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Abstract

Recent studies have outlined the interest for the evaluation of transport coefficients in space plasmas, where the
observed velocity distributions of plasma particles are conditioned not only by the binary collisions, e.g., at low
energies, but also by the energization of particles from their interaction with wave turbulence and fluctuations,
generating the suprathermal kappa-distributed populations. This paper provides a first estimate of the main transport
coefficients based on regularized kappa distributions, which, unlike standard kappa distributions (SKDs), enable
macroscopic parameterization without mathematical divergences or physical inconsistencies. All transport coefficients
derived here, i.e., the diffusion and mobility coefficients, electric conductivity, thermoelectric coefficient, and thermal
conductivity, are finite and well defined for all values of κ> 0. Moreover, for low values of κ (i.e., below the SKD
poles), the transport coefficients can be orders of magnitudes higher than the corresponding Maxwellian limits,
meaning that significant underestimations can be made if suprathermal electrons are ignored.

Unified Astronomy Thesaurus concepts: Space plasmas (1544); Plasma astrophysics (1261); Collision processes
(2065); Solar wind (1534); Heliosphere (711); Astrophysical processes (104)

1. Introduction

Plasma is by far the most dominant state of perceivable matter in
the universe. Due to the opportunity of in situ measurements, the
heliosphere is a plasma system of the highest interest. The solar
wind is emitted from the Sun as a continuous stream of electrons
and protons, and fills the heliospheric bubble (Marsch 2006;
Verscharen et al. 2019). The high energy, as well as the dilute
nature of space plasmas, points toward a reduced influence of
binary collisions, so that there is no full relaxation to the thermal
equilibrium, characterized by Maxwellian distributions (Pierrard &
Lazar 2010). Indeed, observations show nonthermal velocity
distributions maintained for long periods (Maksimovic et al. 2005;
Zouganelis et al. 2005), most probably due to the interaction of
particles with fluctuations (Vocks & Mann 2003; Marsch 2006;
Vocks et al. 2008). While wave-particle interactions occur at all
heliocentric distances and their effects become more relevant at
larger distances (>1 au), it is argued that Coulomb collisions
between particles can still play a significant role toward lower
distances from the Sun, i.e., lower than 1 au (Salem et al. 2003;
Landi et al. 2010, 2012). Indeed, solar wind models using a purely
exospheric approach, i.e., a collision-less model, fail to accurately
reproduce the global expansion of the solar wind observed in situ,
and are, at best, helpful approximations to gain insight into basic
energetic processes (see the reviews by Marsch 1994 and Echim
et al. 2011). Thus, to realistically account for processes like diss-
ipation, diffusion, and viscosity, these models must also accom-
modate particle-particle collisions, or at least incorporate their
effects, e.g., for low-energy populations (with high so-called
collisional age; Bourouaine et al. 2011).

Space probes regularly observe nonthermal plasma particle
velocity distributions with enhanced suprathermal tails, well
described by the family of kappa (or κ-power law) distributions
(Pierrard & Lazar 2010; Scherer et al. 2020; Lazar & Fichtner
2021). Kappa distributions are the result of such combined
effects, both of particle-particle collisions conditioning a quasi-
Maxwellian profile at low energies, and of particle interactions
with wave turbulence and fluctuations, which can explain the
suprathermal tails of these distributions (Vocks & Mann 2003;
Yoon 2014). The transport theory for such plasma populations
must therefore rely on a kinetic approach centered on the
Boltzmann transport equation (BTE) that describes the time/
space evolution of particle velocity distribution. Alternatively,
plasma transport theory provides a simpler, macroscopic
approach to account for the moments of the velocity distributions
and their variations, namely by relating fluxes (e.g., heat flux or
electric currents) to their sources (e.g., electromagnetic fields,
gradients of temperature, or density), through linear relation-
ships. Coefficients of proportionality are termed transport
coefficients and may determine the transport of mass, momen-
tum, and energy. (Braginskii 1965; Balescu 1988; Dum 1990).
The mathematical formalism for the transport approach used in
the present work (including the simplified ansatz to allow for
analytical or numerical computation of the collision integral) is
presented in Section 2.
Recently, the electric conductivity, the thermoelectric coeffi-

