
Edge Computing for Mobile Robots:
Multi-Robot Feature-Based Lidar Odometry with FPGAs

L. Qingqing1, F. Yuhong1, J. Peña Queralta2, T. N. Gia2, H. Tenhunen3, Z. Zou1 and T. Westerlund2

1 School of Information Science and Technology, Fudan Universtiy, China
2 Department of Future Technologies, University of Turku, Finland

3 Department of Electronics, KTH Royal Institute of Technology, Sweden
Emails: 1{qingqingli16, zhuo}@fudan.edu.cn, 2{yuhofu, jopequ, tunggi, tovewe}@utu.fi, 3hannu@kth.se

Abstract—Offloading computationally intensive tasks such as
lidar or visual odometry from mobile robots has multiple benefits.
Resource constrained robots can make use of their network
capabilities to reduce the data processing load and be able to
perform a larger number tasks in a more efficient manner.
However, previous works have mostly focused on cloud offloading,
which increases latency and reduces reliability, or high-end edge
devices. Instead, we explore the utilization of FPGAs at the
edge for computational offloading with minimal latency and high
parallelism. We present the potential for modelling feature-based
odometry in VHDL and utilizing FPGA implementations.

Index Terms—Odometry; Autonomous Robots; FPGA; Lidar;
Lidar Odometry; Laser rangefinder; SLAM; Mobile Robots;

I. INTRODUCTION

The penetration of lidars in the robotic industries has
considerably grown over the last two decades [1]. Efficient
lidar odometry was proposed by Zhang et al. and has been
extensively used in the development of autonomous robots
and vehicles [2]. However, processing lidar data for odometry
and mapping purposes requires on-board computers. A recent
approach is to exploit the robot’s connectivity to offload
computationally intensive tasks to cloud servers. However,
this increases latency and reduces reliability. Therefore, we
study the offloading at the local network level, in order to
tightly control the communication latency and provide a robust
solution. With this approach, a single gateway can perform
odometry calculations for multiple robots in real-time [3].
However, as the number of robots connected to the same
gateway increases, a much more powerful processor is needed,
and the control over the system latency can be partially lost.
We propose the utilization of FPGAs as their parallelism
enables rapid scaling without an impact on performance.

The edge computing paradigm is a distributed network
paradigm that aims at moving computational processing power
and data analytics closer to where the data originates, in
the so-called edge of the network. In a hybrid Edge-Cloud
architecture, part of the data processing is done at the local
network level and only the analysis results are transmitted
to cloud servers. This allows for reduced bandwidth and
increased reliability. In robotics, this paradigm can increase
the capabilities of resource-constrained robots by streaming
sensor data and performing the analysis at edge gateways with
higher parallelist and power efficiency [4].

II. RELATED WORK

Offloading computationally intensive sensor data processing
has been extensively studied in mobile robot navigation.
Through the simplification of on-board hardware, significant
saving in energy consumption can be achieved, incrementing
the robot’s battery life [3]. Integrating edge computing with
mobile robot navigation is a relatively recent field and the
related works are few. From a more generic point of view,
Dey et al. studied the potential benefits of offloading compu-
tationally intensive tasks within simultaneous localization and
mapping (SLAM) algorithms with edge computing [5]. The
authors concluded that edge computing can bring significant
enhancements to localization and positioning algorithms with
low latency and high reliability services. Most other works
have been focusing on offloading to cloud servers. Nonethe-
less, network connectivity to cloud servers can be unreliable
and latency uncontrollable in some situations. Therefore, it is
not suitable for time-critical applications such as localization
and movement estimation in autonomous robots.

III. FEATURE-BASED LIDAR ODOMETRY ON FPGAS

Lidar odometry algorithms use the lidar’s data to compute
the motion of a robot between two consecutive sweeps. In
general, lidar odometry algorithms can be divided into three
steps. The first step is to extract features from lidar data, the
features can be the geometric distributions, or some stable
points which can be observed in the two consecutive sweeps.
The next step is to find the feature correspondence through the
position difference between sweeps. The last step is estimating
the lidar movement through the time between two sweeps [2].
FPGA’s have the ability to process lidar data in real time
with a limited resource utilization, and naturally parallelize
the processing of data from multiple lidars [6].

Our goal in this work is to design a pure VHDL implemen-
tation. Instead of comparing complete lidar sweeps, as most
recent implementations do, we aim at a implementation that
analyzes lidar data as it is available and compares features in
real-time. With this, we expect to be able to increase odometry
accuracy and the positioning update frequency.

IV. EXPERIMENT AND RESULTS

In order to test the efficiency and usability of the feature-
based odometry algorithm, we have first implemented in



LUT LUTRAM FF IO DSP

9.14

0.55 0.74

8.8

15.45
”Resource Utilization (%)”

Fig. 1. FPGA Resource Utilization Summary

C++ within the Robot Operating System (ROS). ROS is the
most popular open-source meta-operating system for robots
to support code reuse in the development of robots. We have
utilized the inexpensive RPLidar A1 for our experiment, a
360° two-dimensional lidar with 1° resolution at 10Hz.

