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We introduce a method to distribute memory effects among different subspaces of an open two-qubit system’s
state space. Within the linear optical framework, our system of interest is the polarization of two photons, while
the environment consists of their frequency degrees of freedom. By exploiting initially correlated frequency
distributions and initial frequency-dependent phase factors, we are able to control all the four decoherence
functions for polarization—corresponding to different open-system subspace divisions—almost independently
of each other. Hence, our results demonstrate how, in a multipartite dephasing system, Markovian and non-
Markovian dynamics can be arbitrarily divided between the subsystems, giving rise to the concept of memory
partitions. We also discuss further implications the results have, e.g., on the dynamics of purity and entropy
within the two-qubit system.
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I. INTRODUCTION

The studies of open quantum systems are important both
for practical and fundamental reasons. The interaction be-
tween an open system and its environment leads to deco-
herence [1] which needs to be accounted for when con-
structing practical quantum devices [2], e.g., for quantum
computation. For fundamental aspects, there has recently been
significant development in particular in understanding how
non-Markovian memory effects influence the dynamics of
open quantum systems [3–8]—and also how to engineer and
exploit them for various tasks including quantum information
framework [8–11]. For example, non-Markovian dynamics
has been demonstrated to enhance the performance of both
superdense coding [10] and the Deutsch-Jozsa algorithm
[11].

Despite the recent general progress on characterizing and
quantifying non-Markovian effects, most of the systems stud-
ied in more detail within this open-system framework of-
ten consist of exemplary single-qubit systems. While these
works have illustrated important dynamical features, such as
Markovian to non-Markovian transition [12] and essentially
arbitrary control of single-qubit dephasing dynamics [13],
extending the state space to multiqubit systems allows us
to study a whole new set of problems (see, e.g., Ref. [14]).
Here, our interest lies on the problematics of how to distribute
memory effects between the parties of a multiparty setting and
whether this can be done in an arbitrary way—or do there exist
fundamental limitations on how this can be done? According
to a traditional viewpoint, increasing the dimensionality of the
open system should turn non-Markovian features to Marko-
vian ones, when increasing the number of the degrees of
freedom of the open system—and at the same time decreasing
those of the environment within the considered total system

[15–17]. However, we will show that also the opposite can
happen—and as a matter of fact—it is possible to distribute
memory effects arbitrarily between the different subspaces
when considering two-qubit dephasing dynamics.

Recent works have often used linear optical systems to
study controlled open-system dynamics and their applica-
tions [12,13,18–23]—and this is also our choice of physical
platform for the current purpose. Within this setting, the
polarization degree of freedom of photons is the open system,
while their frequency plays the role of an environment [12].
The system and environment, in this context, are coupled in a
birefringent medium such as quartz or calcite. The interaction
due to this coupling manifests itself by reducing the mag-
nitude of the off-diagonal elements of the system’s density
matrix while keeping the probability terms intact. Thereby,
this corresponds to pure decoherence or dephasing. For a
single photon, full control of the dephasing dynamics was
recently achieved by manipulating the frequency distribution
of the photon and a given frequency-dependent complex phase
factor [13]. For a multipartite setting, we show how these
ingredients allow not only the control of the dephasing dy-
namics but also leads to arbitrary control of the distribution of
memory effects between different subsystems and subspaces
of the open system. In the current scheme, we also exploit
initial correlations between the environments, which have
been previously shown to lead to nonlocal memory effects
[24,25].

The paper is organized in the following way. Section II
introduces the basics of dephasing for single- and two-qubit
systems in linear optics. The core results of the paper are
included in Sec. III which describes the subspace (or subparty)
divisions, shows explicitly how to distribute the memory
effects, and discusses a number of other implications that our
results have. Section IV concludes the paper.
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II. BIPARTITE OPEN SYSTEM IN LINEAR OPTICS