cient, the thermal conductivity, and the diffusion and mobility
coefficients have been derived and estimated for electron
populations described by the standard kappa distribution (SKDs;
Husidic et al. 2021). Introduced in the pioneering works of Olbert
(1968) and Vasyliūnas (1968), these original SKD models have
the merit of allowing a direct and straightforward comparison with
the quasi-thermal population at the low-energy core of kappa
distribution, reproduced in this case by the Maxwellian limit
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(κ→∞ ) (Lazar et al. 2015, 2016). Such a comparison can thus
emphasize the contribution of suprathermal populations to any
property of the plasma system. Husidic et al. (2021) have shown
that all the aforementioned transport coefficients are systematically
and markedly enhanced in the presence of suprathermal electrons.
Other similar studies attempting to evaluate these coefficients
for SKD electrons (Ebne Abbasi et al. 2017; Wang & Du 2017;
Guo & Du 2019) have in general adopted variants of kappa dis-
tributions, which provide only underestimates of transport
coefficients (Husidic et al. 2021).

However, even in the original forms, the SKDs themselves
have a number of well-known limitations. Namely, SKDs do
allow for finite (convergent) macroscopic velocity moments Ml

of order l only if power-law exponents are sufficiently high, i.e.,
κ> (l+ 1)/2. These limitations have been resolved by defining
the regularized kappa distributions (RKDs; Scherer et al. 2017);
see also Appendix A. Moreover, the RKDs exhibit exponential
cutoffs of the suprathermal tails, able to minimize the unphysical
implication of superluminal particles with speeds exceeding the
speed of light in vacuum (Scherer et al. 2019).

In the present paper, we compute the main transport coefficients
for the electrons for the first time described by the RKDs
(Section 2), namely the diffusion coefficient (Section 2.1), the
mobility coefficient (Section 2.2), the electric conductivity
(Section 2.3), the thermoelectric coefficient (Section 2.4), and the
thermal conductivity (Section 2.5). The transport coefficients are
well defined, taking finite values for any value of the power
exponent κ> 0, and are not affected by any limitation given by the
singularities of SKDs, e.g., for low values of κ� (l+ 1)/2 (Lazar
et al. 2020). Conclusions and an outlook for potential future work
are formulated in Section 3. In the appendix, we briefly discuss the
RKD (Appendix A), and give useful formulas and solutions of the
integrals (Appendix B) occurring in Section 2. Furthermore, in
Appendix C, we present approximations that extend the scope of
transport coefficients even to κ→ 0, and tabulated in Table 1 the
expressions obtained for the transport coefficients for a suggestive
comparison on different distribution functions.

2. Transport Coefficients

Within transport theory, we may start from the velocity
moments of the BTE and use macroscopic laws for the electric
field, the electric current density, the heat flux, and the particle flux.
Comparisons between the moment equations and macroscopic
laws allow us to identify the transport coefficients and to derive
their expressions. In order to study the effects of suprathermal
particles on the transport coefficients, we assume heavy and
stationary ions and mobile electrons described by the RKD.

The macroscopic relationships between fluxes and their
sources used in the present work are

mG = -  - ( )ED n n , 1

òG = á ñ = ( )v vd v f , 23

s
a= +  ( )E j T

1
, 3

ò= ( )j vq d v f , 43

f a l= + - ( ) ( )q jT T , 5

ò ò e= = ( )q v vm d v v f d v f
1

2
. 63 2 3

The particle flux density Γ, defined as the average of velocity v
(Equation (2)), can occur due to a gradient in number density n
or the presence of an electric field E in an extended Fickʼs law
in Equation (1). The corresponding transport coefficients are
the diffusion coefficient D and the mobility coefficient μ,
respectively. Equation (3) is a generalized Ohm’s law and sets
the electric field in relation to electric current density j, defined
in Equation (4) with electric charge q, and gradient in
temperature T. There, the related transport coefficients are the
electric conductivity σ and the thermoelectric coefficient α,
respectively. The heat flux q as defined in Equation (6) can
arise due to an electric current density or a temperature
gradient, expressed through an extended Fourierʼs law in
Equation (5), where λ is the thermal conductivity, f is the
electric potential related to the electric field via E=−∇f, and
α is the same thermoelectric coefficient as in Equation (3).
More details can be found in Spatschek (1990), Boyd &
Sanderson (2003), and Goedbloed et al. (2019).
The evolution of a distribution function f in time and space is

given by the partial differential equation


¶
¶

+  + + ´  =· ( ) · ( ) ( )v E v B
f

t
f

q

m c
f f

1
, 7v⎡

⎣
⎤
⎦

which is called the BTE. Here, we assume that the electric and
magnetic fields E and B contain both the imposed and self-
generated fields. While ∇ is the standard spatial derivative, ∇v

expresses the velocity gradient. The collision term is denoted
by ( )f . Assuming stationary transport and neglecting the mag-
netic field in Equation (7), we find

