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CONFORMALLY INVARIANT COMPLETE METRICS

TOSHIYUKI SUGAWA, MATTI VUORINEN, AND TANRAN ZHANG

Abstract. For a domain G in the one-point compactification R
n

= Rn∪{∞} of Rn, n ≥
2, we characterize the completeness of the modulus metric µG in terms of a potential-
theoretic thickness condition of ∂G , Martio’s M -condition [35]. Next, we prove that ∂G
is uniformly perfect if and only if µG admits a minorant in terms of a Möbius invariant
metric. Several applications to quasiconformal maps are given.

1. Introduction

Conformal invariance is one of the key notions in the geometric theory of conformal and
quasiconformal maps both in the plane R2 = C and in the Euclidean space Rn, n ≥ 3 .
Most clearly this is visible in the study of metrics: the uniformization theorem [6] and the
hyperbolic (Poincaré) metric of the unit disk in C provide a way to define the hyperbolic
metric in any plane domain G with card (C \ G) ≥ 2. This method fails for n ≥ 3
because by Liouville’s theorem [19, 45] conformal maps in dimensions n ≥ 3 are Möbius
transformations. A widely studied natural question is whether some other methods would
work and whether there are counterparts of the hyperbolic metric in subdomains G of Rn

and what sort of invariance or quasi-invariance properties, if any, such metrics might have
in higher dimensions n ≥ 3. From the vast literature we mention A. F. Beardon [4, 5],
J. Ferrand [31, 12, 13, 14, 15], F. W. Gehring [21, 20, 18], D.A. Herron [11, 24, 25, 26, 27],
M. Vuorinen [53, 55, 23]. The recent extensive research on metrics in geometric function
theory has many faces: two examples are the monograph [28] of M. Jarnicki and P. Pflug
which provides an encyclopedic treatise on invariant metrics of complex manifolds and the
monograph of A. Papadopoulos which lists twelve metrics recurrent in geometric function
theory [40, pp. 42-48] .

Our main goal is to study one of these metrics, the modulus metric of a domain G ⊂
R

n
= Rn∪{∞}, n ≥ 2 , denoted by µG(x, y), x, y ∈ G , see Sections 3 and 4 for definitions.

In the special case of the unit ball, the modulus metric µBn(x, y) has an explicit formula
in terms of the hyperbolic metric of the unit ball Bn; the case of µB2(x, y) was studied
already by H. Grötzsch [1, p.72]. The conformal invariant µG(x, y) has found numerous
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applications [55, 23], but still many fundamental questions remain open. Very recently a
problem due to J. Ferrand [15], [23, pp.294-295] was solved as follows.

Theorem A ([8, 44, 56]). A homeomorphism f : G → G′ , where G and G′ are domains
in Rn, n ≥ 2, is an isometry between (G, µG) and (G′, µG′) if and only if f is conformal.

As pointed out above, µBn(x, y) is closely related to the hyperbolic metric of Bn. We
next study conditions on the domain G under which µG defines an intrinsic metric of
G having properties similar to the hyperbolic metric. It turns out that the geometry of
this metric significantly depends on the “potential theoretic thickness” of the boundary,
measured in terms of the conformal capacity. As is well known, the conformal capacity
is very closely connected with the moduli of curve families [19, Thm 5.2.3, p. 164], [23,
Theorem 9.6, p. 152].

If the boundary ∂G is polar, i.e. if it has null conformal capacity cap (∂G) = 0, then
µG ≡ 0; otherwise µG is a conformally invariant metric. Even if cap (∂G) > 0, the
modulus metric µG might not reflect the intrinsic geometry of G very precisely. For
instance, a polar compact set N ⊂ G is invisible for the modulus metric in the sense that
if capN = 0, then µG(x, y) = µG\N(x, y) for x, y ∈ G \N. Therefore, it is meaningful to
look for a condition on G so as to guarantee that µG is a complete metric. We remark
that a similar problem for the Kobayashi metric on domains in Cn is rather difficult (see,
e.g., [17, 41]).

In connection with this completeness property, we recall another notion on metric
spaces. A metric space (X,m) is called proper [10] if the closed metric ball {x ∈ X :
m(x, a) ≤ r} is compact whenever a ∈ X and r > 0. This is equivalent to say that the
open metric ball {x ∈ X : m(x, a) < r} is relatively compact for a ∈ X and r > 0. Note
that a proper metric space is locally compact and complete. However, the converse is not
true in general. (Consider, e.g., (X,m/(1 +m)) for a locally compact but non-compact
complete metric space (X,m) such as Rn with the Euclidean metric.)

Our first result characterizes domains G for which the metrics µG are complete.

Theorem 1.1. Let G be a domain in R
n
with ∂G 6= ∅. Then the following conditions are

equivalent:

(i) (G, µG) is a proper metric space.
(ii) (G, µG) is a complete metric space.
(iii) G is an M-domain. That is to say, each boundary point x of G satisfies the M-

condition.

The M-condition for x ∈ ∂G was introduced by O. Martio [35]1 in his study of potential
theoretic regularity of the domain. If this condition holds for all x ∈ ∂G, the complement
R

n \G of G is “thick enough” at every point of ∂G [35], [37]. See Section 3 for definitions
of those concepts and related properties.

Our second result refines further the case when µG is complete. We assume now that
the boundary of a domain is uniformly perfect in the sense of Ch. Pommerenke [42, 43]
— in this case the M-condition is valid, see Corollary 1.5. This notion was introduced by
A. F. Beardon and Ch. Pommerenke [7] for unbounded closed sets in C, but about the

1The M-condition M(x,R
n \G) = ∞ was denoted by Mx = ∞ in Martio’s paper [35].
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same time an equivalent concept was studied by P. Tukia and J. Väisälä [51] under the
name “homogeneously dense sets” in the setting of general metric spaces. By definition,
a compact set E in R

n
with card (E) ≥ 2 is called uniformly perfect if there exists a

constant c ∈ (0, 1) such that E meets the closed annulus cr ≤ |x − a| ≤ r whenever
a ∈ E \ {∞} and r ∈ (0, diam(E)), where diam(E) denotes the Euclidean diameter
of E and set diam(E) = +∞ when ∞ ∈ E. In the planar case when G ⊂ R2 = C,
A. F. Beardon and Ch. Pommerenke [7] gave another characterization in terms of the
hyperbolic and quasihyperbolic metrics hG(x, y) and kG(x, y) , resp. (see Section 2), and
proved that ∂G is uniformly perfect if and only if there is a constant b > 0 such that

hG(x, y) ≥ bkG(x, y) for all x, y ∈ G .

Here we give an alternative characterization of uniform perfectness of ∂G in terms of
intrinsic metrics which is valid in higher dimensions as well and, moreover, is applicable
to subsets of the Möbius space. This characterization requires that the modulus metric
be minorized by a Möbius invariant metric δG , defined in terms of the absolute ratio 2.10
for all domains G ⊂ R

n
with card(∂G) ≥ 2 . This metric was first introduced in [55,

pp.115-116] and, later on, studied by P. Seittenranta in his PhD thesis [47] where he also
suggested the name “Möbius metric”.

Theorem 1.2. Let G ⊂ R
n
be a domain with card (∂G) ≥ 2. Then ∂G is uniformly

perfect if and only if there exists a constant b > 0 such that for all x, y ∈ G the inequality

(1.3) µG(x, y) ≥ b δG(x, y)

holds, where µG is the modulus metric and δG is the Möbius metric.

For a proper subdomain G of Rn, the lower bound 1.3 can be expressed in terms of a
similarity invariant metric, the distance-ratio metric of G as follows. For x, y ∈ G define

(1.4) jG(x, y) = log

(

1 +
|x− y|

min{dG(x), dG(y)}

)

,

which is a metric on G, where dG(x) denotes the Euclidean distance from x to the bound-
ary ∂G [23, Lemma 4.6, p. 59]. When G ⊂ Rn, the above condition 1.3 is equivalent to
the requirement that for some constant b′ > 0

µG(x, y) ≥ b′jG(x, y)

for all x, y ∈ G . Since (G, δG) is a proper metric space (see Lemma 2.14 below), we have
the following result as a corollary of Theorems 1.1 and 1.2.

Corollary 1.5. Let G ⊂ R
n
be a domain with card (∂G) ≥ 2. If ∂G is uniformly perfect,

then G is an M-domain.

The converse is not true in general. A counterexample will be given in Section 3.
The proof of Theorem 1.2 is based, in part, on a potential theoretic thickness character-

ization of uniform perfectness [54], [29]. Many authors have contributed to the research
of uniformly perfect sets and related thickness conditions, see [3], [9], [16, pp. 343-345],
[22], [30], [32], [34], [33] and the survey of T. Sugawa [48] on uniform perfectness.

Uniform domains play an important role in geometric function theory. See [20] and the
recent monograph [18] for details. For convenience of the reader, we will provide a brief
account on this notion in the next section.
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Theorem 1.6. Suppose that G ⊂ R
n
is a uniform domain. Then there exist constants

d1, d2 depending only on n and the uniformity parameters such that

µG(x, y) ≤ d1 δG(x, y) + d2 x, y ∈ G.(1.7)

Conversely, suppose that a domain G in R
2
with continuum as its boundary satisfies 1.7.

Then G is uniform.