The most general, initial, and pure, one-photon
polarization-frequency state can be written as

|�〉 = a|H〉
∫

dωg(ω)eiθH (ω)|ω〉 + b|V 〉
∫

dωg(ω)eiθV (ω)|ω〉,

(1)

where a and b are the probability amplitudes for the photon to
be in the polarization states |H〉 and |V 〉, respectively, H (V )
stands for horizontal (vertical) polarization, g(ω) is the proba-
bility amplitude for the photon to be in the (angular) frequency
state |ω〉, and eiθH (ω) (eiθV (ω)) is the complex phase factor
corresponding to horizontal (vertical) polarization. Note that
the phase does not need to be constant. Then, for two photons,
we can write

|�〉 = a|HH〉
∫

dω1dω2g(ω1, ω2)eiθ1,H (ω1 )eiθ2,H (ω2 )|ω1〉|ω2〉

+ b|HV 〉
∫

dω1dω2g(ω1, ω2)eiθ1,H (ω1 )eiθ2,V (ω2 )|ω1〉|ω2〉

+ c|V H〉
∫

dω1dω2g(ω1, ω2)eiθ1,V (ω1 )eiθ2,H (ω2 )|ω1〉|ω2〉

+ d|VV 〉
∫

dω1dω2g(ω1, ω2)eiθ1,V (ω1 )eiθ2,V (ω2 )|ω1〉|ω2〉.

(2)

The parameters are to be interpreted as in the case of
one photon; the lower indices referring to the photons
1 and 2, and the probability amplitudes satisfying |a|2 +
|b|2 + |c|2 + |d|2 = 1 and

∫
dω1dω2|g(ω1, ω2)|2 = 1. For the

sake of computational simplicity and experimental realiz-
ability, we assume that the phase factors are not corre-
lated, i.e., eiθλ(ω1,ω2 ) = eiθ1,λ(ω1 )eiθ2,λ(ω2 ). To the best of our
knowledge, nonlocal operations creating such correlations
that eiθλ(ω1,ω2 ) �= eiθ1,λ(ω1 )eiθ2,λ(ω2 ) have not been reported even
though it is possible to control the phase factors for single
photons locally [13].

The system and environment are assumed to interact only
locally. In practice, the two are coupled in birefringent media.
As the local Hamiltonians are of the form

H j = (n j,H |Hj〉〈Hj | + n j,V |Vj〉〈Vj |)
∫

dω jω j |ω j〉〈ω j |, (3)

where nj,H (n j,V ) is the refractive index of the jth photon cor-
responding to horizontal (vertical) polarization, the following
local unitary dynamics apply:

Uj (t )|λ j〉|ω j〉 = ein j,λω j t |λ j〉|ω j〉. (4)

The evolution of the bipartite open system is described by
the dynamical map obtained by tracing out the environmental
degrees of freedom

�12(t )(�12(0)) = trE [(U1(t ) ⊗ U2(t ))|�〉〈�|(U1(t )†

⊗ U2(t )†)]. (5)

The corresponding density matrix of the open system at time
t is

�12(t ) =

⎛
⎜⎜⎝

|a|2 ab∗κ2(t ) ac∗κ1(t ) ad∗κ12(t )
a∗bκ∗

2 (t ) |b|2 bc∗	12(t ) bd∗κ1(t )
a∗cκ∗

1 (t ) b∗c	∗
12(t ) |c|2 cd∗κ2(t )

a∗dκ∗
12(t ) b∗dκ∗

1 (t ) c∗dκ∗
2 (t ) |d|2

⎞
⎟⎟⎠,

(6)

where

κ j (t ) =
∫

dω1dω2|g(ω1, ω2)|2eiθ j (ω j )ei
nω j t , (7)

κ12(t ) =
∫

dω1dω2|g(ω1, ω2)|2ei[θ1(ω1 )+θ2(ω2 )]ei
n(ω1+ω2 )t ,

(8)

	12(t ) =
∫

dω1dω2|g(ω1, ω2)|2ei[θ1(ω1 )−θ2(ω2 )]ei
n(ω1−ω2 )t

(9)

are the decoherence functions. Above, we have denoted
θ j (ω j ) = θ j,H (ω j ) − θ j,V (ω j ) and 
n = n j,H − n j,V , i.e., the
birefringent media are assumed to be the same for both
photons. Note that initial polarization-frequency correlations
are introduced when θ j (ω j ) is not constant. Therefore, the
magnitude of the decoherence functions at the initial point
of time can be less than 1 and the domain of initial polar-
ization states is restricted. However, one can use the rescal-
ing |κ j (t )|/|κ j (0)|—and in a similar manner for other deco-
herence functions—to obtain the correspondence with com-
pletely positive dynamical map (see also the corresponding
discussion in Ref. [13]).

