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Abstract
Electroencephalography (EEG) signals collected from human brains have generally been used to diagnose diseases.

Moreover, EEG signals can be used in several areas such as emotion recognition, driving fatigue detection. This work

presents a new emotion recognition model by using EEG signals. The primary aim of this model is to present a highly

accurate emotion recognition framework by using both a hand-crafted feature generation and a deep classifier. The

presented framework uses a multilevel fused feature generation network. This network has three primary phases, which are

tunable Q-factor wavelet transform (TQWT), statistical feature generation, and nonlinear textural feature generation

phases. TQWT is applied to the EEG data for decomposing signals into different sub-bands and create a multilevel feature

generation network. In the nonlinear feature generation, an S-box of the LED block cipher is utilized to create a pattern,

which is named as Led-Pattern. Moreover, statistical feature extraction is processed using the widely used statistical

moments. The proposed LED pattern and statistical feature extraction functions are applied to 18 TQWT sub-bands and an

original EEG signal. Therefore, the proposed hand-crafted learning model is named LEDPatNet19. To select the most

informative features, ReliefF and iterative Chi2 (RFIChi2) feature selector is deployed. The proposed model has been

developed on the two EEG emotion datasets, which are GAMEEMO and DREAMER datasets. Our proposed hand-crafted

learning network achieved 94.58%, 92.86%, and 94.44% classification accuracies for arousal, dominance, and valance

cases of the DREAMER dataset. Furthermore, the best classification accuracy of the proposed model for the GAMEEMO

dataset is equal to 99.29%. These results clearly illustrate the success of the proposed LEDPatNet19.

Keywords Led-pattern � TQWT � S-Box based feature generation � RFIChi2 � Emotion recognition � Machine learning �
Artificial intelligence

Introduction

Background

The development in computer technology has led to growth

in the global gaming market. The gaming industry is

widely serving people with its developing graphic and

sound infrastructure (Chanel et al. 2011; Vasiljevic and de

Miranda 2020). People play computer games for different

purposes such as entertainment and learning. At the same

time, computer games are also used in researches for

determining the emotional states of people to understand

enjoyable level of the game (Dasdemir et al. 2017).

Computer games have different effects on the participants

such as funny, boring, horror, calm. Researchers use Brain-
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Computer Interfaces (BCI) to monitor these effects and

they especially have used EEG signal to understand these

effects (Bigirimana et al. 2020; Djamal et al. 2020;

Vasiljevic and de Miranda 2020). BCI is a tool that enables

interaction between people and computer systems (Pan

et al. 2013). Especially, wearable devices help to develop

neuroscience and neurogaming platforms. Moreover, BCIs

have been used to understand the collected signals (Parsons

et al. 2020; Reuderink et al. 2009). Conventional methods

such as surveys and interviews are also used to determine

the impact of a game on users. However, this method does

not always reach the correct result. Modern systems need

internal parameters, and lower margin of error. EEG sig-

nals are used in the systems with BCI to monitor the effects

of a game in the human mind. Moreover, EEG signals

reveal the electrical activity of neurons in the brain. Thus,

measuring this electrical activity provides experts with an

opinion on assessing brain activity (Rahman et al. 2020;

Ullal and Pachori 2020). The effects of computer games on

different people can be evaluated with EEG signal analysis.

Moreover, the development of games can be provided by

following the effects of a game on people such as boring,

calm, and horror. Thus, computer games released in the

game market can be improved. People’s reactions to dif-

ferent situations can be measured by using game applica-

tions, and more realistic systems can be created (Bharti and

Patel 2020; Gaume et al. 2019; Manshouri et al. 2020;

Miah et al. 2020).

Motivation

Computer games have a huge market, and many people

play several games. Computer game producers/developers

want to know feedbacks about their games. Therefore,

many surveys have been applied to players. However, true

feedbacks cannot be achieved by using these surveys. Thus,

feedbacks must be collected during the game. One of the

feedback collection models is EEG based emotion

recognition.

Our main motivation is to identify emotions using EEG

signals but emotion recognition using EEG is one of the

complex issues of machine learning. Many models have

been presented in the literature to recognize/classify emo-

tions with high classification accuracy. The primary

objective of the presented model is to propose a highly

accurate emotion recognition model using EEG signals.

Therefore, a novel hand-crafted feature extraction network

is presented. This network aims to extract low-level, high-

level, and medium-level features. The other aim of this

method is to demonstrate the success of cryptologic

structures in feature generation. Therefore, an S-box based

textural feature generation function is presented and named

as Led-Pattern. By using the proposed LED pattern, hidden

features/patterns in the EEG signals can be detected easily

and a high accurate EEG signal recognition model can be

proposed by using the hidden nonlinear patterns. By using

the presented model, emotions can be classified with high

accuracy. New generation intelligent emotion recognizers

can be developed by implementing the presented Led-

Pattern and RFIChi2 (Tuncer et al. 2020). Moreover, two

EEG datasets have been used to denote the general success

of the proposed LEDPatNet19.