Note that the boundary of a domain G in R
2
= C is a continuum; that is, a non-

degenerate connected compact set, if and only if G is a simply connected hyperbolic
domain. It is known that such a domain G is uniform precisely when G is a quasidisk,
that is to say, G is the image of the unit disk B2 under a quasiconformal homeomorphism
of C onto itself [18]. Therefore, as a corollary, we have the following characterization of
quasidisks.

Corollary 1.8. Let G be a simply connected domain in the Riemann sphere C with
card (C \G) ≥ 2. Then G is a quasidisk if and only if there are positive constants d1 and
d2 such that the inequality

µG(z, w) ≤ d1 δG(z, w) + d2

holds for all z, w ∈ G.

In this corollary, we may replace the modulus metric µG by Ferrand’s modulus metric
λ−1
G (see Lemma 4.5 below). We remark that for G ⊂ C the above condition is also

equivalent to the condition

µG(z, w) ≤ d′1 jG(z, w) + d′2 for z, w ∈ G .

As we will see later, the constant d2 in Corollary 1.8 cannot be dropped. We expect that
the converse would be true for all dimensions n ≥ 2 under a weaker assumption on the
boundary such as uniform perfectness of the boundary. These observations lead to the
following problem.

1.9. Open problem. Let n ≥ 2. Find a geometric condition (∗) on the boundaries of
domains G in R

n
with the following property: If a domain G in R

n
satisfies the condition

(∗) and the inequality 1.7 for some constants d1 > 0 and d2 > 0, then G is uniform.

Finally, we consider the hyperbolic metric hG and the Ferrand metric σG, see 2.7, in
planar domains G. It is well known [7] that if ∂G is uniformly perfect, then the distances
in the hG metric are comparable to those in the quasihyperbolic metric kG . Furthermore,
this comparison property fails to hold if the domain G has isolated boundary points.
Indeed, the following asymptotic formulae hold.

Lemma 1.10. Let G be a hyperbolic domain in C and suppose that G has an isolated
boundary point a with a 6= ∞. Then, for a fixed z0 ∈ G, as z → a

(1.11) σG(z, z0) = log
1

|z − a| +O(1) and δG(z, z0) = log
1

|z − a| +O(1),

while

(1.12) hG(z, z0) = log log
1

|z − a| +O(1).
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It is a challenging task, studied in [49] and [50], to give concrete bounds for the hG

distances in domains G whose boundary consists only of isolated points. Since log(1 + x)
is a subadditive function on 0 ≤ x < +∞, we can easily see that log(1 + m(x, y)) is a
distance function on X whenever m(x, y) is a distance function on X [2, 7.42(1)]. In view
of the above behaviour of the hyperbolic distance around isolated boundary points, we
are led to the introduction of the logarithmic Möbius metric ∆G(x, y) and the logarithmic
Ferrand metric ΣG(x, y) for a domain G ⊂ R

n
with card (R

n \G) ≥ 2 as follows:

∆G(x, y) = log(1 + δG(x, y)) , x, y ∈ G ,(1.13)

ΣG(x, y) = log(1 + σG(x, y)) , x, y ∈ G .(1.14)

Because δG and σG are Möbius invariant, ∆G and ΣG are Möbius invariant metrics, too.
We also have ∆G(x, y) ≤ ΣG(x, y) (see Lemma 2.12 below). When the complement of G
in C is a finite set, the hyperbolic distance hG is majorized by ∆G. However, hG is never
minorized by it for any domain with a puncture; namely, with an isolated boundary point.
In fact, we prove a slightly stronger result.

Theorem 1.15. Let A be a finite set in C with card (A) ≥ 3 and let G = C \ A. Then
there exists a positive constant c = c(A) such that for all z, w ∈ G,

hG(z, w) ≤ c∆G(z, w) = c log(1 + δG(z, w)) .

On the other hand, for an arbitrary hyperbolic domain G in C with a puncture, there is
no non-decreasing function Φ : [0,+∞) → [0,+∞) with Φ(t) > 0 for t > 0 such that for
all z, w ∈ G,

Φ(δG(z, w)) ≤ hG(z, w).

All the results here will be proved in the subsequent sections. More precisely, this
paper is organized as follows. Section 2 is devoted to definitions and basic properties of
the metrics involved, with the exception of the modulus metric, which will be defined in
Section 4. In Section 3, we recall the notion of the (conformal) modulus of a curve family
and its fundamental properties. We also introduce the notion of M-domains defined in
terms of the continuum criterion of Martio [35]. The modulus metric is defined and related
results are established in Section 4. We give some applications of the above results to
quasiconformal or quasiregular mappings in Section 5. Theorem 1.15 is proved in the last
section. Two open problems are pointed out, namely 3.12 and 4.14.

2. Preliminary notation and results

We follow standard notation. See e.g. [4], [52] for more details. We write

Bn(x, r) = {z ∈ Rn : |z − x| < r},
B

n
(x, r) = {z ∈ Rn : |z − x| ≤ r},

Sn−1(x, r) = {z ∈ Rn : |z − x| = r},
for balls and spheres, respectively, and

Bn = Bn(0, 1), Hn = {(x1, . . . , xn) ∈ Rn : xn > 0}.
First we recall the definition of the chordal (spherical) distance q(x, y) on R

n
:
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q(x, y) =
|x− y|

√

1 + |x|2
√

1 + |y|2
, x, y 6= ∞ ,

q(x,∞) = q(∞, x) =
1

√

1 + |x|2
, x 6= ∞ .

(2.1)

For distinct points a, b, c, d ∈ R
n
, the absolute (cross) ratio is defined by

|a, b, c, d| = q(a, c)q(b, d)

q(a, b)q(c, d)
.

When none of the points is ∞, we see that

|a, b, c, d| = |a− c||b− d|
|a− b||c− d| .

2.2. Hyperbolic metric. The hyperbolic metrics 2|dx|/(1 − |x|2) on Bn and |dx|/xn

on Hn induce the hyperbolic distances hBn(x, y) and hHn(x, y) respectively. When n = 2,

any domain G of R
2
= C with card (∂G) ≥ 3 is known to have a holomorphic universal

covering projection p of the unit disk B2 onto G. Thus the hyperbolic distance hG of G
can be defined by

hG(z1, z2) = min
ζ1∈p−1(z1),ζ2∈p−1(z2)

hB2(ζ1, ζ2) = inf
γ∈Γ

∫

γ

ρG(z)|dz|,

where Γ is the set of all rectifiable curves joining z1 and z2 in G and ρG(z) denotes the
hyperbolic density determined by the relation 2/(1 − |ζ |2) = ρ(p(ζ))|p′(ζ)|, ζ ∈ B2 (see
[6], [30] for details).

2.3. Quasihyperbolic metric. For higher dimensions, however, we cannot define hy-
perbolic metric for general domains. Quasihyperbolic metrics were introduced by F.W.
Gehring and B. Palka [21] as a substitute for it. For a domain G ( Rn, the quasihyperbolic
metric kG is defined by

kG(x, y) = inf
γ∈Γ

∫

γ

|dt|
dG(t)

, x, y ∈ G,

where Γ is the family of all rectifiable curves in G joining x and y. Note here that the
inequality

jG(x, y) ≤ kG(x, y)

holds for an arbitrary G ( Rn and all x, y ∈ G [21, Lemma 2.1].

2.4. Uniform domains. A proper subdomain G of Rn is called uniform if there exist
positive constants a and b with the following property [37, 20]: for every pair of points
x1, x2 ∈ G, there is a rectifiable curve γ joining x1 and x2 in G in such a way that
ℓ(γ) ≤ a|x1−x2| and that min{ℓ(γ1), ℓ(γ2)} ≤ b dG(x) for each x ∈ γ, where γj is the part
of γ between xj and x for each j = 1, 2, ℓ(γ) denotes the length of the curve γ and dG(x)
is the Euclidean distance to the boundary of G from x. The class of uniform domains



CONFORMALLY INVARIANT COMPLETE METRICS 7

can also be defined in terms of a comparison inequality between two metrics [20, 55] 2

a subdomain G of Rn with non-empty boundary is uniform if and only if there exists a
constant c ≥ 1 such that

(2.5) kG(x, y) ≤ c jG(x, y)

for all x, y ∈ G, where kG and jG are the quasihyperbolic and distance-ratio metrics,
respectively. Note that jG(x, y) ≤ kG(x, y) holds for every domain G and all x, y ∈ G by
[21, Lemma 2.1].

2.6. Ferrand’s metric. Since the definition of the quasihyperbolic metric relies on the
Euclidean metric, it is not defined for all subdomains of the Möbius space and therefore
it is not Möbius invariant. To overcome this shortcoming, J. Ferrand [12] modified the
definition as follows. For a subdomain G of R

n
with card (∂G) ≥ 2, define a density

function

wG(x) = sup
a,b∈∂G

|a− b|
|x− a| |x− b| , x ∈ G \ {∞} ,

and the metric σG in G,

(2.7) σG(x, y) = inf
γ∈Γ

∫

γ

wG(t)|dt|,

where Γ is the family of all rectifiable curves in G joining x and y. The following result
is due to Ferrand [12, p. 122] and σG(x, y) is now called the Ferrand metric [23, Ch. 5].

Lemma 2.8. Let G ⊂ R
n
be a domain with card (∂G) ≥ 2. The Ferrand metric σG has

the following properties.

(1) σG is a Möbius invariant metric.
(2) When G is either Bn or Hn, σG coincides with the hyperbolic metric hG .
(3) kG ≤ σG ≤ 2kG for every domain G ( Rn.

