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ABSTRACT Selective Laser Melting (SLM) is an advanced Additive Manufacturing (AM) technique
for the 3D printing of metals. SLM process parameters and different types of defects that may appear
during the manufacturing process affect the quality of the final product. Setting laser parameters and online
defect detection contributes to improving the quality of parts fabricated through SLM technology. In this
study, the effect of the process parameters on the properties of the product built by the SLM process was
investigated, and an in-situ monitoring platform was developed to detect two types of defects during the
SLM process. Different samples were built from stainless steel AISI 316 L powder, utilizing various laser
process parameters. Using microscopy imaging technique, the melt structure features of the constructed
samples were tested, and the results were analyzed. The dependency of porosity formation on laser process
parameters and scan strategy was investigated. Moreover, hardness test was performed for all built samples.
The platform developed for in-situ monitoring purposes includes an AM machine equipped with pulsed
laser, camera, illumination system, and powerful industrial computer equipped with Cameral Link Adapter,
FPGA, and Real-Time (RT) modules. An algorithm was designed using LabVIEW® software based on
Particle Analysis (PA) to cease the process in the event of detection of defect in any fused layers. The first
defect was caused by changing the laser spot diameter, which altered the energy intensity of the laser on
the surface, and the second defect was created by the uneven thickness of powder on the platform. The
monitoring system detected both defects and stopped the process immediately according to the designed
algorithm. Images were taken from the melting process layer by layer using a high-performance camera.

INDEX TERMS Additive manufacturing (AM), focal point position, in-situ monitoring, laser beam diameter,
laser energy density, particle analysis (PA), powder thickness, selective laser melting (SLM).

I. INTRODUCTION

Additive manufacturing (AM), or 3D printing, is emerging as
a new industrial revolution [1], [2]. AM is growing rapidly in
the market due to its ability to offer rapid prototypes, mas-
sive scale production, and customer-oriented designs [3]-[5].
In addition, it provides an opportunity to produce objects
with a high degree of accuracy for complex structures and
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efficient fabrications based on the digital design of a prod-
uct. The desired object is built layer by layer based on the
CAD model’s data provided by the STL format., which uses
triangle facets to simulate the original model. The STL file
is first sliced into separate layers, then hatched to generate
scan trajectories stored in another format. Each slice made
from the CAD design contains the layer’s information to
be printed [6]-[8]. The AM machine then follows those
scan trajectories to produce the object [6], [9]. There are
numerous additive manufacturing technologies and various
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FIGURE 1. Selective laser melting process [20].

materials appropriate for AM processes [10], [11]. Over the
past decade, AM has been extensively studied for build-
ing metal parts, and novel AM methodologies have been
developed for 3D printing of metals with higher accuracy,
improved quality, and less processing time [12]—[14]. Various
techniques can be utilized for 3D printing of metals, such
as Directed Energy Deposition, Laser Powder Bed Fusion
(L-PBF), Electron Beam Powder Bed Fusion (EB-PBF), and
Binder Jetting [14]-[17]. In this study, Selective Laser Melt-
ing (SLM) has been employed. SLM is a type of powder
bed fusion additive manufacturing technique and is widely
used to create solid objects with complex shapes and special
features layer by layer by melting metal powders with a laser
beam [18], [19]. Fig. 1 shows the schematic illustration of the
selective laser melting process [20].