 -  =· · ( ) ( )v Ef
q

m
f f . f8v

Collisions between particles cause changes in the velocity
distribution. Assuming that the changes are relatively small, we
can linearize the distribution function and write it as a sum of
the stationary solution f0 and a small perturbation f1, which
yields

= +( ) ( ) ( ) ( )r v r v r vf t f f t, , , , , . 90 1

The collision term in the BTE is in its most general form an
integral that proves to be very challenging to exactly compute.
To overcome this issue, we use a Krook-type collisional
operator (Bhatnagar et al. 1954) for ( )f , given by

 n n= - - = -( ) ( )( ) ( ) ( )f v f f v f . 10ei 0 ei 1

This ansatz assumes that the perturbed distribution function f
relaxes toward the stationary solution f0 under the effect of
collisions that occur with frequency νei(v) as a function of
speed v. Here, the subscript “ei” indicates that collisions occur
only between electrons and stationary ions. For νei(v), we used
the expression given by Helander & Sigmar (2005):

n n
p p

= = »( ) ( )v
n z e L

m m v

n z e L

m v

4 4
11ei ei

e
4 ei

r e
3

e
4 ei

e
2 3

with electron number density ne, ion charge number z,
elementary charge e, electron mass me, and reduced mass
mr≡memi/(me+mi);me (with ion mass mi), and Coulomb
logarithm = LL lnei , where Λ is the (normalized) electron
Debye length. In the following, we omit the subscript e in n and
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m as they always refer to electrons for the remaining part. We
further note that considering only collisions between electrons
and ions is a generic choice, relevant enough for low helio-
centric distances, e.g., in the outer corona where Te< Ti is
observed (Landi 2007; Landi & Cranmer 2009), while for
larger distances, where Te∼ Ti, electron–electron collisions
with frequency νee νei must also be taken into account.

By inserting the linearized distribution function from
Equation (9) into the simplified BTE from Equation (8), we
obtain

n -  = -· · ( )v Ef
e

m
f f , 12vRKD RKD ei 1

where we set f0 to the RKD fRKD and neglected all second-order
terms of the spatial and velocity gradients of perturbation f1. For
the derivation of the transport coefficients, we did not use the
RKD in its original representation displayed in Equation (A1),
but rewrote it in terms of kinetic energy ε=m v2/2 and
corresponding Maxwellian temperature T to

e
k

x
e

= + -
k- +
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( )

f N
k T k T
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B

1
2

B

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
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with Boltzmann’s constant kB, a dimensionless cutoff-para-
meter ξ (see Appendix A), and normalization constant

p k
= ( )N

n m

k T2
, 14RKD 3 2 3 2
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⎠

where   k x kº -( )3 2, 3 2 ,0
2 , ( )a b x, , being Kum-

mer’s function (see Appendices A and B). Furthermore, κ is a
free parameter characterizing the suprathermal tails of the
distribution function. Using this alternative form of fRKD, we
can rewrite Equation (12) in terms of f1 to find

k
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2.1. Diffusion Coefficient

The diffusion coefficient D is derived by setting E= 0 and
∇T= 0. Equation (15) then reduces to

n
= -  · ( )vf

f

n
n . 161

RKD

ei

The particle flux in Equation (2) simplifies to

ò òG = = ( )v vd v f d v f , 173 3
1

as ∫d3v v fRKD= 0 due to the odd integrand with respect to the
velocity. Inserting Equation (16) into (17) yields

ò n n
G = -  = -  ( )vv

n
d v f n

n

v
n

1 1

3
. 183

ei
RKD

2

ei

The vanishing cross-diagonal terms in the dyadic product
vv in Equation (18) allow one to rewrite the integral into

