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Abstract

Traumatic brain injury (TBI) is caused by a sudden external force and can be very heteroge-

neous in its manifestation. In this work, we analyse T1-weighted magnetic resonance (MR)

brain images that were prospectively acquired from patients who sustained mild to severe

TBI. We investigate the potential of a recently proposed automatic segmentation method to

support the outcome prediction of TBI. Specifically, we extract meaningful cross-sectional

and longitudinal measurements from acute- and chronic-phase MR images. We calculate

regional volume and asymmetry features at the acute/subacute stage of the injury (median:

19 days after injury), to predict the disability outcome of 67 patients at the chronic disease

stage (median: 229 days after injury). Our results indicate that small structural volumes in

the acute stage (e.g. of the hippocampus, accumbens, amygdala) can be strong predictors

for unfavourable disease outcome. Further, group differences in atrophy are investigated.

We find that patients with unfavourable outcome show increased atrophy. Among patients

with severe disability outcome we observed a significantly higher mean reduction of cerebral

white matter (3.1%) as compared to patients with low disability outcome (0.7%).

1 Introduction

With an estimated annual global incidence of 6.8 million cases, traumatic brain injury (TBI)

imposes a significant burden on patients, their families, and health services [1, 2]. TBI is often

referred to as the “silent epidemic” as symptoms, such as memory loss or cognitive deficits,

tend to be less apparent [3]. Research findings on TBI obtained while doing sports [4] or in

military conflicts [5] have increasingly brought the disease into the focus of the public [6].
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Further, moderate and severe TBI are assumed to be an important risk-factor for dementias

such as Alzheimer’s disease (AD) in late life [7–11].

TBI is typically caused by blunt force injury, penetrating injury, or blast injury and its

pathology is dependent on the forces associated with the acceleration/deceleration event [12].

The pathological processes following the injury are highly complex and the exact mechanism

causing functional impairment is not entirely understood [12, 13]. A common categorisation

of disease-related processes distinguishes primary and secondary injuries [11, 12, 14]. Primary

injuries often have a focal component caused by events such as the direct impact of an object

hitting the head. Common consequences that should be differentiated include skull fractures,

parenchymal contusions, haemorrhage and haematomas [11, 12, 15]. Intracranial haemor-

rhages and haematomas are the most common cause for rapid clinical deterioration and the

complications are generally dependent on location and size of the haematoma [12]. Another

injury mechanism, diffuse injury, is initiated by the strong accelerating or decelerating forces

during the injury event. This is referred to as diffuse axonal injury (DAI) and assumed to be

the predominant mechanism of TBI [11, 15–17]. TBI often results in both focal and diffuse

injury which can evolve over time [12]. DAI is also a major determinant of disease outcome

[14] and considered a long-lasting process that develops from focal axonal changes to slow

axonal separation [18]. Next to the consequences of the primary head injury such as focal

lesions, it is assumed that complex secondary pathophysiological processes continue damaging

brain cells and thus influence the disease outcome [11, 15, 16, 19]. Neurodegenerative diseases

and chronic inflammation can potentially be initiated by TBI and result in chronic neuronal

damage [10, 11, 20]. A comprehensive description of TBI-related pathology and long-term sec-

ondary processes triggered by the injury event is given in Smith [12].

Evidence from neuroimaging such as magnetic resonance imaging (MRI) or computed

tomography (CT) is often very subtle or completely absent, so that persistent symptoms tend

to be explained e.g. through post-traumatic stress disorders or depression [17]. Four examples

of subjects with TBI are visualised in Fig 1. These examples illustrate the heterogeneity of

structural changes that can be subtle in both mild and severe TBI but also very apparent and

variable. Although patterns of brain alteration have been shown to be predictors of outcome,

such use of imaging data is mainly based on expert interpretation of visually inspected CT or

MR images. In Maas et al. [21] the authors confirmed in a multivariate analysis the predictive

value of individual characteristics quantified from CT for 6-months outcome prediction. In

Jacobs et al. [22] it was shown for subjects with mild TBI that CT-based criteria are a valuable

indicator to identify patients at risk of deterioration. However, they are only of limited value to

predict the eventual outcome when compared to criteria such as patient age, alcohol intake or

extra-cranial injuries [22].

TBI is a very heterogeneous disorder and thus images from multiple modalities are required

to characterise the disease [17, 23]. CT imaging is the modality of choice to identify skull frac-

tures or other gross injuries that require immediate action [17]. CT provides critical informa-

tion when treatment decisions at the acute TBI stage need to be made [21, 22]. However,

contusions and lesions can be better assessed on fluid-attenuated inversion recovery (FLAIR)

or gradient echo (GRE), especially on susceptibility weighted imaging (SWI), MR sequences.

Next to this, T1-weighted (T1w) MRI provides good tissue contrast allowing the accurate seg-

mentation of distinct anatomical structures. The definition of these regions of interest (ROI) is

an important step towards a ROI-based analysis of information from diffusion weighted imag-

ing (DWI) or functional imaging. Examples of typical imaging sequences acquired in the con-

text of TBI are illustrated in Fig 2.

In this work we focus on structural T1-weighted MR images, in which subtle volumetric

changes can be assessed. There is consensus that there is ongoing structural atrophy following
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TBI [24]. However, as these structural changes are difficult to assess visually on MRI or CT

there is a high need for advanced methods that allow the quantification of atrophy [24]. The

advancement of sensitive neuroimaging techniques is thus critical as it offers the potential to

better understand, diagnose and treat TBI [2, 17, 24].

In contrast to other diseases of the human brain, such as AD, there is only a limited number

of studies investigating the spatial distribution of structural changes in TBI [16, 25]. The need

for accurate prognostic assessments was formulated already by Jennett et al. [26], however,

prediction of TBI outcome remains a challenge. World-wide, TBI and the related processes are

Fig 1. Examples of MR images of TBI patients. Four examples of T1-weighted MR images (brain extracted) of subjects from a prospective TBI

cohort visualised in coronal or axial view. Top: patient with mild TBI (male, 72 years, Glasgow Coma Scale (GCS): 14, extended Glasgow Outcome

Score (GOSe): 8, Marshall Classification Score (MCS): 1, cause: fall accident). Second row: patient with moderate TBI (female, 55 years, GCS: 3,

GOSe: 4, MCS: 4, cause: fall accident). Third row: moderate TBI patient (male, 38 years, GCS: 11, GOSe: 5, MCS: n/a, cause: car accident). Bottom:

patient with severe TBI (female, 33 years, GCS: 4, GOSe: 3, MCS: 2, cause: car accident). Left: baseline MR image acquired in the acute phase

(days after the injury), Middle: follow-up MR image acquired in the chronic phase (months after the injury), Right: difference image of rigidly aligned

images. Enlarged ventricles (red arrows), a subdural haematoma (blue arrow) and deformed/compressed frontal region (yellow arrow) are indicated

in the difference images.

https://doi.org/10.1371/journal.pone.0188152.g001

Fig 2. Brain images acquired with different imaging sequences/modalities. Images acquired from a patient with traumatic brain injury. The good tissue

contrast in T1-weighted MR images and the pronounced contusions in the FLAIR sequence are apparent. Furthermore, gradient echo (GRE) and proton

density (PD) weighted images are shown. Diffusion derived fraction anisotropy (FA) and mean diffusivity (MD) maps are also shown. CT is well suited to

image bone injuries, oedema or intracranial bleeding. Note that this subject is from a different TBI dataset to the one used in this study. This study focuses on

the analysis of T1-weighted images only, other sequences/modalities are shown to provide further background of MR imaging in TBI.

https://doi.org/10.1371/journal.pone.0188152.g002
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an understudied research area [15] and standard models to predict the outcome of TBI

patients remain unavailable [2]. It is stated in Irimia et al. [2] that the combination of volumet-

ric measures with brain connectivity/integrity measures from diffusion tensor imaging (DTI)

(e.g. Bendlin et al. [25], Kinnunen et al. [27]) or with functional measures obtained through

functional MRI (fMRI) (e.g. McAllister et al. [28], Sharp et al. [29], McDonald et al. [30])

might be key for future TBI research.

Accurate quantitative assessment of the neuroanatomic changes occurring during and after

TBI is a difficult endeavour but crucial to assist the understanding of TBI disease progression.

It is well known that a reduction of total brain volume and cerebral atrophy are common

sequelae of TBI [19, 24, 25, 31, 32]. Recently, studies have found that next to this reduction in

total brain volume several distinct structures such as amygdala, hippocampus or thalamus are

involved in TBI [2, 13, 16, 20, 24, 33]. There is also increasing consensus that the volume of

structural ROIs has the potential to support the outcome prediction of TBI [2, 13, 16, 24]. The

early identification of affected brain regions that are likely to degenerate due to the primary

injury could thus be key to an effective disease treatment [2]. Immediate and targeted treat-

ment, enabled and supported by neuroimaging, could improve the final outcome of the disease

but also reduce financial costs through shorter hospital stays [6]. In Bigler [24] the authors fur-

ther pointed out that the volumetric measurement of subcortical structures might reveal irreg-

ularities that would be difficult to catch by visual inspection only.

It is becoming clear that the key to a better understanding of TBI disease progression is the

combination of imaging information obtained from multiple modalities [2, 17, 23]. Here, the

accurate delineation of anatomical ROIs is a critical prerequisite for subsequent ROI-based

analyses of connectivity/function measurements. For example, in conjunction with DWI [13,

25] or positron emission tomography (PET) imaging [20], ROI-based analyses could enable a

better understanding of the secondary processes that cause ongoing brain atrophy in the

chronic phase of TBI.

Many of the conducted studies investigated group differences between patients with TBI

and healthy subjects [16, 25, 34–36]. However, TBI is a very heterogeneous disease as it sub-

stantially depends on the type of injury (e.g. vehicle accident, fall, assault), severity of injury

(e.g. vehicle speed, fall height, assault weapon) and location of the impact. It is due to this het-

erogeneity that comparably large sample sizes are required to show significant differences in

research studies or treatment effects in clinical trials [2]. Methods to automatically extract bio-

markers from brain MR images are thus a critical building block to enable large-scale TBI

studies [2]. Measuring longitudinal change of the biomarkers is also hoped to enable a better

understanding of the disease progression. For example, the causal relation of secondary degen-

erative processes to the primary injury is of high interest [2]. Nevertheless, current research on

robust methods to automatically process MR images of injured brains is very limited [2, 6].

In the following an overview is given over studies that have investigated the potential of

neuroimaging in the context of TBI. Particular focus is put on measures derived from struc-

tural MR brain images. A further summary can also be found in overview articles such as Big-

ler [24], Irimia et al. [2] or Shenton et al. [17].