Although SLM provides unique capabilities in the additive
manufacturing of metal products, the quality of components
produced by this technology hinders its widespread appli-
cation in industrial sectors. Laser and material parameters,
including the thickness of layers, laser power, laser speed,
scanning strategy, hatch distance, and beam diameter, sig-
nificantly affect the physical and mechanical properties of
the metal parts fabricated by the SLM process [21], [22].
Energy density is a determinative factor in the selective laser
melting process, but it does not solely specify the shape of
the melt pool or properties of the produced part. For example,
the porosity of built parts can occur in high and low energy
density depending on other factors [22]. Very high energy
density can result in keyhole pores or balling effect due to
overheating, leading to irregular tracks and geometric surface
changes. On the other hand, very low volumetric energy
density can be insufficient to melt and solidify the powder
[22]. The volume-based energy density E (J/mm3) is defined
by Eq. 1, where P is laser power (W), v is scan speed (mm/s),
h is hatch spacing (mm) and d is layer thickness (mm)
[23], [24]:
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Laser power and scan speed also have a crucial role in the
geometric shape of the melt pool. Hatch distance has a great
impact on the strength and densification of the SLM-built
parts. Moreover, spot size is critical in the laser melting
process. By decreasing the spot size, the power density will
increase, and the absorption level changes. For maximum
penetration, the focal point is located within the workpiece
up to a certain depth diameter. In addition, laser scan strategy
affects the thermal gradient, ultimately the microstructure and
mechanical properties of SLM-built parts. Scanning strategy
plays a remarkable role in the formation of defects such as
balling effect or high residual stress [25]. Proper selection
of scanning strategy increases the uniformity of temperature
distribution and improves the properties of the 3D printed
product [25], [26]. Inappropriate laser parameters degrade the
quality of parts by forming pores, causing cracks, or rougher
surface. Furthermore, the defects that occur during the SLM
process can cause parts’ failure or hamper their performance.
One approach to improve the quality of products fabricated
by SLM technology is process monitoring and online defect
detection. In this way, the defect can be identified in the
earliest possible stage, and control measures can be taken
subsequently before influencing the properties of the final
parts [27], [28]. There are different types of methods and
sensors for monitoring the SLM process, such as acoustic,
optical, thermal, and vibration systems. For online moni-
toring of the SLM process, optical-based image processing
is the most common method. [29]. Optical sensors have
improved significantly during the past years, from simple
sensors such as photodiodes to advanced digital cameras,
which, when coupled with an illumination system can provide
high-resolution images at high speeds to be analyzed through
image processing unit [30].

In this study, different cube samples from stainless
steel 316 L powder have been produced by applying var-
ious SLM process parameters. The structure and melting
features of the samples were investigated through an electron-
microscope imaging machine. Also, the hardness strength
of the samples was evaluated via a hardness test. More-
over, an in-situ monitoring platform has been developed to
detect defects that may arise in any fused layer. The optical
system has been used for this purpose. AM machine was
equipped with a pulsed laser, camera, illumination system,
and industrial computer PXI system equipped with Cameral
Link Adapter, FPGA, and Real-Time (RT) modules. Using
LabVIEW® software, an algorithm has been designed to
stop the process if a defect was detected in any fused layers.
The working principle of the algorithm is based on Particle
Analysis (PA). Since the waiting time for any defects to natu-
rally appear was very long, two types of defects were caused
deliberately to evaluate the performance of the developed
system. The first defect was caused due to the change in
laser spot diameter, which varied the intensity of the laser
energy on the surface, and the second defect was caused
due to the unevenness of the powder thickness on the plat-
form. Using a high-performance camera, the melting process
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was photographed and analyzed layer by layer. If no defect
was found, the machine carried on the process. However,
in case of detection of any defect by the system, the algorithm
stopped the process and did not start forming a new layer.
Also, it sent an alarm to inform the operator about the defect.
After resolving the cause of the defect, the operator started
the machine manually, and the monitoring platform continued
working again.

A. BACKGROUND STUDIES

Numerous studies have been conducted on the SLM process.
The influence of changing the laser process parameters on
the mechanical properties and quality of parts produced by
AM process has been investigated in a wide range of studies.
Also, the importance of SLM process monitoring and real-
time control of defects has been highlighted in recent years,
and numerous research efforts have addressed this issue as a
high priority research target. Over time, research studies in
this field have become more comprehensive, especially with
the development of Artificial Intelligence (AI) and machine
learning.

Zhang et al. analyzed the mechanisms of defect formation
in the selective laser melting process. The impact of process
parameters, including laser power, hatch space, scan speed,
scan strategy, and layer thickness on the formation of defects
such as cracks, spherical pores, and irregular fusion holes was
investigated. It was shown that energy density is a determin-
istic factor to control the creation of defects, and scan strategy
has an important role in the distribution of defects. Also, the
effect of defects on the mechanical properties of the manufac-
tured parts, especially fatigue strength, was discussed. Some
strategies for removal and control of defects were proposed
based on the analysis performed [31].

The impact of SLM process parameters on the quality
of parts was investigated by Maamoun ef al. A design of
experiment was used to analyze porosity, surface roughness,
relative density, and dimensional accuracy concerning the
interaction between the process parameters. A range of SLM
process parameters to obtain optimum performance charac-
teristic values of A1Si10Mg and A16061 alloys was specified.
Also, to demonstrate the interrelationship between relative
density, surface topology, dimensional accuracy, and optimal
processing window was developed for each material to obtain
the final product with high-quality [32].