Related works

In this section, we presented some of the EEG based

emotion recognition studies. Alakus et al. (Alakus et al.

2020) created an emotion database using EEG signals. In

the study, emotional states were recorded with 4 computer

games. EEG signals were collected by allowing users a

total of 5 min for each game in the study. Rejer et al. (Rejer

and Twardochleb 2018) suggested a model to monitor the

effect of games on the brain. Different games were selected

for the participants for this purpose. The proposed method

is based on genetic algorithm. With the proposed method, it

is determined which part of the brain is effective in the

game. Hazarika et al. (Hazarika et al. 2018) proposed a

method for the inhibitory control function. Action video

game is used for this purpose. EEG data of 35 players were

used in the study. Alpha, beta, and gamma frequencies of

EEG signals are taken into account. This study was based

on Discrete Wavelet Transform, and SVM was chosen as a

classifier. 98.47% accuracy rate was obtained in the study.

Shih-Ching et al. (Yeh et al. 2018) presented a gaming

platform using a brain-computer interface and virtual

reality. EEG and EMG signals are used together to create

this gaming platform. Manshouri et al. (Manshouri et al.

2020) suggested a method to test the EEG signals of users

watching 2D and 3D movies. Also, EEG signals were

measured and recorded before watching movies. The same

operations were carried out after watching the movie. Thus,

the effects of these films on brain activity and power

spectrum density were observed. This study was based on

short-time Fourier transform and achieved 91.83% accu-

racy. Parsons et al. (Parsons et al. 2020) proposed a clas-

sification method using the EEG signals. This study used

video game player experiences. EEG signals were collected

from 30 participants for this purpose. Support Vector

Machine, Naı̈ve Bayes, k-Nearest Neighbors were used as

classifiers. Naive Bayes was identified as the best classifier

for the negative game platform. K-Nearest Neighbors has

provided more successful classification results on general

gaming platforms. Alchalabi et al. (Alchalabi et al. 2018)

introduced a method to detect patients with attention deficit

hyperactivity disorder. For this purpose, the distinctive

features of EEG signals are used. Besides, healthy and
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attention deficit hyperactivity disorder patients were eval-

uated together. The condition classification accuracy rate

was calculated as 96.0% in healthy persons. In attention

deficit hyperactivity disorder patients, accuracy was 98.0%.

Scherer et al. (Scherer et al. 2013) proposed a model for

functional brain mapping. The proposed method is based

on Kinect-based games. Thus, the reactions of people to

these games were evaluated with EEG signals. Chanel et al.

(Chanel et al. 2011) presented an approach aimed at

gathering information about the game using surveys, EEG

signals, and environmental factors. In this study, the Tetris

game was used for three difficulty levels. Furthermore, it

was determined that different levels of difficulty could be

distinguished using these parameters. The accuracy rate

was calculated as 63.0%.

Proposed approach

The proposed EEG based emotion recognition model has

preprocessing, feature generation, feature selection, and

classification phases. In the preprocessing phase, the loaded

EEG signals are divided into frames for the GAMEEMO

dataset since GAMEEMO dataset lengthy EEG signals.

Then, the preprocessed EEG signals are fed to TQWT

(Hussain 2018; Wang et al. 2014) for sub-bands generation.

For this work, 18 sub-bands have been generated to gen-

erate features at high level since TQWT is an effective one-

dimensional signal transformation model. The presented

Led-Pattern and statistical feature generation function

extracts 540 features (Led-Pattern extracts 512 features,

and 14 statistical features are generated from the raw EEG

signal and decomposed EEG signal sub-bands). The used

feature generators extract 540 features from 19 signals (18

sub-bands and a raw EEG signal). Thus, the presented

learning model is named LEDPatNet19. These extracted

features are concatenated, and RFIChi2 is applied to the

concatenated feature vector to select the most informative

ones. In the classification phase, support vector machine

(SVM) classifier has been utilized (Hassoun 1995; Park

et al. 1991) (Glorot and Bengio 2010; Yosinski et al. 2014).

Novelties and contributions

Novelties of the proposed Led-Pattern based model:

• A nonlinear one-dimensional textural feature generation

model is presented by using S-box of the Led cipher

algorithm (Led-Pattern) (Kushwaha et al. 2014; Mendel

et al. 2012).

• By using TQWT (Hussain 2018; Wang et al. 2014),

Led-Pattern, and statistical moments, a new generation,

lightweight and multilevel feature generation model is

presented. Herein, the effective models are used

together. TQWT is an effective transformation model

to obtain wavelet frequencies of the used signal. By

using these frequency sub-bands, features at high level

are extracted using Led-Pattern (textural features) and

statistical moments (statistical features). RFIChi2 is a

hybrid selector and selects the most informative

features. By using SVM (it is an effective shallow

classifier), classification results are obtained.