ò ò=( ) ( )vvd v G v d v v G v1 33 3 2 , where  denotes the unit
tensor and G(v) is some function of speed v. Then the integral can
be transformed into an average value 〈F(v)〉≡ ∫d3v F(v)fRKD,
where F(v) is some function of v. This procedure is performed for
all considered transport coefficients in the present work.
By comparing Equations (18) and (1), we can identify the

diffusion coefficient as

n p
= = á ñ ( )D

n

v m

z e L n
v

1

3 12
. 19

2

ei

2

4 ei 2
5

Scherer et al. (2020) derived general solutions of integrals that
contain (regularized) kappa distributions (see also Appendix B),
and after solving the integral, we obtain the diffusion coefficient
based on the RKD as
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where DM is the Maxwellian diffusion coefficient and where we
made use of the compact notation given in Equation (B3),
which is   k x kº -( )[ ] l m, ,l m,

2 . By setting ξ= 0,
Equation (20) becomes the diffusion coefficient based on the
SKD (see Husidic et al. 2021 for all transport coefficients based
on the SKD) as

k
k

k=
G -

G -
( )

( )
( )D D

3

1 2
. 21M

5 2

From Equation (20) (as well as from all the subsequent
transport coefficients below), we can see that the diffusion
coefficient can be written as a product of a Maxwellian part and
a κ-dependent part. This is a consequence of the composition
of the RKD (see Scherer et al. 2020 for a detailed discussion),
and enables a simple assessment of the influence of
suprathermal particles on the transport coefficients.
Figure 1 shows the diffusion coefficient D as a function of κ

and based on the SKD and three RKDs with different cutoff
parameters (see legend). While the SKD-based result diverges
approaching κ= 3, the RKD-based results resolve the
singularity, allowing for a continuation to κ< 3. Furthermore,
for increasing values of ξ, the values for D become smaller. The
maximum value of the diffusion coefficient as well as for all
other transport coefficients are presented in Appendix C.

2.2. Mobility Coefficient

The mobility coefficient μ in Equation (1) is obtained by
setting ∇n= 0 and ∇T= 0. Equation (15) then becomes

k
n k e

x
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+
+

-
( )

( )
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f e

k T
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k T

1
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2
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⎡
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⎤
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3

The Astrophysical Journal, 927:159 (10pp), 2022 March 10 Husidic et al.



We can continue from Equation (17) and insert Equation (22)
to obtain
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Comparing Equations (23) and (1) allows one to identify the
mobility coefficient as
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We insert the expression for the collision frequency from
Equation (11) and introduce the quantity Aκ≡m/(kB T κ),
which leads to

m
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After solving the integrals (see Appendix B), the mobility
coefficient based on the RKD takes the form
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where μM is the Maxwellian mobility coefficient. With ξ= 0,
Equation (26) becomes the mobility coefficient based on the
SKD

m m
k

k
k=
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1 2
. 27M
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The Einstein equation, which establishes the relationship
between the diffusion and mobility coefficients, is obtained
by combining Equations (20) and (26), yielding
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. 284,4
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By setting ξ= 0, this equation can be simplified to the case for
the SKD

k
k

m
=

-
( )D

k T

e3
, 29B

and with κ→∞ further simplified to the well-known Max-
wellian-based result DM= μM kB T/e. The estimates of the
mobility coefficient for three RKDs with different cutoff
parameters, and the corresponding SKD, are displayed in
Figure 2. The result based on the SKD diverges at κ= 2,
whereas the RKD-based results continue to lower values of κ.
By increasing the cutoff-parameter ξ, the value of the mobility
coefficient becomes smaller.

2.3. The Electric Conductivity

Similarly to the mobility coefficient, we set ∇n= 0 and
∇T= 0 to calculate the electric conductivity. We find for f1 the
same expression as in Equation (22), which we then insert in
Equation (4) to find

ò ò= - = - ( )j v ve d v f e d v f . 303 3
1

Figure 1. The plot displays the diffusion coefficient D as a function of κ. The
curves show the results based on the SKD and three RKDs with different cutoff
parameters (see legend). All functions are normalized to the Maxwellian limit
(dashed horizontal line).

Figure 2. The plot displays the mobility coefficient μ as a function of κ. The
curves show the results based on the SKD and three RKDs with different cutoff
parameters (see legend). All functions are normalized to the Maxwellian limit
(dashed horizontal line).
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Equation (30) differs from Equation (17) only in an additional
factor −e, leading to the same integrals as in Equation (23).
Thus, using Equation (3), we can immediately write the electric
conductivity based on the RKD as
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with σM being the Maxwellian electric conductivity. The
relation between σ and μ is

s m= ( )n e . 32

We set ξ= 0 to obtain the SKD-based result for σ with

s s
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Figure 3 shows the electric conductivity as a function of κ
for three different RKDs and, to compare, the corresponding
SKD. Since σ/σM= μ/μM (see Equation (26)), the relative
values obtained in this case are exactly the same as those
displayed for the mobility coefficient in Figure 2.