Utilizing normalized process maps, Bajaj et al. proposed
a novel approach for rapid process development for the
SLM process by identifying a wide processability window
for achieving minimum porosities in molybdenum and alu-
minum. They used plots of normalized energy density vs.
normalized hatch spacing and statistical Design of Exper-
iments concept for the development of process parameters
such as layer thickness, hatch spacing, exposure time, and
point distance. The effectiveness of their proposed method for
mentioned metals was proved by achieving relative densities
of 97.4% and 99.7% using 200 W pulsed laser and 400 W
continuous laser, respectively [33].
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Greco et al. investigated the SLM process with varying
laser power, layer thickness, and hatch space to fabricate AISI
316L. They kept the input energy density constant by adjust-
ing the scanning speed and evaluated varied parameters at two
different energy densities. The results showed that different
roughness, density, and microhardness were obtained using
constant energy density with varying laser parameters. Also,
it was shown that the density and the microhardness of the
final product could be enhanced by adjusting laser power,
the hatch space, and the layer thickness. Moreover, it was
demonstrated that the microhardness of the part produced
by the SLM process correlates with its relative density. Rel-
ative densities up to 99.9% were obtained in the presented
study [34].

In contrast with conventional approaches, Barua et al.
presented a model, which does not involve the melt pool for
defect detecting in the laser metal deposition process. They
established a vision system to detect thermal irregularities in
the laser metal deposition process using an SLR camera to
take pictures of the deposited track behind the melt pool. The
temperature of the picture’s pixels was estimated using radi-
ant surface temperature and calibrated RGB values. Defects
were identified through deviation from the reference cooling
curve. Residual values were calculated applying linear least
squares curve fitting. Porosity defects and cracks were simu-
lated during the laser metal deposition process, and a defect
detection model was developed [35].

Tapia and Elwany reviewed the studies in the field of pro-
cess monitoring and real-time control of additive manufac-
turing. They addressed the achievements and deficiencies in
this field up to the time of their research. Also, various types
of sensors and systems developed for monitoring and control
purposes were discussed. Moreover, the type of process and
type of material involved in each literature were considered
in this study [36].

In the study performed by Grasso ef al., a method for spa-
tial identification and detection of defects for selective laser
melting was proposed. They used a machine vision system for
this purpose. Principal Component Analysis (PCA) applied
to image data was used to define a statistical descriptor.
Defective areas of a layer were recognized precisely using
this method. Also, image k-means clustering analysis was
performed for the automatic detection of defects. A real
case study was investigated to show the effectiveness of the
proposed method [37].

In the study conducted by Malekipour and El-Mounairy,
typical defects and their contributing parameters were identi-
fied and categorized on the powder bed fusion process. They
also investigated defects and contributing parameters from
the manufacturing features side for monitoring and control
purposes to achieve a part without defects. Categorization
was performed based on three criteria. All the defects created
during the process were involved in the first criteria. Basic
parameters for major defects were covered in the second
criteria, and the defects that should be recognized by available
monitoring approaches to be controlled via standard process
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parameters were involved in the third one. Also, an indirect
method to control the process was presented [38].

Lane et al. used multiple sensors, including a high-speed
visible camera, a synchronized thermal camera, and a pho-
todetector to synchronous observe the melt pool and measure
a laser powder bed fusion (LPBF) built product with an
overhang structure. Using joint-time frequency analysis, the
photodetector signal was analyzed. To relate observations
from each camera, all acquired signals were synchronized and
viewed in a single merged video. Residual heat and slower
cooling rates were noticed after forming the melt pool and
leaving the overhang edge. The authors found a strong corre-
lation between the photodetector signal and the motion and
position of the melt pool according to the scanning strategy.
Also, they figured out a possible association between the
position of the melt pool dependent on the photodetector field
of view [39].

Demir et al. proposed a coaxial configured multi-sensor
monitoring system for SLM of a tool steel with low pro-
cessability to monitor process emission and back-reflected
laser light. Using a flexible monitoring system with multiple
sensors, a better comprehension of the process and means for
signaling the defect formation could be provided. Three chan-
nels were employed in the monitoring module to simultane-
ously follow different phenomena. Two digital cameras and a
photodiode were used to observe different wavelength bands.
The authors considered temporal, spatial, and wavelength
bandwidth resolutions in choosing the sensors. They showed
the effectiveness of the developed monitoring system with
experimental methods and identifying the process transitory
concerning thermal stability, laser absorption, and porosity
formation [40].

