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about the operations of the placement head, and the other on the regularized
least-squares regression method trained with a set of PCB placement jobs. In
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1. Introduction

Assembly of electronic devices on printed circuit boards (PCB) is performed by the
means of production lines consisting of several automated placement machines. To keep
the agreements and realize the fixed schedules, production planning involves various
decisions, such as scheduling the PCB jobs to meet the due dates of the products or
balancing the work load of line machines. It is typical of applications like these that
production times for different alternative partitionings of the assembly task to the line
machines are repeatedly asked for, possibly even millions of times during a single planning
task. Here, complete or even partial machine control optimization (i.e. defining feeder
allocation, nozzles, component pick-ups, placement sequence, nozzle changes etc.) along
with a machine simulator is often too slow and one needs an approximate method that
quickly and accurately estimates the time for a large number of candidate partitionings.
Design of this kind of production time estimators is studied in the present work.
The variety of different component placement machine types is very large in present

days; vPlan by Mentor Graphics (2012) recognizes 770 machine types. To keep the study
concrete, it is reasonable to concentrate the discussion to a particular class of machines.
Gantry type placement machines having multi-nozzle collect-and-place heads are, due to
their high production performance, flexibility, accuracy, and low cost, used increasingly in
Printed Circuit Board (PCB) assembly. The machine types can further be classified into
single and multiple head machines as well as into single, double, and multiple placement
station machines. Placement station refers to the location where the component place-
ments are performed. For example, ASM Siplace machines, on which this work focuses,
has two revolver heads and a single placement station.
The task of controlling PCB assembly operations have been studied in numerous arti-

cles (see references in Laakso et al. [2002], Grunow et al. [2004], Michalos et al. [2010]).
The involved problems are challenging due to their computational complexity and hi-
erarchical nature. The PCB assembly design and control problems of the tactical level
depend on the numbers of PCB types to be produced and on the machines in use (Johns-
son 1999). On the lowest level (1 PCB type and 1 machine) there are detailed technical
problems, which deal with the optimal control of an individual placement machine of a
particular type (Grunow et al. 2004, Rong et al. 2009, Raduly-Baka et al. 2010), selecting
the nozzle assortment (Raduly-Baka et al. 2008), optimization of the feeder assignment
(Pyöttiälä et al. 2009), and optimization of the nozzle selection (Pyöttiälä et al. 2006).
Higher levels of the problem hierarchy include strategic planning of the whole PCB as-
sembly plant (Rogers and Warrington 2004), reconfiguration problem of the modular
placement machines (Grunow et al. 2003, Toth et al. 2010, Rong et al. 2011), job group-
ing (Knuutila et al. 2004, Yilmaz et al. 2007), and production line balancing problem
(Lapierre et al. 2000, Emet et al. 2010).
As an example, consider the line balancing problem. Publications on the topic include

commonly the assumption of constant pick and placement times. As pointed out by
many investigations (Laakso et al. 2002, Grunow et al. 2004, Yilmaz et al. 2007), the
actual pick and placement times depend on the machine type (operational principle,
number of placement heads and number of nozzles per head) and on the actual machine
setup. Moreover, the pick and placement times depend strongly on the nozzle-to-head
assignment, in particular on the number of copies of different nozzle types in the multi-
nozzle head and on the component types (small or large shape). Different component
types must be manipulated with suitable nozzle types, and hence the nozzle-to-head
assignment should match the component shapes of the PCB job. A diverse nozzle setting
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in the head tends to require several pick-and-place cycles. Further, when the production
program is object to dynamic changes and deadlines of the products are tight, a solution
is often needed in very quickly, and hence fast production time estimators are needed.
Most of the above studies use simplified abstractions of the machines and boards

which limits their direct applicability in practice. The production time is often calculated
directly from the nominal tact time (components per hour) given by the manufacturer
and possibly augmented with a slowdown coefficient, or with linear models based on
the number of the components on the PCB. These approaches are fast to use, and
they are often applied when the optimization method calculates assembly time estimates
for a large set of alternatives as done, for example, in scheduling, line balancing, or
job grouping. Their drawback is that the influence of the machine setting details like,
compatibility between nozzles and components, component feeder arrangement, nozzle
allocation and sequence on the assembly heads, component positions on the PCB, etc.,
are not taken account of. This may lead to suboptimal results and, in turn, to increased
production costs, and in the end weakens the position of the manufacturer.
The purpose of the present study is to search for more exact estimates by taking

advantage of the information given by the manufacturer about the operations of the
placement head, and by considering the nozzle-to-head assignments and other features
of the assembly task like frequencies of the different component types and nozzle types.
Two assembly time estimators are proposed, namely a simulator for the operations of
the placement heads and a greedy regularized least squares regression algorithm trained
with a set of PCB placement jobs. While the second method runs in linear time the
simulator consumes quadratic time, which is small in comparison to the time taken by
the control code optimization along with a machine simulator.
To concretize the work, a large set of real production tasks for an ASM Siplace two-

head machine were taken to estimate the assembly times (a similar machine has earlier
been Siemens Siplace and the data are actually for that). Each production task is a
list of components to be placed on the PCB. For each component are given component
type, reference designator (placement position in x- and y-directions) and the nozzle
type. The data includes also the real assembly time for each of the two heads and the
estimated times can therefore be compared with the real times. Although the observations
and conclusions are based on a particular gantry-type machine, they can be used more
generally for other revolver head machines.

