The observation about relatively infrequent release adoption
is reinforced by Fig. 7, which shows a histogram of the metric
in (9) across the domains observed in the two datasets. There
exists a difference between short-run release adoption and

Short-run

δ

Fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
15

00
00

Mean = 0.15
Median = 0.00
Std. dev. = 0.29

451340 domains

Long-run

δ

Fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

00
0

Mean = 0.49
Median = 0.50
Std. dev. = 0.44

220293 domains

Fig. 7. Prevalence of PHP Release Adoption

Short-run

φ

Fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
00

Mean = 0.01
Median = 0.00
Std. dev. = 0.07

451340 domains

Long-run

φ

Fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
00

Mean = 0.03
Median = 0.00
Std. dev. = 0.14

220293 domains

Fig. 8. Downgrading of PHP Releases #1

Short-run

γ

Fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
00

Mean = 0.00
Median = 0.00
Std. dev. = 0.02

451340 domains

Max = 0.50

Long-run

γ

Fre
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
00

Mean = 0.00
Median = 0.00
Std. dev. = 0.02

220293 domains

Max = 0.50

Fig. 9. Downgrading of PHP Releases #2

long-run evolution, however. The upper plot clearly indicates
that monthly release adoption has generally been infrequent
in 2016 and early 2017. In contrast, the lower plot displays
a bimodal distribution: many domains observed have not

adopted releases in the long-run, but almost an equal amount
of domains have adopted releases annually. All in all, the
prevalence of PHP release adoption has been modest in recent
years (RQ2), although less so in the long-run (RQ5).

Moreover, PHP release adoption patterns have been rela-
tively uniform across the domains observed (RQ4), as can be
concluded from the summary shown in Table IV. In total, only
about 0.55 + 13.8 ' 14.4 and 20.1 percent of the observed
PHP version sequences are unique in the short-run and long-
run datasets, respectively. While it should be kept in mind
that these relative amounts are affected by the large amount
of domains observed, these relative amounts still indicate a
modest amount of unique release adoption patterns. Most of
the patterns in both datasets describe common transition paths
within the PHP 5 major release branch. From a release engi-
neering perspective, this observation is a positive finding: most
domains follow other domains in their upgrading patterns.
Disorderly release adoption patterns are relatively rare.

The observations about infrequent release adoption and
uniformity are reinforced by Fig. 8, which shows the frequency
of the first downgrading metric in the two datasets. Most
domains have not downgraded their PHP deployments even
once. Although downgrading is slightly more common in
the long-run, the standard deviations are generally small.
By implication, the same observation applies also for the
results regarding the second downgrading metric in (10).
As can be concluded from Fig. 9, only a very few of the
version sequences involve communicating PHP version pairs.
The averages and standard deviations are both negligible. To
summarize, downgrading has been rare (RQ3), and there are
no notable differences between short-run and long-run (RQ5).

V. DISCUSSION

The remainder of this paper first summarizes the main
empirical findings, then enumerates a few threats to validity,
and finally concludes with a couple of new research directions.

A. Summary of Results

This empirical paper observed PHP release adoption in two
datasets covering over a half a million Internet domains and
three million PHP versions deployed within these domains.
The main findings can be summarized by briefly answering to
the five research questions outlined in Section II-B.

• Adoption of PHP 7 has been modest (RQ1). As of early
2017, only few popular web sites have adopted the new
major release branch. Most sites continue to operate with
releases made within the PHP 5 major branch.

• The prevalence of PHP release adoption has been at a
modest level: popular web sites tend to upgrade their de-
ployments relatively infrequently (RQ2). The observation
aligns with previous studies; relatively old PHP 5 versions
are commonly used in cloud computing services [39].

• Downgrading has been uncommon; only a few outlying
domains have downgraded their deployments (RQ3).

• The adoption patterns have been highly uniform across
popular domains; most domains tend to follow similar
upgrading paths used also by other domains (RQ4).

• Only the prevalence of adoption (RQ2) varies between
the short-run history (2016 – early 2017) and long-run
evolution (2012 – early 2017). Namely, the longer the
period observed, the more common has adoption been.