Accounting for initial correlations between the two pho-
tons’ frequencies, described by K ∈ [−1, 1], we use the bi-
variate Gaussian

|g(ω1, ω2)|2 = 1

2πσ 2
√

1 − K2
e− (ω1−μ)2−2K(ω1−μ)(ω2−μ)+(ω2−μ)2

2σ2 (1−K2 )

=: G(K ) (10)

as the frequency distribution. μ and σ 2 are, respectively, the
mean frequency and variance of both ω1 and ω2. The simple
and experimentally realizable form of G(K )—also utilized,
e.g., in Refs. [10,24,25]—eases the analysis of the frequency
correlations. K = −1 indicates perfect anticorrelation, i.e., the
total frequency of the two photons being fixed: ω1 + ω2 = 2μ.
Although perfect correlation is experimentally much more
difficult to implement, we include it for the sake of theoretical
generality. Perfectly correlated (K = 1) frequencies satisfy
ω1 = ω2. Both of the extreme cases have a useful property:
K = 1(−1) results in the magnitude of the decoherence func-
tion 	12(t ) [κ12(t )] being constant. Having no initial cor-
relations (K = 0) factorizes the dynamics. That is, κ12(t ) =
κ1(t )κ2(t ), 	12(t ) = κ1(t )κ∗

2 (t ), and �12(t ) = �1(t ) ⊗ �2(t ).
Furthermore, if the phase distributions θ j (ω j ) were constant,
the coherence terms of Eq. (6) would experience a Gaussian
decay, obeying the local decoherence functions

κ j (τ ) = e− 1
2 τ 2+i(ητ+θ j ), (11)

where we have denoted τ = σ
nt and η = μ/σ . To go
beyond the dynamics predicted by Eq. (11), we modify
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FIG. 1. The environment degrees of freedom ω j coupled with
the system degrees of freedom Hj and Vj by the local unitaries
Uj , where j = 1, 2. K describes the initial correlations between the
two environments. Different subspaces are illustrated by the ovals of
different color. Green = S1, red = S2, yellow = S�, blue = S� .

|g(ω1, ω2)|2 and θ j (ω j ) to engineer the dephasing dynamics
and ultimately to control the distribution of memory effects.

The frequency distribution of the photon pairs depends on
the spectrum of the pump laser and focusing conditions on
the nonlinear crystal, and the cases of K = −1 and K = 0
are easily realized. According to numerical simulations pos-
itive correlation (K ≈ 1) might be possible with a broadband
femtosecond laser impinging on a very long crystal [26].
Furthermore, interference filters and Fabry-Pérot cavities can
be used to manipulate the spectrum of individual photons
[12]. Full control of the dephasing dynamics is also already
possible. It has been demonstrated that excellent control of
both the local frequency distribution and differential complex
phase of both polarization components is achieved by spatial
light modulators [13]. And, finally, the total interaction time is
adjusted by changing the thickness of the quartz plates which
couple the polarization with frequency.

III. DISTRIBUTING MEMORY EFFECTS AMONG
DIFFERENT SUBSPACES

A. Memory effects in subspaces

The decoherence functions (7)–(9) describe the dephasing
dynamics of states in the subspaces

S j = span({|Hj〉, |Vj〉}), (12)

S� = span({|�+〉, |�−〉}), (13)

S� = span({|�+〉, |�−〉}), (14)

respectively, where j = 1, 2, |�±〉 = 1√
2
(|HH〉 ± |VV 〉), and

|�±〉 = 1√
2
(|HV 〉 ± |V H〉). These subspaces, as well as the

open-system dynamics, are illustrated in Fig. 1.
Since we are dealing with pure decoherence, whether

memory effects can be associated with a certain subspace
is determined by the monotonicity of the corresponding de-
coherence function’s magnitude. That is, there are memory
effects in the subspace S j if |κ j (t )| behaves in a nonmonotonic
manner, and similarly for the subspace S� (S� ) and the
decoherence function |κ12(t )| [|	12(t )|].

By controlling the decoherence functions and their mono-
tonicity, we can control what combination of the subspaces
is exposed to memory effects. Hence, we can talk about
distributing memory effects. Since the monotonicity of a

decoherence function is independent of the monotonicity
of the other decoherence functions (at least in the case
of two qubits, as we will show), there are

∑4
k=0

(4
k

) = 16
ways to distribute memory effects among the quadruplet
〈S1, S2, S�, S�〉, one of which corresponds to the trivial case
of not having memory effects at all. We call these quadruplets
memory partitions and write 1 in the place of those subspaces
that experience the above described memory effects. The rest
of the subspaces are indicated by 0 (see Table I). For example,
the notation 〈1, 0, 0, 0〉 is reserved for the memory partition
where only |κ1(t )| behaves nonmonotonically, and only the
local states

�1(t ) =
( |a|2 + |b|2 (ac∗ + bd∗)κ1(t )

(a∗c + b∗d )κ∗
1 (t ) |c|2 + |d|2

)
, (15)

experience memory effects. Moreover, in the case of
〈1, 1, 0, 0〉 (〈0, 0, 1, 1〉), we say that the local dephasing
dynamics is non-Markovian (Markovian), and the nonlocal
dynamics is Markovian (non-Markovian).