1.1 Related work

Substantial group differences in grey matter (GM) density between healthy control subjects

and patients with TBI were confirmed using voxel-based morphometry (VBM) [32, 34, 37].

Salmond et al. [34] performed VBM to compare MR images from 22 patients acquired at least

six months post injury to a matched set of control subjects. In this study reduced GM density

in thalamus, basal forebrain, hippocampal formation and regions of the neocortex were
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identified [34]. In Gale et al. [32], the authors employed VBM to compare the GM density of

nine patients with TBI (mild to severe injury) to age and gender matched controls. Based on

follow-up MR images acquired around one year after the injury, the authors found a signifi-

cant decrease in GM concentration in a multitude of brain regions including the cerebellum,

frontal and temporal cortices, but also subcortical structures [32]. In Kim et al. [35] a study

cohort of 29 patients with at least moderate TBI and 20 healthy control subjects was analysed

using tensor-based morphometry (TBM). Local reductions in WM and subcortical regions

such as thalamus, corpus callosum and caudate were shown in the TBI group.

Most of the few existing studies that analysed structural morphometric measures [13, 16,

33] were based on the segmentation techniques available in FreeSurfer (http://surfer.nmr.mgh.

harvard.edu/, last accessed 09 November 2017, [38–40]) and have investigated small patient

cohorts [13, 16]. Warner et al. [13] analysed the relation of axonal injury quantified from DTI

with structural volumes in the chronic phase (8 months after injury) of the injury. Structural

volumes of hippocampus, amygdala and thalamus but also of cortical ROIs were stronger cor-

related with white matter (WM) integrity at the chronic than at the acute time point. This sug-

gests that white matter integrity can change due to secondary processes far beyond the acute

phase [13]. In Strangman et al. [33], 50 patients that sustained TBI were enrolled in a memory

rehabilitation program and their individual progress recorded. The study investigated the pre-

dictive value of structural brain volumes with respect to the outcome of the rehabilitation.

Ramlackhansingh et al. [20] used ROIs segmented from structural MRI and PET to demon-

strate that inflammatory processes remain active for months or years following a brain trauma.

Several studies [13, 16, 20, 33] have identified structures, including thalamus and hippocampus

that are affected by TBI and are of significant value when predicting clinical outcome.

Longitudinal changes following the injury event have also been analysed [6, 16, 25, 36].

Bendlin et al. [25] performed a longitudinal analysis of 46 patients with TBI with respect to 36

matched healthy controls using VBM. Both structural integrity quantified from DTI and WM/

GM density calculated from T1w images declined while scores related to neuropsychological

function improved. In Sidaros et al. [36] longitudinal changes in the months following a severe

TBI were investigated. In this study, 24 patients were compared to 14 healthy subjects. The

authors found both an increased reduction in brain volume when compared to the healthy

control group and regional involvement of brainstem, thalamus, corpus callosum, putamen

and cerebellum. In Warner et al. [16] the authors analysed the correlation of structural brain

atrophy of 25 patients who had sustained a DAI with functional outcome. Several brain struc-

tures showed significantly increased structural atrophy when compared to a control group of

22 age and gender-matched controls eight months post injury. Irimia et al. [6] compared TBI

related changes, as assessed from images acquired with multiple MR sequences in three repre-

sentative patients. The authors demonstrated how semi-automatic methods can support

patient monitoring, damage assessment and quantification of temporal changes in clinical

practice. Wang et al. [41–43] developed such a semi-automatic method to estimate subject-

specific atlases for the segmentation of longitudinal MR data.

The automatic structural segmentation of MR brain images of patients with TBI remains,

however, a difficult endeavour as most existing methods lack robustness towards TBI-related

changes in anatomy [2, 6]. In the presence of gross pathologies such as hemorrhagic lesions/

oedema (in the acute phase) or substantial atrophy (in the chronic phase) most of the estab-

lished segmentation techniques yield unsatisfying results. While in many neurodegenerative

diseases, such as AD, brain changes are consistent with disease progression, MR brain images

of patients with TBI can show inconsistent and gross pathological change. It is this high vari-

ability and extent of brain change following a moderate or severe TBI that makes the
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segmentation task so demanding. A further discussion of current and potential future research

directions is provided in Irimia et al. [2] and Shenton et al. [17].

1.2 Contribution and overview

In this work we employ a fully-automatic segmentation method to quantify biomarkers based

on structural volume and structural asymmetry of 67 patients who sustained mild to severe

traumatic brain injury. We analyse the potential value of these biomarkers that are automati-

cally extracted at the acute injury stage to predict the outcome severity of the injury. We quan-

tify structural atrophy occurring between the acute and chronic disease stage and find that

patients with poor outcome suffer from increased brain atrophy.

The manuscript is organised as follows: First, we describe prospectively acquired study data

that we aim to analyse in this work in Section 2. The applied approaches for feature (bio-

marker) extraction and classification are then described in Section 3. In Section 4.1, a cross-

sectional analysis at the acute stage of the injury explores whether individual structural bio-

markers have potential to predict patient-specific injury outcome. Further, a longitudinal anal-

ysis is performed in Section 4.2 and structural atrophy rates are calculated between images

acquired at the acute and chronic disease stage. Group differences are investigated between

patient groups of distinct outcome categories. In Section 5 the presented findings and limita-

tions of the approach are discussed. Further, segmentation examples are provided that were

obtained on brain MR images with disease related changes such as for example subdural hae-

matomas, substantial structural deformation or atrophy. Section 6 concludes this manuscript.

2 Materials

The imaging data was acquired at Turku University Hospital, Finland in the course of the TBI-

care project (http://www.tbicare.eu, last accessed 09 November 2017). For the T1w MR images

an MPRAGE sequence was acquired on a Siemens Verio 3T system with the following parame-

ters: TR 2300 ms, TE 2.98 ms, TI 900 ms, flip angle 9˚, matrix size 256 × 249 × 176 and an iso-

tropic voxel size of 1.0mm × 1.0mm × 1.0 mm, sagittal slices, using Prescan Normalizer, 2D

distortion correction and a standard 12 channel head coil.

Over the course of the project a total of 141 subjects with mild to severe TBI have had MR

images taken both at the acute stage of the injury (baseline) and in the chronic phase (follow-

up) of the disease. Following the definition used in Newcombe et al. [44], the baseline images

in this study were taken either in the acute or subacute phase. For readability both stages will

be referred to as ‘acute’. All study subjects gave their informed consent for participating in the

study, and the study protocol was accepted by the Ethical Committee of the Hospital District

of Southwest Finland. Specifically, a written informed consent was obtained from all subjects,

or where the subject remained unable to give the consent, from the proxy. The study was

approved by the Ethical Committee of the Hospital District of Southwest Finland. In total 120

subjects were processed for which both baseline and follow-up images were available when the

analysis was started. After visual review, six subjects were excluded due to low image quality or

errors in the data description.

Characteristics of the remaining 114 patients are summarised in Table 1. Those 114 patients

are further reduced to 67 study subjects in order to obtain age-matched patient groups. This is

further described in Section 2.2.

2.1 Clinical information

In addition to MR imaging data the clinical variables age, gender, Glasgow Coma Scale (GCS),

Marshall Classification Score (MCS) [45], extended Glasgow Outcome Score (GOSe) [26, 46]
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and TBI severity were available. The GCS is a clinical score that quantifies a patient’s level of

consciousness at the acute stage of the injury [47]. The GCS is the most common criteria to

determine the severity (e.g. mild, moderate, severe) of a brain injury in the acute setting [12,

48–50]. After the head injury the GCS is potentially assessed several times, e.g. at the injury site

before pre-hospital care, at hospital admission and in the intensive care unit. The GCS might

not have been recorded for each patient at each time point. Thus a pragmatic approach was

followed and the GCS score chosen that was recorded first. This is usually either at the injury

site or at admission to the hospital. MCS is also assessed at the acute stage [45], a score based

on the worst acute CT image within 24 hours of injury. MCS takes into account brain pathol-

ogy such as lesion load or the presence of oedema and midline shift caused by the injury. The

MCS groups 5 and 6 were pooled together, which means that the MCS scores did not distin-

guish between evacuated and non-evacuated mass lesions. Further, the GOSe score was

assessed on the day when the follow-up MR image was acquired. The GOSe groups 3 & 4, 5 &

6 and 7 & 8 are summarised into three patient groups with severe, moderate and low disability

outcome respectively. This was necessary to obtain reasonable group sizes and corresponds to

using the GOS five point scale instead of the eight point GOSe. More details on the MCS and

GOSe groups is provided in S1 File. TBI severity was classified based on combining GCS and

the duration of post-traumatic amnesia (PTA), whichever gave a more severe index [49, 50].

Very mild = GCS 15 and PTA less than 1 hour; mild GCS 13-15 and PTA < 24 hrs, moderate

GCS 9-12 or PTA > 24 hrs but less than one week; severe GCS 3-8 or PTA > 1 week; very

severe PTA > 4 weeks.

2.2 Age-matching of patient groups

The study groups which are summarised in Table 1 show a significant mismatch in age

(p< 0.001 for all groups with respect to the severe outcome group). It is important to account

for these substantial differences when studying changes caused by the disease to minimise age-

related effects. Due to the limited size of the study cohort this is a challenging endeavour. The

group with severe disability outcome has the fewest samples and subjects are significantly

older in age. In order to not further reduce the size of this group, all subjects were removed

from the low and moderate disability outcome groups that are younger than 45 years of age.

The age difference between the groups was no longer significant (p> 0.05) after this correc-

tion. This approach improved the age-match between study groups, however, reduced the

Table 1. Overview of all processed MR images. Table shows patient gender, patient age, scan time relative to injury, GCS, MCS and TBI severity.

GOSe low disability moderate disability severe disability

7 & 8 5 & 6 3 & 4

# of subjects 69 32 13

gender (# male / # female) 47/22 21/11 4/9

years of age (median [min; max]) 40 [18; 82] 51 [19; 83] 74 [33; 86]

days since injury, acute scan (median [min; max]) 14 [1; 50] 22 [1; 51] 22 [4; 51]

days since injury, chronic scan (median [min; max]) 230 [151; 399] 228 [177; 429] 251 [180; 422]

Glasgow Coma Scale (median [min; max]) 15 [3; 15] 15 [3; 15] 14 [3; 15]

Marshall score (median [min; max]) 1 [1; 5] 2 [1; 5] 5 [2; 5]

TBI severity† (median [min; max]) 2 [1; 4] 2.5 [2; 5] 3 [2; 5]

†: 1: very mild, 2: mild, 3: moderate, 4: severe, 5: very severe

https://doi.org/10.1371/journal.pone.0188152.t001
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number of study subjects from 114 to 67. An overview over the remaining subjects that will be

studied in the following is provided in Table 2. The distribution of age, GCS and MCS is illus-

trated with respect to the three outcome groups in Fig 3.