2.4. The Thermoelectric Coefficient

The thermoelectric coefficient is derived by setting E= 0
and ∇n= 0, which simplifies Equation (15) to
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We insert Equation (34) into (30) to obtain
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By comparing the coefficients in Equations (35) and (3), we are
able to identify the thermoelectric coefficient as
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We insert the expression for the collision frequency from
Equation (11) into the equation above to obtain
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Solving the integrals and inserting the found expression for σ
from Equation (31) yields the thermoelectric coefficient based
on the RKD in the form
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with the Maxwellian thermoelectric coefficient αM. Further-
more, with ξ= 0, the SKD-based result for α becomes
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k

k
=

-
( )

3
. 39M

Figure 4 displays the thermoelectric coefficient as a function
of κ. Similarly to the previous transport coefficients, we see
that the SKD-based result has a singularity (here at κ= 3),
which is resolved by the RKD.

Figure 3. The plot displays the electric conductivity σ as a function of κ. The
curves show the results based on the SKD and three RKDs with different cutoff
parameters (see legend). All functions are normalized to the Maxwellian limit
(dashed horizontal line).
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2.5. The Thermal Conductivity

For the the derivation of the thermal conductivity, we set
∇n= 0 and assume the absence of an electric current (j= 0),
which simplifies Equation (3) to E= α∇T. Equation (15) then
becomes
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A comparison of the coefficients in Equations (41) and (5)
leads for the thermal conductivity to the expression
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We plug the collision frequency from Equation (11) into the
equation above to find
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After solving the integrals and inserting the thermoelectric
coefficient from Equation (38), we obtain the thermal conductivity
λ based on the RKD, reading
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Setting ξ= 0 yields λ based on the SKD as
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Figure 5 shows the thermal conductivity as a function of κ
and with the same composition as the previous figures. While
the SKD-based result has a singularity at κ= 4, the RKD
removes the pole and allows λ to continue to values κ< 4.

3. Conclusions and Outlook

The results presented in this paper respond to the current high
interest to evaluate transport coefficients in non-equilibrium space
plasmas, where the effects of Coulomb collisions are counter-
balanced by the interactions of plasma particles with the wave
turbulence and fluctuations. It seems that this interplay can also
offer a plausible explanation for the observed kappa-like
distribution of particle velocities (Yoon 2011; Bian et al. 2014),
a distribution that is nearly Maxwellian at low energies, but
decreases as a power law with increasing energies (up to a few
keV; Pierrard & Lazar 2010). A macroscopic description of these
plasmas depends on the nature of particle velocity distributions,
and in this case, it should rely on kappa distribution models.
However, macroscopic velocity moments of SKDs (Olbert 1968;
Vasyliūnas 1968), such as pressure, temperature, and heat flux,
cannot be defined for distributions with hard suprathermal tails,
i.e., low power exponents κ� 3/2 (Lazar et al. 2020). Moreover,
recent derivations of transport coefficients for SKD electrons have
shown that their mobility and electric conductivity cannot be
defined for κ� 2, the diffusion coefficient and thermoelectric
coefficient become divergent for κ� 3, and the thermal
conductivity for κ� 4 (Husidic et al. 2021).

Figure 4. The plot displays the thermoelectric coefficient α as a function of κ.
The results are based on the SKD and three RKDs with different cutoff
parameters (see legend). All functions are normalized to the Maxwellian limit
(dashed horizontal line).
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In this paper, we derived new expressions of these transport
coefficients assuming the electrons described by an RKD that
has the merit to resolve all these mathematical divergences and
enable a well-defined macroscopic parameterization (Scherer
et al. 2017). It also reduces the unphysical contributions of
superluminal electrons from the tails of an SKD (Scherer et al.
2019). All macroscopic parameters, including the transport
coefficients mentioned above, are found to be well defined for all
values of κ> 0. Moreover, for low values of the power exponent
κ, i.e., below the SKD poles, values obtained for the transport
coefficients can be markedly higher, order of magnitudes higher
than the corresponding Maxwellian limits. That means that
transport coefficients can be significantly underestimated if
evaluated in the absence of suprathermal electrons. For instance,
even for a moderate presence of suprathermals, i.e., for κ= 2.5,
and a fair cutoff, i.e., ξ= 0.05, we obtain μ/μM≈ 5.5 for
mobility (and the same for electric conductivity σ), α/αM≈ 17.6
for thermoelectric coefficient, and much higher differences, like
D/DM≈ 93.4 for the diffusion coefficient or λ/λM≈ 1.7× 104