2. Production time estimators

The manufacturing time of a PCB job has been estimated in previous literature in the
following four different ways. These ways are also summarized, with some representative
references, in Table 1.
First, the most direct method is to solve the detailed control program of the job, set

up the machine for production, perform the assembly of the components and observe
the time from the clock of the machine. A bit cheaper method may be applicable if
the machine allows the so-called “cold operation”-mode where the actual pick-ups and
placements are performed without moving the real components. These two methods give
actual production times (omitting the breaks for component reel changes). On the other
hand, they are impractical because preparation and performing the tests is laborious and
time consuming. Further, a machine or the whole production line may not be available
for such tests. Due to these drawbacks, these kind of experimentations are of restricted
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use only. One such a case is practical fine tuning the production of a product. References
on this topic are hard to find in scientific periodicals.
Second, the estimation method can trust on a machine simulator which takes a com-

plete control program of the PCB job including all details which are needed by the real
machine. The program is an output of the automated control program generator. The
simulator then mimics the operations of the true machine (Tirpak et al. 2002, Kallio et al.
2012, Siplace 2012, Mentor Graphics 2012). This kind of simulators give very accurate
results, and thus they are valuable when evaluating the design of the production process.
As a drawback, their construction is hard, machine parameters may need reverse engi-
neering and most of all, one has to trust on the software for generating the true control
program of PCB assembly. For the last property the simulator is not suited for use as a
principal cost function of an optimizer which evaluates a large set of candidate solutions.
Third, it is possible to approximate the cost of a PCB job on a more coarse level

without knowing the real machine control program (Altinkemer et al. 2000, Pyöttiälä
et al. 2013). This kind of estimator suits well to be used in solution algorithms for sub
problems of the assembly control program. Estimators vary greatly in their complexity
according to their use situations. A common characteristic of them is that they get the
number of components, some parameters of the different machine operation speeds and
machine details as their input and use simplified assumptions on the operations principle
of the machine and on the control program of the PCB job. Even here the formulas for
the production time may become rather involved. On the other hand, this approach has
the benefit that one can use it on very rough level of abstraction. For example, when
considering the feeder assignment it may be possible to model the movement lengths on
the PCB area by averages and concentrate on the movements above the feeder bank and
on the revolver head rotations (Pyöttiälä et al. 2013). An extreme abstraction is to let the
production time to be simply the ratio of the number of component placements divided
by the observed average number of component placements per hour. Though commonly
used, this estimate may lead to weak results in particular when nozzle changes cannot be
avoided or there are “slow” and “fast” component placements done by the same machine.
Fourth, an estimator can be constructed by the means of regression modelling methods.

In this approach, a set of typical PCB jobs are collected and used to train the estimator.
The production times of the jobs are observed from the machine clock along with a
number of the parameters on the PCB. If the control programs of the jobs have been
optimized, one can construct in this way a regression model which models the optimal
production times of the given set of jobs for the given machine with its current machine
setting, see Laakso et al. (2002), Wu and Ji (2010), Yilmaz et al. (2009) and Vainio
et al. (2010), for linear and non-linear neural network regressions. These estimators are
useful when a large number of optimized solutions are evaluated for line balancing or
production scheduling purposes.
Linear regression models are constructed in Laakso et al. (2002) for a turret machine

with a moving feeder unit and PCB holding table and single stationary revolver head. The
total number of component placements and the number of different component types F
was used as the parameters. The effect of different nozzle types was omitted. Coefficient
for determination R2 ranged from 82.4 to 92.2 depending on the number of parameters
(in the above order).
The above machine type was also used by Wu and Ji (2010) who reached R2 = 0.999

with a non-linear model for predicting the time t of the form

t = a0 + a1N + a2
√
NAF, (1)
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where a0, a1 and a2 are coefficients, N is the number of components placed in the PCB
job, and A is the area of the smallest rectangle surrounding the components on the PCB.
The average placement time per component was estimated in Yilmaz et al. (2009) for a

collect-and-place machine with a revolver head in a single gantry. The effect of different
nozzles is not visible in this estimate.
A multi-layer perceptron was trained for a two-gantry machine with revolving heads

by Vainio et al. (2010). The input parameters of the neural network were N , F , d (the
number of different component shapes), A, max{L} (maximal side length of the PCB,
which for a rectangular PCB is L =