Remani et al. demonstrated a multi-sensor approach to
correlate the layer-by-layer development of the final part
built by metal laser powder bed fusion (MLPBF) with its
mechanical properties. The in-process measurements were
conducted, and the detected defects were compared with the
defects that exist in the finished part. The process was moni-
tored using three sensing systems including multi-view fringe
projection, IR thermography, and high-speed thermal imag-
ing technologies to detect the defects as they appear within
the final part. Different sensors were used to individually
image each layer of the build immediately after completing
the laser melting. Using X -ray computed tomography the
final part was scanned to evaluate the defects in the part.
Using in-process and XCT data, the mechanical assessment
was performed to discriminate harmful defects from neutral
faults [41]

Song et al. proposed a method based on machine learning
to monitor the AM process. They used an operating param-
eter conditioned support vector regression (SVR) method
to attain in-situ composition prediction independent of pro-
cessing parameters. In order to train the SVR, spectral line-
intensity-ratio and spectral line-intensity-ratio, and spectral
integrated intensity were utilized. For comparison, composi-
tion measurements using a calibration curve method, artificial
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neural networks, and partial least square regression were
also conducted. Compared with the other methods, it was
shown that the SVR with both input types provides the best
performance [42].

Bartlett e al. used full-field infrared (IR) thermography
to develop an in-situ monitoring system to detect defects
and monitor AlSil0Mg specimens during SLM production.
They performed transient thermal modeling to support their
observations. Ex-situ scanning electron microscopy (SEM)
was used to characterize parts to validate data identified
defects. The results showed that defects could be identified
effectively using the IR defect detection method with an 82%
success rate for lack of fusion (LoF) defects. It was also
demonstrated that the introduced method has the capability
to analyze the presence of systematic process errors during
SLM process [43].

A defect detection method for the SLM process using
a microphone based on a deep belief network (DBN) was
introduced by Ye et al. The acoustic signal was processed
for quality monitoring for five melted states without signal
preprocessing and feature extraction. The results approved
the effectiveness of the acoustic signal and DBN method to
achieve a high defect detection rate [44].

Liu et al. proposed a real-time monitoring system to iden-
tify errors automatically using principal component analysis
and a support vector machine. A CCD camera captured the
molten pool images of the laser AM process, and ten features
were obtained. The dimension of the feature set was reduced
using the principal component analysis method. The quality
of additive manufacturing parts was evaluated by applying a
support vector machine model. The results demonstrated that
the applied method could achieve a high defect detection rate
for two kinds of defects: bulge and slag inclusion [45].

Yadav et al. reviewed different types of defects of the SLM
process that can be monitored and detected in real-time using
in situ sensing sensors based on various machine learning
approaches. They reviewed the complexity of the laser pow-
der bed fusion (L-PBF) process, melt pool signatures, in situ
monitoring systems, post-processing of in situ sensing data,
and automatic detection of defects using machine learning.
Different machine learning approaches were reviewed and
discussed. The final purpose of the study was to develop a
closed feedback control system for real-time quality control
and improvement of the L-PBF process [29].

Il. EXPERIMENTAL PROCEDURE
Equipment for selective laser melting developed for this
research includes a laser system, camera, camera adapter,
and an illumination system, which all are connected to
the AM machine [46]. Fig. 2 illustrates the schematic dia-
gram of the SLM system of this study. High accuracy,
meaning + 20-50 um for small parts and +0.2% for large
parts, can be obtained using this machine.

The material used in this process is EOS stainless
steel 316 L. Material composition is shown in Table 1 [47].
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FIGURE 2. Picture of the experimental equipment and its schematic
diagram.

TABLE 1. EOS stainless steel 316 L material composition [45].

Min Max
Fe Balance Balance
Cr 17 19
Ni 13 15
Mo 2.25 3
C 0.030
Mn 2
Cu 0.50
P 0.025
S 0.010
Si 0.75
N 0.10

The additive manufacturing machine used in this research
is EOSINT M 270 with Yb: YAG fiber laser, continu-
ous wave (CW) with the wavelength of 1064 nm. This
machine has the ability to build parts with a volume of
250 mm x 250 mm x 215 mm with a speed of 2-20 mm?/s
depending on the material [48]. Argon gas was used as the
shielding gas in the atmospheric pressure inside the machine
to minimize oxidation and reduce the weakening effect of
the laser beam by the plasma. The high-performance Baumer
camera, type TXG14 with Telecentric 55 mm lens equipped
with CCD sensor, and Optronis camera model CR3000 x 2,
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TABLE 2. Laser process parameters of built cubes.