These findings provide also some material for contemplating
about the current release engineering strategy of the PHP
project. For the developers of the programming language, a
pressing question relates to the means by which the currently
slow adoption of PHP 7 could be boosted in the future.
One option to consider might be a Firefox-style rapid release
strategy, which has been suspected to increase user adop-
tion compared to a traditional release strategy [10]. Because
adoption has generally been infrequent among popular web
sites, it might be possible to also debate whether the current
release schedule is actually already too rapid for users and
stakeholders. Although downgrading is rare and the adoption
patterns are generally uniform, a further interesting question
relates to the reasons why some domains downgrade, and
whether there is anything that could be done to help outlying
domains following chaotic release adoption paths.

B. Threats to Validity

Threats to validity can be enumerated by using the conven-
tional threefold classification of construct validity, external va-
lidity, and internal validity. Although there exists no uniformly
agreed definitions [40], for the purposes of this paper, these
three validity concepts can be equated to questions related to
generalizability (how results generalize to a different context
or population), operationalization (how well a quantification
matches a theoretical concept), and systematic computational
errors (how well different biases are eliminated), respectively.

1) External Validity: Generalizability questions are always
present when the theoretical population is the whole world
wide web [35], including the so-called “deep web” not in-
dexed by standard search engines. Even though generalizabil-
ity toward such a population is practically impossible even
for companies such as Google, it is possible to narrow the
target of generalization toward a sub-population of the most
popular PHP-powered domains. In this regard, HTTP Archive
uses Alexa’s popularity list, which is commonly perceived
as a good choice for seeding of large-scale web crawl-
ing [41], [42], [43]. While external validity is presumably not
threatened in this regard, (a) the results reported are likely
specific to popular web sites. When considering further appli-
cations, such as those motivated by security questions [17], it
is likely that more interesting cases are located in the fringes
of the world wide web. Given that prevalence of PHP release
adoption was observed to be at a modest level in a sample of
popular sites, it is more than likely that even lower levels of
adoption could be observed in a sample covering WordPress
deployments, for instance. A common limitation [44] is also
present: (b) the results apply only to domains using PHP for
serving pages via plain HTTP, excluding sites using HTTPS.

2) Construct Validity: A notable threat to construct validity
stems from the identification of PHP deployments via a regular
expression from HTTP response headers (see Section IV-A2).
This coarse identification technique is likely to include both
false positives (popular domains incorrectly identified as run-
ning with PHP) and false negatives (the missing of popular
PHP-powered domains). To evaluate the severity of this limi-
tation, at minimum, parallel identification should be attempted
from the actual web page content (cf. [39]). Because the
primary identification requirement relates to the version of
a PHP backend used for serving a particular web content,
robust identification is likely challenging also from web page
contents, however. Further research is therefore required to
continue the work on identifying and fingerprinting PHP
applications [45], including the PHP interpreter itself.

3) Internal Validity: The potential presence of systematic
biases is best evaluated against the classical DTMC assump-
tions that were imposed for the statistical computation (see
Section III-A). There are three notable concerns about these
assumptions. First, the assumption in Eq. (1) implies that
regardless whether a state change is due to security updates,
reliability improvements, or new features, it is always the
currently deployed version that defines the reference point
for the change, regardless whether the decision to change
versions is made by a human or a package manager. While
the assumption seems sensible from a release engineering
viewpoint, it is easily questioned from a software evolution
perspective [5], [23]. If history matters also for PHP release
adoption patterns, it would seem reasonable to recommend
that further research should focus on higher-order Markov
chains that have a memory [5], [46], [30]. The second concern
relates to the assumption of independence between domains.
Given that a substantial amount of contemporary web sites
require connections to two or more servers [34], [47], PHP
deployments may be uniformly managed and upgraded in
a cloud computing service or other large deployment farm.
Consequently, a PHP version sequence of a domain might be
affected by a sequence of another domain. Conditional Markov
chains [46], [48] may provide a useful tool for evaluating the
potential severity of this cross-domain dependence assumption.

The third notable threat to internal validity relates to the
PHP version sequences observed, which mandate making an
addition assumption about the transition probabilities in (6).
Consequently, by definition [49], the transition probability
matrices computed are not stochastic matrices, that is, the row
sums of these matrices do not necessarily equal one. Although
this unavoidable limitation does not affect the results reported
as such, it does affect additional computations involving eigen-
values [31], and particularly the stationary distributions toward
which all irreducible, aperiodic, and positive recurrent Markov
chains converge (for the mathematical background see [50]).
This point should be kept in mind when considering further
DTMC applications in the release engineering and software
evolution contexts. Such applications are also a good way to
point out a couple of new research directions.