√
A), f (component size variance). The Bayesian

regularization of the network parameters was applied to avoid overfitting of the model.
The intention in the present study is to construct a practical machine operation time

estimator, which is faster to use in applications like the PCB assembly line balancing
or scheduling than the approaches requiring to solve the fully optimized control of the
machine separately for each PCB job. To reach this goal, two approaches are proposed.
Approximation of the head movements by a nearest neighbor rule, and use of modern
least-squares regressors. Real production data of a two-gantry machine is used for testing
the estimation performance of both approaches and for training the regression method.
The nearest neighbourhood rule models the result of a machine optimizer in a simple

way by determining heuristically a component placement route and using the nominal
machine parameters in the time calculations. While the aim of the research in the machine
control optimization is to develop optimal feeder and nozzle assignments and component
placement ordering, the aim in this study is to only estimate the production time. The
nearest neighbour method operates thus between the nominal placement rate approach
(Bentzen 2000) and the detailed modeling (Seth et al. 2009).
To train a regressor, a modification of the regularized least-squares technique (Hoerl

and Kennard 1970) is used. The technique has the ability of choosing the most impor-
tant parameters to the model in an automated way. This property makes the model
construction much easier in comparison to previous approaches.

3. Characteristics of rotary head assembly machines

A rotary head type assembly machine has one or several rotary collect-and-place assembly
heads, called also revolver heads, (cf. ASM Siplace and Fuji NXT, AIM and XP series).
In order to keep the discussion coherent, it focuses on ASM machines that use two
placement heads in turns to place components on the same PCB. The terminology of
machine classification is still evolving and therefore these kind of machines have been
placed to the class of multi-head placement machines (of type one), collect-and-place
machines (having a revolver head for nozzles), or collect-and-place machines (having
an array of nozzles), see Ayob and Kendall (2008) for more in depth discussion. Both
heads work simultaneously; as one head collects (maximally 12) components from the
stationary feeder bank, the other head places its collected components (maximally 12)
to their correct positions on the stationary PCB. Because the two heads are working
simultaneously but avoiding collisions, the “unproductive” time of collecting components
is minimized or practically eliminated. One of the two heads is supposed to be almost
always “productive” placing components on the PCB.
An ASM machine can also have four placement heads. These machines, in fact, consist

of two different placement stations and each of them has two 12-nozzle collect-and-place
heads. These are called multi-station machines.
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3.1 Collect-and-place rotary heads

The high placement performance (i.e. speed and accuracy) of the gantry-type placement
machines is achieved by using collect-and-place heads. A collect-and-place head operates
with multiple nozzles to minimize the number of unproductive movements from the feeder
to the PCB and vice versa. For example ASM machines are equipped with compact
rotary (revolver) heads. The exact position and orientation of the collected components
on nozzles is measured in the fly using an integrated component camera mounted above
the head. The head can be therefore rotated only in one direction.
It is possible that there are several collect-and-place revolver head types available for a

placement machine (e.g. the head of ASM Siplace can have 6, 12 or 20 spindles to carry
nozzles). Each head type can handle a spectrum of feasible component shapes (package
forms and sizes). The feasibility can be expressed by a function:

F (h, s) =

{

1 if head h is capable of manipulating component shape s
0 otherwise

(2)

Technical specifications of the placement heads set restrictions on the component shapes.
Therefore the component types that are assigned to the head must fulfill the restrictions
given by F . Further, there are restrictions dealing with the order of the revolver heads on
the assembly line; smaller (lower) components have to be placed first. Otherwise, there
will be collisions between the head and already placed higher components.
Because the revolver head can rotate only in one (forward) direction, the collect-and-

place operations are FIFO-like where the sequence of the component collections defines
also the sequence of the component placements. Therefore, collection and placement steps
can not be optimized separately.

3.2 Component shapes and nozzle types

The electronics components are packaged in numerous different shapes. As mentioned
before, a certain nozzle type is required to pick and place components of a given shape.
The things are however more complicated; one nozzle type may handle several component
shapes and one component shape may be handled using several nozzle types. Thus, in
addition to the so-called primary nozzle type it may be possible to trust on a secondary
type. It is question of the reliability of the nozzle-component fastening during the head
movements due to the high acceleration values and centrifugal forces.
Allocating different nozzle types to a placement head stands for selecting a set of

different nozzle types and the number of copies of each type. The allocation greatly
affects the route lengths of the head. In order to demonstrate this, consider a single PCB
type to be processed by a single machine; nozzles are not changed during the assembly;
and the minimal number of pick-and-place cycles is constructed. Let us first illustrate
the effect of different nozzle types on the placement performance. Suppose that a head
is equipped with 5 different nozzle types and the nozzle set for the 12-spindle head is the
following (ASM standard nozzle types):
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spindles nozzle type
1 911
2-6 905
7-10 923
11 915
12 917

The head has to collect and place 43 components on a PCB. The dimensions of the PCB
are 119 mm x 175 mm. To do the placements, the head has to perform 4 collect and
place cycles. Figure 1 illustrates the real placement cycles (the data is an excerpt from
an optimized production control program).
As one can see, the placement routes are very confusing and seemingly unfavourable.