Cube 1 Cube 2 Cube 3
Laser power 200 W 100 W 200 W
Scan speed 1000 mm/s 1500 mm/s 1500 mm/s
Hatch distance 0.1 um 0.01 pm 0.04 pm

with the full resolution of 1696 x 1710 pixel, the Global
type shutter and the power of 12 W, and the camera adapter
installed between the scan head and laser flange, were used
for observation of the melting process. In addition, the high-
performance pulsed diode laser light source CAVILUX HF
with power up to 5S00W and wavelength of 810 nm was
used as the illumination system. NI PXI system, which is
equipped with Camera Link Adapter, FPGA, and Real-Time
(RT) modules, was chosen for executing image processing
and analysis.

Three sample cubes were built using different processing
parameters and chessboard scan strategy, as presented in
Table 2. The layer thickness is 20 um. Process parameters
have been determined so that do not result in a keyhole
melting regime, ensure the stability of scan tracks, and pro-
duce high-density samples. Also, since the high energy of
the laser can lead to the formation of a plasma plume above
the melt pool, the beam parameters were chosen in such a
way to keep the line energy regime low, which reduced the
plasma formation. The parameters were selected based on the
laser power range of 50-300 W, the scanning speed range of
500-2000 mm/s, and the hatch distance range of 0.01-0.2 um.

All built samples were tested to evaluate their structure and
mechanical hardness.

Ill. MECHANICAL PROPERTIES

A. STRUCTURE TEST

The structure of the material is affected by heating temper-
ature and the thermal cycles of the SLM process. In order
to perform the structure experiment, three constructed cubes
were cut perpendicular to the build direction, and the cut
surface was polished and then washed with the alcohol and
dried. In the next step, images from the surface of cubes were
taken using microscopy imaging technique to recognize the
important changes and the effects of parameters on the cube
structure. The imaging tool employed for this purpose was a
PME model of Olympus Inverted Metallurgical Microscope.
Fig. 3 a), b), ¢) show the structure images of cubes 1-3,
respectively. Fig. 4 a) and b) display scan strategy and melting
feature of cube 2 and 3. It should be noted that Fig. 4 shows
the top surface of the constructed cubes (no polished cross-
section as in Fig. 3).

As shown in Fig. 3 b), the gaps between the molten tracks
are visible in cube 2, which were caused due to the low
density. In cube 3, small pores were generated, and a good
overlapping was achieved, as presented in Fig. 4 b). The
heat treatment has an impact on the porosity formation and
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FIGURE 4. Scan strategy and melting feature, a) cube 2, b) cube 3.

densification properties. In general, keyhole pores are formed
at high energy density or overheating, thus high laser power
and low scanning speed. Porosity varies by various parame-
ters such as scanning speed, laser power, hatch distance, and
scan strategy [49], [50]. Loss of overlap between the tracks
causes higher porosity. If laser power is constant, the smaller
hatch distance nullifies the effect of scan speed on creating the
pores. As shown in Fig. 4, the overlap for cube 3 is four times
inferior to cube 2. Moreover, in cube 2, a narrower line has
been formed in the melting region due to lower laser power.
Due to the high cooling rate in the SLM process, a very fine
structure is generated. The thermal gradient leads to the thin
structure of the melt pool. Enhanced hardness is the result of
various factors related to the refined structure.

In this research, one of the crucial points to consider is
the temperature changes and heat flow during the process.
The temperature during the process affects the solidifica-
tion morphology in tracks. During solidification in the SLM
process, temperature gradient (G) influences the neighboring
solid interface. The temperature gradient and the growth rate
(R) have a critical role in the microstructure solidification
morphology. By changing in scanning speed and the angle
of interaction between the laser beam scan track and the
growth direction of the solidified material, the growth rate
can be modified [51]. Decreasing growth rate at constant
temperature gradient leads to a fixed, stable planar consol-
idation front; however, increasing growth rate results in the
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FIGURE 5. Hardness test and measurement graph of cube 1 [46].

cellular formation and dendrite solidification morphologies
[52]. The cooling rate is obtained from multiplying G x R,
which describes the relationship between the product and
microstructure quality, in the sense that a higher value causes
a finer microstructure. On the other hand, a high ratio of G/R
means more planar stability in front crystallization; hence,
alow ratio of G/R makes instability. Moreover, the orientation
and amount of the thermal gradient affect the neighboring
scan track on the melt pool. Therefore, solidification results
vary depending on the changes in G and R [52].