• Contributions of the proposed Led-Pattern based model:

• S-boxes have generally been utilized for nonlinear

transformations. Therefore, many block cipher algo-

rithms have been used S-boxes. This work aims to

discover the effect on the S-boxes for feature genera-

tion. Two of the widely preferred hand-crafted methods

are textural and statistical feature generators. In the

statistical feature generation models, statistical

moments have been used. While textural feature

generators use variable linear patterns for local feature

generation to extract global optimum features like

binary pattern. The proposed Led-Pattern uses a non-

linear pattern (S-box of the Led cipher). The feature

generation capability of a nonlinear textural feature

generation model has been demonstrated, and a new

feature of S-Boxes has been shown.

• In order to achieve high classification performance for

EEG based emotion recognition during game playing, a

cognitive problem–solution methodology is used in this

research. TQWT, statistical features, and Led-Pattern

are used together to generate effective features.

RFIChi2 selects optimal features. The proposed LED-

PatNet19 achieved high classification performances on

the used two EEG datasets. In this respect, the

LEDPatNet19 is a high accurate model.

Material

We have used two datasets to denote success of the

developed LEDPatNet19 and these datasets are

GAMEEMO and DREAMER. These two datasets were

collected from EMOTIV EEG brain cap and EMOTIV

software were applied these signals for preprocessing.

More details about these datasets are given below.

GAMEEMO

In this study, a database called GAMEMO created by

Alakus et al. (Alakus et al. 2020) was used. This is a

publicly available database. This database was created by

collecting EEG signals via the 14 channel EMOTIV

EPOC? (wearable and portable) device. The sampling rate

of these EEG signals is 128 Hz (2048 Hz internal) and a
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has a denoising filter. By using this filter, the bandwidths of

the used EEG signals are calculated as 0.16 Hz and 43 Hz.

28 different subjects were used in the created database.

These subjects played four different games. These games

were calm, boring, funny, and horror. Each individual was

allowed to play each game for a total of 5 min. Thus,

20 min EEG data of each individual were collected. These

data were in csv and mat formats. The reactions of the

subjects to the games were monitored and recorded using

these games. In addition, Self-Assessment Manikin (SAM)

form and rating scores were obtained for each subject. The

purpose of creating a SAM form in this study is to rank

each game according to the scale of arousal and valence. In

this dataset, the length of each EEG signal is equal to

38,252. Therefore, we divide these signals into fixed-size

non-overlapping segment with a length of 7650.

DREAMER

Dreamer dataset is a commonly used EEG emotion datasets

in the literature and has three cases. These cases are named

arousal, dominance and valance. The used each case con-

tains two classes and they are low and high. The DREA-

MER dataset was collected from 23 participants using an

EMOTIV EPOC wearable EEG device. By using this

device, EEG signals have been collected with 14 channels

like GAMEEMO dataset. To collect the emotional EEG

signals from these 23 participants, 18 film clips are selected

with a length range of from 65 to 393 s. 128 Hz sampling

rate was set to collect EEGs. Moreover, band-pass fre-

quency filter [4–30 Hz] was used to denoise artefacts.

The proposed Led-Pattern algorithm

This research suggests a new generation binary pattern

(BP) like nonlinear textural feature generation function. As

stated in BP, it considers a linear pattern to generate fea-

tures. The presented Led-Pattern uses an S-box of a light-

weight block cipher, which is Led cipher. Led cipher has a

4-bit S-box, and is shown in Fig. 1 (Kushwaha et al. 2014;

Mendel et al. 2012).

Figure 1 shows the values of this S-box. By using this

nonlinear structure, a nonlinear pattern is created. As seen

from Fig. 1, the length of this S-box is 16. Therefore,

feature generation is processed on the 16 sized overlapping

blocks. xth values and S[x]th values are compared to

generate bits. The graphical expression of the used pattern

is also shown in Fig. 2.

The steps are given below for the better understanding

of the proposed Led-Pattern.

Step 1: Apply overlapping block division to a one-

dimensional signal. Here, the length of the block is

selected as 16.

blc ¼ signal i : iþ 15ð Þ; i ¼ 1; 2; . . .; L� 15f g ð1Þ

where blc and L define 16 sized blocks and length of the

signal.

Step 2: Generate bits by using the presented nonlinear

pattern, which is shown in Fig. 1.

bit kð Þ ¼ sgnm blc x kð Þð Þ; blc s x½ � kð Þð Þð Þ; k
¼ f1; 2; . . .; 16g ð2Þ

sgnm blc x kð Þð Þ; blc s x½ � kð Þð Þð Þ

¼ 0; blc x kð Þð Þ � blc s x½ � kð Þð Þ\0

1; blc x kð Þð Þ � blc s x½ � kð Þð Þ� 0

�
ð3Þ

sgnmð:; :Þ is signum function, and it is utilized for

primary bit generation function.