We remark that the metric σG was recently studied by D. A. Herron and P. K. Julian
[26].

2.9. Möbius metric. Let G ⊂ R
n
be an open set with card (∂G) ≥ 2. The Möbius

metric on G is defined as follows ([55, pp.115-116], Seittenranta[47]):

(2.10) δG(x, y) := log(1 +mG(x, y)) , mG(x, y) := sup
a,b∈∂G

|a, x, b, y| .

Note that the Möbius metric δG coincides with the hyperbolic metric hG when G is either
Bn or Hn [55, Lemma 8.39]. A metric very similar to the Möbius metric is the Apollonian
metric of A. F. Beardon [5].

2.11. Chordal distance-ratio metric. For a proper subdomain G of R
n
we define the

chordal (spherical) distance-ratio metric by

ĵG(x, y) = log

(

1 +
q(x, y)

min{d̂G(x), d̂G(y)}

)

,

2In [20], the condition 2.5 was given in the slightly different form kG(x, y) ≤ a jG(x, y) + b for some
constants a, b. We easily see that we can take b = 0 by letting a be larger if necessary. See [53, 2.50 (2)].
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where
d̂G(x) = inf

a∈∂G
q(x, a).

The triangle inequality for this metric follows from [47, Lemma 2.2].

The following results are due to Seittenranta [47].

Lemma 2.12. Let G be an open subset of R
n
with card (∂G) ≥ 2 . Then δG is a Möbius

invariant metric and the following hold:

(1) δG ≤ σG .
(2) δG ≤ 2 ĵG .
(3) If G ( Rn , then jG ≤ δG ≤ 2jG .

Proof. The fact that δG satisfies the triangle inequality, assertions (1) and (3) follow
from Theorems 3.3, 3.4 and 3.12 in [47], respectively. In order to show assertion (2), we
introduce the auxiliary metric

j∗G(x, y) = log

(

1 +
q(x, y)

d̂G(x)

)

+ log

(

1 +
q(x, y)

d̂G(y)

)

.

Theorem 3.6 in [47] means the inequality δG(x, y) ≤ j∗G(x, y) for x, y ∈ G. It is easy to

verify the inequalities ĵG(x, y) ≤ j∗G(x, y) ≤ 2 ĵG(x, y). Thus assertion (2) now follows. �

�

As a consequence of the previous lemma, we have the following inequality, which will
be used in the proof of Theorem 1.2 later:

(2.13) jG(x, y) ≤ 2 ĵG(x, y), x, y ∈ G ( Rn.

We note that there is no constant c = c(n) > 0 depending only on n such that jG(x, y) ≥
c ĵG(x, y), x, y ∈ G, holds for all proper subdomains G of Rn. The following result follows
also from the previous lemma.

Lemma 2.14. The metric space (G, δG) is proper for G ⊂ R
n
with card (∂G) ≥ 2.

Proof. By the Möbius invariance, we may assume that G ⊂ Rn. Then jG ≤ δG by Lemma
2.12 (3). Therefore, it is enough to show that (G, jG) is proper in this case. For a ∈ G
and 0 < r, we have to show that the set B = {x ∈ G : jG(x, a) < r} is relatively
compact. It is enough to show that B is bounded and dist(B, ∂G) > 0. The inequality
log(1 + |x − a|/dG(a)) ≤ r holds for x ∈ B and thus |x − a| ≤ dG(a)(e

r − 1), which
proves that B is bounded. On the other hand, the inequality log(1 + |x− a|/dG(x)) ≤ r
holds for x ∈ B. Note that dG(x) ≥ dG(a)/2 if |x − a| ≤ dG(a)/2. For x ∈ B with
|x− a| ≥ dG(a)/2, we thus have dG(x) ≥ |x− a|/(er − 1) ≥ dG(a)/(e

r − 1). Therefore, we
have shown dist(B, ∂G) ≥ min{dG(a)/2, dG(a)/(er − 1)} > 0 as required. � �

2.15. Möbius uniform domains.We now consider a Möbius invariant characterisation
of uniform domains. As we saw above, uniform domains in Rn are characterised by the
condition 2.5 in terms of quasihyperbolic and distance-ratio metrics. These two metrics
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are invariant under similarity transformations but unfortunately not under Möbius trans-
formations. To overcome this lack of invariance we apply Ferrand’s Möbius invariant
metric σG and the Möbius metric δG .

Definition 2.16 ([47]). We say that a domain G ⊂ R
n
with card (R

n \G) ≥ 2 is Möbius
uniform, if there exists a constant c ≥ 1 such that for all x, y ∈ G

σG(x, y) ≤ c δG(x, y) .

Note that definition 2.5 only applies to subdomains of Rn whereas Definition 2.16 applies
to subdomains of R

n
. Indeed, we have the following result.

Proposition 2.17. Let G ⊂ Rn be a domain with card (∂G) ≥ 2. Then G is Möbius
uniform if and only if it is uniform in the sense of 2.5.

Proof. From Lemmas 2.8 and 2.12 it follows that if G is Möbius uniform with a constant
c1, then it is uniform in the sense of 2.5 with the constant 2c1 . Conversely, from Lemmas
2.8 and 2.12 it follows that if G is uniform in the sense of 2.5 with a constant c2, then it
is Möbius uniform with the the constant 2c2 . � �

Therefore, we will use the shorter term “uniform” below for both uniform domains and
Möbius uniform domains unless we want to emphasize which definition is intended.

We end this section with a proof of Lemma 1.10.

Proof of Lemma 1.10. By assumption, there is a number r > 0 such that the punctured
disk 0 < |z − a| < r is contained in G. It is enough to prove the assertions for a = 0 and
r = 1. By assumption, we can find a finite boundary point b of G so that

mG(z, z0) ≥ |0, z, b, z0| =
|b||z − z0|
|z||b− z0|

≥ |b||z0|
2|z||b− z0|

=:
C

|z|
for z ∈ G with 0 < |z| < |z0|/2. Hence,

δG(z, z0) = log(1 +mG(z, z0)) ≥ log(1 + C/|z|) = log
1

|z| +O(1)

as z → 0. Next we estimate wG(z) from above for 0 < |z| ≤ 1/4. For b ∈ ∂G \ {0}, we
have |z − b|/|b| ≤ 1 + |z|/|b| ≤ 1 + |z| and |z − b|/|b| ≥ 1− |z|/|b| ≥ 1− |z| and thus

16

5
≤ 1

|z|(1 + |z|) ≤ |b|
|z||z − b| ≤

1

|z|(1− |z|) =
1

|z| +
1

1− |z| ≤
1

|z| +
4

3

for 0 < |z| ≤ 1/2. For b1, b2 ∈ ∂G \ {0}, we have |z − bj | ≥ |bj | − |z| ≥ 3|bj |/4 ≥ 3/4 and

|b1 − b2|
|z − b1||z − b2|

≤ |z − b2|+ |z − b1|
|z − b1||z − b2|

=
1

|z − b1|
+

1

|z − b2|
≤ 8

3

as z → 0. Hence, we obtain wG(z) ≤ 1/|z|+4/3 for 0 < |z| ≤ 1/4. For a given z0, we take
a point z1 ∈ G so that |z1| ≤ min{|z0|, 1/4}. Then, for 0 < |z| < |z1|, we have

σG(z, z0) ≤ σG(z, z1) + σG(z1, z0) ≤
∫

γ

|dt|
|t| +O(1) = log

1

|z| +O(1),
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where γ is the curve going from z1 to the point (|z1|/|z|)z along the circle |t| = |z1| and
then going to z radially. Since δG(z, z0) ≤ σG(z, z0), 1.11 follows.

Secondly, we prove 1.12. For simplicity, we further assume that 1,∞ ∈ ∂G. (For the
general case, we may use a suitable Möbius transformation to reduce to this case.) Then

D∗ = {z ∈ C : 0 < |z| < 1} ⊂ G ⊂ C \ {0, 1}
and therefore

ρD∗(z) ≥ ρG(z) ≥ ρC\{0,1}(z)

for 0 < |z| < 1. Since

ρD∗(z) =
1

|z| log(1/|z|) and ρC\{0,1}(z) =
1

|z|(C0 + log(1/|z|)) ,

where C0 = 1/ρC\{0,1}(−1) (see [30] for instance), we have

ρG(z) =
1

|z| log(1/|z|) +O

(

1

|z| log2(1/|z|)

)

as z → 0. Noting the fact that the real function 1/[t log2 t] is integrable over (0, 1/2], we
obtain the required asymptotics 1.12 as required. � �

Remark 2.18. As the above proof shows, 1.11 is valid also in dimensions n ≥ 2.

3. Modulus and M-domains

We recapitulate some of the basic facts about moduli of curve families and quasicon-
formal maps, following [19, 52]. Let Γ be a family of curves in R

n
. We say that a

non-negative Borel-measurable function ρ : Rn → R∪{+∞} is an admissible function for
Γ, if

∫

γ
ρds ≥ 1 for each locally rectifiable curve γ in Γ. The (conformal) modulus of Γ is

M(Γ) = inf
ρ∈F(Γ)

∫

Rn

ρndm,

where F(Γ) is the family of admissible functions for Γ and m stands for the n-dimensional
Lebesgue measure. We set M(Γ) = ∞ when F(Γ) is empty. The most important property
of the modulus is a quasi-invariance; that is, a homeomorphism f : G → G′ between
domains in R

n
is K-quasiconformal if and only if

M(Γ)/K ≤ M(f(Γ)) ≤ KM(Γ)

for all families of curves Γ in G. In particular, M(f(Γ)) = M(Γ) for a conformal homeo-
morphism f.