Because the placement head is equipped with 5 different nozzle types and the head can
rotate in one direction only, route planning has to be made separately for each nozzle
type. The resulting route is therefore the sequence of five partial routes in the same
placement order as the nozzle types are in the placement head. In this example there are
three nozzle types 911, 915 and 917, having only a single copy.
On the other hand, if all the nozzles were of the same (universal) type or if the head

could rotate in both directions (without significant delay) one could get shorter routes
on the same PCB area; see Figure 2 for the same component placements as in Figure 1.
Euclidean metrics are used for calculating the distances in this example case. The total
length of the sub-routes in Figure 1 is 1212.8 mm whereas in Figure 2 it is only 439.1
mm.
This simple example raises the question whether one may cast an efficient estimator for

a gantry-type assembly machine in the presence of multiple nozzle types in the revolver
heads and the heads rotating in one direction only. In particular, one wants to avoid
the time consuming generation of the full control program and still reach a reasonable
accuracy.

4. Nearest neighbour of certain type (NNCT) algorithm

Let us consider a PCB assembly job J which calls for placements of m components
cmi=1, each of which can be written as a tuple ci = (xi, yi, ui, vi), where xi and yi are
the coordinates (called reference designator) of the component on the PCB, ui is the
component type, and vi the primary nozzle type demanded by the component. The task
in assembly control optimization is to find assignment of feeders and nozzles, and a
permutation W = (i1, i2, . . . , im) of the job J such that the total manufacturing time is
minimal for this particular order of placements. When using a multi-nozzle placement
machine the processing runs in pick-and-place cycles, called task blocks. W can therefore
be expressed as a sequence of the task blocks W = (W1,W2, . . . ,Wk) where the task
blocks form a partitioning of the permutation W . Here the length of a task block is
restricted by the nozzle capacity of the head.
Recall that the placement station considered in this paper has two gantries working on

the same PCB area by turns so that one is collecting components from the feeder bank
while the other is placing them. Therefore, in order to approximate the total assembly
time, one can mostly ignore the component collection time, because it is usually no larger
than the placement time. That is, the collecting head has enough time to complete the
collection phase and then to move to the waiting position near PCB before the placing
head has completed its placements. Accordingly, the assembly times are estimated based
only on the component placements on PCBs. A second and even more important reason is
that the production data does not give us any information about the feeder arrangements.



March 21, 2014 8:53 International Journal of Computer Integrated Manufacturing document

8

Due to the lack of this information, one also has to generate the component placement
orders in a simplified way. The nozzle arrangements are here based only on the nozzle
type frequencies calculated from the job data. The nozzles are supposed to be in the
head in groups of the same type and in decreasing order of group sizes. Thus, the most
frequent nozzle type is filled with components first, then the next frequent nozzle type
etc. In the following, it is supposed that the component placements have been allocated
to the both of the heads. This is because the test data was obtained from real optimized
production. Allocation of the placements to the heads should in general be done but this
is bypassed here.
The above arrangement leads us to use a modification of the nearest neighbour search

(NNS) heuristics in the route construction. The basic NNS heuristics can be used to
find a suboptimal solution to the vehicle routing problem. In this algorithm one selects a
starting point for the placement route and then computes the distances from the starting
point to each other remaining point and proceeds to the nearest one. The same is iterated
by starting from the found new point and maintaining the route and the set of unvisited
points. A modified version of the NNS algorithm (called nearest neighbour of certain
type, NNCT) is used to plan placement routes of a revolver type placement head. Now,
the total route consists of a set of separate but interconnected sub-routes. The head type
defines the maximal number of the route points of a sub-route (6, 12 or 20 route points).
Sub-routes are open, because the collection of the components on the feeder bank (depot)
is not considered. As component shapes require pertinent nozzle types, one has to search
component positions with shape matching to the current nozzle type in the revolver.
The number of different nozzle types and frequencies of each nozzle type is fixed when
the nozzles are assigned to the head. The nozzle set is changed only when the product
(PCB type) is changed. The closest placement position for the first nozzle of the head is
selected as starting point for each sub-route (task block).
The assembly time calculation for each head and head pair consists of three steps:

(1) Assigning nozzle types according to their usage frequencies to the head. First,
the total number of the components m to be placed on the PCB is determined
for the assembly job. Next, the number of different nozzle types needed k and
the number of component placements pz (z = 1, . . . , k) for each nozzle type z
is counted. One copy of each nozzle type is initially allocated to the head. The
remaining H − k spindles of the head are then allocated to different nozzle types
in proportion to the ratios ez = pz/m. It is supposed that the nozzles are stored
in groups of the same type in decreasing order of group sizes.