3 Methods

3.1 Cross-sectional and longitudinal structural segmentation

All available images were preprocessed by first correcting for intensity inhomogeneities with

the N4 bias correction algorithm [51]. Images were subsequently brain extracted using pin-

cram [52], an iterative, atlas-based method that was developed with particular focus on robust-

ness. Each image was then segmented individually using Multi-Atlas Label Propagation with

Table 2. Overview of the data used for the analysis. Table shows patient gender, patient age, scan time relative to injury, GCS, MCS and injury severity.

Study groups were age-matched by removing patients with low and moderate outcome disability that were younger than 45 years of age. Significant group dif-

ferences (two-sided unpaired Student’s t-test) with respect to the low disability outcome group are indicated with l (p < 0.05) and L (p < 0.01). There are no sig-

nificant differences between the moderate and severe disability outcome group.

GOSe low disability moderate disability severe disability

7 & 8 5 & 6 3 & 4

# of subjects 32 22 13

gender (# male / # female) 21/11 14/8 4/9l

years of age (median [min; max]) 63 [45; 82] 58 [46; 83] 74 [33; 86]

days since injury, acute scan (median [min; max]) 15 [1; 50] 23 [2; 51] 22 [4; 51]

days since injury, chronic scan (median [min; max]) 225 [151; 276] 227 [177; 429] 251 [180; 422]l

Glasgow Coma Scale (median [min; max]) 15 [3; 15] 15 [3; 15] 14 [3; 15]l

Marshall score (median [min; max]) 1 [1; 5] 2 [1; 5]L 5 [2; 5]L

TBI severity† (median [min; max]) 2 [1; 4] 3 [2; 4]l 3 [2; 5]l

†: 1: very mild, 2: mild, 3: moderate, 4: severe, 5: very severe

l, L: significant different to low disability outcome group (p < 0.05, p < 0.01)

https://doi.org/10.1371/journal.pone.0188152.t002

Fig 3. Boxplots of clinical variables. Plots of age, GCS, MCS and TBI severity of patients with low, moderate or severe disability outcome. Shown are only

subjects of the age-matched dataset. Boxplots were created with the ggplot2 package of R (http://docs.ggplot2.org/0.9.3/geom_boxplot.html, last accessed:

09 November 2017). The plots show the median, 25%/75% quantiles (hinges), smallest/largest observation greater/less than or equal to lower/upper hinge

-/+ 1.5*IQR (IQR: interquartile range). Data points were jittered along x-axis for better visualisation.

https://doi.org/10.1371/journal.pone.0188152.g003
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Expectation-Maximisation based refinement (MALPEM) as described in [53]. As brain atlases,

the 30 manually annotated Neuromorphometrics (NMM) brain atlases were employed. Those

atlases were provided by Neuromorphometrics, Inc. under academic subscription (http://

Neuromorphometrics.com/, last accessed: 09 November 2017). The atlases distinguish

between 40 non-cortical and 98 cortical brain regions. A complete list of all individual regions

is provided in S1 File. In MALPEM, the 30 manually annotated brain atlases are propagated to

the image that is to be segmented based on transformations calculated with the robust registra-

tion approach MAPER [54, 55]. The propagated atlases are subsequently fused into a consen-

sus probabilistic prior estimate using a locally weighted fusion approach based on the

Gaussian-weighted sum of squared distances (GSSD) [53]. The GSSD is calculated on images

that were intensity normalised using a robust linear rescaling approach [56, 57]. The probabi-

listic prior estimate is refined to both improve segmentation accuracy and account for pathol-

ogy in the images optimising an intensity-based Gaussian mixture model with an Expectation-

Maximisation approach. A modified version of MALPEM that does not rely on MAPER is

publicly available at: https://github.com/ledigchr/MALPEM (last accessed: 09 November

2017).

The refined, time-point specific probabilistic segmentation output and the intensity nor-

malised, brain extracted images are then employed to perform the consistent longitudinal seg-

mentation as described in [58] (MALPEM4D). We thus used a symmetric affine registration

approach to align the subject-specific probabilistic priors of individual time-points and inten-

sity-normalised images to a common intermediate space [59, 60]. To account for remaining

differential bias between intra-patient acquisitions in the presence of disease-related pathology

we employ the spatially weighted correction approach proposed in Ledig et al. [58]. MAL-

PEM4D is an approach that employs spatially and temporally varying coupling weights

between time-points to obtain temporally consistent segmentation estimates. In the context of

TBI, gross structural changes can be expected between both imaging time points. Thus a

weighted differential bias field correction procedure was used [58]. All brain masks and seg-

mentation results were visually reviewed to ensure reasonable accuracy in the presence of

pathology. Two typical segmentation results are visualised in Fig 4.

3.2 Feature extraction and classification setup

Group differences were investigated between GOS groups. Further, classification experiments

were performed to quantify the accuracy of predicting the GOS outcome category when using

automatically calculated features based on imaging data available at the acute disease stage. In

this work we use the term “feature” for a single measured biomarker (e.g. structural volume,

asymmetry, atrophy) or clinical variable (e.g. gender, age, Marshall score).

All 67 subjects were analysed cross-sectionally at the acute stage of the TBI and longitudi-

nally employing the follow-up image acquired in the chronic phase of the disease. All available

non-cortical structural volumes were used as features. Since corresponding volumes in the left

and right brain hemisphere were merged we consider 21 non-cortical features (28/2+7 = 21, c.

f. S1 File). Note that the seven non-cortical structures 3rd and 4th ventricles, brain stem, cere-

brospinal fluid (CSF), cerebellar vermal lobule I-V, cerebellar vermal lobule VI-VII and cere-

bellar vermal lobule VIII-X have no symmetric counterpart. Individual structural volumes

were summarised (added up) into surrogate structures: ventricles, cortical GM, deep GM,

WM, brain tissue (BrainTissue) and total brain volume (Brain) (6 features). Note that the dif-

ference between BrainTissue and Brain is the exclusion/inclusion of ventricular/CSF volume

respectively. The structures cerebral exterior, vessel and optic chiasm were excluded from the

analysis due to their very small size. Due to the limited number of study subjects and the
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heterogeneity of the injury, cortical structures were only investigated as surrogate structure

(cortical GM) and not considered as individual features. A full list of all individually seg-

mented structures and how they contribute to surrogate structures is provided in S1 File.

In the cross-sectional analysis at the acute stage, structural asymmetry was quantified as the

absolute asymmetry index (AAI) [53, 61, 62] based on a structure’s volume (V) in the left and

right hemisphere, which is defined as:

AAI ¼ 100%
jVleft � Vrightj

0:5ðVleft þ VrightÞ
ð1Þ

The AAI was calculated for the 14 non-cortical structures appearing in both brain hemi-

spheres and the six surrogate structures. Additionally the AAIs of all individual non-cortical,

cortical and all brain structures were added up. Note that the sum of, for example, all cortical

AAIs is different to the AAI of the cortical GM surrogate structure. The segmentations at the

acute stage were calculated with MALPEM and not MALPEM4D. This is important since

Fig 4. Example cross-sectional segmentation results. Results of images acquired at the acute stage of a TBI. Top: TBI010, male, 21 years of age with

mild TBI (GCS: 15) caused by a fall accident, favourable disease outcome (GOSe: 8), no visible intracranial pathological changes on CT (MCS: 1), image

acquired 2 days after injury. Bottom: TBI038, female, 47 years of age with mild TBI (GCS: 15) caused by a fall, unfavourable disease outcome (GOSe: 4),

substantial pathological changes on CT (MCS: 5), image acquired 4 days after injury with clear sequelae of intra-cerebral haematoma. Before the actual TBI

event this patient suffered a spontaneous intra-cerebral haematoma due to an untreated hypertension. The colour scheme is described in S1 File.

https://doi.org/10.1371/journal.pone.0188152.g004

Regional brain morphometry in TBI from acute- and chronic-phase MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0188152 November 28, 2017 11 / 31

https://doi.org/10.1371/journal.pone.0188152.g004
https://doi.org/10.1371/journal.pone.0188152


MALPEM4D exploits information of later scanning time points, which is not yet available at

the acute disease stage. We therefore ensured that when predicting outcome disability during

the acute stage indeed only information that is available during the early disease stage is

employed. Further, we incorporated into our analysis the five clinical features: age, gender,

GCS, MCS and TBI severity. A detailed list of all classification features that were used for the

cross-sectional analysis is provided in Table 3.

For the longitudinal analysis, structural volumes of all 67 subjects were extracted based on

their MALPEM4D segmentations. Atrophy rates were calculated using the logarithmic trans-

form as Δv(t1, t2) = 100%ln(vt2/vt1). Note that atrophy rate and volume change is used inter-

changeable, which means that a positive atrophy rate indicates an increase in volume. The

volume change was measured for the six surrogate structures and for the individual 21 non-

cortical structures. This yields, considering age and gender, 29 features for the longitudinal

analysis. Even though the analysis was limited to changes in structural volume, other longitudi-

nal alterations such as changes in brain symmetry could be investigated. A detailed list of all

classification features that were used for the longitudinal analysis is provided in Table 3.

For classification 100 runs of a 6-fold cross-validation (CV) were performed using linear

discriminant analysis (LDA) for individual features and support vector machine (SVM) or

random forest (RF) classifiers when combining multiple features. All classifiers are trained to

discriminate between two disease severity categories (e.g. low disability vs. severe disability

outcome). A classification framework was implemented using MATLAB that relies on clas-
sify (LDA), TreeBagger (RF, 100 trees) and libSVM (linear SVM, [63]). The features

were normalised (rescaling) individually based on the respective training set to the range 0 to 1

for the SVM classification. Both the LDA classifier, which was used for single-feature classifica-

tion only, and the RF classifier do not require feature normalisation. No explicit correction for

age, gender or head size was applied. This is further discussed in Section 5. Next to standard

classification accuracy (ACC), we also quantified the balanced classification accuracy (bACC,

[64]) to account for imbalanced group sizes. The bACC is calculated as the arithmetic mean of

sensitivity (SENS) and specificity (SPEC).

Table 3. Overview of all considered features.