For two curve families Γ1 and Γ2 in R
n
, we say that Γ2 is minorized by Γ1 and denote

Γ2 > Γ1 if every γ ∈ Γ2 has a subcurve which belongs to Γ1. A collection of curve families
Γj (j = 1, 2, . . . ) is said to be disjointly supported if there are Borel sets Ωj (j = 1, 2, . . . )
such that all curves in Γj are contained in Ωj and that m(Ωj ∩ Ωj′) = 0 for j 6= j′. Then
the following properties of the conformal modulus are fundamental (see [52] or [19]).

Lemma 3.1. (1) If Γ1 < Γ2, then M(Γ1) ≥ M(Γ2). In particular, M(Γ2) ≤ M(Γ1) for
Γ2 ⊂ Γ1.



CONFORMALLY INVARIANT COMPLETE METRICS 11

(2) For a collection of curve families Γj (j = 1, 2, . . . ),

M

(

⋃

j

Γj

)

≤
∑

j

M(Γj).

Moreover, equality holds if the collection is disjointly supported.

A pair (G,E) of a domain G in R
n
and a compact set E in G is called a condenser.

The capacity of the condenser (G,E) is

(3.2) cap (G,E) = M(∆(E, ∂G;G)) .

Another equivalent definition makes use of Dirichlet integral minimization property [19,
Thm 5.2.3]. Here and hereafter, for sets E, F,G ⊂ R

n
, let ∆(E, F ;G) denote the family

of all curves joining the sets E and F in G, and let ∆(E, F ) = ∆(E, F ;R
n
). Here, a curve

γ : [a, b] → R
n
is said to join E and F in G if γ(a) ∈ E, γ(b) ∈ F and if γ((a, b)) ⊂ G. For

a compact set E in R
n
, we write capE = 0 (capE > 0) if cap (G,E) = 0 (cap (G,E) > 0)

for some bounded domain G containing E cf. [55, 7.12]. Note that cap (G′, E) = 0 for any
domain G′ containing E if capE = 0. It is known that E is totally disconnected and has
Hausdorff dimension 0 if capE = 0 , see [45, p.120, Cor.2], [46, p. 166, Thm VII.1.15].

A domain R in R
n
is called a ring if the complement R

n \ R consists of exactly two
connected components, say, E and F , and R is often denoted by R(E, F ). In partic-

ular, RG,n(s) := R(B
n
, [se1,∞]), s > 1, is called the Grötzsch ring and RT,n(t) :=

R([−e1, 0], [te1,∞]), t > 0, is called the Teichmüller ring, where e1 is the unit vector
(1, 0, . . . , 0) in Rn. The capacity of the ring R(E, F ) is capR(E, F ) = cap (R

n \F,E) and
its modulus is

modR(E, F ) =

(

ωn−1

capR(E, F )

)1/(n−1)

.

When R = R(E, F ) is the standard ring {x ∈ Rn : a < |x| < b}, one has modR =
log(b/a). The capacities ofRT,n(t) andRG,n(s) are denoted by τn(t) and γn(s), respectively.
By [55, Lemma 5.53], τn : (0,+∞) → (0,+∞) and γn : (1,+∞) → (0,+∞) are decreasing
homeomorphisms and they satisfy the functional identity

(3.3) γn(s) = 2n−1τn(s
2 − 1), s > 1.

Here we state a couple of fundamental properties of uniformly perfect sets. Recall that
a ring R = R(E1, E2) is said to separate a set A in R

n
if A ⊂ E1 ∪E2 and A∩Ej 6= ∅ for

j = 1, 2. Then the following characterization of uniformly perfect sets is well known (see,
for instance, [3] for planar case and [22] for general case).

Lemma 3.4. Let A be a compact set in R
n
with card (A) ≥ 2. Then A is uniformly

perfect precisely when there exists a constant M > 0 such that modR ≤ M for every ring
R separating A.

We also note the following simple fact.

Lemma 3.5. Let G be a domain in R
n
for which the complement C = R

n \ G contains
at least two points. Then ∂G is uniformly perfect if and only if so is C.
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Proof. By the previous lemma, it is enough to show that a ring R separates C if and only
if R separates ∂G. Indeed, if a ring R = R(E1, E2) separates C then R ⊂ G and each Ej

meets C. Note that R
n \E2 = R ∪E1 is a domain. Choose a point a from E1 ∩C and z0

from R and take a curve γ : [0, 1] → R
n \ E2 with γ(0) = z0 and γ(1) = a. Then there is

a t ∈ (0, 1] such that γ(t) ∈ ∂G. Obviously, γ(t) ∈ E1, which implies that E1 ∩ ∂G 6= ∅.
Likewise we have E2 ∩ ∂G 6= ∅. We now conclude that R separates ∂G.

Conversely, suppose that a ring R = R(E1, E2) separates ∂G. Then R ⊂ G or R∩G = ∅.
If the latter occurs, one component of R

n \ R, say E1, contains G. Then E2 ∩ ∂G = ∅,
which contradicts the choice of R. Hence the latter case cannot occur. Therefore, we have
shown that R separates C . � �

For the study of the geometry of the modulus metric below, we now introduce a new
class of conformally invariant domains, M-domains. The definition of this class makes
use of the continuum criterion introduced and studied by O. Martio [35]. The continuum
criterion is closely connected with the potential theoretic boundary regularity of a domain
[36].

3.6. Definition. We say that a closed set C ⊂ Rn satisfies the continuum criterion at
x ∈ C if there exists a continuum K ⊂ {x} ∪

(

R
n \ C

)

such that

M(∆(K,C;R
n \ C)) < ∞.

We write M(x, C) < ∞ if this holds, and otherwise we write M(x, C) = ∞.

We now recall that a continuum is a compact connected set in R
n
containing at least

two points. We note that M(x0, C) = ∞ if a continuum C0 ⊂ C contains x0. In fact, the
sphere |x−x0| = r meets both K and C for all small enough r > 0 in this case. A simple
application of the following lemma implies that

M(∆(K,C;R
n \ C)) ≥ M(∆(K,C;R

n
)) = ∞

for every continuum K with x0 ∈ K ⊂ (R
n \ C) ∪ {x0}. Here we have used the relation

∆(K,C;R
n \ C) < ∆(K,C;R

n
) and Lemma 3.1.

Lemma 3.7 (Väisälä [52, Theorem 10.12]). Let 0 < a < b < +∞. Let E and F be closed
sets in R

n
and suppose that the sphere |x| = t meets both E and F for every t with

a < t < b. Then M(∆(E, F ;R
n
)) ≥ cn log(b/a), where cn is a positive constant depending

only on n.

We now define the notion of M-domains.

Definition 3.8. A boundary point x of a domain G ⊂ R
n
is said to satisfy the M-

condition (relative to G) if M(x,R
n \ G) = ∞; in other words, the complement R

n \ G
does not satisfy the continuum criterion at x. The domain G is called an M-domain if
every boundary point x ∈ ∂G satisfies the M-condition relative to G.

By the above observation, a point x ∈ ∂G satisfies the condition M(x,R
n \ G) < ∞

only if the singleton {x} is a connected component of ∂G. On the other hand, any isolated
point x of ∂G satisfies M(x,R

n \G) < ∞.
We need the following result in the proof of Theorem 1.1. Our proof is similar to that

of [35, Lemma 3.5].
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Lemma 3.9. Let G be a domain in R
n
. Suppose that a point x0 ∈ ∂G \ {∞} and a

continuum K in G∪ {x0} with x0 ∈ K satisfy the condition M(∆(K, ∂G;G)) < ∞. Then

lim
r→0

M(∆(K ∩ B
n
(x0, r), ∂G;G)) = 0.

Proof. If ∂G = {x0}, the assertion trivially holds. Thus we may assume that ∂G contains
at least two points. By the conformal invariance of the capacity, we may assume that
∞ ∈ ∂G. For brevity, we write B(r) = B

n
(x0, r) and S(r) = ∂B(r) throughout the proof.

Let M0 = M(∆(K, ∂G;G)) < ∞ and choose r0 > 0 large enough so that K ⊂ B(r0).
For a decreasing sequence rj (j = 0, 1, 2, . . . ) with rj → 0 (j → ∞), consider the ring
Rj = {x ∈ Rn : rj+1 < |x− x0| < rj}. We can choose such a sequence so that

cj := capRj =

(

ωn−1

log(rj/rj+1)

)1/(n−1)

satisfies
∞
∑

j=0

cj < ∞ .

For instance, for cj = 2−j, we define rj recursively by the formula

rj+1 = rj exp
(

−ωn−1 c
1−n
j

)

= rj exp
(

−ωn−12
(n−1)j

)

for j = 0, 1, 2, . . . . It is obvious that rj → 0 as j → ∞ for this choice. Let Kj = K ∩ Rj

and denote by ∆j the family of curves joining Kj and ∂G in the set {x ∈ G : rj+2 <
|x− x0| < rj−1} for j = 1, 2, . . . . Then the families ∆N+3j (j = 0, 1, 2, . . . ) are disjointly
supported and contained in the family ∆(K, ∂G;G) for N = 1, 2, 3, . . . . By Lemma 3.1
(2) we obtain

∞
∑

j=0

M(∆N+3j) ≤ M(∆(K, ∂G;G)) = M0 (N = 1, 2, 3, . . . )

and hence
∞
∑

j=1

M(∆j) ≤ 3M0.