Step 3: Construct left and right bit groups using the

extracted 16 bits.

bl jð Þ ¼ bit jð Þ; j ¼ f1; 2; . . .; 8g ð4Þ
btðjÞ ¼ bitðjþ 8Þ ð5Þ

where bl and br are left and right bits groups,

respectively.

Step 4: Generate left and right signals.

leftðiÞ ¼
X8
j¼1

bl jð Þ � 2j�1 ð6Þ

rightðiÞ ¼
X8
j¼1

br jð Þ � 2j�1 ð7Þ

Both signals which are right and left are coded in 8-bits.

Hence, the length of histograms of each signal is

calculated as 28 ¼ 256.

Step 5: Extract histogram of the left (histleft) and right

(histright) signals.

histleft jð Þ ¼ 0; j ¼ f1; 2; . . .; 256g ð8Þ

histleft jð Þ ¼ 0 ð9Þ

histleft left ið Þð Þ ¼ histleft left ið Þð Þ þ 1; i
¼ f1; 2; . . .; L� 15g ð10Þ

histright right ið Þð Þ ¼ histright right ið Þð Þ þ 1 ð11Þ

Step 6: Concatenate histogram extracted to obtain

features of Led-Pattern (f Led�Pat).

Fig. 1 S-box of the Led cipher
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f Led�Pat ið Þ ¼ histleft ið Þ; i ¼ f1; 2; . . .; 256g ð12Þ

f Led�Pat iþ 256ð Þ ¼ histright ið Þ ð13Þ

As stated Eqs. 12, 13, the proposed Led-Pattern gener-

ates 512 features from a signal.

Steps 1–6 consist of the presented Led-Pattern feature

generation function, and it is called as led � patð:Þ in the

proposed classification model to better expression.

The proposed led-pattern based emotion
recognition model

This work presents a new generation EEG signal classifi-

cation model to recognize emotion. The presented model

aims to achieve high-performance for emotion recognition

using EEG signals. A new cognitive model is presented

using the effectiveness model, which is handled in four

phases. These phases are preprocessing (framing), feature

generation using TQWT and fused feature extraction

function (Led-Pattern and statistical feature extraction),

selection of the optimal features with RFIChi2 feature

selector, and classification using SVM phases. The most

important phase of the proposed model is feature extrac-

tion. In the feature extraction phase, TQWT creates 18 sub-

bands by using 2,3,17 Q-factor, redundancy and number of

levels parameters. The used hybrid generator (Led-Pattern

and statistical extractor) extracts 540 features from raw

EEG signal and 18 sub-bands. Thus, this model is called

LEDPatNet19. A schematic overview of this model is

shown in Fig. 3 for better understanding.

Figure 3 summarizes our proposed LEDPatNet19. In the

first phase, TQWT is deployed to the EEG signal. How-

ever, we used fixed-size non-overlapping blocks to increase

the number of observations. In this work, Q-factor (Q),

redundancy (r), and the number of levels (J) parameters are

chosen as 2,3, and 17 respectively. Thus, 18 wavelet sub-

bands are created. The presented Led-pattern based fused

feature extractor (see Fig. 3b) extracts 540 features from

each signal. Herein, 19 signals are utilized as input of the

proposed fused feature extractor. In the feature fusion/

merging phase, the extracted 19 feature vectors with a

length of 540 are combined and a final feature vector with a

length of 540 9 19 = 10,260 is created. RFIChi2 feature

selector has been used for this work. The main purpose of

this selector is to use the effectiveness of both ReliefF and

Chi2 selectors. ReliefF selector can generate both negative

and positive weights for each feature. The negative

weighted features can assign redundant features. Chi2 is

one of the fastest selectors but it cannot select the best

feature vector automatically. Therefore, iterative Chi2 has

been used in the second layer of RFIChi2. The chosen

features are classified using an SVM classifier with tenfold

cross-validation. The general steps of the proposed LED-

PatNet19 are:

Step 1: Apply TQWT to each frame/EEG signal.

Step 2: Use the fused feature generation model and

extract features from the original EEG frame and

decomposed signals.

Step 3: Select the most informative features from the

feature vector extracted by using RFIChi2 feature

selector.

Step 4: Classify these features using SVM.

More details about the presented LEDPatNet19 are

given below.

Fused feature generation model

The first phase is feature generation. To generate effective

features, both textural and statistical features are used

together. Both statistical and textural feature generation

functions have been widely preferred in hand-crafted fea-

ture generation. Therefore, we used both of them. The used

textural feature generator is Led-Pattern, and it was defined

in Sect. 3. It is a histogram-based feature generator, and it

generates 512 features from an EEG signal. 14 statistical

moments have been chosen to generate statistical features.