Cross-sectional number of

features

names of features

clinical features (clinical) 5 age, gender, GlasgowComaScore, MarshallScore, InjurySeverity

volumetric (MALPEMvol) 27 volume of individual brain structures: AccA, Am, Cau, CblmExt, CblmWM, CrblWM, Hc,

infLV, LV, Pa, Pu, Th, vDC, BF, 3rdVent, 4thVent, BS, CSF, CVL1t5, CVL6t7, CVL8t10 (21)

volume of surrogate classes: DeepGreyMatter, CorticalGreyMatter, WhiteMatter, Ventricles, Brain,

BrainTissue (6)

asymmetry (MALPEMsym) 23 asymmetry of the 14 brain structures: AccA, Am, Cau, CblmExt, CblmWM, CrblWM, Hc,

infLV, LV, Pa, Pu, Th, vDC, BF (14)

asymmetry of surrogates: DeepGreyMatter, CorticalGreyMatter, WhiteMatter, Ventricles, Brain,

BrainTissue (6)

accumulated asymmetry of all cortical, all non-cortical and all structures (3)

Longitudinal number of

features

names of features

clinical features (clinical) 2 age, gender

volumetric

(MALPEM4Dvol)

27 volume change of individual brain structures: AccA, Am, Cau, CblmExt, CblmWM, CrblWM, Hc,

infLV, LV, Pa, Pu, Th, vDC, BF, 3rdVent, 4thVent, BS, CSF, CVL1t5, CVL6t7, CVL8t10 (21)

volume change of surrogate classes: DeepGreyMatter, CorticalGreyMatter,

WhiteMatter, Ventricles, Brain, BrainTissue (6)

https://doi.org/10.1371/journal.pone.0188152.t003
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Significance levels were quantified as p-values of two-sided, unpaired Student’s t-tests. To

account for multiple comparison we also calculate Bonferroni corrected significance levels.

Further, effect sizes were calculated as Cohen’s d by dividing the differences of the sample

means (absolute value) by their pooled standard deviation [65–67]. According to Cohen [65]

an effect size of d = 0.2 can be considered as small, of d = 0.5 as medium and of d = 0.8 as

large. Reporting the effect size in addition to the p-value is important as it quantifies the mag-

nitude of a group difference, while a low p-value only confirms its existence [68].

4 Results

4.1 Cross-sectional analysis

Individual brain ROIs were extracted from the acute T1w MR images. Features (volume, asym-

metry) were derived from these ROIs and their potential investigated to discriminate TBI

patients according to their outcome severity. Example segmentation results of a TBI patient

with low disability outcome and a patient with severe disability outcome are shown in Fig 4.

The distributions of selected structural volumes and AAIs with respect to the three consid-

ered outcome categories low, moderate and severe disability are shown in Fig 5. Several sub-

cortical structures were identified that are of particularly small size at the acute injury stage in

subjects with severe disability outcome as compared to those patients with a low disability out-

come (c.f. Table 4). The four structures with the largest effect size are the accumbens (Cohen’s

d = 1.66), hippocampus (d = 1.56), amygdala (d = 1.33) and the thalamus (d = 1.27). These dif-

ferences are significant after Bonferroni correction for multiple comparisons. Overall, a larger

ventricular volume (d = 1.36) and lower cortical GM volume (d = 1.0) was observed among

patients with unfavourable outcome as compared to those with a good outcome diagnosis.

Asymmetry throughout the whole brain and in particular within the cortex and WM was sig-

nificantly higher in patients with severe disability outcome than in the low disability outcome

group.

We also identified several significant structural differences when comparing structural vol-

umes at the acute stage with respect to the moderate disability group. The respective classifica-

tion accuracies, structural volumes and corresponding statistics are summarized in Table 5.

For example cerebellar vermal lobules (d = 1.24), accumbens (d = 1.11), amygdala (d = 1.02),

thalamus (d = 0.86) and brain stem (d = 0.85) are at the acute disease stage significantly smaller

in severe disability outcome patients as compared to patients with moderate disability out-

come. We found the most significant differences between moderate and low disability are

larger ventricles (d = 0.65), specifically larger inferior lateral ventricles (d = 0.80), and a smaller

accumbens (d = 0.65) in the moderate disability group. The group with moderate outcome dis-

ability had overall a wider spread (variance) of the measured features and was thus less well

separated from both the low and severe outcome groups. Therefore most findings with respect

to the moderate disability category were not significant after correcting for multiple

comparisons.

We further investigated whether the disability outcome of a patient can be predicted using

only features that are available at the acute stage of the injury. Results for the prediction of

severe vs. low disability outcome category are summarised in Table 4. The volume of the

accumbens provided the best group separation with the highest bACC of 85% (SENS: 91%,

SPEC: 79%). Next to the accumbens, several structures were predictive for the disease outcome

including hippocampus (bACC: 81%), amygdala (bACC: 76%) and thalamus (bACC: 74%).

Available features were combined into multi-feature classifiers. Using a SVM, MALPEM fea-

tures extracted from imaging yielded similar results (bACC: 77%) to those obtained with clini-

cal information only. Clinical variables and measurements obtained with MALPEM from
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Fig 5. Boxplots of selected imaging features. Boxplots of selected structural volumes (first row), surrogate structures (second row) and asymmetry

indices (third row) with respect to the investigated disease outcome groups. Features selected based on their performance in classifying severe disability

vs. low disability outcome (c.f. Table 4). Note that absolute asymmetry indices are accumulated for AsymmetryAll and AsymmetryAllCortical and thus

greater than 100%.

https://doi.org/10.1371/journal.pone.0188152.g005
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Table 4. Acute-stage classification results (severe vs. low disability outcome). Classification results in% (6-fold cross-validation, 100 runs) obtained sep-

arating TBI patients with a severe disability from patients with low disability outcome based on structural volumes and asymmetry at the acute stage of the

injury. Individual structures are sorted by effect size. Significant group differences indicated by “+” (p < 0.05) and “++” (p < 0.001), or “o” if not significant. Bon-

ferroni corrected significance in parentheses. Individual features were classified using LDA, multiple features using RandomForest or SVM.

Severe disability (N = 13, PositivesP) vs. Low disability (N = 32, NegativesN) (acute stage)

structure ACC (bACC) SENS SPEC mean (SD) [mm3]P mean (SD) [mm3]N effect size

(d)

p-value sig. (corr.)

RandomForest (all features) 85 (79) 66 93

SVM (all features) 87 (84) 76 92

RandomForest (MALPEMvol,sym only) 85 (79) 65 93

SVM (MALPEMvol,sym only) 83 (77) 62 92

RandomForest (clinical only) 82 (78) 69 87

SVM (clinical only) 82 (76) 62 91

RandomForest (age and gender

only)

69 (60) 39 81

SVM (age and gender only) 70 (50) 1 99

MarshallScore 84 (80) 69 91 3.9 (1.4) 1.6 (1.1) 1.907 <0.00001 ++ (++)

InjurySeverity 71 (66) 54 78 2.8 (1.0) 2.3 (0.7) 0.724 0.03308 + (o)

Gender (female = 0, male = 1) 67 (67) 69 66 0.3 (0.5) 0.7 (0.5) 0.723 0.03331 + (o)

GlasgowComaScale 72 (60) 30 89 12.0 (4.5) 14.1 (2.2) 0.691 0.04153 + (o)

Age 55 (54) 54 55 67.2 (15.9) 61.1 (10.1) 0.514 0.12518 o (o)

Ventricles 72 (71) 68 74 58766.8 (18808.4) 38131.9 (13556.0) 1.357 0.00017 ++ (+)

CorticalGreyMatter 70 (70) 70 71 459934.2 (63395.6) 524318.2 (64687.5) 1.001 0.00398 + (o)

DeepGreyMatter 74 (74) 74 75 164564.8 (20726.5) 181380.2 (22209.8) 0.771 0.02373 + (o)

BrainTissue 60 (60) 60 60 1130166.1

(102464.8)

1198466.6

(135087.2)

0.539 0.10886 o (o)

Brain 58 (59) 62 57 1191022.6

(110493.8)

1238799.0

(138060.0)

0.365 0.27348 o (o)

WhiteMatter 50 (46) 37 55 505667.1 (82222.8) 492768.2 (71084.9) 0.173 0.60062 o (o)

AccumbensArea 82 (85) 91 79 460.0 (150.5) 696.3 (138.7) 1.664 <0.00001 ++ (++)

Hippocampus 80 (81) 83 79 5136.2 (1030.6) 6572.2 (873.5) 1.561 0.00002 ++ (+)

Amygdala 73 (76) 83 68 1795.5 (321.1) 2280.9 (380.7) 1.329 0.00022 ++ (+)

LateralVentricle 75 (74) 73 76 51162.3 (17123.4) 32704.8 (12459.3) 1.326 0.00022 ++ (+)

InfLatVent 81 (75) 62 89 3131.4 (1360.4) 1913.3 (676.5) 1.324 0.00023 ++ (+)

ThalamusProper 73 (74) 76 72 11584.6 (1556.0) 13832.8 (1845.3) 1.271 0.00037 ++ (+)

BasalForebrain 74 (75) 77 72 548.7 (232.3) 840.4 (233.9) 1.250 0.00045 ++ (+)

CerebellarVermalLobulesI-V 75 (74) 72 76 3471.9 (535.9) 4242.3 (699.1) 1.171 0.00092 ++ (+)

3rdVentricle 71 (71) 69 72 2288.6 (814.2) 1552.5 (617.3) 1.086 0.00194 + (o)

Putamen 76 (76) 77 75 6066.7 (2492.2) 7849.7 (1338.7) 1.025 0.00326 + (o)

BrainStem 69 (69) 71 68 17417.2 (2275.5) 19651.1 (2739.4) 0.853 0.01291 + (o)

CerebellumWhiteMatter 73 (72) 69 74 36782.2 (7917.1) 30605.9 (8306.2) 0.753 0.02697 + (o)

VentralDC 56 (55) 54 56 8247.1 (1062.4) 8961.7 (1114.9) 0.649 0.05477 o (o)

CerebellarVermalLobulesVIII-X 57 (62) 74 51 2659.5 (304.5) 2902.0 (420.4) 0.619 0.06650 o (o)

CerebellumExterior 64 (64) 63 64 94910.8 (12670.3) 101795.8 (13850.8) 0.509 0.12919 o (o)

4thVentricle 60 (55) 45 66 2184.5 (673.2) 1961.2 (526.9) 0.391 0.24153 o (o)

Caudate 53 (47) 35 60 7388.5 (3739.3) 6613.9 (1066.8) 0.356 0.28451 o (o)

Pallidum 52 (51) 48 54 2801.2 (796.4) 2990.8 (504.4) 0.316 0.34230 o (o)

CerebellarVermalLobulesVI-VII 54 (54) 54 54 2076.6 (384.4) 2150.0 (299.1) 0.226 0.49648 o (o)

CSF 47 (45) 42 48 2025.5 (719.9) 2140.6 (538.2) 0.194 0.55923 o (o)

CerebralWhiteMatter 43 (38) 28 49 468884.8 (76690.5) 462162.3 (67838.9) 0.095 0.77302 o (o)

AsymmetryAllCortical† 76 (74) 69 79 846.2 (160.7) 690.8 (88.0) 1.374 0.00014 ++ (+)

(Continued )
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imaging contained complementary information. Their combination increased classification

accuracy to bACC: 84% (SENS: 76%, SPEC: 92%).