For a given number η > 0, take a large enough integer N > 0 so that

∞
∑

j=N

M(∆j) < η and

∞
∑

j=N−1

cj < η.

By construction, we easily see that the curve family ∆(Kj , ∂G;G) \ ∆j is minorized by
the family

∆(S(rj), S(rj−1);Rj−1) ∪∆(S(rj+2), S(rj+1);Rj+1).

Thus, by Lemma 3.1 (1), we obtain

M(∆(Kj, ∂G;G))

≤ M(∆j) +M(∆(Kj, ∂G;G) \∆j))

≤ M(∆j) +M(∆(S(rj), S(rj−1);Rj−1)) +M(∆(S(rj+2), S(rj+1);Rj+1))

= M(∆j) + capRj−1 + capRj+1.
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Therefore, we finally have

M(∆(K ∩B(rN), ∂G;G)) ≤ M(∆({x0}, ∂G;G)) +
∞
∑

j=N

[

M(∆j) + cj−1 + cj+1

]

< 0 + η + η + η = 3η.

Hence we obtain M(∆(K ∩ B
n
(x0, r), ∂G;G)) < 3η for 0 < r ≤ rN . � �

The next theorem due to Martio [35, Theorem 3.4] will also be used in Section 4.

Lemma 3.10. Let G be a proper subdomain of R
n
and fix a point a ∈ G. For a boundary

point x0 of G with x0 6= ∞, set

L(ε) = inf
K

M(∆(K, ∂G;G)),

where the infimum is taken over all continua K joining a and the sphere Sn−1(x0, ε) in
G. Then M(x0,R

n \G) = ∞ if and only if L(ε) → ∞ as ε → 0+.

It is clear that M-domains are invariant under Möbius transformations and conformal
mappings. We next give an example of an M-domain which does not have uniformly
perfect boundary.

3.11. Example. Let {sk} and {rk} (k = 1, 2, 3, . . . ) be two sequences of positive numbers
converging to 0 monotonically with the following property:

(∗) αk := sk − rk − (sk+1 + rk+1) > 0.

Then the closed ballsBk = B
n
(ske1, rk), k = 1, 2, . . ., are disjoint because dist(Bk, Bk+1) =

αk > 0, where e1 = (1, 0, . . . , 0) ∈ Rn. Let C = {0} ∪ ⋃∞
k=1Bk and K0 = {x =

(x1, . . . , xn) ∈ Rn : x1 ≤ 0} ∪ {∞}. Note that the ring Rk = {x : rk < |x − ske1| < r′k}
separates C, where r′k = rk + min{αk−1, αk}. Observe that αk−1 ≥ αk if and only if
2sk − sk−1 − sk+1 ≤ rk+1 − rk−1. This condition is fulfilled when {sk} is convex.

(1) The domain G = R
n\(K0∪C) is an M-domain because every connected component

ofK0∪C is a continuum. However, ∂G is not uniformly perfect when lim supk→∞(r′k/rk) =
∞. For instance, we can choose a convex sequence {sk} with 2sk+1 ≤ sk (such as sk = 2−k)
and let rk = 2−ksk for k ≥ 1. Then

rk+1/rk = sk+1/(2sk) ≤ 1/4, r′k = 2krk − (2k+1 + 1)rk+1

and thus
r′k
rk

≥ 2k − 1

4
(2k+1 + 1) = 2k−1 − 2−2 → +∞

as k → ∞.
(2) Let G = R

n\C. Suppose that the sequence of rings Ak = {x : sk−rk < |x| < sk+rk}
satisfies the condition lim supk→∞modAk = ∞. For instance, we can take sk = 2−k2, rk =
sk − 2sk+1. Then M(0, C) = ∞. Indeed, for each k and t ∈ (sk − rk, sk + rk), the sphere
|x| = t intersects C by definition. Hence, for any continuum K with 0 ∈ K ⊂ G ∪ {0},
Lemma 3.7 now yields

M(∆(K, ∂G;G)) ≥ M(∆(K,C;R
n
)) ≥ cn log

sk + rk
sk − rk



CONFORMALLY INVARIANT COMPLETE METRICS 15

for sufficiently large k. By the assumption, we have M(∆(K, ∂G;G)) = ∞. In this case,
the singleton {0} is a connected component of ∂G but the condition M(0,R

n \G) = ∞ is
satisfied.

(3) Let G = R
n \ C again. Then

∆(K0, C;G) ⊂
∞
⋃

k=0

∆k,

where ∆k = ∆(K0, Bk;R
n
) for k ≥ 1 and ∆0 = ∆(K0, {0};R

n
). Note that β0 := M(∆0) =

0. Since the ring R(K0, Bk) contains Rk as a subring, we have

M(∆k) = capR(K0, Bk) ≤ capRk = ωn−1(modRk)
1−n = ωn−1

(

log
r′k
rk

)1−n

.

Let Dk = {x : |x− sk| < sk} for k ≥ 1 and H = {x : x1 > 0} = R
n \K0. Then

M(∆k) = cap (H,Bk) ≤ cap (Dk, Bk) = ωn−1

(

log
sk
rk

)1−n

=: βk

for k ≥ 1. If
∑

k βk < +∞, we have

M(∆(K0, C;G)) ≤
∞
∑

k=0

M(∆k) ≤
∞
∑

k=0

βk < +∞.

Hence M(0, ∂G) < ∞ in this case. For instance, if we choose sk and rk so that rk = ske
−k2

then βk = ωn−1k
2−2n satisfies the above condition. Hence, M(0,R

n \ G) < ∞. This gives
an example of a non-isolated boundary point of a domain which does not satisfy the
M-condition.

3.12. Open problem. It is well-known that the Hausdorff dimension of the boundary
of a domain with uniformly perfect boundary is positive [29]. We do not know whether
the boundary of an M-domain has positive Hausdorff dimension.

4. Modulus metric

In this section, we first give a definition of the modulus metric µG(x, y) and its dual
quantity λG(x, y). After that, we will prove Theorems 1.1 and 1.2. For further results, we
refer to [12, 13, 14, 15, 31], [23],[38, 39], [8, 44, 56].

Definition 4.1 ([55, Ch 8]). Let G be a proper subdomain of R
n
and x, y ∈ G. Then we

define

µG(x, y) = inf
Cxy

M(∆(Cxy, ∂G;G)),

where the infimum runs over all curves Cxy in G joining x and y. We also define

λG(x, y) = inf
Cx,Cy

M(∆(Cx, Cy;G)),

where the infimum runs over all curves Cx and Cy in G joining x (respectively y) and ∂G.
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In some special cases, the extremal configurations for the curve families defining µG(x, y)
and λG(x, y) are known. Indeed, for the case when G = Bn and 0 6= x ∈ Bn, y = 0, we
have

(4.2) µBn(x, 0) = M(∆([0, x], ∂Bn;Bn)) = γn(1/|x|) ,
and, by the symmetry principle [19, Thm 4.3.5], with e = x/|x|,

λBn(x, 0) = M(∆((−e, 0], [x, e);Bn)) = 21−n
M(∆([−∞, 0], [x, e/|x|];Rn

))(4.3)

= 21−n
M(∆([−e, 0], [

|x|2
1− |x|2 e,+∞];R

n
)) = 21−nτn(|x|2/(1− |x|2)) ,

see [23, Thm 10.4] for details. Here, we recall that the Grötzsch capacity function γn(s)
and the Teichmüller capacity function τn(t) are defined by

γn(s) = M(∆([0, se1], ∂B
n;Bn)) and τn(t) = M(∆([−e1, 0], [te1,∞];R

n
)) ,

for 0 < s < 1 and t > 0.
Next we look at the case when G = Rn \ {0}. By the definition of λG(te1,−e1), t > 0,

there are two natural choices to connect te1 and −e1 with the boundary {0,∞} of the
domain G , either the pair [te1, 0), [−e1,−∞) or the pair [te1,∞), [−e1, 0) . Therefore

λG(te1,−e1) = min{τn(1/t), τn(t)}
and, because τn : (0,∞) → (0,∞) is a strictly decreasing homeomorphism, for t > 1, we
have τn(t) < τn(1) < τn(1/t) and thus

λRn\{0}(te1,−e1) = τn(t) = M(∆([−e1, 0), [te1,∞);Rn \ {0})) , t > 1.

See [1, p.72] and [23, pp. 178-181] for more details.

Suppose that G1 and G2 are proper subdomains of R
n
with G1 ⊂ G2. Then for a

continuum Cxy joining x and y in G1 we have ∆(Cxy, ∂G2;G2) > ∆(Cxy, ∂G1;G1). By
Lemma 3.1 (1), we further obtain for all x, y ∈ G1

µG2
(x, y) ≤ M(∆(Cxy, ∂G2;G2)) ≤ M(∆(Cxy, ∂G1;G1)).