B. Controlling the decoherence functions

Combining the results for the phase control [13] (now for
two photons instead of one) and frequency correlation control
[24] allows us to create different memory partitions. That is,
we choose the phase distributions θ j (ω j ) and the correlation
coefficient K appropriately. As we aim to solve the integrals
(7)–(9) analytically, we find, by trial and error, that functions
as simple as the “zigzag” function

z(ω j, α j ) = arcsin

[
sin

(
α j

ω j − μ

σ

)]
(16)

and the parabola

p(ω j, β j ) = β j

(
ω j − μ

σ

)2

(17)

not only do this but are enough for us to obtain all the 15
nontrivial memory partitions, when used as the phase distri-
butions and accompanied by a suitable Gaussian frequency
distribution.

The zigzag phase, when substituted into the decoherence
functions (7)–(9), yields multiple local (and depending on
the value of the correlation coefficient, also nonlocal) “re-
coherence” peaks. That is, the magnitudes of the selected
decoherence functions increase after the initial drops, and then
decrease again. The distance between these peaks is controlled
by α j , i.e., the angular frequency of the zigzag wave [see
Eqs. (A6)–(A8) in Appendix A for details].

The parabola phase transforms the absolute values of
the decoherence functions into Gaussian functions [see
Eqs. (B3)–(B5) in Appendix B]. By using the parabola phase,
one achieves no local recoherence but is able to control
the height and width of the Gaussians by the parameter β j ,
i.e., the inverse of the parabola’s focal width. Moreover, we
gain nonlocal memory effects by implementing the frequency
distribution 1

2 [G(1) + G(−1)] [see Eqs. (B6) and (B7) in
Appendix B], motivated by simultaneous need for both ex-
tremes; The frequencies of the photons 1 and 2, described
by this distribution, are equally probable to be perfectly
correlated or anticorrelated.
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TABLE I. Frequency distributions, phase distributions, and the resulting memory partitions.

Fig. 2 panel Frequency dist. Phase dist. 1 Phase dist. 2 〈S1, S2, S�, S�〉.
(a) G(0) Constant Constant 〈0, 0, 0, 0〉
(b) G(0) z(ω1, 5) Constant 〈1, 0, 0, 0〉
(c) G(0) Constant z(ω2, 5) 〈0, 1, 0, 0〉
(d) [G(1) + G(−1)]/2 p(ω1, 3) p(ω2, 3) 〈0, 0, 1, 0〉
(e) [G(1) + G(−1)]/2 p(ω1, 3) p(ω2,−3) 〈0, 0, 0, 1〉
(f) [G(1) + G(−1)]/2 z(ω1, 5) z(ω2, −5) 〈1, 1, 0, 0〉
(g) G(1) z(ω1, 5) Constant 〈1, 0, 1, 0〉
(h) G(−1) z(ω1, 5) Constant 〈1, 0, 0, 1〉
(i) G(1) Constant z(ω2, 5) 〈0, 1, 1, 0〉
(j) G(−1) Constant z(ω2, 5) 〈0, 1, 0, 1〉
(k) [G(1) + G(−1)]/2 p(ω1, 3) Constant 〈0, 0, 1, 1〉
(l) G(1) z(ω1, 5) z(ω2, −15) 〈1, 1, 1, 0〉
(m) G(−1) z(ω1, 5) z(ω2, −15) 〈1, 1, 0, 1〉
(n) G(0) z(ω1, 5) p(ω2, 3) 〈1, 0, 1, 1〉
(o) G(0) p(ω1, 3) z(ω2, 5) 〈0, 1, 1, 1〉
(p) G(0) z(ω1, 5) z(ω2, 5) 〈1, 1, 1, 1〉

If neither the zigzag nor the parabola phase is required in
obtaining a certain memory partition, we employ an arbitrary
constant phase factor. The choices of frequency distributions,
phase distributions, and the resulting memory partitions are
depicted in Table I, while the corresponding magnitudes of the

decoherence functions are plotted in Fig. 2. Here, we do not
address the question of which intervals of α j and β j produce
memory effects. Instead, based on a numerical analysis, we
employ the example values α j ∈ {−15,±5} and β j ∈ {±3}. It
is also worth mentioning that the decoherence functions alone

FIG. 2. Magnitudes of the decoherence functions creating all 16 memory partitions as functions of the scaled, unitless time τ = σ
nt . See
Table I for used frequency and phase distributions, and corresponding memory partitions, for panels (a)–(p).
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do not determine the dephasing dynamics of a given system in
general, but one also needs to consider the initial probability
amplitudes a, b, c, and d of the bipartite polarization state.