The classification results for severe vs. moderate and moderate vs. low disability outcome

classification can be found in Table 5. Due to the large variability within the moderate disabil-

ity outcome category this task is substantially more difficult. For the severe vs. moderate dis-

ability classification, we achieved the highest balanced classification accuracy based on

volumes of the cerebellar vermal lobules (bACC: 78%) and accumbens (bACC: 78%). For the

moderate vs. low disability classification, we observed the highest accuracy for the volume fea-

ture of the inferior lateral ventricle (bACC: 69%).

4.2 Longitudinal analysis

Further a longitudinal analysis was performed to investigate the volume change of individual

ROIs between the acute stage of the injury and the follow-up visit in the chronic phase of the

disease. Example longitudinal segmentation results obtained on two subjects with low and

moderate disability outcome are shown in Fig 6.

The relation of structural atrophy rates and patient groups of distinct disease outcome was

investigated. Specifically, classification accuracies, effect sizes and p-values were calculated to

Table 4. (Continued)

Severe disability (N = 13, PositivesP) vs. Low disability (N = 32, NegativesN) (acute stage)

structure ACC (bACC) SENS SPEC mean (SD) [mm3]P mean (SD) [mm3]N effect size

(d)

p-value sig. (corr.)

AsymmetryAll† 81 (73) 54 91 1108.3 (369.6) 826.6 (107.9) 1.306 0.00027 ++ (+)

AsymmetryWhiteMatter 75 (69) 55 82 10.5 (8.5) 4.2 (3.1) 1.220 0.00059 ++ (+)

AsymmetryCerebralWhiteMatter 76 (68) 48 88 10.2 (9.5) 3.8 (2.8) 1.150 0.00110 + (o)

AsymmetryAmygdala 82 (78) 68 87 16.9 (12.5) 7.7 (5.9) 1.119 0.00145 + (o)

AsymmetryBrain 75 (72) 64 79 4.0 (3.3) 1.6 (1.5) 1.086 0.00194 + (o)

AsymmetryBrainTissue 81 (73) 54 92 5.2 (5.2) 1.9 (1.7) 1.068 0.00226 + (o)

AsymmetryCorticalGreyMatter 79 (72) 55 89 4.9 (4.6) 2.0 (2.3) 0.938 0.00663 + (o)

AsymmetryAllNonCortical† 79 (71) 50 91 262.0 (245.1) 135.8 (46.7) 0.932 0.00695 + (o)

AsymmetryCerebellumWhiteMatter 69 (69) 69 69 19.2 (13.9) 10.5 (7.8) 0.887 0.00997 + (o)

AsymmetryPutamen 75 (63) 34 92 24.2 (44.3) 4.2 (4.8) 0.844 0.01384 + (o)

AsymmetryAccumbensArea 66 (62) 53 71 23.4 (18.8) 12.7 (10.2) 0.805 0.01850 + (o)

AsymmetryCaudate 71 (63) 46 81 17.3 (23.1) 7.2 (6.0) 0.759 0.02585 + (o)

AsymmetryDeepGreyMatter 72 (66) 52 81 3.9 (4.2) 2.0 (1.9) 0.706 0.03743 + (o)

AsymmetryThalamusProper 75 (60) 27 94 14.2 (35.4) 2.2 (2.0) 0.642 0.05762 o (o)

AsymmetryVentricles 68 (59) 39 79 27.8 (32.4) 15.4 (13.5) 0.600 0.07507 o (o)

AsymmetryHippocampus 63 (57) 43 71 16.2 (16.2) 9.9 (7.3) 0.595 0.07721 o (o)

AsymmetryPallidum 68 (56) 28 84 15.9 (32.6) 5.5 (5.4) 0.580 0.08469 o (o)

AsymmetryLateralVentricle 66 (57) 38 77 31.5 (35.6) 18.2 (15.6) 0.574 0.08797 o (o)

AsymmetryVentralDC 65 (56) 36 76 9.5 (17.3) 4.2 (2.7) 0.556 0.09791 o (o)

AsymmetryBasalForebrain 63 (55) 37 74 37.3 (40.4) 24.4 (17.1) 0.498 0.13745 o (o)

AsymmetryCerebellumExterior 68 (64) 54 74 4.8 (3.1) 3.5 (3.7) 0.373 0.26322 o (o)

AsymmetryInfLatVent 40 (37) 29 45 21.5 (20.5) 21.6 (17.7) 0.008 0.98119 o (o)

†: Sum of the AAIs of the individual structures.

https://doi.org/10.1371/journal.pone.0188152.t004
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Table 5. Acute-stage classification results (severe vs. moderate and moderate vs. low disability outcome). Classification results in% (6-fold cross-vali-

dation, 100 runs) obtained separating TBI patients with a severe disability from patients with moderate disability outcome based on structural volumes at the

acute stage of the injury (top). Classification of patients with moderate and low disability outcome (bottom). Individual structures are sorted by effect size. Sig-

nificant group differences indicated by + (p < 0.05) and ++ (p < 0.001), or “o” if not significant. Bonferroni corrected significance in parentheses. Individual fea-

tures were classified using LDA, multiple features using RandomForest or SVM. Results for individual structural asymmetry features are shown in S1 File.

Severe disability (N = 13, PositivesP) vs. Moderate disability (N = 22, NegativesN) (cross-sectional analysis, acute stage)

structure ACC

(bACC)

SENS SPEC mean (SD) [mm3]P mean (SD) [mm3]N effect size

(d)

p-value sig.

(corr.)

RandomForest (all cross-sectional

features)

64 (58) 36 81

SVM (all cross-sectional features) 64 (61) 45 76

Gender (female = 0, male = 1) 66 (66) 69 64 0.3 (0.5) 0.6 (0.5) 0.673 0.06287 o (o)

Age 64 (63) 55 70 67.2 (15.9) 58.8 (10.0) 0.672 0.06331 o (o)

MarshallScore 57 (58) 62 55 3.9 (1.4) 3.0 (1.9) 0.510 0.15465 o (o)

GlasgowComaScale 43 (38) 20 57 12.0 (4.5) 12.6 (3.9) 0.155 0.66141 o (o)

InjurySeverity 38 (38) 35 40 2.8 (1.0) 2.8 (0.8) 0.083 0.81296 o (o)

DeepGreyMatter 67 (68) 73 63 164564.8 (20726.5) 180076.7 (20887.9) 0.745 0.04082 + (o)

CorticalGreyMatter 67 (67) 66 68 459934.2 (63395.6) 494829.1 (39983.4) 0.701 0.05339 o (o)

BrainTissue 55 (55) 54 56 1130166.1

(102464.8)

1181045.4

(89378.0)

0.539 0.13272 o (o)

Ventricles 69 (67) 62 73 58766.8 (18808.4) 49592.9 (22303.5) 0.435 0.22267 o (o)

Brain 59 (58) 58 59 1191022.6

(110493.8)

1232890.5

(98415.8)

0.407 0.25346 o (o)

WhiteMatter 35 (34) 30 39 505667.1 (82222.8) 506139.5 (76357.7) 0.006 0.98638 o (o)

CerebellarVermalLobulesVIII-X 77 (78) 84 73 2659.5 (304.5) 3110.6 (394.1) 1.239 0.00121 + (o)

AccumbensArea 76 (78) 84 71 460.0 (150.5) 609.9 (125.5) 1.110 0.00327 + (o)

Amygdala 65 (67) 75 59 1795.5 (321.1) 2161.0 (378.9) 1.018 0.00642 + (o)

ThalamusProper 60 (61) 63 59 11584.6 (1556.0) 13072.5 (1826.3) 0.859 0.01955 + (o)

BrainStem 61 (62) 67 57 17417.2 (2275.5) 19416.8 (2417.5) 0.845 0.02144 + (o)

BasalForebrain 63 (66) 77 55 548.7 (232.3) 773.2 (290.7) 0.829 0.02383 + (o)

Hippocampus 64 (64) 62 66 5136.2 (1030.6) 6033.6 (1261.9) 0.759 0.03743 + (o)

CerebellarVermalLobulesI-V 63 (64) 68 59 3471.9 (535.9) 3949.6 (704.4) 0.737 0.04283 + (o)

VentralDC 61 (59) 54 64 8247.1 (1062.4) 8844.7 (880.6) 0.629 0.08149 o (o)

CerebellumExterior 61 (62) 66 57 94910.8 (12670.3) 103457.0 (14443.9) 0.618 0.08647 o (o)

Putamen 73 (74) 76 72 6066.7 (2492.2) 7087.0 (1586.9) 0.519 0.14721 o (o)

Pallidum 54 (54) 54 54 2801.2 (796.4) 3063.0 (442.4) 0.439 0.21786 o (o)

LateralVentricle 69 (68) 62 74 51162.3 (17123.4) 42726.9 (20449.5) 0.437 0.22046 o (o)

CerebellumWhiteMatter 65 (66) 69 63 36782.2 (7917.1) 33401.6 (8837.8) 0.397 0.26456 o (o)

InfLatVent 61 (61) 58 63 3131.4 (1360.4) 2649.1 (1182.9) 0.386 0.27817 o (o)

Caudate 63 (59) 43 74 7388.5 (3739.3) 6400.6 (1557.5) 0.384 0.28063 o (o)

CSF 52 (52) 51 52 2025.5 (719.9) 2194.0 (558.1) 0.271 0.44433 o (o)

3rdVentricle 60 (58) 54 63 2288.6 (814.2) 2076.9 (941.1) 0.236 0.50451 o (o)

4thVentricle 38 (36) 30 42 2184.5 (673.2) 2140.1 (576.0) 0.072 0.83738 o (o)

CerebralWhiteMatter 37 (36) 35 38 468884.8 (76690.5) 472738.0 (70658.1) 0.053 0.88084 o (o)

CerebellarVermalLobulesVI-VII 39 (39) 38 40 2076.6 (384.4) 2096.5 (498.0) 0.043 0.90263 o (o)

Moderate disability (N = 22, PositivesP) vs. Low disability (N = 32, NegativesN) (cross-sectional analysis, acute stage)

structure ACC

(bACC)

SENS SPEC mean (SD) [mm3]P mean (SD) [mm3]N effect size

(d)

p-value sig.

(corr.)