B. HARDNESS TEST
Hardness and tensile strength are major factors in eval-
uating the mechanical characteristics of manufactured
parts [49]-[51], [52]. After polishing and putting in acid,
a hardness test was conducted for all produced cube samples
utilizing Struers DuraScan 70 hardness tester with Vickers
HVS5 test method. Hardness tests were done on the surfaces
in 6 different points of the cubes. Fig. 5-7 show the hardness
test and measurement results for cubes 1-3, respectively [46].
According to the hardness test results, cube 1 and 2 have
the same hardness features diagonally; however, the hard-
ness from other points is different for these cubes. Scanning
speed and hatch spacing significantly influence the porosity
of SLM-built parts. As the porosity increases, hardness, ten-
sile strength, and yield strength of the parts decrease [53].
As the hatch distance and scanning speed increased, the
hardness decreased. Moreover, the density of the final part is
affected by hatch spacing, scanning speed, and laser power.
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FIGURE 7. Hardness test and measurement graph of cube 3 [46].

Densification can be considerably reduced due to insufficient
melting of the powder and the presence of pores caused by
improper setting of hatch distance, scanning speed and laser
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power [53], [54]. Porosities result in the initiation of cracks,
low relative densities, and consequently lower hardness of the
components.

IV. IN-SITU MONITORING
Since the occurrence of any defects in any fused layers can
affect the structure of the final product and deteriorate the
quality of part, it is important to monitor the process in each
layer to detect the possible defects arise during the process.
In this study, an in-situ monitoring platform was developed,
which aimed to detect the defects that may appear during the
SLM process. An algorithm was designed that stops the pro-
cess immediately if a defect was detected in a layer. The algo-
rithm works based on Particle Analysis (PA), the principle of
which is based on the number of particles. The algorithm was
developed using LabVIEW software. Fig. 8 shows the pattern
of the process of image acquisition and analysis [27].
Through Camera Link cables the acquired image data from
the camera is delivered to the Camera Link module and trans-
formed into pixels, which can be manipulated on a computer.
The maximum frame rate is 500 frames per second because of
the speed of the image processing algorithm; however, in this
process, analyzing one image at the end of each fused layer
also is good enough. Camera output was set to 10-tap mode,
which allows parallel acquisition with ten pixels. The pixels
are written into small FIFOs. Image acquisition is controlled
by data acquisition state machine with the aim of acquiring
the image from the camera only when the image is ready for
acquisition. The state machine sends the image information
and acquisition status to the User Interface (UI). The 80-bit
data is transferred from Cam Data FIFOs to packer CLIP
(Computational Linguistics and Information Processing) and
converted into eight different FIFOs with 8-bit words through
multiple data packing units. The 8-bit data is converted into
a Pixel Bus format for thresholding operations, which is then
written to Host FIFOs to transfer data from FPGA to Real-
Time (RT) controller [27]. The minimum particle size is set
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FIGURE 9. Functional units of the data processing system.

to 3 x 3 pixel. The real-time controller is configured to remove
unwanted smaller particles before starting the image analysis.
The number of particles of the image is calculated by the real-
time controller and returned to the user interface (UI). In case
of a defect, the error information is sent to Ul Data delivery
from the industrial computer (PXI system) to the PC and vice
versa is performed via an Ethernet connection. Fig. 9 displays
the data processing system.

Fig. 10 shows the method steps for initializing the auto-
matic image analysis. As the waiting time for any defect
that appears naturally was too long, therefore two types of
defects were caused intentionally in order to evaluate the
performance of the developed system. The first defect was
caused by changing the laser spot diameter, and the second
one by creating unevenness in the layer’s thickness. The
monitoring system was tested for both defects to ensure that it
could detect the defects and react according to the developed
algorithm. After forming each layer, an image was taken and
analyzed, and in case no defect was found then the machine
continues the SLM process. If the system detects any defect,
the algorithm stops the process, and does not start forming
a new layer. It also sends an alarm to the UI to inform the
operator about the defect. After eliminating the cause of the
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FIGURE 10. Method steps for initializing the automatic image analysis.

laser power: 200W, scan
speed: 1500 mm/s, hatch
distance:0.10pm

FIGURE 11. Cube sample to test the in-situ monitoring system [46].

defect, the operator can manually return the machine to carry
on, and the monitoring platform continues to control the
quality of the new layers in real-time.