C. Deriving the memory partitions

The trivial partition 〈0, 0, 0, 0〉 [Fig. 2(a)] is obtained by
Eq. (11) and, in the case of the single-peaked Gaussian (10),
any value of K . Here, we have chosen K = 0.

To equip either one of the local subspaces S j with mem-
ory effects [Figs. 2(b) and 2(c)], we make the substitution
θ j (ω j ) = z(ω j, 5), while fixing the other phase constant and
K = 0. Clearly, both the nonlocal decoherence functions are
nonmonotonic, too, being products of a monotonic and a
nonmonotonic function. However, because we can force the
revivals of |κ12(t )| and |	12(t )| arbitrarily close to zero by
increasing α j , we omit them. For example, when α j = 5(10),
the height of the first recoherence peak is of the order of
10−4(10−12).

To equip either one of the nonlocal subspaces with memory
effects, we choose the parabola phases and either β1 = β2

[〈0, 0, 1, 0〉, Fig. 2(d)] or β1 = −β2 [〈0, 0, 0, 1〉, Fig. 2(e)].
In both cases, we use 1

2 [G(1) + G(−1)] as the frequency
distribution. The most striking memory partition 〈0, 0, 1, 1〉
[Fig. 2(k)] is obtained similarly. Here, |κ12(t )| = |	12(t )|,
when β2 = 0 [or θ2(ω2) = constant]. This demonstrates that
each one-qubit subsystem behaves individually in a Marko-
vian manner, while the combined two-qubit system displays
non-Markovian memory effects. All three memory partitions
described above are applicable in protecting the so-called X
states, the states containing nonzero density-matrix elements
only on their main diagonals and antidiagonals [27], from
dephasing. The memory partitions ensure that the coherence
terms of such states always stay well above zero, monotonic
or not.

The memory partition 〈1, 1, 0, 0〉 [Fig. 2(f)] is obtained
by applying 1

2 [G(1) + G(−1)] and zigzag phases of opposite
sign α js. Thus, we have locally non-Markovian but nonlo-
cally Markovian dynamics. From a technical point of view,
the behavior of the decoherence functions in this case is
not that difficult to understand; z(ω1, α1) and z(ω2,−α1), in
|κ12(t )| [|	12(t )|], cancel each other in the presence of perfect
anticorrelation (correlation). However, having local memory
effects in each of the subsystems that do not manifest them-
selves at all nonlocally in the combined system, is somewhat
counterintuitive.

The memory partitions 〈i, i ⊕ 1, j, j ⊕ 1〉 [i, j = 0, 1,
Figs. 2(g)–2(j)] are obtained by simply choosing the zigzag
phase, when the corresponding decoherence function needs
to behave nonmonotonically, and K = 1 (−1), when |κ12(t )|
[|	12(t )|] needs to behave nonmonotonically.

Perfect correlation and anticorrelation are used as
“switches” when producing the memory partitions 〈1, 1, 1, 0〉
and 〈1, 1, 0, 1〉 [Figs. 2(l) and 2(m)] also. K = 1 forces
|	12(t )| monotonic (constant), and K = −1 forces |κ12(t )|
monotonic (constant). The use of zigzag phases with different
values of α j results in the remaining nonlocal decoherence
function being initially decreasing and nonmonotonic. Per-
haps surprisingly, α1 = α2 does not yield nonlocal memory
effects.

FIG. 3. Normalized purities of the total state �12(τ ) and its
reduced states � j (τ ), when a = b = c = d = 1

2 , in the case of
(a) 〈1, 1, 0, 0〉, and (b) 〈0, 0, 1, 1〉. The inset shows a magnification
of the same purities.