(2) Searching placement positions for the nozzles using NNCT algorithm. First, the
set of components is divided into k subsets according to the nozzle type needed.
Then, for each placement tour and for each placement of the tour, NNCT algo-
rithm is used to find the nearest placement position for the current nozzle type
from the nozzle type sequence of the head. Note that some of the nozzles may be
bypassed during some later tours, that is, there are no more components to place
with that nozzle type.

(3) Calculating assembly times using maximum (i.e. L∞) metrics. Concerning the
movement between the placement locations of the jth and (j + 1)th components
of the hth tour (h = 1, 2, . . . , r), there are three movement types to take into

consideration. Namely, the x-movement th,jx and y-movement th,jy on the PCB

area, as well as the head rotation th,jr . The x and y -movements are calculated
from the known speed and acceleration values given by ASM, that is, they are as-
sumed to roughly follow the three-part pattern consisting of acceleration, moving
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with maximum speed, and deceleration, the middle part being absent for short
movements. The head rotation is performed by a stepping motor, whose steps
each require a certain constant time. The time spent on head rotation thus is a
multiple of the constant, depending on the order of the nozzles on the head. The

actual movement time th,jc spent for moving between the placement locations of
the jth and (j + 1)th components is the maximum of these three quantities:

th,jc = max
(

th,jx , th,jy , th,jr

)

. (3)

Note also that for the first and last components of the tour, this movement is
between PCB and the feeder area, which is numbered as being a part of the
head interchange time ts, that is, the time spent for switching from using head
1 to head 2 and vice versa. For each component to be placed, there is also an
additional, independent z-movement tp, indicating the time spent on the actual
placement of the component on PCB. Both ts and tp are assumed to be constants.
Accordingly, the total time Th of the hth placement tour is:

Th = ts +

Nh−1
∑

j=1

th,jc +Nhtp . (4)

Note that the actual number of components Nh for each pick-and-place tour must
be calculated for each tour separately, because it depends on the compatibility of
the components with the nozzles (e.g. the components are nozzle specific as they
can only be placed with certain nozzles). Moreover, even in cases where only a
single nozzle type is required, the number of components to be placed may not
necessarily be a multiple of the placement heads capacity. These constrains, in
turn, also affect the overall number of tours.
The total time for performing all r placement tours of a PCB is:

T =
r

∑

h=1

Th . (5)

The constant parameters are: rotation time tr = 0.07 sec, nozzle placement time
tp = 0.05 sec, head interchange time ts = 0.3 sec.

5. Regression modelling

This section discusses another approach to the estimation of the optimal production
times of PCB jobs from the input of the control code optimization. Modern regression
methods are simple but surprisingly efficient tools for automatizing tasks difficult for a
human expert to model. As will be supported by the experimental results, the above
described NNCT method taking advantage of rules hand-crafted by a human expert
performs significantly worse than a simple data driven regression approach. In contrast
to the previous section, the knowledge about the operations principle of the machine is
not utilized. Instead, machine learning techniques are used to look from a large set of
candidate features which ones are the most useful in modelling the production of the
PCBs in a training data set.



March 21, 2014 8:53 International Journal of Computer Integrated Manufacturing document

10

The base regression algorithm employed here is in the literature called as regularized
least-squares (RLS) or ridge regression (Hoerl and Kennard 1970). Given a set Z =
{(x1, t1), . . . , (xm, tm)} consisting of m input-label pairs, where x

i are data points and
ti their real valued labels (i.e. the production times of boards), training of the RLS can
be considered as solving the following optimization problem:

T (Z,S) = argmin
w∈R|S|,w0∈R







∑

(x,t)∈Z

(xT
Sw + w0 − t)2 + λ(wTw + w2

0)







, (6)

where xS ∈ R
|S| is the feature representation of a data point x determined by the set S of

feature indices. The first term in the objective function measures the squared regression
error on the training set and the second term, called the regularizer, penalizes models with
too large norms. The trade-off between these two is controlled with the regularization
parameter λ > 0. Throughout the experiments, the value of the regularization parameter
λ is set to 1, which was found to be appropriate with cross-validation (CV). The regression
functions obtained by solving problems of type (6) are of the form

f(x) = x
T
Sw + w0, (7)

where x is a column vector for which the prediction is to be made, w ∈ R
|S| is a column

vector representation of the learned model, and w0 is called the intercept. The feature
representation of the data and the size |S| of the linear models under consideration are
determined by the feature selection process, which is described in Algorithm 1.