C. Further Work

The primary purpose of this paper was to examine the
usefulness of DTMC modeling for systematic tracing of web
deployments in order to establish automated continuous feed-
back channel for server-side programming language develop-
ers and stakeholders. The paper fulfilled this goal: DTMCs
are useful also in the release engineering context. For pursu-
ing DTMC analysis further, a worthwhile goal would be to
translate some of the concepts used in other disciplines to the
language of release engineering and software evolution. For
instance, simple DTMC metrics have been used to proxy such
concepts as colonization, disturbance, and replacement [31].
With some theoretical and terminological alterations, such
metrics and concepts could be adopted for pursuing DTMC
modeling further in the release engineering context. While
these concepts and metrics are directly applicable to tradi-
tional DTMCs, another prolific path forward involves altering
the basic assumptions surrounding discrete time-homogeneous
Markov chains. Conditional and higher-order chains are good
examples in this regard. For continuous tracing of PHP de-
ployments, continuous Markov chains (as opposed to discrete-
time chains) seem prolific to consider in further research. For
instance, different time-delay models [4] could be adopted for
studying the time delays between successive state changes.
The question about time delays is also fundamental in the
release engineering context because the empirical transition
probabilities depend on the sampling frequency used.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge Tekes – the Finnish
Funding Agency for Innovation, DIMECC Oy, and the Cyber
Trust research program for their support.

REFERENCES

[1] J.-M. Favre, “Languages Evolve Too! Changing the Software Time
Scale,” in Proceedings of the Eighth International Workshop on Prin-
ciples of Software Evolution (IWPSE 2005). Lisbon: IEEE, 2005, pp.
33–42.

[2] L. A. Meyerovich and A. S. Rabkin, “Socio-PLT: Principles for Pro-
gramming Language Adoption,” in Proceedings of the ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. Tucson: ACM, 2012, pp. 39–54.

[3] R. C. Cheung, “A User-Oriented Software Reliability Model,” IEEE
Transactions on Software Engineering, vol. SE-6, no. 2, pp. 118–125,
1980.

[4] W. Wang, “An Overview of the Recent Advances in Delay-Time-Based
Maintenance Modeling,” Reliability Engineering and System Safety, vol.
106, pp. 165–178, 2012.

[5] S. Wong and Y. Cai, “Generalizing Evolutionary Coupling with Stochas-
tic Dependencies,” in Proceedings of the 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011). Lawrence:
IEEE, 2011, pp. 293–302.

[6] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic Versioning
versus Breaking Changes: A Study of the Maven Repository,” in
Proceedings of the IEEE 14th International Working Conference on
Source Code Analysis and Manipulation (SCAM 2014). Victoria: IEEE,
2014, pp. 215–224.

[7] R. G. Kula, D. M. German, T. Ishio, and K. Inoue, “Trusting a Library:
A Study of the Latency to Adopt the Latest Maven Release,” in
Proceedings of the IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER 2015), Montreal, 2015,
pp. 520–524.

[8] T. Karvonen, W. Behutiye, M. Oivo, and P. Kuvaja, “Systematic Liter-
ature Review on the Impacts of Agile Release Engineering Practices,”
Information and Software Technology, vol. 86, pp. 87–100, 2017.

[9] M. V. Mäntylä, F. Khomh, B. Adams, E. Engström, and K. Petersen,
“On Rapid Releases and Software Testing,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSME 2013).
Madrid: IEEE, 2013, pp. 20–29.

[10] D. A. da Costa, S. McIntosh, U. Kulesza, and A. E. Hassan, “The Impact
of Switching to a Rapid Release Cycle on the Integration Delay of
Addressed Issues: An Empirical Study of the Mozilla Firefox Project,”
in Proceedings of the 13th International Conference on Mining Software
Repositories (MSR 2016). Austin: ACM, 2016, pp. 374–385.

[11] B. Adams and S. McIntosh, “Modern Release Engineering in a Nutshell
– Why Researchers Should Care,” in Proceedings IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER 2016). Osaka: IEEE, 2016, pp. 78–90.

[12] O. Baysal, R. Holmes, and M. W. Godfrey, “Mining Usage Data
and Development Artifacts,” in Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories (MSR 2012). Zurich:
IEEE, 2012, pp. 98–107.