Hence µG2
(x, y) ≤ µG1

(x, y). By definition, the quantities µG(x, y) and λG(x, y) are both
conformally invariant. Ferrand [14] proved that λG(x, y)

1/(1−n) is a distance function of
G. Thus λG(x, y)

1/(1−n) is often called Ferrand’s modulus metric. When n = 2 and G is
a simply connected domain in R

n
with card (∂G) ≥ 2, Ferrand’s modulus metric is the

same as the modulus metric (up to a constant multiple). Moreover, for n ≥ 2 there exists
[23, (9.12), Thm 10.4] a constant cn > 0 depending only on n such that for all x, y ∈ Bn

(4.4) µBn(x, y) ≥ 2n−1cn hBn(x, y) .

Lemma 4.5. Let G be a simply connected hyperbolic domain in R
2
= C. Then µG(x, y) =

4λG(x, y)
−1.

Proof. Fix a pair of distinct points x, y ∈ G. The Riemann mapping theorem asserts
that there is a conformal homeomorphism f : G → B2 = {z ∈ C : |z| < 1} such that
f(x) = 0 and f(y) = u ∈ (0, 1). Since the modulus metric and Ferrand’s modulus metric
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are conformally invariant, we have µG(x, y) = µB2(0, u) and λG(x, y) = λB2(0, u). By 4.2
and 4.3 together with 3.3, we can write

µB2(0, u) = γ2(1/u) = 2τ2(u
−2 − 1) and λB2(0, u) = τ2(1/(u

−2 − 1))/2 .

In view of the formula τ2(t)τ2(1/t) = 4 [2, 5.19 (7)], we obtain µB2(0, u)λB2(0, u) = 4 and
thus the assertion. � �

We take this opportunity to state the following plausible fact with a short proof.

Lemma 4.6. Let G be a domain in R
n
such that the complement F = R

n\G is of positive
capacity. Then there is a positive constant c(F ) such that the inequality

(4.7) µG(x, y) ≥ d0min{q(x, y), c(F )}
holds for x, y ∈ G, where d0 > 0 is a constant depending only on n. In particular, the
modulus metric µG induces the same topology on G as the relative topology on G induced
by R

n
with the spherical metric q.

Proof. The inequality 4.7 follows from [55, Theorem 6.1] and implies the inclusion map
(G, µG) → (R

n
, q) is continuous. In order to show the other inclusion map (G, q) →

(G, µG) is continuous, we may assume that G ⊂ Rn and replace q by the Euclidean
metric. Take an arbitrary point x ∈ G and choose a small enough number r > 0 so that
B := Bn(x, r) ⊂ G. By the domain monotonicity of the modulus metric, we obtain

µG(x, y) ≤ µB(x, y) = γn(r/|y − x|), y ∈ B,

by 4.2. Since γ(t) → 0 as t → +∞, we see that µG(x, y) → 0 as |y−x| → 0, which proves
the required assertion. � �

We are now in a position to prove the first main result.

4.8. Proof of Theorem 1.1.The part (i)⇒ (ii) is obvious. We show now that (ii) implies
(iii) by contradiction. Suppose that G is not an M-domain, namely, M(x0,R

n \ G) < ∞
for some x0 ∈ ∂G. By the conformal invariance, we may assume that x0 6= ∞. We write
B(r) = Bn(x0, r) and B(r) = B

n
(x0, r) for brevity. By definition, there is a continuum

K with x0 ∈ K ⊂ G∪ {x0} such that M0 := M(∆(K, ∂G;G)) < ∞. Take a point x1 from
K∩G and fix it. Let r1 = |x1−x0| andK1 = K. For each x ∈ K∩B(r1) and r ∈ (0, |x−x0|),
let K1(x, r) be the connected component of K1 \B(r) containing x. Note that K1(x, r) is
a continuum. By construction, K1(x, r) ⊂ K1(x, r

′) for 0 < r′ < r < |x− x0|. We set

C1 = C(x1, K1) :=
⋃

0<r<r1

K1(x1, r).

Then, C1 is connected and, for x, y ∈ C1, we have x, y ∈ K1(x1, r) for some 0 < r < r0.
In particular, for such a pair of points x, y and r,

µG(x, y) ≤ M(∆(K1(x1, r), ∂G;G)) ≤ M(∆(K1, ∂G;G)).
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We also see that x0 ∈ C1. Indeed, otherwise C1 would be a continuum in K \ B(ε) for
small enough ε > 0 and thus K1(x1, ε) ⊃ C1 ⊃ C1. Since K1(x1, ε) ⊂ C1, the set C1 would
be closed and have a positive distance to K \ C1, which would violate connectedness of
K.

Let K2 be the connected component of the compact set K1 ∩ B(r1/2) containing x0.
Since x0 ∈ C1, we have C1 ∩K2 6= ∅. Take a point x2 from C1 ∩K2 and fix it. As before,
set C2 = C(x2, K2). Then C2 ⊂ C1 ∩K2. Repeating this procedure, we define sequences
of points xj , continua Kj and connected sets Cj inductively with the following properties:

(1) Kj ⊂ B(r12
1−j),

(2) xj ∈ Cj ⊂ Cj−1 ∩Kj,
(3) x0 ∈ Cj ⊂ Kj , and
(4) µG(x, y) ≤ M(∆(Kj , ∂G;G)) for all x, y ∈ Cj.

In particular, we observe that

µG(xj , xk) ≤ M(∆(Kj, ∂G;G)), j ≤ k.

By Lemma 3.9, we have

M(∆(Kj, ∂G;G)) ≤ M(∆(K ∩ B(r12
1−j), ∂G;G)) → 0 (j → ∞).

Hence, we conclude that {xj} is a Cauchy sequence in (G, µG). Suppose that this sequence
is convergent; that is, µG(xj , x∞) → 0 as j → ∞ for some x∞ ∈ G. On the other

hand, since |xj − x0| ≤ r12
1−j , we have xj → x0 in R

n
. Lemma 4.6 now implies that

x∞ = x0 ∈ ∂G, which is a contradiction. Therefore, (G, µG) is not complete.
Finally, we prove that (iii) implies (i). If cap ∂G = 0, then

M(∆(K,R
n \G;G)) = M(∆(K, ∂G;G)) = 0,

which is not allowed by condition (iii). Therefore, (G, µG) is a metric space under the
assumption (iii). Suppose next that the set X = {x ∈ G : µG(x, a) ≤ r0} is not compact
for some a ∈ G and r0 > 0. Then there is a point x0 ∈ ∂X ∩ (∂G). We may assume
that x0 6= ∞. For every ε > 0, there exists a point x ∈ X ∩ Bn(x0, ε). By definition
of X, M(∆(K, ∂G;G)) ≤ r0 for a continuum K in G ∪ {x0} with a, x ∈ K. Therefore,
under the notation in Lemma 3.10, we obtain L(ε) ≤ r0. However, the lemma implies that
M(x0,R

n \G) < ∞. By contradiction, we have shown that (iii) implies (i). �

Next we prove our second result.

4.9. Proof of Theorem 1.2. Since the uniform perfectness is Möbius invariant (Lemma
3.4), we may assume that ∞ ∈ ∂G and thus G ⊂ Rn and diam(∂G) = +∞.

First suppose that the boundary ∂G of G is uniformly perfect. Lemma 3.5 implies
that the complement E = R

n \ G is also uniformly perfect. By a theorem of Järvi and
Vuorinen [29], E satisfies the metric thickness condition. Vuorinen [54] proved that for
such a domain G there exists a constant b1 > 0 such that for all x, y ∈ G

µG(x, y) ≥ b1 ĵG(x, y).

Applying 2.13, we obtain 1.3 with b = b1/4.
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We next suppose 1.3. Then by Lemma 2.12 (3), we have µG(x, y) ≥ b jG(x, y). Let
E = R

n \G and

0 < c < c0 := exp

[

−2

(

2ωn−1

b log 3

)1/(n−1)
]

.

We prove now that {x : cr ≤ |x − a| ≤ r} ∩ E 6= ∅ for every a ∈ E \ {∞} and r > 0.
Suppose, to the contrary, that {x : cr ≤ |x − a| ≤ r} ∩ E = ∅ for some a ∈ E, a 6= ∞,
and r > 0. Set C1 = {x ∈ Rn : |x− a| ≤ cr} and C2 = {x ∈ R

n
: |x− a| ≥ r}. Then the

assumption implies that the set E decomposes into the two non-empty sets E1 = E ∩C1

and E2 = E∩C2. Pick two points x, y from the sphere S = Sn−1(a, ρ) so that |x−y| = 2ρ,
where ρ =

√
c r. We take a curve C0

xy joining x and y in S. Then, by the subadditivity
and monotonicity of the modulus (Lemma 3.1), we obtain

µG(x, y) ≤ M(∆(C0
xy, E))

≤ M(∆(C0
xy, E1)) +M(∆(C0

xy, E2))

≤ M(∆(S, C1;G1)) +M(∆(S, C2;G2)),

where G1 = {x : |x − a| < ρ} and G2 = {x : |x − a| > ρ}. As is well known [55, (5.10),
(5.14)],

M(∆(S, C1;G1)) = M(∆(S, C2;G2)) =
ωn−1

(log 1/
√
c)n−1

,

we have

µG(x, y) ≤
2ωn−1

(− log
√
c)n−1

,

where ωn−1 is the (n − 1)-dimensional area of Sn−1. On the other hand, since dG(x) ≤
|x− a| = ρ and dG(y) ≤ |y − a| = ρ, we obtain

jG(x, y) = log

(

1 +
|x− y|

min{dG(x), dG(y)}

)

≥ log

(

1 +
2ρ

ρ

)

= log 3.