Algorithm 1 Greedy forward feature selection for regularized least-squares

1: procedure GreedyRLS(Z)
2: S ← ∅
3: ǫ←∞
4: loop

5: b← argmini∈{1,...,n}\S H(Z,S ∪ {i})
6: ǫb ← H(Z,S ∪ {b})
7: if ǫb >= ǫ then
8: break

9: end if

10: S ← S ∪ {b}
11: if |S| = n then

12: break

13: end if

14: ǫ← ǫb
15: end loop

16: return S
17: end procedure

Some of the present authors have recently proposed an algorithm, a linear time feature
selection algorithm for RLS called greedy RLS (Pahikkala et al. 2012). Here, linear time
refers to the computational complexity O(mnk) of greedy RLS training, where m is the
number of training examples, n is the overall number of feature candidates in the training
data, and k is the number of features selected by the algorithm (e.g. k = |S|). The value
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of k can either be a constant given by the user (indicating that the selection process stops
exactly when k features have been selected), or it can be determined by the selection
criterion (indicating that the selection process stops when selecting more features does
not improve the criterion anymore). In the experiments, the latter approach is adopted
since it eliminates the extra degree of freedom associated to selecting k. The outcome
of the greedy RLS algorithm is exactly equivalent to that obtained by performing a
wrapper-based feature selection for RLS regression with leave-one-out cross-validation
(LOOCV) as a selection criterion (see Kohavi and John [1997]), which is achieved via
computational short-cuts rather than computationally expensive retraining of the model
from scratch.
In Algorithm 1,H denotes the LOOCV criterion that is computed during each selection

round for each set S ∪ {i}, where S is the set of feature indices already selected during
the previous iterations and i denotes an index of a feature not in S. The value of H for
S ∪ {i} is the LOOCV error of a RLS regressor trained using the features S ∪ {i}, that
is, it is equivalent to the value obtained from

H(Z,S ∪ {i}) =
∑

(x,t)∈Z

(fZr(x,t),S∪{i}(x)− t)2, (8)

where the function fZr(x,t),S∪{i} denotes the RLS regressor of type (7) whose parameters
w and w0 are obtained from (6) with the data Z r (x, t) and with the features indexed
by S ∪{i}. For a more detailed description about the computational short-cuts employed
in the algorithm, especially those used to speed up the computation of (8), see Pahikkala
et al. (2012).
Cross-validation and its extreme form, LOOCV, are well-known methods for evaluating

the quality of models inferred from data (see e.g. Elisseeff and Pontil [2003]). In LOOCV,
each training example is held out from the training data at a time and used for evaluation
while the rest of the data is used for training, and the results found in this way are
averaged. Since only one training example is removed from the training set during each
cross-validation round, LOOCV is known to be an almost unbiased estimator of the
learning performance. However, there is an inherent problem here. Since greedy RLS uses
LOOCV as a feature selection criterion, it cannot be used for evaluating the prediction
performance of the learned model, because LOOCV would then over-fit to the selection
process. To take account of this, one can resort to the so-called nested cross-validation
(see e.g. Varma and Simon [2006]), in which an outer LOOCV loop is used for prediction
performance evaluation so that the test sets of the outer LOOCV are independent of the
feature selection process done within the training set with the inner LOOCV. This outer
LOOCV loop is illustrated in Algorithm 2.

Algorithm 2 Outer LOOCV for regression performance estimation
1: ǫ← 0
2: for i = 1, . . . ,m do

3: Zi ← {(x1, t1), . . . , (xm, tm)} \ {(xi, ti)}
4: S ←GreedyRLS(Zi, n)
5: w, w0 ← T (Zi,S)
6: p← x

i
S
T
w + w0

7: ǫ← ǫ+ |p− ti|
8: end for

9: return ǫ



March 21, 2014 8:53 International Journal of Computer Integrated Manufacturing document

12

6. Experimental setup

The data used in the experiments consist of a set of 95 PCB jobs, whose assembly
times range from 11 to 96 seconds and the number of placed components from 36 to
538 components. Altogether, there are 520 and 16 different component and nozzle types,
respectively, encountered in the data.
The NNCT method is not data driven in the sense that it relies on rules designed by

a human expert rather than those inferred from a set of training data. Thus, to test the
prediction performance of the method, it is simply evaluated on the whole data set of 95
jobs.
The tact time 20,000 components per hour of the machine reported by the manufacturer

is used as a non data driven baseline approach. With this approach, the placement time
in seconds is predicted simply by multiplying the number of components to be placed
with 0.18.
A large set of potential features for describing the characteristics of the boards to be

assembled is generated for the greedy RLS regression method. The first feature is the
number of components placed to the board under consideration and the second is the
number of different nozzles used in the placement. In addition, one feature per each
different component type and nozzle type is generated, that is, altogether 520 and 16
component and nozzle type features, respectively. The value of a component type feature
for a board is the number of components of that type placed on the board, and the
value of a nozzle type feature indicates how many times the nozzle type is used when
assembling the board. Thus, the overall number of features available for training the
regressor is 538. In addition to these, it is also tested whether the other features used by
Vainio et al. (2010) and Wu and Ji (2010) that were applicable on the data used in this
study, but they did not have any noticeable effect on the prediction performance.
While the first two features always have a nonzero value, both the component type