The partitions 〈i, i ⊕ 1, 1, 1〉 [i = 0, 1, Figs. 2(n) and
2(o)] are obtained by fixing K = 0, i.e., |κ12(t )| = |	12(t )| =
|κ1(t )κ2(t )|. We use the zigzag phase in the usual manner: For
S j to experience memory effects, θ j (ω j ) = z(ω j, 5). As for
the other phase, we choose the parabola, θk (ωk ) = p(ωk, 3),
k �= j. Hence, the revivals of the nonlocal decoherence func-
tions become much more distinct than with 〈i, i ⊕ 1, 0, 0〉
and cannot be omitted anymore. The fully non-Markovian
partition 〈1, 1, 1, 1〉 [Fig. 2(p)] is achieved by changing the
parabola phase into a zigzag phase such that α1 = α2.

D. Properties of selected memory partitions

We now proceed to investigate some of the features of
the more prominent memory partitions. Here, the partitions
〈1, 1, 0, 0〉 and 〈0, 0, 1, 1〉, when a = b = c = d = 1

2 , are
particularly interesting, because memory effects have been
equally distributed within the local and nonlocal parts of the
system, respectively. Hence, we will focus on these situations.

Purity [28] describes the “quantumness” of a given quan-
tum state. Purities P of the bipartite open system and its sub-
systems, normalized by D

D−1 (P − 1
D ), where D is the dimen-

sion of the system, are plotted in Fig. 3. The local decoherence
functions clearly dictate the behavior of the local purities, but
they also contribute to the total purity, as one can see espe-
cially from Fig. 3(a). Contrary to 〈1, 1, 0, 0〉, with 〈0, 0, 1, 1〉,
the contribution of the nonlocal decoherence functions to the
total purity becomes essential [Fig. 3(b)]. Unlike the local
purities, the purity of the total state undergoes revivals and has
a positive limit, resulting in a total system purer than its parts.
In general, this is the case with decoherence-free subspaces as
well [29,30], which can be obtained by applying either G(1)
or G(−1). However, depending on the phase distributions and
the probability amplitudes, mixing the two may sometimes
be more beneficial. That is, applying more noise can actually
result in richer dynamics and, in some scenarios, purer states.

As the coherence terms of the open bipartite system vanish
(or at least decrease, on average), one might be tempted to
ask what this implies for the total system. Now, since the
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FIG. 4. Entropy S, trace distance D, and fidelity F of the total
state �12(τ ), the latter two with respect to the state | + +〉, when
a = b = c = d = 1

2 , in the case of (a) 〈1, 1, 0, 0〉, and (b) 〈0, 0, 1, 1〉.
We have fixed θ2 = 0 and η = 20.

coherences are associated with quantum correlations [31],
it is reasonable to address this question from the point of
view of correlation flow. In the context of open quantum
systems, increasing von Neumann entropy of the open system
(plotted in Fig. 4) adds to the total correlations between the
system and environment [32]. Because the purity of a closed
system, which the open system and its environment together
form, is constant, the coherences within the system become
correlations between the system and environment, and vice
versa. One can also see this from Figs. 3 and 4.

To see how the decohering open systems behave with
respect to the corresponding closed systems, described by
the pure state | + +〉 = 1

2 (|HH〉 + |HV 〉 + |V H〉 + |VV 〉),
we have plotted their trace distances [33] and fidelities [34] in
Fig. 4 as well. The oscillation frequency of the trace distance
and fidelity is determined by the mean frequency μ and
the constant parts of the phase distributions. The oscillation
amplitude, on the other hand, behaves not as straightforwardly
but seems to be proportional to the purity. We now make
two interesting observations. First, although correlations flow
back to the system, that does not necessarily mean the bi-
partite open system gets any closer to its closed counterpart
[Fig. 4(a)]. Instead, it may get closer to some other pure state.
In this particular case that state, around τ = 5, is | + −〉 =
1
2 (|HH〉 − |HV 〉 + |V H〉 − |VV 〉). Second, we can control
the limit of the oscillation amplitude and thus prevent the
oscillations from ever coming to an end [Fig. 4(b)].

IV. CONCLUSIONS

We have shown how to select and target subspaces of a
bipartite open system to experience memory effects in a linear
optical scheme. Indeed, the results demonstrate that, by engi-
neering the dephasing dynamics, any chosen combination of
subspaces can undergo non-Markovian dynamics—including
the case where each party individually follows Markovian
evolution while the combined bipartite open system displays
non-Markovian features. This leads to the concept of mem-
ory partitions in the dynamics of multipartite open quantum
systems. The results also imply that one could quantify how
common non-Markovian features in a multipartite open sys-
tems are by calculating the fraction of subspaces displaying
memory effects.