Another cube was created with laser power of 200 W,
a scan speed of 1500 mm/s, and a hatch distance of 0.10 um
for the defect test. Fig. 11 illustrates the final produced
cube [46].

A. LASER BEAM DIAMETER CHANGE

The laser beam diameter on the powder bed determines
the energy intensity, which affects the depth of laser beam
penetration. Declining the spot size results in increasing the
energy density by the proportional value of 1/¢%. Beam
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FIGURE 12. a) Completed layer before changing the laser beam diameter b) In-situ image of defects of the first layer after changing the spot size
¢) In-situ image of defects of the second layer d) In-situ image of defects after single powder layer recoating.

energy distribution and melt pool morphology vary depend-
ing on the changes in beam size. Changing the spot size by
defocusing the laser at the powder surface level spreads the
given amount of energy over a larger surface area. As the
laser melts the powder, the high energy creates overheating,
meaning a larger and deeper, and hence, possibly unstable
melt pool and keyhole pores. An unstable melt pool may yield
a spatter of a fraction of the melt pool, which results in fabri-
cating parts with low quality and poor mechanical properties.
In this experiment, some good layers were first built using the
optimized process parameters, and afterwards the operator
stopped the process, changed the laser beam diameter from
100 pm to 150 pwm, and started the system to continue creat-
ing a new layer. The rest of the process parameters were kept
constant. The laser beam size on the surface of the build was

46108

changed by altering the focal point position on the powder
surface level. To change the focal point position, the computer
controller of the laser was used through which the operator
could manage the focal point position. The reason for the
deliberate change in laser beam diameter was forcing the
system to create a defect in the layer under development in
order to check whether the in-situ monitoring algorithm was
capable of running the image processing on each image of
the deposited layer and detecting the defect in that specific
layer. As designed, the monitoring system was capturing an
image after each layer was forming. Fig. 12a shows the image
of the latest completed layer before changing the laser beam
diameter. When the laser spot diameter was changed, the
monitoring system took an image of the defective layer. The
image processing algorithm was able to successfully detect
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FIGURE 13. Layer surface after changing the layer thickness from 20 um
to 15 um.

the error and stop the process. Defect alarm was also sent to
the UI to notify the operator. The machine was then started
again manually by the operator to monitor the processing
of all layers. Creating more layers on top of the previous
layers with the wrong focal point continued to monitor the
build quality of several layers with unoptimized focal point.
Fig. 12b-d illustrate the defects of layers after altering the
laser spot diameter. The images were taken after a layer was
totally processed before the next layer was deposited and
processed.

As illustrated in Fig. 12a, when the focal point was in its
optimal position and the size of the laser beam on the layer
and thus the energy emitted by the laser beam was optimized,
the fused layers were created with good quality. Each fused
powder line was very symmetrical and there was no hot spot,
spatter, or uneven melting pool. As soon as the focal point
changed from the optimal size and position, defects appeared
in the layer under creation, as shown in Fig. 12b, Fig. 12¢, and
Fig. 12d. The fused layer was uneven, and the melting pool
suffered from the extra energy applied to the molten metal
particles. Also, fused lines were no longer visible. As can
be seen in Fig. 12b and Fig. 12c, the quality of the layer
deteriorated layer by layer and hot spots appeared throughout
the second layer. Even after the new powder layer covered the
second layer, some areas of the previous layer were not coated
by the new metal powder layer due to spatters and uneven
melted surface.

B. DEFECT OF POWDER LAYER THICKNESS

Although this subject has been reported intensively in early
publications and is commonly applied in many commercial
SLM machines, it was still reasonable to be investigated in
order to examine the monitoring system and the algorithm
designed in this research, and also to study the impact of
changing the powder layer thickness on the melting pool

VOLUME 10, 2022

and quality of the build. The layer thickness at the point
where the interaction occurs between the laser beam and the
powder is influential. Layer thickness defect influences the
energy density, penetration depth, and consequently bonding
between the layers, and the whole process gets involved in
resolving the thickness defect. It causes inter-layer porosity,
which leads to poor density and mechanical properties of the
component. Also, layer thickness is a contributing parameter
in causing geometric inaccuracy and dimensional deviations
[31]. The thinner powder layer absorbs higher energy, which
results in kinetic densification and consolidation. However,
if the powder thickness is not enough, balling effect or other
track defects can happen.