[13] J. Ruohonen, S. Hyrynsalmi, and V. Leppänen, “Exploring the Use
of Deprecated PHP Releases in the Wild Internet: Still a LAMP
Issue?” in Proceedings of the 6th International Conference on Web
Intelligence, Mining and Semantics (WIMS 2016). Nîmes: ACM, 2016,
pp. 26:1–26:12.

[14] T. Amanatidis and A. Chatzigeorgiou, “Studying the Evolution of PHP
Web Applications,” Information and Software Technology, vol. 72, pp.
48–67, 2016.

[15] M. Hills, “Evolution of Dynamic Feature Usage in PHP,” in Proceedings
of the IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER 2015). Montreal: IEEE, 2015,
pp. 525–529.

[16] M. Hills, P. Klint, and J. Vinju, “An Empirical Study of PHP Feature Us-
age: A Static Analysis Perspective,” in Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 2013). Lugano:
ACM, 2013, pp. 325–335.

[17] I. Medeiros, N. Neves, and M. Correia, “Detecting and Removing Web
Application Vulnerabilities with Static Analysis and Data Mining,” IEEE
Transactions on Reliability, vol. 65, no. 1, pp. 54–69, 2016.

[18] B. Fitzgerald and K. Stol, “Continuous Software Engineering:
A Roadmap and Agenda,” Journal of Systems and Software, vol. 123,
pp. 176–189, 2015.

[19] C. Pang and A. Hindle, “Continuous Maintenance,” in Proceedings of the
IEEE International Conference on Software Maintenance and Evolution
(ICSME 2016). Raleigh: IEEE, 2016, pp. 458–462.

[20] A. Dyck, R. Penners, and H. Lichter, “Towards Definitions for Release
Engineering and DevOps,” in Proceedings of the Third International
Workshop on Release Engineering (RELENG 2015). Florence: IEEE,
2015, pp. 3–3.

[21] M. Leppänen, S. Mäkinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V.
Mäntylä, and T. Männistö, “The Highways and Country Roads to
Continuous Deployment,” IEEE Software, vol. 32, no. 2, pp. 64–72,
2015.

[22] R. P. de Oliveira, A. R. Santos, E. S. de Almeida, and G. S.
da Silva Gomes, “Evaluating Lehman’s Laws of Software Evolution
Within Software Product Lines Industrial Projects,” Journal of Systems
and Software, vol. 131, pp. 347–365, 2016.

[23] J. Ruohonen, S. Hyrynsalmi, and V. Leppänen, “Time Series Trends
in Software Evolution,” Journal of Software: Evolution and Process,
vol. 27, no. 2, pp. 990–1015, 2015.

[24] O. C. Z. Gotel and A. C. W. Finkelstein, “An Analysis of the Re-
quirements Traceability Problem,” in Proceedings of IEEE International
Conference on Requirements Engineering (ICRE 1994). IEEE, 1994,
pp. 94–101.

[25] P. Sturgeon, “The Neverending Muppet Debate of PHP 6 v PHP 7,”
2014, Available online in March 2017: https://philsturgeon.uk/php/2014/
07/23/neverending-muppet-debate-of-php-6-v-php-7/.

[26] The PHP Project, “Request for Comments: Release Process,” 2010,
Available online in March 2017: https://wiki.php.net/rfc/releaseprocess.

[27] ——, “Supported Versions,” 2017, Available online in March 2017:
http://php.net/supported-versions.php.

[28] ——, “Unsupported Historical Releases,” 2017, Available online in
March 2017: https://secure.php.net/releases/.

[29] M. V. Mäntylä and J. Vanhanen, “Software Deployment Activities and
Challenges – A Case Study of Four Software Product Companies,”

in Proceedings of the 15th European Conference on Software Main-
tenance and Reengineering (CSMR 2011). Oldenburg: IEEE, 2011,
pp. 131–140.

[30] P. Singer, D. Helic, B. Taraghi, and M. Strohmaier, “Detecting Memory
and Structure in Human Navigation Patterns Using Markov Chain
Models of Varying Order,” PLOS ONE, vol. 9, no. 7, p. e102070, 2014.

[31] M. F. Hill, J. D. Witman, and H. Caswell, “Markov Chain Analysis of
Succession in a Rocky Subtidal Community,” The American Naturalist,
vol. 164, no. 2, pp. E46–E61, 2004.