Thus we have b log 3 ≤ 2ωn−1/(− log
√
c)n−1, that is,

c ≥ exp[−2(2ωn−1/b log 3)
1/(n−1)] = c0,

a contradiction. �

In the case when G is either Bn of Hn, the metric µG(x, y) has the explicit expression
in terms of the hyperbolic metric hG [55, Theorem 8.6]

(4.10) µG(x, y) = 2n−1 τn

(

1

sinh2(1
2
hG(x, y))

)

= γn

(

coth2
(hG(x, y)

2

)

)

.

The decreasing homeomorphism µ : (0, 1] → [0,∞) is defined by

µ(r) =
π

2

K(
√
1− r2)

K(r)
, K(r) =

∫ π/2

0

dt
√

1− r2 sin2 t
,

for r ∈ (0, 1) , µ(1) = 0 . Now the Grötzsch capacity for n = 2 can be expressed as follows

(4.11) γ2(s) =
2π

µ(1/s)
, s > 1 .
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In conjunction with the above relations 4.10, 4.11, when G is the unit disk B2 = D in C,
we obtain the expression

µD(z, w) = γ2

(

1

tanh 1
2
hD(z, w)

)

=
2π

µ
(

tanh 1
2
hD(z, w)

) , z, w ∈ D.

The following estimate will be used later.

Lemma 4.12.

µ (tanh x) <
π2

4x
, x > 0.

Proof. From [2, (5.29)], we note the inequality

µ(r) <
π2

4 artanh 4
√
r

for 0 < r < 1. Let v = (tanh x)1/4 ∈ (0, 1) for x > 0. Since 0 < tanh x = v4 < v < 1, we
obtain x < artanh v. Hence,

µ(tanhx) = µ
(

v4
)

<
π2

4 artanh v
<

π2

4x
.

� �

We are now ready to show our third result.

4.13. Proof of Theorem 1.6. Assume that G is a Möbius uniform domain in R
n
. By

Möbius invariance of Definition 2.16, we may assume that G ⊂ Rn. By virtue of Lemmas
2.8 and 2.12, the uniformity assumption reads

kG(x, y) ≤ c jG(x, y), x, y ∈ G

for a positive constant c. By [55, Lemma 8.32 (2)] (see also [23, Lemma 10.7]) there are
positive constants b1, b2 depending only on n such that

µG(x, y) ≤ b1kG(x, y) + b2

for all x, y ∈ G. In view of Lemma 2.12, we have the required inequality with dj = cbj (j =
1, 2).

Next we assume that the inequality 1.7 holds for a simply connected domainG in C with
non-degenerate boundary. We can also assume that G ⊂ C. Then, as is well known, the
Koebe one-quarter theorem leads to the inequality kG(x, y) ≤ 2hG(x, y). By the Riemann
mapping theorem, there is a conformal homeomorphism f : G → B2 = D. Since µG and
hG are conformally invariant, we obtain the formula

µG(x, y) = µD(f(x), f(y)) =
2π

µ
(

tanh 1
2
hD(f(x), f(y))

) =
2π

µ
(

tanh 1
2
hG(x, y)

) .

We now apply Lemma 4.12 to get

µG(x, y) ≥
4

π
hG(x, y) ≥

2

π
kG(x, y).
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Combining this with 1.7 and Lemma 2.12, we have

kG(x, y) ≤
π

2
µG(x, y) ≤

π

2
(2d1jG(x, y) + d2).

Now a result of Gehring and Osgood [20] implies that G is uniform. �

4.14. Open problem. As pointed out above, in the case of planar simply connected
domains the modulus metric can be expressed as a function of the hyperbolic metric. We
do not know, whether for a general hyperbolic planar domain, the hyperbolic metric has
a minorant in terms of the modulus metric.

5. Application to quasimeromorphic maps

The modulus of a curve family is one of the most important conformal invariants of
geometric function theory which provides a bridge connecting geometry and potential
theory. The modulus is the main tool of the theory of quasiconformal, quasiregular
and quasimeromorphic mappings in Rn [2, 19, 52, 45, 46, 23]. These mappings are the
higher dimensional counterparts of the classes of conformal, analytic, and meromorphic
functions of classical function theory, respectively. We will now apply our results to prove a
Möbius invariant counterpart of a result of Gehring and Osgood [20] for quasimeromorphic
mappings.

We make use of some basic facts of the theory of quasiconformal, quasiregular, and
quasimeromorphic mappings which are readily available in [52], [45], [46], [55]. The first
result shows a Lipschitz type property of quasimeromorphic mappings with respect to the
modulus metric. Note that these mappings are locally Hölder-continuous with respect to
the Euclidean metric as some basic examples show [52, 16.2].

Theorem 5.1. [55, Thm 10.18] Let f : G1 → G2 be a non-constant K-quasimeromorphic
mapping where G1, G2 ⊂ R

n
. Then for all x, y ∈ G1,

µG2
(f(x), f(y)) ≤ K µG1

(x, y) .

In particular, f : (G1, µG1
) → (G2, µG2

) is Lipschitz continuous.

D. Betsakos and S. Pouliasis [8] have recently proved that if f is an isometric homeo-
morphism between the metric spaces

f : (G1, µG1
) → (G2, µG2

),

then f is quasiconformal and it is conformal if n = 2 . This result gives a solution to a
question of J. Ferrand–G. J. Martin–M. Vuorinen [15] when n = 2. Very recently this
result was strengthened by S. Pouliasis and A. Yu. Solynin [44] and independently by
X. Zhang [56]: µ-isometries are conformal in all dimensions n ≥ 2 .

We next prove a Harnack-type inequality.

Theorem 5.2. Let f : G1 → G2 be a K-quasiregular mapping where G1 , G2 are subdo-
mains of Rn , n ≥ 2 . If the boundary ∂G2 is uniformly perfect, then the function

uf(x) := dG2
(f(x)) = inf{|f(x)− z| : z ∈ ∂G2}

satisfies the Harnack inequality, i.e. there exists a constant D1 such that for all x ∈ G1 ,
and all y ∈ B̄n(x, dG1

(x)/2) ,

uf(x) ≤ D1 uf(y) . (1)
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Moreover, there exists a constant D2 such that for all x, y ∈ G1

kG2
(f(x), f(y)) ≤ D2 max{kG1

(x, y)α, kG1
(x, y)} , α = K1/(1−n) . (2)

Proof. Fix x ∈ G1 and y ∈ B̄n(x, d/2) , where d = dG1
(x). Then the ring R = {z : d/2 <

|z − x| < d} separates {x, y} from ∂G1 and modR = log 2. Therefore, by the definitions
of µG1

,

µG1
(x, y) ≤ M(∆([x, y], G1)) ≤ capR = ωn−1(log 2)

1/(n−1) =: M,

where we used the relation ∆([x, y], G1) > ∆(Sn−1(x, d/2), Sn−1(x, d);R) and Lemma 3.1
(2). (A similar estimate is found at [55, 8.8].) Because ∂G2 is uniformly perfect, it follows
from Theorem 1.2 and Lemma 2.12 that

µG2
(f(x), f(y)) ≥ cδG2

(f(x), f(y)) ≥ cjG2
(f(x), f(y)) .

Next, by Theorem 5.1

µG2
(f(x), f(y)) ≤ K µG1

(x, y) ≤ KM .

The Harnack inequality (1) with the constant D1 = exp(KM/2) then follows, because for
all z ∈ ∂G2 [55, (2.39)]

jG2
(f(x), f(y)) ≥ log

|f(x)− z|
|f(y)− z| .

The proof of (2) follows now from [55, Theorem 12.5].
�

We are next going to prove the following theorem, which extends a result of F.W.
Gehring and B. Osgood [20, Theorem 3] for quasiconformal mappings. This proof is
based on the above Harnack inequality.

Theorem 5.3. Let f : G1 → G2 be a K-quasimeromorphic mapping where G1 , G2 ⊂
R

n
, n ≥ 2 . If the boundary ∂G2 is uniformly perfect, then there exists a constant d3 > 0

such that for all x, y ∈ G1

σG2
(f(x), f(y)) ≤ d3 max{σG1

(x, y)α, σG1
(x, y)} , α = K1/(1−n) .

We prove below in Example 5.5 that the uniform perfectness of G2 cannot be dropped
from Theorem 5.3 and the same example also shows that a similar remark applies to
Theorem 5.2. In this example, the image domain G2 has one isolated boundary point and
cannot therefore be uniformly perfect.

5.4. Proof of Theorem 5.3. Choose Möbius transformations f1, f2 such that 0,∞ ∈
∂f1(G1) and 0,∞ ∈ ∂f2(G2) . Then

g = f2 ◦ f ◦ f−1
1 : f1(G1) → f2(G2)

is K-quasiregular and by Theorem 5.2 we have

kf2(G2)(g(x), g(y)) ≤ d3 max{kf1(G1)(x, y)
α, kG1

(x, y)} , α = K1/(1−n) .