RandomForest (all cross-sectional

features)

61 (56) 32 80

SVM (all cross-sectional features) 68 (64) 43 85

MarshallScore 72 (68) 45 91 3.0 (1.9) 1.6 (1.1) 0.975 0.00091 ++ (+)

(Continued )
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quantify group separation. The distribution of the volume change of six selected structures is

shown in Fig 7 for the three considered outcome groups.

The quantitative results for the comparison of severe and low disability outcome are sum-

marised in Table 6. Substantial ventricular expansion (11.6%) was observed in patients with

poor disease outcome. In contrast brain tissue and in particular cerebral WM (-3.1%), brain

stem (-3.1%) and thalamus (-4.2%) showed increased atrophy.

The clearest group separation was calculated for atrophy of the cerebral WM (d = 1.29, p�

10−3). Volumetric change of individual ROIs, such as the thalamus, brain stem and cerebellum

WM were significantly different (d > 0.8, p< 0.05) between patients with low and severe out-

come disability. Significant group differences were found for cortical GM atrophy and ventric-

ular enlargement with effect sizes above 0.7. Cerebral WM is, however, the only individual

structure which remained statistically different between the groups after correcting for multi-

ple comparisons.

Table 5. (Continued)

InjurySeverity 69 (66) 55 78 2.8 (0.8) 2.3 (0.7) 0.666 0.01981 + (o)

GlasgowComaScale 65 (60) 32 87 12.6 (3.9) 14.1 (2.2) 0.483 0.08720 o (o)

Age 58 (59) 62 56 58.8 (10.0) 61.1 (10.1) 0.223 0.42386 o (o)

Gender (female = 0, male = 1) 40 (38) 28 48 0.6 (0.5) 0.7 (0.5) 0.041 0.88325 o (o)

Ventricles 61 (61) 58 64 49592.9 (22303.5) 38131.9 (13556.0) 0.650 0.02268 + (o)

CorticalGreyMatter 66 (67) 71 63 494829.1 (39983.4) 524318.2 (64687.5) 0.526 0.06297 o (o)

WhiteMatter 46 (44) 35 54 506139.5 (76357.7) 492768.2 (71084.9) 0.183 0.51279 o (o)

BrainTissue 49 (49) 49 48 1181045.4

(89378.0)

1198466.6

(135087.2)

0.147 0.59861 o (o)

DeepGreyMatter 42 (41) 38 44 180076.7 (20887.9) 181380.2 (22209.8) 0.060 0.82903 o (o)

Brain 40 (40) 39 40 1232890.5

(98415.8)

1238799.0

(138060.0)

0.048 0.86362 o (o)

InfLatVent 71 (69) 60 78 2649.1 (1182.9) 1913.3 (676.5) 0.804 0.00543 + (o)

3rdVentricle 61 (61) 56 65 2076.9 (941.1) 1552.5 (617.3) 0.686 0.01660 + (o)

AccumbensArea 58 (59) 64 53 609.9 (125.5) 696.3 (138.7) 0.647 0.02332 + (o)

LateralVentricle 62 (61) 57 65 42726.9 (20449.5) 32704.8 (12459.3) 0.620 0.02953 + (o)

Putamen 57 (56) 51 61 7087.0 (1586.9) 7849.7 (1338.7) 0.528 0.06207 o (o)

Hippocampus 54 (53) 49 58 6033.6 (1261.9) 6572.2 (873.5) 0.514 0.06913 o (o)

CerebellarVermalLobulesVIII-X 65 (65) 66 65 3110.6 (394.1) 2902.0 (420.4) 0.509 0.07185 o (o)

CerebellarVermalLobulesI-V 60 (61) 64 58 3949.6 (704.4) 4242.3 (699.1) 0.417 0.13786 o (o)

ThalamusProper 60 (61) 68 54 13072.5 (1826.3) 13832.8 (1845.3) 0.414 0.14127 o (o)

CerebellumWhiteMatter 56 (54) 45 64 33401.6 (8837.8) 30605.9 (8306.2) 0.328 0.24176 o (o)

4thVentricle 62 (62) 59 65 2140.1 (576.0) 1961.2 (526.9) 0.327 0.24336 o (o)

Amygdala 60 (60) 58 62 2161.0 (378.9) 2280.9 (380.7) 0.315 0.26007 o (o)

BasalForebrain 52 (51) 46 55 773.2 (290.7) 840.4 (233.9) 0.260 0.35230 o (o)

Caudate 51 (51) 50 51 6400.6 (1557.5) 6613.9 (1066.8) 0.166 0.55236 o (o)

CerebralWhiteMatter 43 (41) 33 50 472738.0 (70658.1) 462162.3 (67838.9) 0.153 0.58231 o (o)

Pallidum 49 (48) 41 54 3063.0 (442.4) 2990.8 (504.4) 0.151 0.58912 o (o)

CerebellarVermalLobulesVI-VII 48 (47) 43 52 2096.5 (498.0) 2150.0 (299.1) 0.137 0.62397 o (o)

CerebellumExterior 45 (44) 40 49 103457.0 (14443.9) 101795.8 (13850.8) 0.118 0.67217 o (o)

VentralDC 44 (44) 47 41 8844.7 (880.6) 8961.7 (1114.9) 0.114 0.68245 o (o)

CSF 45 (45) 42 47 2194.0 (558.1) 2140.6 (538.2) 0.098 0.72593 o (o)

BrainStem 44 (44) 47 42 19416.8 (2417.5) 19651.1 (2739.4) 0.090 0.74754 o (o)

https://doi.org/10.1371/journal.pone.0188152.t005
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The most discriminative structure in terms of accuracy was atrophy of the whole brain

(bACC: 77%, SENS: 70%, SPEC: 84%) and the brain stem (bACC: 76%, SENS: 70%, SPEC:

81%). A combination of all measured atrophy rates in a multi-feature classifiers did not further

improve classification results, e.g. using a RF classifier resulted in bACC: 69%.

Quantitative results for severe vs. moderate and moderate vs. low outcome disability can be

found in Table 7. We found a significant reduction in white matter volume (d = 0.82) in

patients with moderate disability (-2.5%) as compared to patients with low outcome disability

(-0.6%). Patients with severe outcome disability showed similar ventricular atrophy as patients

moderate outcome disability (11.6%). Further, even though not significant (p� 0.08), we

observed a substantially higher reduction in deep grey matter volume in patients with severe

outcome disability (-2.7% vs. -1.2%).

5 Discussion

The potential presence of pathologies such as haemorrhage lesions, contusions or a substantial

midline shift pose particular challenges for the analysis of brain MRI in TBI. Images of three

example patients with a high degree of injury are visualised with overlaid segmentation results

in Fig 8. Clinical information and a brief description of the images is provided in the figure

caption.

Fig 6. Example longitudinal segmentation results. Segmentation results shown of images acquired at the acute and chronic stage of a TBI. Top: TBI061,

male, 69 years of age, GCS: 14, GOSe: 8, MCS: 1, fall accident, acute/chronic image acquired 8/265 days after injury. Bottom: TBI142, male, 51 years of age,

GCS: 3, GOSe: 6, MCS: 5, transport accident, acute/chronic image acquired 2/383 days after injury, diffuse axonal injury. The difference image of subject

TBI142 illustrates the clear ventricular enlargement (measured: 47%), hippocampal atrophy (-6.2%) and reduction of brain stem volume (-13%). The colour

scheme is described in S1 File.

https://doi.org/10.1371/journal.pone.0188152.g006
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These examples show clear segmentation inaccuracies observed for example for the hippo-

campus, putamen or the caudate (white arrows in Fig 8). The inclusion of haemorrhage lesions

in both WM and cortical GM ROIs (blue arrows in Fig 8) is a limitation of the proposed seg-

mentation framework. This is expected as atlas-based approaches are restricted to the labelling

of structures that are represented in the reference atlases. Assuming that explicit segmentations

of pathologies (e.g. lesions) are available (e.g. via dedicated lesion segmentation [69]), this

allows to determine the location of lesions relative to anatomical structure. However, in the

current approach the presence of pathology can lead to a substantial bias as it can potentially

increase a structure’s volume (e.g. cortical GM, blue arrows). The inclusion or exclusion of

pathology in the brain mask (orange arrow) can have an even more severe effect. It can lead, as

shown in the top row of Fig 8, to an overestimation of the reduction of brain tissue or WM

volume.

However, with MALPEM we investigated volumetric and atrophy features of 27 anatomical

structures of which most are not affected by pathology. We emphasize that most brain regions

are reasonably segmented and therefore have value when analysing structural changes

throughout the whole brain. A main focus of the conducted study is to perform a population

analysis where we compare patient groups of different disease outcome severity. Despite the

Fig 7. Boxplots of change rates. Change rates of selected ROIs with respect to the investigated disease outcome groups. Features selected based on

their performance in classifying severe disability vs. low disability outcome (c.f. Table 6).

https://doi.org/10.1371/journal.pone.0188152.g007
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limitation that individual volume or atrophy features might be biased due to segmentation

inaccuracies caused by pathology the conducted, thorough statistical analysis confirmed the

significance of many findings. The explicit segmentation of pathology or structures that are

not available in the atlases is highly desirable in this context and the focus of our current

research [69–71]. In future we aim to combine frameworks for the segmentation of anatomical

brain structure (MALPEM) [53] and TBI related pathology (DeepMedic) [69, 71]. DeepMedic

was trained on a dataset acquired in Addenbrooke’s Hospital, Cambridge, UK from patients

with moderate to severe TBI on a Siemens 3T TIM Trio scanner. Before applying DeepMedic

to a dataset with different characteristics, that result from, e.g., variations in injury severity,

scanner model or acquisition parameters further research is needed to address the challenging

problem of domain shift [71].

Table 6. Longitudinal classification results (severe vs. low disability outcome). Classification results in% (6-fold cross-validation, 100 runs) obtained

separating TBI patients with a severe disability from patients with low disability outcome based on structural volume changes between the acute and chronic

disease stage. Significant group differences indicated by + (p < 0.05) and ++ (p < 0.001), or “o” if not significant. Bonferroni corrected significance in parenthe-

ses. Individual features were classified using LDA, multiple features using RandomForest or SVM.

Severe disability (N = 13, PositivesP) vs. Low disability (N = 32, NegativesN) (longitudinal analysis, bl!follow-up)

structure ACC (bACC) SENS SPEC mean (SD) [%]P mean (SD) [%]N effect size (d) p-value sig. (corr.)