Extending from the two-partite case considered here to a
generic N-qubit system, it remains to be shown whether a
generic strategy of distributing memory effects for an arbitrary
number of qubits exists. It is also worth noting that, for N
qubits, there are M := ∑N

k=1

(N
k

)
2k−1 different decoherence

functions and thus 2M memory partitions. The number of
decoherence functions is larger than 2N = ds, the size of the
open system’s Hilbert space, when ds > 4. This may open
up new possibilities to convey information when exploiting
different memory partitions and choosing whether they carry
memory effects. One could, e.g., encode information to the
dynamics of the N-qubit system’s coherence terms. The cor-
responding decoding protocol then would require at least two
predetermined measurement points, were it not possible to
decode a snapshot of the system’s evolution. We also expect
that the techniques introduced here can be useful in various
other tasks including, e.g., the partial protection of two-qubit
X states by introducing and engineering the memory effects
in the corresponding two subspaces. In general, engineering
the open system dynamics is an important feature for several
applications of quantum mechanics—and our results open
the path to manipulate the dynamics within each subspace
individually when dealing with multipartite open systems.
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APPENDIX A: SOLVING THE DECOHERENCE FUNCTIONS BY USING THE ZIGZAG PHASE DISTRIBUTION

To solve Eqs. (7)–(9) by using the zigzag phase (16), we exploit the following identities:

ei f (x) = cos[ f (x)] + i sin[ f (x)], (A1){
cos {arcsin [sin (Ax)]} = | cos (Ax)|,
sin {arcsin [sin (Ax)]} = sin (Ax), (A2)

| cos (Ax)| = 2

π
+ 4

π

∞∑
n=1

(−1)n

1 − 4n2
cos (2nAx), (A3)
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∫
dx

1√
2π

e− 1
2 x2

cos (Ax) cos (Bx) cos (Cx) = 1

4
e− 1

2 (A+B+C)2
(1 + e2(A+B)C + e2(B+C)A + e2(C+A)B), (A4)∫

dx
1√
2π

e− 1
2 x2

cos (Ax) sin (Bx) sin (Cx) = 1

4
e− 1

2 (A+B+C)2
(−1 + e2(A+B)C − e2(B+C)A + e2(C+A)B). (A5)

In the following, as well as in Appendix B, we make the change of variable(s), x j = ω j−μ

σ
. The initial correlations between

the two environments cannot be detected locally. Hence, the local decoherence functions become

κ j (τ ) = eiητ

∫
dx j

1√
2π

e− 1
2 x2

j ei arcsin[sin(α j x j )]eiτx j

= eiητ

∫
dx j

1√
2π

e− 1
2 x2

j [| cos(α jx j )| + i sin(α jx j )][cos(τx j ) + i sin(τx j )]

= eiητ

∫
dx j

1√
2π

e− 1
2 x2

j [| cos(α jx j )| cos(τx j ) − sin(α jx j ) sin(τx j )]

= eiητ

∫
dx j

1√
2π

e− 1
2 x2

j

[(
2

π
+ 4

π

∞∑
n=1

(−1)n

1 − 4n2
cos(2nα jx j )

)
cos(τx j ) − sin(α jx j ) sin(τx j )

]

= eiητ

[
2

π
e− 1

2 τ 2 + 2

π

∞∑
n=1

(−1)n

1 − 4n2
(e− 1

2 (τ−2nα j )2 + e− 1
2 (τ+2nα j )2

) − 1

2
(e− 1

2 (τ−α j )2 − e− 1
2 (τ+α j )2

)

]
. (A6)

We solve the nonlocal decoherence functions by using only the extreme values of K . Hence, we can use the normal distribution
of a single variable x1 as the frequency distribution and substitute x2 = Kx1 into the phase- and time-dependent part of the second
photon. Skipping the lengthy details, the resulting decoherence functions are

κ12(τ )|K=1 = ei2ητ	12(τ )|K=−1

= e−2τ 2+i2ητ

{
4

π2
− 1

π
(e− 1

2 α1(α1−4τ ) + e− 1
2 α2(α2−4τ ) − e− 1

2 α1(α1+4τ ) − e− 1
2 α2(α2+4τ ) )

−1

4
(e− 1

2 (α1−α2 )(α1−α2−4τ ) − e− 1
2 (α1+α2 )(α1+α2−4τ ) + e− 1

2 (α1−α2 )(α1−α2+4τ ) − e− 1
2 (α1+α2 )(α1+α2+4τ ) )