In this experiment, the uneven thickness of the powder on
the platform caused a deliberate defect. Two different meth-
ods were used to intentionally apply the defect in the build.
In the first method, the software that was controlling the SLM
machine was used by the operator to change the thickness of
the powder manually. The thickness of the initial layer was
changed from 20 um to 15 um in the computer controller
of the laser and the rest of parameters were kept unchanged
to check the effect of the layer thickness on the quality of
surface. The image acquired by the monitoring system illus-
trated in Fig. 13 showed that the melting process was affected
by decreasing the powder thickness. By reducing the powder
thickness to 15 um, higher energy was absorbed, which led to
the spatter formation on the melt pool, as observed in Fig. 13.

In the second method, the process was stopped in the
middle of forming the layer and the thickness of the pow-
der layer was changed by randomly adding/removing pow-
der to/from a part of the surface by the operator. Then the
machine was started again to continue creating a new layer.
Fig. 14 a) shows the layer surface before applying layer
thickness inequality, while Fig. 14 b) illustrates dispersion of
heterogeneous powder before starting the SLM process. After
starting the process, the monitoring system succeeded in
detecting the error based on the captured image and stopped
the machine accordingly. However, in order to monitor the
formation of more sequential layers with the defective uneven
powder layer thickness, the machine was started again manu-
ally. This occurred for each layer. Fig. 14 ¢), d), e) display the
in-situ images of the first, second, and third layer of the cube
surface formed by the SLM process after applying the thick-
ness defect, which resulted in a different surface thickness of
the cube. Similar to Figure 12, the images in Figure 14 were
taken after one layer melted and the next layer was deposited.

As revealed by the images, the defect is clearly visible
at the left edge of the cube surface of all treated layers.
Those areas of the powder layer that were not touched show
acceptable quality since the energy density was proper for
fusing that thickness of the powder. In areas where the powder
layer was not enough, the hot spot appeared, and the melting
pool suffered from the extra energy applied to the powder.
As shown by the in-situ images, although the defect of the
third layer was relatively small, the monitoring system was
able to recognize the error and cease the process.
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V. CONCLUSION

In this study, the experiment was conducted to assess the
effect of laser process parameters on the object produced
by SLM technology from EOS stainless steel 316 L. Also,
an in-situ monitoring platform was developed to detect the
defects in AM process. SLM system developed for this
research includes AM machine equipped with laser system
based on fiber laser, camera, illumination system, and power-
ful industrial computer equipped with Cameral Link Adapter,
FPGA, and Real-Time (RT) modules. Different cube samples
were made using various laser process parameters. Images
were taken utilizing microscopy imaging technique. The
structure, scan strategy, and melting feature of all samples
were evaluated. Porosity formation and its dependency on
factors such as overlapping of tracks were investigated by
varying the hatch distance between successive build experi-
ments. Also, a hardness test was performed for all constructed
samples. It was concluded that scanning speed and hatch
distance significantly influence the hardness of the product.

An in-situ monitoring platform was developed for the SLM
process, and its performance was evaluated with experimental
method. The experiment was conducted by monitoring the
mechanism of melting and solidifying metal powder layer by
layer to ensure the defects can be detected in any fused layer
in the earliest possible stage of the process before influencing
the properties of the final parts. For this purpose, using Lab-
VIEW system design software, an algorithm was designed
based on Particle Analysis (PA) to cease the process in the
event of detection of any defect and send an alarm to the Ul to
inform the operator about the defect. As the waiting time for
any defect that naturally appears was too long, two types of
defects were caused intentionally to evaluate the performance
of the platform. The first defect was caused by changing the
laser spot diameter with keeping the rest of the parameters
constant, and the second defect occurred due to unevenness
in the thickness of metal powder. For both cases, the mon-
itoring system appropriately detected the defect and ceased
the operation. However, in order to monitor the process for
the next layers, the machine was started manually, and the
monitoring platform continued controlling the quality of the
new layers again. The images were taken online by a high-
performance camera layer by layer after creating each defect.
It was observed that the systems operated effectively to detect
even minor defects and stopped the process accordingly.
Microcracks and porosities up to 10 um can be identified by
the developed monitoring platform.

Temperature changes and heat flow during the process
impress the solidification morphology in tracks. The future
research direction will be observing the temperature varia-
tions that occur by laser parameter changes and analyzing the
solidification morphology of tracks. Conducting more inten-
sive image processing on this process is another research plan.
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