Also, a decomposition method is used for multilevel fea-

ture generation. This decomposition method is TQWT,

which is one of the new generation decomposition tech-

niques. It is an improved version of the single-level

Q-factor wavelet transform and takes three parameters.

These parameters are Q-factor, r (redundancy level), and

the number of levels (J). Eighteen levels wavelet trans-

formation is used by deploying 2,3 and 17 Q, r, and J

parameters, respectively.

Fig. 2 The pattern of the Led-

Pattern. Herein, v1, v2, …, v16

define values of the used

overlapping block with a length

of 16
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The used statistical feature generation function was

demonstrated by using istð:Þ. The statistical moments

which are consisted of istð:Þ feature generation function are

shown as below.

fst 1ð Þ ¼ 1

M

XM
i¼1

sgnlðiÞ ð14Þ

fst 2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1

XM
i¼1

sgnl ið Þ � fst 1ð Þð Þ2
vuut ð15Þ

fst 3ð Þ ¼
XM
i¼1

sgnlðiÞ ð16Þ

fst 4ð Þ ¼ �
XM
i¼1

sgnl ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
sgnl ið Þ2

M

r log
sgnl ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
sgnl ið Þ2

M

r ð17Þ

fst 5ð Þ ¼ 1

M

XM�1

i¼1

jsgnl iþ 1ð Þ � sgnl ið Þj ð18Þ

fstð6Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM � 1Þ

p
M � 2

1
M

PM
i¼1 ðsgnlðiÞ � fstð1ÞÞ3

1
M

PM
i¼1 ðsgnl ið Þ � fsð1ÞÞ2

 !
ð19Þ

fstð7Þ ¼ M � 1

ðM � 2ÞðM � 3Þ M þ 1ð Þ
1
M

PM
i¼1 sgnlðiÞ � fstð1Þð Þ4

1
M

PM
i¼1 sgnlðiÞ � fstð1Þð Þ2

 !
� 3

 !
þ 6

" #

ð20Þ

fst 8ð Þ ¼ SðdM
2
eÞ ð21Þ

fst 9ð Þ ¼ minðsgnlÞ ð22Þ
fst 10ð Þ ¼ maxðsgnlÞ ð23Þ

fst 11ð Þ ¼
XN
i¼1

sgnl ið Þ2 ð24Þ

fs 12ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 sgnl ið Þ

2

M

s
ð25Þ

fst 13ð Þ ¼ fst 10ð Þ � fstð9Þ ð26Þ
fst 14ð Þ ¼ fst 10ð Þ � fstð1Þ ð27Þ

where fst is a statistical feature vector with a length of 14,

sgnl denotes signal, and M defines the length of the signal.

Steps of the presented feature generation model are

given below.

Step 1: Apply TQWT to the framed signal. To express

TQWT, a function (TQWTð:; :; :; :Þ) is defined.

Fig. 3 Schematic explanation of the proposed LEDPatNet19 a graphical overview of the proposed model, b the proposed fused feature extractor
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SBk ¼ TQWT sgnl; 2; 3; 17ð Þ; k ¼ f1; 2; . . .; 18g ð28Þ

The parameters (Q = 2, r = 3, and J = 17) were cho-

sen by using the trial and error method. These parameters

are the best-resulted parameters according to

experiments.

Step 2: Generate features by using Led-Pattern

led � pat :ð Þð Þ and istð:Þ functions. Therefore, the feature
generation is called as fused feature generation. This step

defines the fused feature generation from the raw EEG

signal frame.

ft1 jð Þ ¼ led � pat sgnlð Þ; j ¼ f1; 2; . . .; 512g ð29Þ

ft1 512þ kð Þ ¼ ist sgnlð Þ; k ¼ f1; 2; . . .; 14g ð30Þ

ft1 526þ kð Þ ¼ ist led � pat sgnlð Þð Þ; k ¼ f1; 2; . . .; 14g
ð31Þ

where ft1 defines features extracted from the raw signal.

As seen from Eqs. 28, 29, 30, three feature generation

methods are used together. These are Led-Pattern, sta-

tistical feature generation, and statistical feature gener-

ation of the textural features (Led-Pattern features). At

the same time, Eqs. 28, 29, 30 defines feature

concatenation.

Step 3: Apply fused feature generation to decomposed

sub-bands (SB).

fthþ1 jð Þ ¼ led � pat SBh
� �

; j ¼ 1; 2; . . .; 512f g; h
¼ f1; 2; . . .; 18g ð32Þ

fth 512þ kð Þ ¼ ist SBh
� �

; k ¼ f1; 2; . . .; 14g ð33Þ

fth 526þ kð Þ ¼ ist led � pat SBh
� �� �

; k ¼ f1; 2; . . .; 14g
ð34Þ

Step 4: Concatenate the feature extracted.