RandomForest (all features) 77 (69) 52 86

SVM (all features) 75 (64) 36 91

Gender (female = 0, male = 1) 67 (67) 69 66 0.3 (0.5) 0.7 (0.5) 0.723 0.03331 + (o)

Age 55 (55) 54 55 67.2 (15.9) 61.1 (10.1) 0.514 0.12518 o (o)

WhiteMatter 75 (67) 47 87 -3.0 (2.8) -0.6 (1.2) 1.323 0.00023 ++ (+)

BrainTissue 79 (75) 66 84 -3.0 (2.4) -0.6 (2.0) 1.130 0.00133 + (+)

Brain 80 (77) 70 84 -2.0 (1.7) -0.4 (1.6) 1.020 0.00339 + (o)

DeepGreyMatter 70 (69) 64 73 -2.7 (2.2) -0.5 (2.5) 0.896 0.00929 + (o)

CorticalGreyMatter 78 (75) 66 84 -3.0 (3.2) -0.7 (2.9) 0.780 0.02223 + (o)

Ventricles 68 (63) 50 76 11.6 (12.0) 4.2 (9.7) 0.711 0.03627 + (o)

CerebralWhiteMatter 75 (67) 47 87 -3.1 (3.0) -0.7 (1.2) 1.293 0.00030 ++ (+)

CerebellumExterior 70 (67) 60 74 -3.1 (3.1) -0.3 (2.9) 0.933 0.00691 + (o)

BrainStem 78 (76) 70 81 -3.1 (3.3) -0.8 (2.1) 0.922 0.00758 + (o)

CerebellumWhiteMatter 72 (72) 73 72 -1.3 (1.3) -0.1 (1.3) 0.884 0.01019 + (o)

ThalamusProper 72 (66) 52 80 -4.2 (3.5) -1.6 (3.1) 0.824 0.01605 + (o)

LateralVentricle 69 (63) 51 76 12.8 (12.0) 4.7 (10.7) 0.725 0.03289 + (o)

Amygdala 57 (47) 26 69 -2.6 (6.7) 0.0 (2.5) 0.622 0.06518 o (o)

Hippocampus 73 (65) 46 83 -4.8 (10.6) -1.1 (2.9) 0.614 0.06895 o (o)

CerebellarVermalLobulesVI-VII 68 (65) 58 72 -2.1 (3.9) -0.1 (3.1) 0.613 0.06917 o (o)

CSF 66 (61) 49 72 6.2 (6.5) 3.2 (6.0) 0.500 0.13556 o (o)

Putamen 58 (51) 34 67 -0.1 (0.8) 0.1 (0.4) 0.497 0.13840 o (o)

VentralDC 76 (74) 68 79 -2.5 (1.8) -1.2 (3.0) 0.480 0.15191 o (o)

4thVentricle 61 (61) 61 61 0.3 (7.5) -2.2 (4.5) 0.468 0.16234 o (o)

InfLatVent 69 (64) 52 76 7.7 (19.6) 3.0 (8.0) 0.380 0.25411 o (o)

CerebellarVermalLobulesI-V 59 (57) 52 62 -0.9 (1.6) -0.5 (1.0) 0.355 0.28602 o (o)

CerebellarVermalLobulesVIII-X 65 (64) 62 66 -0.3 (1.9) 0.4 (2.3) 0.331 0.32032 o (o)

3rdVentricle 56 (53) 45 60 5.2 (8.4) 2.4 (9.2) 0.316 0.34251 o (o)

Caudate 39 (37) 30 43 0.1 (12.6) -1.1 (6.6) 0.132 0.69072 o (o)

AccumbensArea 49 (47) 43 52 -0.2 (3.0) -0.5 (1.7) 0.118 0.72056 o (o)

BasalForebrain 44 (41) 34 48 1.2 (16.6) 2.7 (14.6) 0.096 0.77201 o (o)

Pallidum 56 (44) 15 72 0.2 (0.8) 0.2 (1.1) 0.023 0.94465 o (o)

https://doi.org/10.1371/journal.pone.0188152.t006
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Table 7. Longitudinal classification results (severe vs. moderate and moderate vs. low disability outcome). Classification results in% (6-fold cross-val-

idation, 100 runs) obtained separating TBI patients with a severe disability from patients with moderate disability outcome based on structural volume changes

between the acute and chronic disease stage (top). Classification of patients with moderate disability and low disability outcome (bottom). The individual struc-

tures are sorted by effect size. Significant group differences indicated by + (p < 0.05) and ++ (p < 0.001), or “o” if not significant. Bonferroni corrected signifi-

cance in parentheses. Individual features were classified using LDA, multiple features using RandomForest or SVM.

Severe disability (N = 13, PositivesP) vs. Moderate disability (N = 22, NegativesN) (longitudinal analysis, bl!follow-up)

structure ACC (bACC) SENS SPEC mean (SD) [%]P mean (SD) [%]N effect size (d) p-value sig. (corr.)

RandomForest (all features) 59 (53) 29 76

SVM (all features) 56 (50) 25 75

Gender (female = 0, male = 1) 66 (66) 69 64 0.3 (0.5) 0.6 (0.5) 0.673 0.06287 o (o)

Age 65 (63) 55 70 67.2 (15.9) 58.8 (10.0) 0.672 0.06331 o (o)

DeepGreyMatter 62 (59) 48 70 -2.7 (2.2) -1.2 (2.3) 0.639 0.07664 o (o)

Brain 61 (62) 65 59 -2.0 (1.7) -1.3 (2.3) 0.352 0.32098 o (o)

BrainTissue 56 (54) 48 61 -3.0 (2.4) -2.1 (3.2) 0.310 0.38205 o (o)

CorticalGreyMatter 51 (51) 51 52 -3.0 (3.2) -1.9 (4.3) 0.279 0.43074 o (o)

WhiteMatter 49 (46) 37 56 -3.0 (2.8) -2.5 (3.3) 0.154 0.66288 o (o)

Ventricles 37 (36) 35 37 11.6 (12.0) 11.6 (17.8) 0.001 0.99774 o (o)

CerebellumExterior 69 (66) 57 75 -3.1 (3.1) -0.6 (2.4) 0.933 0.01173 + (o)

CerebellarVermalLobulesVI-VII 60 (60) 61 59 -2.1 (3.9) 0.4 (3.8) 0.668 0.06477 o (o)

CerebellumWhiteMatter 67 (64) 52 75 -1.3 (1.3) -0.6 (1.4) 0.535 0.13539 o (o)

Caudate 50 (51) 53 48 0.1 (12.6) -4.7 (12.3) 0.385 0.27928 o (o)

BrainStem 65 (62) 52 73 -3.1 (3.3) -2.0 (3.2) 0.332 0.34973 o (o)

AccumbensArea 47 (55) 89 22 -0.2 (3.0) -3.6 (13.1) 0.316 0.37305 o (o)

Hippocampus 58 (53) 36 70 -4.8 (10.6) -2.2 (6.7) 0.313 0.37795 o (o)

VentralDC 68 (67) 62 72 -2.5 (1.8) -1.4 (4.3) 0.294 0.40675 o (o)

Pallidum 37 (46) 78 13 0.2 (0.8) 0.8 (3.2) 0.233 0.50989 o (o)

BasalForebrain 50 (50) 47 52 1.2 (16.6) 5.2 (17.1) 0.233 0.51037 o (o)

CerebellarVermalLobulesI-V 42 (42) 44 40 -0.9 (1.6) -1.3 (2.1) 0.201 0.56983 o (o)

CerebellarVermalLobulesVIII-X 43 (43) 46 41 -0.3 (1.9) -0.9 (3.9) 0.187 0.59611 o (o)

Amygdala 44 (40) 21 58 -2.6 (6.7) -1.6 (5.1) 0.168 0.63403 o (o)

CSF 54 (51) 40 62 6.2 (6.5) 4.7 (10.8) 0.160 0.65057 o (o)

4thVentricle 45 (47) 54 41 0.3 (7.5) 2.3 (15.1) 0.153 0.66533 o (o)

CerebralWhiteMatter 47 (45) 35 54 -3.1 (3.0) -2.7 (3.6) 0.138 0.69533 o (o)

3rdVentricle 45 (46) 52 41 5.2 (8.4) 6.8 (17.0) 0.112 0.75025 o (o)

Putamen 37 (43) 64 22 -0.1 (0.8) -0.3 (2.2) 0.071 0.84134 o (o)

ThalamusProper 41 (39) 33 45 -4.2 (3.5) -3.9 (6.2) 0.053 0.88026 o (o)

LateralVentricle 37 (37) 34 40 12.8 (12.0) 12.5 (18.8) 0.018 0.95937 o (o)

InfLatVent 38 (39) 41 37 7.7 (19.6) 7.8 (24.3) 0.006 0.98701 o (o)

Moderate disability (N = 22, PositivesP) vs. Low disability (N = 32, NegativesN) (longitudinal analysis, bl!follow-up)

structure ACC (bACC) SENS SPEC mean (SD) [%]P mean (SD) [%]N effect size (d) p-value sig. (corr.)

RandomForest (all features) 62 (59) 47 72

SVM (all features) 65 (58) 21 94

Age 59 (59) 62 56 58.8 (10.0) 61.1 (10.1) 0.223 0.42386 o (o)

Gender (female = 0, male = 1) 39 (38) 30 46 0.6 (0.5) 0.7 (0.5) 0.041 0.88325 o (o)

WhiteMatter 69 (66) 47 85 -2.5 (3.3) -0.6 (1.2) 0.820 0.00460 + (o)

BrainTissue 70 (67) 51 84 -2.1 (3.2) -0.6 (2.0) 0.570 0.04449 + (o)

Ventricles 62 (60) 44 76 11.6 (17.8) 4.2 (9.7) 0.545 0.05460 o (o)

Brain 72 (69) 55 83 -1.3 (2.3) -0.4 (1.6) 0.461 0.10190 o (o)

CorticalGreyMatter 70 (68) 58 78 -1.9 (4.3) -0.7 (2.9) 0.346 0.21716 o (o)

DeepGreyMatter 59 (57) 48 66 -1.2 (2.3) -0.5 (2.5) 0.300 0.28432 o (o)

(Continued )
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Another limitation is related to the refinement of spatial priors [53]. The refinement of pri-

ors compensates inaccuracies in the atlas alignment based on the intensity profiles within the

MR image. However, priors between labels with similar intensity profile are not corrected. In

extreme cases this can lead to mislabeling of these structures (e.g. CSF$ background). An

example can be observed in the segmentation results of TBI047 (middle row in Fig 8) or

TBI114 (bottom row) where parts of the inferior lateral ventricle are incorrectly labelled as

background (c.f. red arrow). It generally depends on the specific question that is investigated

whether a non-healthy area should be characterised as pathological lesion, segmented as the

tissue that it used to be before the injury or masked out/disregarded completely. We are not

aware of approaches that reliably show whether a lesion during the acute stage represents

“lost”/non-functional tissue or tissue that is still functional and/or reversible. For instance,

some non-healthy tissue in the acute stage may still be partially fulfilling its functions. On the

other hand, lesions that are clearly visible on acute MRI may disappear later on. However,

whether this represents functional recovery or not is not known since axonal pathology may

remain despite visual normality. In our approach, MALPEM tends to classify the dead-core or

other pathologies appearing dark on T1-weighted MRI as background and generally assigns

the most likely tissue class for possibly functional areas.