for the thermal conductivity.
The choice of ξ in the above numerical example is somewhat

arbitrary and follows mainly the requirements that ξ>Θ/c and
that the essential property of kappa distributions is retained,
namely the consideration of a sufficient number of suprather-
mal particles. The sensitivity of the solutions for the transport
coefficients to the value of ξ becomes obvious if ξ is slightly
varied. For instance, if we consider the diffusion coefficient
from the numerical example from above with κ= 2.5 and
increase ξ to 0.06, D/DM is reduced by a factor of about 1.26.
For smaller values of κ, this factor increases, e.g., for the limit
κ→ 0, by a factor of about 2.49. However, this sensitivity is
not an artifact of the RKD. It rather expresses the physical fact
that the diffusion coefficient, when calculated with the standard
definition used, depends critically on the cutoff of a distribution
function, which it must have. We note that the advantage of the
RKD holds nonetheless. Using an SKD, κ values below 3—
which frequently occur in the solar wind—would not be
accessible at all, as the diffusion coefficient diverges. However,
using an RKD, it is reduced to finite values. Furthermore, the
sensitivity of the diffusion coefficient with respect to κ is
extreme for the SKD when approaching the critical value of 3,

while for the RKD it is more reduced and getting successively
smaller with the decreasing κ. These advantages outweigh the
high sensitivity with respect to ξ even if one would not accept it
as a consequence of a distribution’s cutoff. In addition, it is
unclear whether observations can reveal such subtle differences
in the ξ-parameter.
We conclude by reaffirming that, based on the RKD models,

realistic and physically well-defined parameterizations of the
observed non-equilibrium plasmas become possible now.
Future studies should confront our results with the estimations
of these transport coefficients from a direct numerical
integration of observational data. The best RKD fit must be
conditioned only by the observed velocity distribution, without
any theoretical restriction for the power exponent κ.
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Appendix A
RKD versus SKD

The RKD can be seen as a generalization of the SKD and
was introduced by Scherer et al. (2017) in the form
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where ( )a b x, , is Kummer’s function (see, e.g., Abramowitz
& Stegun 1970) and   k x kº -( )3 2, 3 2 ,0

2 . Further-
more, n is the particle number density, v is the individual
particle speed, and κ is a free parameter characterizing the
high-energy tails of the distribution. The variable Θ is often
termed the thermal speed and can be, in principal, included
either as a constant speed determined by observations, or as an
analytical expression. In order to compare the results obtained
for an RKD, an SKD, and a Maxwellian, we choose the latter
variant and use for Θ the Maxwellian thermal speed
Q = k T m2 B with Boltzmann’s constant kB, corresponding
Maxwellian temperature T, and particle mass m. The cutoff-
parameter ξ has to fulfill the relation ξ>Θ/c (Scherer et al.
2019) with vacuum speed of light c, but must be small enough
to retain the main implication of the distribution. By setting
ξ= 0, the SKD is recovered, and Equation (A1) becomes
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Figure 5. The plot displays the thermal conductivity λ as a function of κ. The
curves show the results based on the SKD and three RKDs with different cutoff
parameters (see legend). All functions are normalized to the Maxwellian limit
(dashed horizontal line).

7

The Astrophysical Journal, 927:159 (10pp), 2022 March 10 Husidic et al.



where Γ(x) is the (complete) gamma function of some
argument x. If additionally κ→∞ , the Maxwellian distribu-
tion

p
=

Q
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Q

( )f
n v

exp A3MD 3 2 3

2

2
⎜ ⎟
⎛
⎝

⎞
⎠

is acquired.