X t � 1ð Þ � 540þ zð Þ ¼ ftt zð Þ; z ¼ 1; 2; . . .; 540f g; t
¼ f1; 2; . . .; 9g

ð35Þ

where X is the final feature vector.

These four steps given above are defined as the proposed

fused feature generator. By using these four steps, 10,260

features are extracted.

RFIChi2 feature selector

The second phase of the proposed Led-Pattern and RFI-

Chi2 (Tuncer et al. 2020) based model is feature selection

with RFIChi2. RFIChi2 is a hybrid and iterative selector

(Tuncer et al. 2021). RFIChi2 has two primary objectives.

These are to use the effectiveness of both and ReliefF and

Chi2 (Raghu and Sriraam 2018) and to select the optimal

number of features automatically. ReliefF generates both

positive and negative feature weights. However, Chi2 (Liu

and Setiono 1995) cannot generate these type weights.

Therefore, the threshold point should be detected to elim-

inate redundant features by using Chi2. Moreover, redun-

dant features can be determined by using Chi2 easily.

Negative weighted features are determined as redundant

features by using ReliefF. Therefore, there is no threshold

point detection problem in the ReliefF. Iterative Chi2

(IChi2) is used to select the optimal number of features

automatically. Steps of the RFIChi2 selector are given

below.

1. Apply ReliefF to generated features.

2. Remove/eliminate the negative weighted features.

3. Use Chi2 to obtain qualified indexes.

4. Select feature vectors using the generated qualified

indexes. Herein, an iteration range is defined. For this

work, this range is defined as [100,1000].

5. Calculate misclassification rates of the chosen 901

feature vectors using SVM classifier with tenfold cross-

validation. In this step, the used loss function is

parametric. In this work, we have utilized SVM

classifier as both loss value generator/calculator and

classifier.

6. Choose the optimal feature vector using the calculated

misclassification rates.

Classification

The last phase of the presented LEDPatNet19 is the clas-

sification. SVM (Vapnik 1998, 2013) classifier is consid-

ered as a classifier to calculate results. The used classifier is

named Cubic SVM. Cubic SVM is a polynomial SVM. The

used parameters of this SVM classifier are given as fol-

lows. Third degree polynomial kernel has been used and

coding method is one-vs-one. We have selected automatic

kernel scale for the used SVM. In Tables (in Tables 2–4),

the best results are denoted/highlighted using bold font

type.

Results and discussion

Experimental setup

We downloaded publicly available GAMEEMO and

DREAMER datasets from the web,1. These databases have

EEG signals of 23–28 subjects with 14 channels and

includes two/four emotion classes. The used classes of the

1 https://data.mendeley.com/datasets/b3pn4kwpmn/1.

https://zenodo.org/record/546113#.YUioBLgzaUk.
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GAMEEMO dataset are funny, boring, horror and calm.

The DREAMER dataset has three cases and these cases are

arousal, dominance and valance. These cases have two

classes and these classes are named low and high. The

proposed LEDPatNet19 has been developed on these

datasets. Moreover, MATLAB (2020) programming envi-

ronment has been used with a computer to simulate our

proposal.

Experimental Results

The results of this model were given in this section. Two

datasets (GAMEEMO and DREAMER) have been used to

obtain results and to calculate measurements, accuracy,

average recall (AR), average precision (AP), F1-score, and

geometric mean were used. Mathematical expressions of

these measurements were listed in Eqs. 36, 37, 38, 39

accuracy ¼ tpc þ tnc
tpc þ tnc þ fpc þ fnc

; c ¼ f1; 2; . . .;Cg ð36Þ

AR ¼ 1

C

XC
c¼1

tpc
tpc þ fnc

ð37Þ

AP ¼ 1

C

XC
c¼1

tpc
tpc þ fpc

ð38Þ

F1� score ¼ 2� AP� AR

APþ AR
ð39Þ

where tpc; fnc; tnc and fpc are true positives, false negatives,

true negatives and false positives of the cth class. In the

classification problem, four classes were used. The

proposed LEDPatNet19 uses RFIChi2 feature selector.

This selector chooses variable number of features per the

used problem. The selected number of features for each

channel according to the dataset/case are tabulated in

Table 1.

The selected feature vectors (length of the selected

feature vectors are listed in Table 1). These feature vectors

are fed to Cubic SVM classifier. tenfold cross-validation

have also been utilized as validation technique. The cal-

culated results of the proposed LEDPatNet19 per the

dataset/case are denoted in Tables 2 and 3.