and nozzle type features are sparse, that is, they have a nonzero value only on a small
subset of the data points. Nevertheless, it turns out that as a group they are helpful in
improving the accuracy of the regression model. It should be noted that all the features
used here are available just prior to the optimization of the control program. In addition
to the above features of the PCB jobs, the observed production time of the optimized
control programs is given for each training point.
In contrast to the NNCT method, training the greedy RLS regression models require

training data, which must be kept independent from the data used for prediction perfor-
mance estimation in order to avoid biased results. As discussed above, the independence
is ensured via performing a nested LOOCV, in which the outer CV is reserved for per-
formance evaluation, and the inner CV is used for feature selection and is separately
performed during each round of the outer CV.
In addition to the two above methods, a univariate and a two-variate regression models

of the form

f(x) = w0 +w1N, f(x) = w0 + w1N + w2v, (9)

are tested as baseline methods, where N is the number of components placed on the
board and v the number of different nozzle types used during the job x, and w1, w1 and
w2 are the regression parameters obtained via ordinary least-squares regression on the
training data. These two features were selected, because they were found to carry the
strongest signal during the feature selection (see Section 7), and N is also used in other
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related works, such as by Vainio et al. (2010) and Wu and Ji (2010). The testing of these
baselines was performed with an ordinary LOOCV without nesting, because the method
did not involve any feature selection.
The prediction performances of the considered methods are measured with three stan-

dard measures. Namely, the root mean squared error, the mean absolute error, and
the mean absolute percentage error. The measures are evaluated on the whole data set
between the true observed assembly times and the predicted ones. The non-parametric
Wilcoxon signed ranks test (Wilcoxon 1945) is used for testing the statistical significances
of the performance differences between the considered methods. The test is evaluated on
the sets of absolute prediction errors on the 95 PCB jobs.

7. Results

The times estimated by NNCT, greedy RLS regression, univariate regression, two-variate
regression, and tact time -based methods are illustrated in Figure 3, Figure 4, Figure 5,
and Figure 6, and Figure 7, respectively. The jobs in all illustrations are sorted into
an ascending order by the real observed assembly times, and the real assembly time is
denoted in the figures with plus signs and a line connecting them. The lines with circles,
in turn, show the corresponding estimated times.
A summary of the prediction performances for all three methods is given in Table 2. All

the performance differences in the table were found to be statistically significant with the
Wilcoxon signed ranks test except the difference between the NNCT and the univariate
regression method. The NNCT method is clearly better than the simple tact time -based
prediction approach, and while the NNCT fails to achieve the prediction performance
of the regression approaches, it is not data driven, and hence it does not require any
training data in order to adapt to a completely new and different set of PCB jobs. In
contrast, the regression methods require training data before they can be deployed for
solving a new type of prediction task but, according to the results, provide more accurate
predictions when properly trained.
The number of components in the set of 95 PCB jobs is so small that the estimation

times for both the NNCT and regression approaches are small, making both methods
usable for practical tasks. Namely, the estimator needed about 2 seconds to estimate the
assembly times of 190 assembly heads forming the 95 head pairs (PCB jobs), and the
estimation time required by the regression approaches is so close to zero that it can not
be reliably measured, both timings depending more on the programming language than
the model complexity. This is in contrast to the time required for generating the fully
optimized control program for the PCB jobs, which is in practise substantial (minutes).
The statistics about the features selected during different rounds of the outer LOOCV

are presented in Table 3. Recall, that the feature selection and the training of greedy
RLS models are done within an inner LOOCV loop separately during each iteration
of the outer LOOCV loop. As a result, the models learned during different rounds of
the outer loop may contain different sets of selected features, and hence the statistics
of the most commonly selected features are reported rather than a single set. The first
feature, indicating the number of components placed on the board, is clearly the most
powerful one, as it is selected first during each iteration of the outer LOOCV loop. The
second feature, the number of different nozzle types used during the placement process,
is almost as useful, since it is also constantly selected as the second feature. The feature
indices start to differ at the third iteration, after which the selected features correspond
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to the numbers of certain components or nozzle types used in the assembly process. The
feature indices ranging from 3 to 522 refer to component type features and the ones from
523 to 538 refer to the nozzle type features. The average size of the learned models is
approximately 74 features out of 538.