Appendix B
Useful Formulas and Integrals

In this appendix, we present useful definitions, relations, and
general formulas for the calculations in Section 2, which can be
found in Abramowitz & Stegun (1970), Oldham et al. (2009),
and Scherer et al. (2020). Kummer’s function belongs to the
confluent hypergeometric functions and can be represented in
integral form as

 ò=
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which can be used to transform the RKD (Equation (A1)) into
the SKD (Equation (A2)). For a compact notation of the
transport coefficients in Section 2, we further introduce the
definition
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The integrals in Section 2, which calculate the n− th
moment Mn of the RKD, are of type
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with 4 π being the solution of the integrals over θ and f, η
being either −1 or 0, and ζ being either κ+ 1 or κ+ 2 in the
integrals in Section 2. General solutions are given by Scherer
et al. (2020) and read
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And thus m= l or m= l+ 1 in Equation (B3). Using
Equations (B4) and (B5), we obtain the following solutions
for the integrals in Section 2:

p k k x ká + ñ = Q -k
-( ) ( ) ( )v A v1 12 4, 3 , B65 2 1 8 4 2

p k k x ká + ñ = Q -k
-( ) ( ) ( )v A v1 48 5, 4 , B77 2 1 10 5 2

p k k x ká + ñ = Q -k
-( ) ( ) ( )v A v1 240 6, 5 , B89 2 1 12 6 2

p k k x ká ñ = Q -( ) ( )v 12 4, 4 , B95 8 4 2

p k k x ká ñ = Q -( ) ( )v 48 5, 5 , B107 10 5 2

p k k x ká ñ = Q -( ) ( )v 240 6, 6 , B119 12 6 2

For the derivation of the maximum values of the transport
coefficients in the limit κ→ 0, the following relations are
helpful and are taken from Table A1 of Scherer et al. (2020):
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where a= (3+ n)/2, b= (3+ n− 2 κ)/2, d= 1+ a− b, and
moment Î n 0.

Appendix C
Tabulated Transport Coefficients and Their Limits

for κ→ 0

The RKD is well defined for all κ> 0. While κ= 0 cannot
be directly inserted into Kummer’s function, the continuation
κ→ 0 is still possible by using approximations. Thus, for the
purpose of mathematical completeness, we derive the max-
imum values of the transport coefficients under consideration,
which are obtained in the limit κ→ 0 (and ξ> 0). We begin by
recognizing that small but finite κ-values and finite ξ-values
enable to make the following approximations for 0 and [ ]l m, :
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We then may apply Equation (B12) to Equation (C1) and
Equation (B13) to Equation (C2) in order to obtain
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We begin with the diffusion coefficient, where the approx-
imation yields
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In the limit κ→ 0, we then obtain
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This result is in agreement with Figure 1 for ξ ä {0.01,
0.05, 0.1}.
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For both the mobility coefficient and the electric conductiv-
ity, we obtain the same expression, which reads
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We refer to Figures 2 and 3 for a comparison of the maximum
values for ξ ä {0.01, 0.05, 0.1}.

The thermoelectric coefficient can be written for κ= 1 as
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This result is in agreement with the corresponding plot in
Figure 4 for ξ ä {0.01, 0.05, 0.1}.

Finally, the thermal conductivity can be approximated as
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In the limit κ→ 0, Equation (C11) turns into
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The result can be compared to Figure 5 for ξ ä {0.01, 0.05,
0.1}.

Many terms in the transport coefficients are of type
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where l= (n+ 3)/2 and m= (n+ 5)/2− ζ, for which the limit
κ→ 0 can be estimated as follows. Considering κ= 1, if
ζ= κ+ 1≈ 1, then
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where we again made use of Equations (B12) and (B13). In the
limit κ→ 0, we then obtain
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which in the limit κ→ 0 becomes
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- -

+ -

( ) ( ) ( )
( ) ( ) ( )lim

0
C22

n n

n n

3

2

3

2

3

2

3

2
2 1

2

= ( )0. C23

Table 1 summarizes the results of this manuscript and
contains the transport coefficients based on the Maxwellian
distribution (subscript M), on the RKD and on the SKD. The
last column shows the maximum values of the transport
coefficients based on the RKD, obtained in the limit κ→ 0.
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Table 1
Overview of the Transport Coefficients
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Thermal conductivity λ
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Note. Displayed are the calculated transport coefficients (“TC”), i.e., diffusion coefficient D, mobility coefficient μ, electric conductivity σ, thermoelectric coefficient
α, and thermal conductivity λ, based on different models, the Maxwellian (subscript M), the RKD (subscript RKD), and the SKD (subscript SKD). The last column
shows the maximum values of the transport coefficients based on the frκ in the limit κ→ 0 (and ξ > 0).
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