As can be seen from Table 2, the best accuracy rates of

the GAMEEMO and DREAMER/arousal datasets have

been achieved 99.29% and 94.58% respectively. The best

resulted channel for GAMEEMO dataset is FC6 and AF4 is

the best channel for DREAMER/arousal. Furthermore, the

best results are denoted using bold font type and accuracy

and overall recall value are the same for GAMEEMO

dataset since this dataset is a homogenous dataset. Results

of the DREAMER/dominance and DREAMER/valance

problems are tabulated in Table 3.

By using our proposed LEDPatNet19, 92.86% and

94.44% classification accuracies have been calculated on

the DREAMER/dominance and DREAMER/valance cases

respectively. The best results have been calculated using

AF4 and F7 channels consecutively.

Discussions

This research presents a new emotion classification model

by using EEG signals. The presented model uses a non-

linear textural feature generator, which is called Led-Pat-

tern. By using TQWT, Led-Pattern, and statistical features

(14 statistical moments), a fused multilevel feature gener-

ation network is presented. RFIChi2 selects the most dis-

criminative features, which are utilized as an input of SVM

classifier. This model is tested on publicly available

GAMEEMO and DREAMER EEG datasets. These datasets

have 14 channeled EEG signals. Mainly, RFIChi2 selected

a variable number of features for each channel. The

reached classification accuracies have been tabulated in

Tables 2and 3. The proposed LEDPatNEt19 attained

99.29% on the GAMEEMO dataset and 94.58% accuracy

rate on the arousal case of the DREAMER database.

Channel-wise results of the proposed LEDPatNEt19

according to the used dataset are also denoted in Fig. 4.

To obviously illustrate the success of the proposed

LEDPatNet19 emotion recognition model, this model was

compared to other emotion recognition method using the

GAMEEMO dataset. These results were listed in Table 4.

As it can be seen from Table 4, the best results of the

Alakus et al.’s method were achieved on MLPNN

Table 1 The number of selected features for each channel using

RFIChi2

Channel DREAMER GAMEEMO

Arousal Dominance Valance

AF3 879 731 806 974

AF4 451 602 745 890

F3 988 422 890 780

F4 566 351 631 969

F7 580 448 842 937

F8 707 805 848 898

FC5 402 546 547 856

FC6 536 616 702 862

O1 548 463 834 932

O2 710 313 960 835

P7 684 373 648 931

P8 717 407 991 824

T7 748 242 976 677

T8 710 882 625 989
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classifier. Our best result is greater 19.29% greater than the

best result of the Alakus et al.’s method.

In order to better imply the success of the suggested

LEDPatNet19 for DREAMER dataset, comparative results

are tabulated in Table 5.

According to Table 5, the results obtained show the

performance of the proposed method for the DREAMER

dataset. LEDPatNet19 attained the best classification rates

among the developed state of art methods. Moreover,

Cheng et al. (Cheng et al. 2020) proposed a deep learning

based EEG emotion classification model and our proposed

LEDPatNet19 also attained better results than deep model.

Advantages of the proposed LEDPatNet19 are:

• Effectiveness of the Led-Pattern, which is a nonlinear

pattern, for EEG-based emotion recognition was

demonstrated. This research demonstrated a new gen-

eration hand-crafted feature generation study area,

which is named as S-Box based nonlinear textural

feature generation.