8. Concluding remarks

Prediction of the production times of optimized PCB assembly jobs prior to the actual
control code optimization was considered in this work. In particular, the aim was to
develop estimators which are accurate and fast to compute, and predict the real assembly
times of the optimized control programs without knowing the details of the final machine
setup and the optimized machine control program (i.e. feeder assignment, nozzle setting,
and placement control).
The two new estimators are based on completely different ideas. The NNCT-estimator

is a stripped down machine control optimizer that uses PCB job data (list of component
types, positions and nozzle types needed) to assign the different nozzle types to the
assembly head and to calculate the assembly times based on movement distances, speeds
and accelerations of the head. The method is based on rules handcrafted by a human
expert, and hence it does not require training data in the way the data-driven methods
do. Thus, it can be considered as a kind of a real machine simulator, while being at least
one magnitude faster. It can easily be adapted for other speed characteristics and heads
with different number of nozzles.
The second estimator is based on advanced regression analysis technique which does

not require any technical knowledge about the assembly machine in use, but relies on a
set of training data consisting of PCB jobs with known assembly times, and to a rich set
of features consisting of component and nozzle types in addition to their counts. Feature
selection is performed automatically by the regressor. The regression estimator requires
a representative training set and thus the accuracy of the estimates depends on this data.
On one hand, the estimator is not able to estimate assembly times for other head types
without retraining. On the other hand, it is very accurate and easy to construct. Further,
the regression model is extremely fast to use because as its the estimation time is linear
in the number of features used and this number is, in turn, reduced by the greedy feature
selection algorithm used for training the estimator. In contrast, the estimation time of the
NNCT method grows roughly quadratically in the number of components to be places,
because of the nearest neighbour search. Construction of the regression estimator is done
off-line and the time for doing this is not counted to the online prediction costs.
The experimental results show that the mean absolute percentage error 6.52% of the

NNCT method is considerably lower than the error 17.42% of the estimator based on
the manufacturer given tact time only, indicating that it pays to take advantage of the
information given by the manufacturer about the operations of the placement head. In
addition, the error 3.75% of the proposed data driven regression model based on the
extended feature set is lower than the error 6.06% of the classical regression approaches
based on the number of components and nozzles only, again indicating the usefulness
of the extra features. Furthermore, it can be concluded that the data driven regression
approaches are to be preferred over the handcrafted ones whenever there is suitable data
available for training them.
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Table 1. Methods for estimating the total component placement time

Method Accuracy Speed Suits for
line balancing

Used in

Test runs with
real placements in
“cold-operation”
mode

High Very slow No Fine-tuning of
mass products

Machine simula-
tion (Vainio et al.
2010)

High Slow No Fine tuning of
production

Machine parame-
ter -based averag-
ing (Toth et al.
2010)

Varies from
high to low

Fast Yes Various applica-
tions

Machine learning
approach (Laakso
et al. 2002, Wu
and Ji 2010,
Vainio et al.
2010) and this
article

Depends on
the training
set and on the
model

Fast Yes Various applica-
tions
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Table 2. Prediction performances of the five evaluated prediction approaches, namely the nearest neigh-
bour of certain type (NNCT), greedy regularized least-squares (Greedy RLS), the univariate regression
(UV regr.) and two-variate regression (TV regr.) approaches given in (9), and the use of the tact time
(Tact time). The prediction performances are measured in root mean squared error (RMSE), mean ab-
solute error (MAE), and mean absolute percentage error (MAPE).

NNCT Greedy RLS UV regr. TV regr. Tact time
RMSE 3.249 1.752 3.130 2.267 6.184
MAE 2.540 1.263 2.566 1.867 5.419
MAPE 6.52 3.75 7.27 6.06 17.42
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Table 3. Statistics of the most commonly selected features during the first five rounds of the selection
processes performed during the 95 rounds of the outer LOOCV loop. The rows are indexed by the rounds
of the feature selection procedure, i.e. the number of features in the model. The second column contains
lists of (feature index: frequency) pairs. The frequency gives the numbers of times the feature has been
selected during the corresponding outer LOOCV round. In the third round, for example, the features
530, 496, and 494 are, respectively, selected as the third feature in 63, 31, and 1 out of 95 of the outer
LOOCV rounds.

Round Features
1 1:95
2 2:95
3 530:63 496:31 494:1
4 524:62 446:29 22:2 523:1 365:1
5 365:56 22:26 136:4 221:3 382:2 524:1 270:1 446:1 371:1
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Figure 1. Four placement tours using five different nozzle types for an optimized sample PCB
job with 43 component placements.
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Figure 2. Four near optimal tours for the placement job of Figure 1 when all components use a
universal nozzle type.
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Figure 3. Observed (optimized) ASM Siplace times compared to the NNCT-estimate times.
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Figure 4. Greedy RLS. The observed and predicted placement times for the 95 PCB assembly
jobs. The jobs are in the same order as in Figure 3.
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Figure 5. The univariate regression method given in (9). The observed and predicted placement
times for the 95 PCB assembly jobs. The jobs are in the same order as in Figure 3.
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Figure 6. The two-variate regression method given in (9). The observed and predicted placement
times for the 95 PCB assembly jobs. The jobs are in the same order as in Figure 3.
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Figure 7. Predicting placement times with tact time. The observed and predicted placement
times for the 95 PCB assembly jobs. The jobs are in the same order as in Figure 3.