[32] G. A. Spedicato, “markovchain: Discrete Time Markov Chains Made
Easy,” 2016, R package version 0.6, available online in March 2017:
https://cran.r-project.org/web/packages/markovchain/index.html.

[33] HTTP Archive, “Downloads,” 2017, Available online in March 2017:
http://httparchive.org/downloads.php.

[34] T. Wambach and K. Bräunlich, “The Evolution of Third-Party Web
Tracking,” in Proceedings of the International Conference on Informa-
tion Systems Security and Privacy (ICISSP 2016), O. Camp, S. Furnell,
and P. Mori, Eds. Rome: Springer, 2016.

[35] S. G. Ainsworth and M. L. Nelson, “Evaluating Sliding and Sticky Target
Policies by Measuring Temporal Drift in Acyclic Walks Through a Web
Archive,” in Proceedings of the 13th ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL 2013). Indianapolis: ACM, 2013, pp. 39–48.

[36] HTTP Archive, “FAQ,” 2017, Available online in March 2017: http:
//httparchive.org/about.php#faq.

[37] M. C. Calzarossa and L. Massari, “Analysis of Header Usage Patterns
of HTTP Request Messages,” in Proceedings of the 2014 IEEE Intl Conf
on High Performance Computing and Communications, 2014 IEEE 6th
Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf
on Embedded Software and Syst (HPCC, CSS, ICESS). Paris: IEEE,
2014, pp. 847–853.

[38] K. Pham, A. Santos, and J. Freire, “Understanding Website Behavior
Based on User Agent,” in Proceedings of the 39th International ACM
SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR 2016). Pisa: ACM, 2016, pp. 1053–1056.

[39] L. Wang, A. Nappa, J. Caballero, T. Ristenpart, and A. Akella,
“WhoWas: A Platform for Measuring Web Deployments on IaaS
Clouds,” in Proceedings of the 2014 Conference on Internet Measure-
ment Conference (IMC 2014). Vancouver: ACM, 2014, pp. 101–114.

[40] J. Siegmund, N. Siegmund, and S. Apel, “Views on Internal and
External Validity in Empirical Software Engineering,” in Proceedings
of the IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE 2015). Florence: IEEE, 2015, pp. 9–19.

[41] P. Barford, I. Canadi, D. Krushevskaja, Q. Ma, and S. Muthukrishnan,
“Adscape: Harvesting and Analyzing Online Display Ads,” in Interna-
tional Conference on World Wide Web (WWW 2014). Seoul: ACM,
2014, pp. 597–608.

[42] Y. J. Park, “A Broken System of Self-Regulation of Privacy Online?
Surveillance, Control, and Limits of User Features in U.S. Websites,”
Policy & Internet, vol. 6, no. 4, pp. 360–376, 2014.

[43] A. F. Tappenden and J. Miller, “Cookies: A Deployment Study and the
Testing Implications,” ACM Transactions on the Web, vol. 3, no. 3, pp.
9:1 – 9:49, 2009.

[44] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and T. Ristenpart,
“Next Stop, the Cloud: Understanding Modern Web Service Deployment
in EC2 and Azure,” in Proceedings of the 2013 Conference on Internet
Measurement Conference (IMC 2013). Barcelona: ACM, 2013, pp.
177–190.

[45] M. Kozina, M. Golub, and S. Groš, “A Method for Identifying Web
Applications,” International Journal of Information Security, vol. 8,
no. 6, pp. 455–467, 2009.

[46] W.-K. Ching, M. K. Ng, and E. S. Fung, “Higher-Order Multivariate
Markov Chains and Their Applicatons,” Linear Algebra and Its Appli-
cations, vol. 428, no. 2–3, pp. 492–507, 2008.

[47] B. Newton, K. Jeffay, and J. Aikat, “The Continued Evolution of Web
Traffic,” in Proceedings of the IEEE 21st International Symposium on
Modelling, Analysis and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS 2013). IEEE, 2013, pp. 80–89.

[48] S. Goutte, “Conditional Markov Regime Switching Model Applied to
Economic Modelling,” Economic Modelling, vol. 38, pp. 258–269, 2014.

[49] G. A. F. Seber, A Matrix Handbook for Statisticians. New Jersey: John
Wiley & Sons, 2008.

[50] N. Privault, Understanding Markov Chains: Examples and Applications.
Heidelberg: Springer, 2013.