• This research aimed to eliminate two fundamental

problems, which are feature extraction and feature

selection problems. By using a multilevel fused feature

generation network (TQWT, statistical features, and the

presented Led-Pattern), feature extraction problem is

solved. Moreover, RFIChi2 solved the feature selection

problem. Since it uses ReliefF and iterative Chi2

Table 2 The obtained

performance rates for

GAMEEMO and DREAMER

arousal case

Channel GAMEEMO DREAMER/arousal

Acc Rec Pre F1 Acc Rec Pre F1

AF3 98.75 98.75 98.75 98.75 91.19 89.57 91.87 90.71

AF4 98.57 98.57 98.58 98.58 94.58 93.47 95.15 94.30

F3 99.11 99.11 99.11 99.11 90.51 88.21 92.21 90.16

F4 98.39 98.39 98.41 98.40 91.86 89.80 93.46 91.59

F7 98.21 98.21 98.24 98.23 89.83 87.65 91.12 89.35

F8 98.75 98.75 98.76 98.75 91.86 89.96 93.16 91.53

FC5 98.57 98.57 98.59 98.58 88.14 86.27 88.57 87.41

FC6 99.29 99.29 99.30 99.29 88.47 85.74 90.48 88.05

O1 99.11 99.11 99.11 99.11 88.14 85.30 90.25 87.70

O2 98.39 98.39 98.41 98.40 89.15 87.10 90.07 88.56

P7 98.57 98.57 98.58 98.57 89.49 87.22 90.88 89.01

P8 98.57 98.57 98.59 98.58 89.83 87.49 91.42 89.41

T7 98.04 98.04 98.05 98.04 89.49 86.73 91.88 89.23

T8 98.57 98.57 98.58 98.57 90.17 87.61 92.32 89.90

Acc Accuracy, Rec: Recall, Pre Precision, F1 F1-score

Table 3 The obtained

performance rates for

DREAMER dominance and

DREAMER valance cases

Channel DREAMER/dominance DREAMER/valance

Acc Rec Pre F1 Acc Rec Pre F1

AF3 89.46 84.78 91.14 87.85 91.98 91.97 91.98 91.98

AF4 92.86 89.50 94.32 91.85 92.90 92.90 92.90 92.90

F3 89.80 85.31 91.38 88.24 91.67 91.66 91.68 91.67

F4 89.12 84.53 90.47 87.40 90.12 90.12 90.12 90.12

F7 87.76 81.88 90.49 85.97 94.44 94.43 94.63 94.53

F8 92.52 88.97 94.09 91.46 93.83 93.83 93.83 93.83

FC5 87.41 81.90 89.24 85.42 92.28 92.27 92.33 92.30

FC6 87.07 81.93 88.12 84.91 91.98 91.97 92.01 91.99

O1 85.71 80.65 85.91 83.19 87.35 87.35 87.35 87.35

O2 89.46 85.06 90.71 87.80 92.59 92.60 92.61 92.61

P7 89.80 85.86 90.57 88.15 91.05 91.05 91.05 91.05

P8 90.82 86.89 92.09 89.42 90.74 90.73 90.77 90.75

T7 88.78 84.56 89.43 86.93 92.90 92.89 92.95 92.92

T8 90.82 86.34 92.98 89.54 91.98 91.96 92.15 92.05
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Fig. 4 Channel-wise

classification accuracies of the

proposed LEDPatNet19 per the

used datasets

Table 4 Accuracy rates (%) for the multiclass classification of the Alakus et al.’s method and our presented Led-Pattern and RFIChi2method

Method AF3 AF4 F3 F4 F7 F8 FC5 FC6 O1 O2 P7 P8 T7 T8

Alakus et al.’s method ? kNN

(lakus et al. (2020)

42 55 35 43 43 54 47 36 43 38 41 40 38 45

Alakus et al.’s method ? SVM

Alakus et al. (2020)

54 50 40 54 70 69 34 34 55 54 66 70 47 79

Alakus et al.’s

method ? MLPNN Alakus

et al. (2020)

80 75 75 82 71 71 75 74 71 65 70 72 65 79

LEDPatNet19 98.75 98.57 99.11 98.39 98.21 98.75 98.57 99.29 99.11 98.39 98.57 98.57 98.04 98.57

Table 5 Comparative results for DREAMER dataset

Study Method Accuracy (%)

Arousal Dominance Valance

Cheng et al. (2020) Deep neural networks 90.41 89.89 89.03

Bhattacharyya et al. (2020) Fourier–Bessel series expansion based empirical wavelet transform 85.40 84.50 86.20

Li et al. (2021) 3-D feature representation and dilated fully convolutional networks 79.91 80.23 81.30

Liu et al. (2021) Deep canonical correlation analysis 89.00 90.70 90.60

Wang et al. (2021b) Frame-level distilling neural network 87.67 90.28 89.91

Wang et al. (2021a) Domain adaptation symmetric and positive definite matrix network 76.57 81.77 67.99

Zhang et al. (2021) Generative adversarial networks 94.21 – 93.52

Galvão et al. (2021) Wavelet energy and entropy 93.79 – 93.65

Our method LEDPatNet19 94.58 92.86 94.44
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together, it has automated the optimum number of

features selection.

• By using SVM classifiers (it is a shallow classifier),

high classification accuracies were obtained for all

channels (see Tables 2 and 3).

• The proposed LEDPatNet19 emotion classification

model has achieved better performance than the previ-

ous studies that uses the same dataset (see Tables 4 and

5).

• General classification accuracy of the proposed LED-

PatNet19 is able to achieve high classification accuracy

on the two EEG emotion datasets.

Conclusions and future directions

This work presents a new generation emotion recognition

model. This model has four fundamental phases, which are

preprocessing, fused feature generation using Led-Pattern

and statistical feature generator, discriminative features

selection by RFIChi2, and classification using SVM. Our

presented LEDPatNet19 model was able to over 92%

classification accuracies for the used GAMEEMO and

DREAMER datasets. These results clearly demonstrate the

success of the presented emotion recognition model. Also,

the presented LEDPatNet19 is compared to other emotion

classification models and achieved better performance. The

proposed model can be used for developing an automated

emotion recognition method during game playing, driving

fatigue detection, and seizure prediction and detection in

future works. We are planning to develop a new generation

nonlinear S-box pattern-based deep network. The new

nonlinear patterns can be presented by using other S-boxes.
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