Because f1(G1), f2(G2) ⊂ Rn , we obtain by Lemma 2.8 (3) a similar inequality for the σ
metric, with a bit different constants. �
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5.5. Example. To show that the condition ∂G2 be uniformly perfect cannot be dropped
from Theorem 5.3, we consider the analytic function g(z) = exp

(

z+1
z−1

)

which maps the

unit disk B2 onto B2 \ {0} . Let G1 = B2 and G2 = B2 \ {0}, and let xj = (ej − 1)/(ej +1)
for j = 1, 2, . . .. Then uj = g(xj) = exp(−ej). The standard formula for the hyperbolic
distance [4, pp.38-40], [55, (2.17)] shows that

hG1
(xj, xj+1) =

∫ xj+1

xj

2dx

1− x2
= 2 artanh (xj+1)− 2 artanh (xj) = 1

whereas

kG2
(g(xj), g(xj+1)) =

∫ uj

uj+1

du

u
= ej+1 − ej = (e− 1)ej → +∞

as j → ∞. Thus by (1) and (2) of Lemma 2.8, when j → ∞, σG2
(g(xj), g(xj+1)) → +∞

while σG1
(xj , xj+1) = hG1

(xj , xj+1) = 1. This demonstrates that uniform perfectness is
needed in Theorem 5.3.

6. Logarithmic Möbius metric

In this section we study the logarithmic Möbius metric

∆G(z, w) = log(1 + δG(z, w)) , z, w ∈ G ,

on a planar domain G in C = R2 and prove Theorem 1.15. Though the hyperbolic metric
hG(z, w) is majorized by twice the Möbius metric 2δG(z, w) for an arbitrary hyperbolic
domain G ⊂ C (see [47]), the logarithmic Möbius metric ∆G(z, w) is not expected to
majorize hG(z, w) in general. Indeed, δG(z, w) is Lipschitz equivalent to hG(z, w) if ∂G is
uniformly perfect as we noted in Introduction. However, the situation is different when
∂G consists of finitely many points. We now prove the first part of Theorem 1.15. By
using the results from [50] or [49], we could obtain more explicit estimates for the bound
c = c(A). However, for brevity, we shall be content with existence of c > 0 only.

Proof of the first part of Theorem 1.15. Let A be a finite set in C with card (A) ≥ 3 and
G = C \A. Since both metrics are Möbius invariant, we may assume that ∞ ∈ A so that
G ⊂ C. We now consider the function

F (z, w) =















hG(z, w)

∆G(z, w)
(z 6= w)

ρG(z)

wG(z)
(z = w)

on G×G. Here, ρG(z) is the density of the hyperbolic metric on G and wG(z) is defined
in 2.7. Our goal is to find an upper bound of F (z, w). Since the hyperbolic distance is
induced by the Riemannian metric ρG(z)|dz|, we have

lim
w→z

hG(z, w)

|z − w| = ρG(z)
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for z ∈ G. On the other hand, by definition of the metric δG(z, w) and the property
log(1 + x) = x+O(x2) (x → 0), we have

lim
w→z

∆G(z, w)

|z − w| = lim
w→z

δG(z, w)

|z − w|

= lim
w→z

mG(z, w)

|z − w|
= wG(z)

for z ∈ G. Therefore, we see that the function F (z, w) is continuous on G×G. Since C×C
is compact, in order to prove that sup(z,w)∈G×G F (z, w) < +∞, it is enough to prove that

F̂ (ζ, ω) := lim sup
(z,w)→(ζ,ω)

F (z, w) < +∞

for each (ζ, ω) ∈ ∂(G × G). Note that ∂(G × G) = (∂G × G) ∪ (G × ∂G) ∪ (∂G × ∂G).

When (a, z0) ∈ ∂G×G = A×G, by Lemma 1.10, we have F̂ (a, z0) = 1. (If a = ∞, with
the Möbius invariance of F (z, w) in mind, we may consider the inversion 1/z to reduce

to the finite case.) Likewise, we can see that F̂ (z0, a) = 1.
The remaining case is when (a, b) ∈ ∂G×∂G. We may further assume that a 6= ∞ 6= b.

If a 6= b, letting C > |a− b|2 be a suitable constant, we have

mG(z, w) = |a, z, b, w| = |a− b||z − w|
|a− z||b− w| ≤

C

|a− z||b− w|
for z, w with |z−a| < ε and |w−b| < ε, where ε > 0 is a small enough number. Therefore,
taking a fixed point z0 ∈ G, we have for the same z, w,

F (z, w) ≤ hG(z, z0) + hG(z0, w)

∆G(z, w)

≤ hG(z, z0)

log
[

1 + log(1 + C ′/|a− z|)
] +

hG(z0, w)

log
[

1 + log(1 + C ′/|b− w|)
] ,

where C ′ = C/ε. Taking the upper limit as z → a and w → b, with the help of 1.12, we

finally get F̂ (a, b) ≤ 2.
If a = b, assuming a = 0 and D∗ ⊂ G ⊂ C \ {0, 1} as before, we have the estimates

hG(z, w) ≤ hD∗(z, w) and mG(z, w) ≥ mC\{0,1}(z, w) for z, w ∈ D∗. Hence, F (z, w) ≤
hD∗(z, w)/∆C\{0,1}(z, w). The expected claim is now implied by 6.4, which is a consequence
of the following lemma. �

Let E∗ := {z : 0 < |z| ≤ e−1}. For z1, z2 ∈ E∗, define

(6.1) D(z1, z2) =
2 sin(θ/2)

max{τ1, τ2}
+ |log τ2 − log τ1| ,

where τ1 = log(1/|z1|), τ2 = log(1/|z2|), θ = | arg(z2/z1)| ∈ [0, π]. It is known that
D(z1, z2) is a distance function on E∗ (see [50, Lemma 3.1]).

Lemma 6.2. Let Ω = C \ {0, 1}.
(i) hD∗(z1, z2) ≤ (π/4)D(z1, z2) for z1, z2 ∈ E∗.
(ii) D(z1, z2) ≤ M0∆Ω(z1, z2) for z1, z2 ∈ E∗, whereM0 = 2/ log (1 + log 3) = 2.6980 . . ..
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The constants π/4 and M0 are sharp, respectively.

Proof. Part (i) is contained in Theorem 3.2 of [50]. The sharpness is observed for z1 =
e−τ , z2 = −e−τ as τ → +∞. We prove only part (ii). Let z1, z2 ∈ E∗. We may assume
that |z1| ≤ |z2| by relabeling if necessary. Then |zj| = e−τj (j = 1, 2) for some 1 ≤ τ2 ≤
τ1 < +∞. We put τ = τ2, s = τ1/τ and ϕ = sin(θ/2), where θ = | arg(z2/z1)| ∈ [0, π].
Then s ≥ 1, 0 ≤ ϕ ≤ 1. By definition, we have

mΩ(z1, z2) ≥
|z1 − z2|

|z1|
=
√

(eτ(s−1) − 1)2 + 4ϕ2eτ(s−1).

Let x := es−1 ≥ 1. Then

∆Ω(z1, z2) ≥ log
[

1 + log(1 +
√

(xτ − 1)2 + 4ϕ2xτ )
]

=: f1(τ, ϕ, x), and

D(z1, z2) =
2ϕ

sτ
+ log(1 + log x) =: f2(τ, ϕ, x).

Further let
f3(τ, ϕ, x) := f2(τ, ϕ, x)−M0f1(τ, ϕ, x).

Then f3(τ, ϕ, x) is decreasing in 1 ≤ τ < +∞, and thus f3(τ, ϕ, x) ≤ f3(1, ϕ, x) for τ ≥ 1.
By straightforward computations, we have

∂2

∂ϕ2
f1(1, ϕ, x) ≤ 0 and

∂2

∂ϕ2
f2(1, ϕ, x) = 0.

Therefore f3(1, ϕ, x) is convex in 0 ≤ ϕ ≤ 1. Since

f3(1, 1, x) =
2

1 + log x
+ log(1 + log x)−M0 log(1 + log(x+ 2)),

it is easy to verify that f3(1, 1, x) is decreasing in 1 ≤ x, which leads to f3(1, 1, x) ≤
f3(1, 1, 1) = 0. Noting that f3(1, 0, x) = (1−M0) log(1+log x) < 0, we have f3(1, ϕ, x) ≤ 0
from convexity, and thus f3(τ, ϕ, x) ≤ f3(1, ϕ, x) ≤ 0. This completes the proof of the
required inequality. To show its sharpness, it is enough to put z1 = e−1 and z2 = −e−1. �

Remark 6.3. As an immediate consequence of the lemma, we have the inequality

(6.4) hD∗(z1, z2) ≤
π

2 log(1 + log 3)
∆C\{0,1}(z1, z2), 0 < |z1|, |z2| ≤ e−1.

As the reader can observe in the proof, this constant (π/4)M0 ≈ 2.11904 is not sharp.

We now complete the proof of Theorem 1.15.

Proof of the second part of Theorem 1.15. Let G be a hyperbolic domain in C with
a puncture at the point a. Suppose that Φ(δG(z, w)) ≤ hG(z, w) for z, w ∈ G. By the
Möbius invariance of δG and hG, we may assume that a = 0 and that D∗ ⊂ G ⊂ C. Then
mG(x,−x) ≥ |0, x,∞,−x| = 2 and thus δG(x,−x) ≥ log 3 for 0 < x < 1. Therefore, we
would have Φ(log 3) ≤ hG(x,−x). On the other hand, letting γ be the upper half of the
circle |z| = x, we obtain

hG(x,−x) ≤ hD∗(x,−x) ≤
∫

γ

|dz|
|z| log(1/|z|) =

π

log(1/x)
.
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Since log(1/x) → +∞ as x → 0+, we observe that hG(x,−x) → 0 as x → 0+, which
contradicts the above. �
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