A. FPGA Implementation

We have utilized a Zybo Z7-20 board for implementing
our algorithm. This relatively small board is built around the
Z-7010, the smallest chip in the Xilinx Zynq-7000 family.
Even though the board integrates a dual-core ARM Cortex-A9
processor, we only use the FPGA logic in order to provide a
generic design that can be easily ported to other platforms.

Implementing the proposed algorithm using VHDL hard-
ware modelling presents some challenges. On one side, the
need for calculation of trigonometric functions. In order to
solve this, we utilize coordinate rotation digital computer
(CORDIC) algorithms implemented in VHDL. In particular,
we generate sine samples and from those calculate the values
for cosine. On the other side, conversion types and integrating
the CORDIC calculations into a state machine, requiring
complimentary intermediate signals.

B. FPGA Resource Utilization

In order to study the potential of the FPGA-based imple-
mentation to be parallelized, we have synthesized an initial
and unoptimized version of the design. The preliminary re-
sults show that the main resource utilization occurs with the
IO banks (8.8%), Logic LUTs (9.14%) and DSP modules
(15.45%). Nonetheless, the IO banks can be easily multi-
plexed, and additional lidars can be connected with a single
input, so they do not represent a significant limitation. More-
over, a single nRF or Wi-Fi receiver can be utilized to receive
information from multiple units. In terms of DSP utilization,
the modules are used in the CORDIC implementations. A
single CORDIC module can be shared among multiple parallel
processes with a relatively simple state machine. Therefore, the
proposed algorithm is not limited by the number of available
DSPs. Similarly, we have estimated that around 90% of the
LUTs can be shared. This is possible because the timing
constraints that the frequency of the lidar scanner impose
are very relaxed compared to the maximum performance that
the VHDL implementation can deliver. Therefore, we expect
that a single FPGA board will be able to run in parallel
over 50 lidar odometry calculations. This can be combined

TABLE I
PERFORMANCE COMPARISON BETWEEN FPGA AND CPU

IMPLEMENTATIONS

Xilinx Zynq XC7Z010 Intel Atom x5-Z8350
(VHDL Impl.) (C++ Impl.)

Aprox. Resource 10% (fixed) + 1% 4% (fixed) + 7% CPU
Max. concurrency >20-50* < 5-15

*Expected range with optimized code.

TABLE II
FPGA RESOURCE UTILIZATION BREAKDOWN

Resource Type Used Available

Slice LUTs 4961 53200
LUT as Logic 4865 53200
LUT as Memory 96 17400

Slice Registers 791 106400
F7 Muxes 32 26600
F8 Muxes 0 13300
Bonded IOB 11 125
DSPs 34 220

with wireless communication solutions that provide enough
available channels, such as Wi-Fi or nRF. In contrast, on an
Intel Atom x5-Z8350 CPU @ 1.44GHz × 4, the proposed
algorithm can be executed approximately 5 to 15 times in
parallel, depending on whether other processes are being run.

V. CONCLUSION AND FUTURE WORK

We have presented preliminary work on an odometry of-
floading solution for multi-robot systems. We have designed
and implemented a feature-based lidar odometry algorithm that
is flexible and can accommodate to a variety of indoors or
outdoors environments, and implemented in an FPGA with
pure VHDL modeling. The results presented in this paper show
potential for high parallelism and low-latency odometry.

In future work, we will integrate this solution within a
real team of mobile robots and test their navigability with
minimum hardware on-board and edge offloading.

ACKNOWLEDGMENT

This work has been supported by NFSC grant No.
61876039, and the Shanghai Platform for Neuromorphic and
AI Chip (NeuHeilium).

REFERENCES

[1] S. A. Hiremath et al. Laser range finder model for autonomous navigation
of a robot in a maize field using a particle filter. Computers and
Electronics in Agriculture, 100:41 – 50, 2014.

[2] J. Zhang et al. Loam: Lidar odometry and mapping in real-time. In
Robotics: Science and Systems, volume 2, page 9, 2014.

[3] V. K. Sarker et al. Offloading slam for indoor mobile robots with edge-
fog-cloud computing. In ICASERT, 2019.

[4] S. Biookaghazadeh et al. Are fpgas suitable for edge computing? In
USENIX HotEdge Workshop, 2018.

[5] S. Dey et al. Robotic slam: a review from fog computing and mobile edge
computing perspective. In MobiQuitous, pages 153–158. ACM, 2016.

[6] J. Peña Queralta et al. FPGA-based Architecture for a Low-Cost 3D Lidar
Design and Implementation from Multiple Rotating 2D Lidars with ROS.
In IEEE SENSORS 2019 (SENSORS), 2019.