+
∞∑

n=1

(−1)n

1 − 4n2

[
4

π2
(e− 1

2 α1n(α1n−4τ ) + e− 1
2 α1n(α1n+4τ ) + e− 1

2 α2n(α2n−4τ ) + e− 1
2 α2n(α2n+4τ ) )

− 1

π
(e− 1

2 (α2−α1n)(α2−α1n−4τ ) + e− 1
2 (α2+α1n)(α2+α1n−4τ ) − e− 1

2 (α2−α1n)(α2−α1n+4τ ) − e− 1
2 (α2+α1n)(α2+α1n+4τ )

+e− 1
2 (α1−α2n)(α1−α2n−4τ ) + e− 1

2 (α1+α2n)(α1+α2n−4τ ) − e− 1
2 (α1−α2n)(α1−α2n+4τ ) − e− 1

2 (α1+α2n)(α1+α2n+4τ ) )

]

+ 4

π2

∞∑
n,m=1

(−1)n+m

(1 − 4n2)(1 − 4m2)
(e− 1

2 (α2m−α1n)(α2m−α1n−4τ ) + e− 1
2 (α2m+α1n)(α2m+α1n−4τ )

+ e− 1
2 (α2m−α1n)(α2m−α1n+4τ ) + e− 1

2 (α2m+α1n)(α2m+α1n+4τ ) )

}
, (A7)

κ12(τ )
∣∣
K=−1 = ei2ητ	12(τ )

∣∣
K=1

= ei2ητ

{
4

π2
+ 1

2
(e− 1

2 (α1−α2 )2 − e− 1
2 (α1+α2 )2

) + 8

π2

[ ∞∑
n=1

(−1)n

1 − 4n2
(e−2(α1n)2 + e−2(α2n)2

)

+
∞∑

n,m=1

(−1)n+m

(1 − 4n2)(1 − 4m2)
(e−2(α2m−α1n)2 + e−2(α2m+α1n)2

)

]}
. (A8)

APPENDIX B: SOLVING THE DECOHERENCE FUNCTIONS BY USING THE PARABOLA PHASE DISTRIBUTION

Here, we make use of the identity ∫
dxei 1

2 Ax2+iBx =
√

i2π

A
e−i B2

2A . (B1)
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Thus, the local decoherence functions become

κ j (τ ) = eiητ

∫
dx j

1√
2π

e− 1
2 x2

j eiβ j x2
j eiτx j = eiητ

∫
dx j

1√
2π

ei 1
2 (2β j+i)x2

j +iτx j =
√

i

2β j + i
e

i
(
ητ− 1

2(2β j +i) τ
2
)
. (B2)

As for the absolute values, we obtain the Gaussians

|κ j (τ )| = (
4β2

j + 1
)− 1

4 e
− 1

2
1

4β2
j +1

τ 2

. (B3)

The nonlocal decoherence functions are obtained in a similar fashion. Equation (B1) is used twice in a row. Here, we keep the
correlation coefficient K free. The resulting decoherence functions are

κ12(τ ) =
√

1

1 − 4β1β2(1 − K2) + i2(β1 + β2)
e
− 1+K+i(β1+β2 )(1−K2 )

1−4β1β2 (1−K2 )+i2(β1+β2 )
τ 2+i2ητ

, (B4)

	12(τ ) =
√

1

1 + 4β1β2(1 − K2) + i2(β1 − β2)
e
− 1−K+i(β1−β2 )(1−K2 )

1+4β1β2 (1−K2 )+i2(β1−β2 )
τ 2

. (B5)

The nonlocal oscillations emerge when we employ the frequency distribution 1
2 [G(1) + G(−1)] =: X. The magnitudes of

Eqs. (B4) and (B5) then become

|κ12(τ )|X = 1

2
Abs(κ12(τ )|K=1 + κ12(τ )|K=−1)

= 1

2
[1 + 4(β1 + β2)2]−

1
4

√
1 + 2e

− 2

1+4(β1+β2 )2 τ 2

cos

(
4(β1 + β2)

1 + 4(β1 + β2)2 τ 2

)
+ e

− 4

1+4(β1+β2 )2 τ 2

, (B6)

|	12(τ )|X = 1

2
Abs(	12(τ )|K=1 + 	12(τ )|K=−1)

= 1

2
[1 + 4(β1 − β2)2]−

1
4

√
1 + 2e

− 2

1+4(β1−β2 )2 τ 2

cos

(
4(β1 − β2)

1 + 4(β1 − β2)2 τ 2

)
+ e

− 4

1+4(β1−β2 )2 τ 2

. (B7)
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