In this study, the segmentation quality could not be evaluated quantitatively. Manual refer-

ence segmentations of the images were not available and a quantitative quality assessment

through experts is prohibitive. However, a quantitative assessment of segmentation accuracy

obtained with the employed methods was done in earlier work on different datasets [53, 58].

Further to that, a non-clinician visually reviewed the segmentations calculated in this study to

rule out gross failures. C.f. Figs 4, 6 and 8 for included subjects with segmentations considered

successful, however, affected by pathology.

Table 7. (Continued)

CerebralWhiteMatter 69 (66) 47 85 -2.7 (3.6) -0.7 (1.2) 0.817 0.00474 + (o)

LateralVentricle 59 (56) 36 75 12.5 (18.8) 4.7 (10.7) 0.531 0.06072 o (o)

CerebellarVermalLobulesI-V 61 (59) 48 69 -1.3 (2.1) -0.5 (1.0) 0.527 0.06274 o (o)

ThalamusProper 65 (62) 45 78 -3.9 (6.2) -1.6 (3.1) 0.515 0.06844 o (o)

BrainStem 66 (64) 54 74 -2.0 (3.2) -0.8 (2.1) 0.470 0.09576 o (o)

4thVentricle 60 (58) 50 67 2.3 (15.1) -2.2 (4.5) 0.444 0.11507 o (o)

CerebellarVermalLobulesVIII-X 64 (61) 48 74 -0.9 (3.9) 0.4 (2.3) 0.441 0.11719 o (o)

Amygdala 58 (57) 53 61 -1.6 (5.1) -0.0 (2.5) 0.424 0.13221 o (o)

Caudate 59 (57) 43 70 -4.7 (12.3) -1.1 (6.6) 0.389 0.16652 o (o)

AccumbensArea 59 (53) 20 87 -3.6 (13.1) -0.5 (1.7) 0.367 0.19060 o (o)

3rdVentricle 60 (58) 47 68 6.8 (17.0) 2.4 (9.2) 0.345 0.21816 o (o)

CerebellumWhiteMatter 59 (58) 50 66 -0.6 (1.4) -0.1 (1.3) 0.341 0.22407 o (o)

InfLatVent 58 (53) 31 76 7.8 (24.3) 3.0 (8.0) 0.291 0.29794 o (o)

Pallidum 55 (49) 14 83 0.8 (3.2) 0.2 (1.1) 0.287 0.30512 o (o)

Putamen 60 (57) 38 75 -0.3 (2.2) 0.1 (0.4) 0.271 0.33165 o (o)

Hippocampus 56 (53) 36 70 -2.2 (6.7) -1.1 (2.9) 0.237 0.39550 o (o)

CSF 51 (48) 32 64 4.7 (10.8) 3.2 (6.0) 0.188 0.49978 o (o)

BasalForebrain 51 (50) 47 53 5.2 (17.1) 2.7 (14.6) 0.159 0.56781 o (o)

CerebellarVermalLobulesVI-VII 44 (43) 40 47 0.4 (3.8) -0.1 (3.1) 0.151 0.58850 o (o)

CerebellumExterior 47 (46) 39 52 -0.6 (2.4) -0.3 (2.9) 0.103 0.71168 o (o)

VentralDC 49 (47) 36 57 -1.4 (4.3) -1.2 (3.0) 0.066 0.81394 o (o)

https://doi.org/10.1371/journal.pone.0188152.t007
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Fig 8. Example longitudinal segmentation results. Images acquired at the acute and chronic stage of a TBI. Top: TBI150, male, 68 years of age, GCS: 15,

GOSe: 5, MCS: 5, unclear accident, acute/chronic image acquired 14/264 days after injury, craniotomy and evacuation of an acute SDH, intracranial

haematoma induced brain destruction. These are incomplete reproductions of the radiological reports. Middle: TBI047, male, 62 years of age, GCS: 13,

GOSe: 3, MCS: 5, fall accident, acute/chronic image acquired 29/306 days after injury, craniotomy and evacuation of an acute subdural haemorrhage, broad

gliosis on left temporal lobe. Bottom: TBI114, male, 69 years of age, GCS: 14, GOSe: 5, MCS: 5, cycling accident, acute/chronic image acquired 51/233 days

after injury, no craniotomy, traumatic subarachnoid haemorrhage, intracranial haematoma with surrounding oedema in left temporal lobe, central and cortical

atrophy. The colour scheme is described in S1 File.

https://doi.org/10.1371/journal.pone.0188152.g008
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We further assessed the value of the calculated segmentations indirectly. Instead of quanti-

fying the actual segmentation quality, the disease-relevance of extracted measurements in the

context of classification was analysed. Specifically, several classification experiments were con-

ducted to investigate whether measures of structural volume, asymmetry and volume change

are meaningful features in patients with TBI. In this setup both the assessment of segmentation

accuracy and the validation of measured features as predictors of disease outcome are coupled

a priori. With the outlined limitations regarding segmentation quality in the presence of

pathology in mind, the goal of the performed analysis was to show the potential of derived

quantitative measures as valid biomarkers that are predictive for the outcome of a head

trauma.

Quantified features extracted from acute MR imaging allowed a specific prediction whether

a patient will have a negative outcome diagnosis (SPEC: 93%) when classified against the low

disability outcome group. In this experiment a high sensitivity was observed using volumes of

structural ROIs (e.g. SENS accumbens: 91%, SENS hippocampus: 83%) and high specificity

using symmetry-based features (e.g. SPEC AAI of all structures: 91%). This suggests that brain

symmetry is only a “necessary” criterion for a favourable disease outcome while asymmetry is

a “sufficient” criterion for unfavourable outcome. This is in agreement with findings presented

in Ledig et al. [53] on another TBI dataset. However, it must be noted that there is a trade-off

between SENS and SPEC, which should be further investigated using for example ROC curves.

In Strangman et al. [33] the authors reported that structural volumes correlate with the

potential of patients to recover within a memory rehabilitation program. In that study, struc-

tural volumes were extracted from 50 TBI patients several years after the injury in the chronic

stage. The authors raise the question whether structural volumes extracted at the acute stage

have similar potential. The results of the presented study are encouraging: structural volumes

(e.g. hippocampus, thalamus) were identified that are predictive for the outcome of the disease.

These findings agree with those presented in Strangman et al. [33]. The influence of brain

capacity/reserve on the ability to recover from a TBI needs to be further investigated.

The conducted longitudinal analysis showed increased atrophy after sustaining TBI in the

WM, brainstem and thalamus which was also shown in other studies [16, 44]. In contrast to

Warner et al. [16], significant changes for the cerebellum but not for the amygdala were found.

However, when comparing to other studies the substantial heterogeneity of TBI studies must

be considered: In comparison to the study presented in here, Warner et al. [16] analysed 25

patients with DAI and 22 age-matched controls where patients had a lower GCS of 6.2±4.5

(mean±SD) and were much younger (26.8±11.3 years).

In the presented analyses, the significance of many findings could not be confirmed after

correcting for multiple comparisons. However, the performed Bonferroni correction is very

conservative and the calculated effect sizes indicate that significance levels could be increased

on a larger cohort. In summary, the experiments confirm that the developed algorithms can be

valuable when automatically analysing cohorts with images covering a wide range of signifi-

cantly altered brain anatomy.

A simple approach was chosen to account for the uneven age distribution between patients

of the investigated outcome categories. This resulted in a substantial reduction of the number

of study subjects (N = 114!N = 67). Even though no subjects were excluded from the severe

disability outcome group (N = 13), this is a limitation of the conducted experiments as the

number of subjects (or samples) per group is small. In the future the applicability of more

sophisticated methods to adjust for selection bias, such as inverse-probability weighting [72],

should be explored.

In addition to the performed age matching, experiments were carried out to employ regres-

sion models trained on healthy control subjects from the Alzheimer’s Disease Neuroimaging
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Initiative (ADNI) cohort to account for differences in age, gender and brain size. Preliminary

results suggested that correction for brain size is not beneficial. One possible explanation is

that the calculated brain size estimate may be distorted by TBI-related brain pathology, such as

lesions or contusions. Correcting for either age and gender did not substantially alter the

results presented in Table 4. Correcting for both age and gender using a multi-variate regres-

sion approach reduced the discriminative value of the investigated structures. It should be

noted that the ADNI subjects are overall older than the TBI subjects so that the trained model

needs to be extrapolated in order to be applicable to the TBI dataset. One hypothesis is there-

fore that the regression model trained on ADNI data is not straightforwardly applicable, due

to confounding cohort differences in patient age but also acquisition protocol. These effects

require a deeper analysis so that no explicit correction for age or gender was performed.

No clear benefit was observed of combining all available measurements within multi-fea-

ture classifiers except when predicting severe and low disability outcome at baseline based on

structural volumes. Classifiers were not explicitly tuned. Given the size of the study cohort and

the large number of features a lack of generalisation of the classifiers/overfitting might be a

problem that should be further investigated in the future.

In clinical practice, both outcome prediction of acute TBI and assessment of TBI-related

sequels are still major challenges. Therefore, we feel that the presented results have clinical

value as a significant step towards creating more reliable predictive models and providing

tools to assess TBI-related outcome. The main merits of our study are in developing and

employing a reproducible method for automatic volume measurement that takes into account

the very complex pathological anatomy of TBI, and its application in a well-characterised

patient population. A shortcoming in our study is the heterogeneous age distribution in rela-

tion to the severity. Future studies are required to increase certainty in detecting the TBI-

related alterations irrespective of age and TBI severity.

6 Conclusion

In this work we analysed 67 subjects from a recently acquired cohort of mild to severe TBI

patients. The conducted analyses demonstrate that the employed methodology [53, 58] has the

potential to extract meaningful biomarkers from MR brain images such as the volume or volu-

metric change of individual ROIs. It was confirmed that automatically quantified imaging

information can add predictive value when performing an outcome prognosis at the acute

stage of the injury. Structural volumes, measured from acute MR images, of the accumbens,

hippocampus, amygdala and thalamus were related to the disease outcome. Both white matter

and brain atrophy was increased in patients with unfavourable outcome diagnosis. Overall, the

employed methodology has, within the discussed limitations, potential to support automated

brain morphometry in patients with TBI. An essential prerequisite for a more accurate analysis

of abnormal brain images is the integration of recently proposed methodology that is able to

explicitly segment disease-related pathology.
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